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Coxeter Groups Are Automatic
Michael W. Davis and Michael D. Shapiro

Introduction

Automatic groups were first defined by Cannon, Epstein, Holt, Paterson and Thurston
([CEHPT, 6.1] ). As we shall see, an automatic group is a group with an automatic
structure, and an automatic structure is a choice of a particular kind of normal form for
the elements of the group. This set of normal forms is required to be a regular language,
so the definition of an automatic group rests on formal language theory. However, from
the very first, the discussion of automatic groups has been strongly geometric in flavor.

In particular, a normal form for a group element can be regarded as an edge path in
the Cayley graph of the group. The central issue in proving that a set of normal forms
is an automatic structure is to show that it satisfies the “Fellow Traveller Property.” This
means that the normal forms for two group elements of distance less than or equal to 1
in the Cayley graph remain a bounded distance apart. A result of [CEHPT, 9.9] is that
geodesics in the Cayley graph of a negatively curved group (i.e., a “hyperbolic” or “word
hyperbolic” group in the sense of [G]) satisfy the Fellow Traveller Property.

The purpose of this paper is to show that Coxeter groups are automatic. This result
is not surprising given the result of Moussong [M] that these groups act cocompactly on
piecewise Euclidean complexes of nonpositive curvature. It is currently an open question
whether all such groups are automatic. There are many examples which are.

Our normal forms for elements of a Coxeter group will be a subset of the geodesics.
The key technical device for proving that this set of normal forms is regular and that it
enjoys the Fellow Traveller Property is a general fact about Coxeter groups which we call
the Paralle] Wall Theorem (Theorem 1.7 below). Roughly speaking, this asserts that any
geodesic which starts at a given “wall” in the Cayley graph and moves sufficiently far away
from it must cross a “parallel wall.” (These terms are defined in Section 1.)

The organization of the paper is as follows. Section 1 consists of preliminaries on
Cayley graphs and Coxeter groups and culminates in the statement of the Parallel Wall
Theorem. In Section 2 we give basic definitions and results concerning regular languages
and automatic groups. In Section 3 we use the Parallel Wall Theorem to show that Coxeter
groups are automatic. In Section 4 we prove the Parallel Wall Theorem.

1. Preliminaries on Coxeter Groups and Cayley Graphs

We start with a finitely generated group G. We will take a free monoid A* generated
by A= {g1,...,9k}. Thus A* = UZ_{a1...am | a; € A}. We refer to the elements of A"
as words. Multiplication in A* is given by concatenation of these words, and the identity
element of A* is the empty word which we denote by ¢. The length of a wordw =a; ...a,
is m. This is denoted by £(w).
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We will assume that we have a monoid map of A* onto G which we denote by w — .
Thus {9g7,...,9%} generates G as a monoid. We call A together with the map into G, a
monoid generating set for G.

Assume now that we have an involution on A, denoted by g; — g;! so that g_,:‘- =g

The Cayley graph of G with respect to A is a labelled directed graph whose vertices are
the elements of G and whose edges are {(k,h',g) | h,h' € G, g € A, h = h'G}. The edge
(h, k', g) is labelled by g. We say that h and h' are adjacent. We denote the Cayley graph
by T4(G).

Our definition of the Cayley graph differs from the usual one by taking the labels in A
rather than in G. For us there will be no practical difference since the map A +— A will
be an injection.

Since A generates G, T'4(G) is connected. We consider each edge of I'4(G) to be
isometric to the unit interval, and endow I'4(G) with the path metric. We denote this
metric (and its restriction to G) by d(:,-). The restriction of d(:,) to G is referred to
as the word metric. This is because d4(h, h') = min{l(w) | w € A*, h = h'w}. We define
a length function on G, £4(-), given by £4(h) = da(1,h) = min{l(w) | w € A*, W =h}. A
word w is called geodesic if ¢(w) = €4(w). Notice that each word w labels a unique edge
path starting at 1 and ending at @W. Thus we may consider w a map of the interval {0, £(w)]
into T 4(G). This map is an isometry if w is geodesic. In any case, we extend this map to
the nonnegative reals by setting w(t) = @ for t > ¢(w). The natural action of G on I 4(G)
induces an action on edge paths. Thus, if ¢ € G and w € A*, gw is a path from ¢ to ¢w.
Since G acts on ' 4(G) by isometries, gw is geodesic if and only if w is.

In the case where G is a Coxeter group (which we shall define below), it is traditional
to denote the group by W and a generating set of elements of the group by S. In this
context we will take W to be our group and S to be our monoid generating set. We take
S = S. In particular, S = § = {31,...,3k} is a finite set of generators for W. The pair
(W, S) is a Cozeter system (and W is a Cozeter group) if each element of S is of order two
and if W has a presentation with generating set S and relations: (3;%), (373;)™, where
m;; denotes the order of 5755 in W (and where if m;; = oo, then (37355)™ is regarded as
the empty relation).

For the remainder of this section, (W, S) will denote a Coxeter system and I will be its
Cayley graph.

The set of conjugates of S in W is denoted by R. An element of R is called a reflection;
an element of S is a fundamental reflection.

The edge (h3,h,s), s € S, in the Cayley graph is labelled by the element s in S. It
could also be labelled by the reflection r, where r = hsh™! € R. Under the natural action
of W on T, we have r(h3, h, s) = (h, h3,s). That is to say, r inverts an edge labelled by r.

A chamber in T is the closed star of a vertex of I in the barycentric subdivision of T.
Thus, the set of chambers is naturally bijective with the vertex set of ', that is, with W.
Suppose C}, is the chamber containing h € W. The boundary of C}, consists of a collection
of edge midpoints. Such a midpoint is called a mirror of Cj.

Suppose r € R. The fixed point set of r on I' is the union of midpoints of all edges

which are labelled by r. This fixed point set is denoted by I'; and called the wall of T'
corresponding to r.
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An edge path w in I is said to cross the wall T’y (T'y is a discrete set) if the intersection
of w and I, is nonempty; the number of times it crosses I'y is the cardinality of w N T,.

Lemma 1.1. ([B, IV, §1.4, Lemma 1]) Suppose that h € W and r € R. For any path
w from 1 to h in T, let n(w,r) be the number of times w crosses I'y. Then the parity of
n(w,r) is independent of w.

Thus, the number (—1)"*(*:") depends only on k and r; it is denoted by n(,7).

Suppose next that w is a path form & to A’ in I'. Then A~ lw is a path from 1 to
h~'h'. Moreover, for any r € R, R} (w NT,) = A~'w N T}-1,4. Thus, the number
of times w crosses I, is the same as the number of times A~ w crosses I'j-1,;. Define
p:WxW xR — {£1} by u(h,b',r) = 9(h~1A',h1rk). It follows form the above
discussion that w crosses I'; an odd number of times if and only if u(h,h',r) = —1. If this
holds we shall say that T, separates h from A'.

Lemma 1.2. ([B, IV §1.4 Lemma 2|) A path w from h to h' is a geodesic if and only if
it crosses each wall which separates h from h' exactly once.

As an illustration of the use of this result, we prove that the “Deletion Condition” holds
for Coxeter groups. (Compare [B, p. 14].)

Lemma 1.3 (The Deletion Condition). Supposethatu = s;...sx € §* and that {(7) < k.
Then there are indices i < j so that

U=31...81-18i+1..-3j=18;41-..Sk-

Proof. Since u is not a geodesic, it must cross some wall, say I', at least twice. Suppose
that the first time it crosses I'; is in the ith edge and the next time is in the jth edge. Let
T=81...8i—1, Y = Si41...8j—1, 2 = Sj41...3k. (See Figure 1.)

Figure 1.

Consider the path labelled y from 735; to 75;7. The reflection r (= z-1s;z) takes this
path to a path labelled y from 7 to 75;%5;. The lemma follows. O

Lemma 1.4. For eachr € R, I" — T',. has exactly two components.

Proof. The function 7, : W — {£1} defined by h — 5(h,r) extends to a continuous
function T' — T, — {£1}. If two vertices A and h' have the same value under %,, then a
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geodesic connecting them does not cross I'y; hence h and k' belong to the same component
of I' = T',.. It follows that 5, induces an identification of mo(I" — I',.) with {£1}. 0O

The closure of a component of I' — T, is called a half-space bounded by T,.

Next suppose that r;y and r, are distinct elements of R and that D is the subgroup of
W generated by {r;,r2}. (So that D is isomorphic to a dihedral group.) Let T denote
the set of conjugates of r; and r; by elements of D. Call two elements h and h' of W,
D-equivalent, if h and k' are not separated by a wall of I which is indexed by an element
of T. Call two D-equivalence classes [h] and [h'] adjacent if h and k' are separated by a
single wall indexed by an element of T'. Let Ap be the graph with vertex set the set of
D-equivalence classes of elements in W and with an edge connecting two vertices if and
only if they are adjacent. The D-action on W by left translation induces a D-action on
Ap. Each edge of Ap is labelled by an element of T. If v is a vertex of Ap, then let S,
denote the set of elements in T which label the edges incident to v.

Lemma 1.5. Suppose that ry, ro are in R and that ryr, is of infinite order in W. Let D
and Ap be as above. Then Ap is isomorphic to the standard Cayley graph of the infinite
dihedral group. That is to say, D acts freely and transitively on the vertex set of Ap and
A p is isometric to the real line. Moreover, there is a vertex v of Ap such that S, = {r1,r,}.

Proof. We first make two observations.
(1) Ap is connected.
(2) For each t € T, the fixed point set A; separates Ap into two components.

Choose a vertex v in Ap and let C, denote the closed star of v in the barycentric
subdivision of Ap. Recall that S, is the set of elements of T which label the edges incident
to v. Let D' be the subgroup of D generated by S,. It follows from (1) that D'C, = Ap.
Hence,

(3) Sy generates D (i.e. D' = D), and
(4) D acts transitively on the vertex set of Ap.
From (2) and very general considerations one can prove that:
(5) (D, Sy) is a Coxeter system
(6) D acts freely on the vertices of Ap.

The argument is essentially the same as the proof of Theorem 1 in [B, V §3.2]. To prove
that Ap is isometric to the real line it clearly suffices to show that each vertex is incident
to exactly 2 edges, i.e., that Card(S,) = 2. Since S, generates D, Card(S,) > 2. The
product of two distinct elements of T has infinite order in D. Since S, C T, the same
holds for S,. It follows that if Card(S,) > 3, then the corresponding Coxeter group has
a standard subgroup with Coxeter diagram:
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Figure 2.

But such a Coxeter group contains a free group on two generators. Since D contains no
such group, we much have Card(S,) = 2.

It remains to prove the last sentence of the lemma. Choose the vertex v so that r; € S,.
Since S, generates D the other element must be either 3 or rirery. If it is rirery, then
Sy.0 = {r1,r2}. Hence, after replacing v by ryv if necessary, we will have that S, = {r1, o }.
D

Complement. If ryro has finite order m, then D is the dihedral group of order 2m. In
this case one can prove the analogous result to the above lemma: that Ap is isometric to
a 2m-sided polygon.

The proof (which is omitted) uses the fact that W has a “canonical” representation as
a linear reflection group (cf. [B, V §4.4]).

If X is any subset of the Cayley graph I', then denote by W(X) the set of vertices which
lie in X.
Lemma 1.6. Suppose that ry and rp are in R and that ryrq is of infinite order in W. Then
there are half-spaces Hi and HF in T bounded by the walls Ty, and T',,, respectively,

so that W(H;) N W(H}) is a single D-equivalence class. (Here D is as in the previous
lemma.) Moreover, if for i = 1,2, H; denotes the opposite half-space to H, ;'" , then

H nH; =0,
H CHf, and
Hy C HY.

Proof. By Lemma 1.5 we can find a D-equivalence class v such that the adjacent classes
are r1v and rov. For i = 1,2, let H; be the half-space bounded by I, which contains the
elements of W in the class v. It follows immediately that

WHHNW(H}) = .

For i = 1,2, let D; be the set of elements in the infinite dihedral group D which when
written as reduced words in {ry,r2} begin with r;. Then D = {1} Il D, II D, and

WH)= | ho.
heED;
It follows that H{ N H; =0, that H; C Hy and that H; C H}. 0



6

Definition. Suppose that r; and ry are reflections in a Coxeter group W and that Iy
and Ty are the corresponding walls in the Cayley graph. Then T'y and I'; are parallel if
r179 is of infinite order in W.

Suppose that T'y and I'; are parallel walls in I' and that h € W. Fori = 1,2, let H
be the half-space bounded by T; which contains h and let H;” be the opposite half-space.
By Lemma 1.6 there are only three possibilities:

(1) Hff n H} is a fundamental domain for the action on I' of the dihedral group
generated by {ry,r2}.
(2) Hf c Hf
(3) Hf c HY.
If case (2) holds, we say that I'; separates h from I'y. We note that if case (3) holds for T',
and T', then case (2) holds for ' and r,T'y, i.e., in case (3), I'r,r,r, separates h from I';.
We can now state

Theorem 1.7. (The Parallel Wall Theorem) Let (W, S) be a Coxeter system. Then there
is a constant K(= K (W, S)) with the property (*) below.
() For any r € R and h € W, if the distance from the vertex h to the wall T, is greater
than K, then there is another reflection r' € R such that I’y is parallel to T’y and 'y
separates h from I'y.

2. Preliminaries on Regular Languages and Automatic Structures

Given A, a language over A is a subset of A*, the free monoid on A. Given two languages
L,M C A*, we may perform the standard Boolean operations to find languages L U M,
LN M and A*\ L. In addition, the multiplication operator in A*, namely, concatenation
allows us to define LM = {uv |u € L, v € M}, andforn > 1, L™ = {u;...u, | u; € L}.
We take L® = {¢}, and set L* = US2,L". This latter agrees with our usage that A* is the
free monoid on A.

There are several ways to define the class of regular languages over A. Perhaps the
simplest is to say that it is the smallest class which contains all the finite subsets of A*
and is closed under all the operations of the previous paragraph. Another way is to say
that a language is regular if it is the language of a finite state automaton, which we now
define.

A finite state automaton is a 5-tuple (A,T,to,7,Y) where A is a finite set called an
alphabet, its elements are called letters, T is a finite set of siates, ty € T is called the start
state, T is a function from A x T to T, called the trensition function, and Y C T is the set
of accept states.

Each finite state automaton with alphabet A defines a language over A in the following
way. Let w = a;...a, € A* with each a; € A. We let py = ¢, and for 1 < j < n define
p; inductively by p; = 7(a;j,pj-1). We accept w if and only if p, € Y.

If we like, we may see a finite state automaton as a finite labelled directed graph with
a base point and a set of preferred vertices. The vertices of this graph are the states of
the machine, the base point corresponds to ¢o. There is an edge from t; to ¢; labelled by
a € A exactly when 7(a,t;) = t;. The preferred vertices are the accept states. In this
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model, the language accepted by a finite state automaton consists of those words which
label edge paths starting at the base point and ending at preferred vertices.

Before defining an automatic structure, we will need the notion of a product language.
We will wish to study pairs of words (w,w') where w,w' € A*. To do this, we suppose
that $ ¢ A and consider Ag = (AU {$}) x (AU {$}) \ {($,8)}. We include A* x A* into
A; as follows. Given w = Gj...0m, W' = by ...bs, we let p = max{m,n}. If m < p,
form<j<pweleta; =38 Ifn<p forn<j<pweletbd =3 Wenow take
(w,w') € A* x A* to (a1,b1)...(ap,bp) € Aj. Note that this inclusion is not a monoid
map as its image need not be closed under concatenation. We will suppress reference to
Aj}. However, whenever we state that a collection of pairs of words is regular, we will mean
that its image is regular in Ajg.

It is now easy to state the definition of an automatic structure.

Definition. ((CEHPT, 6.1]) Given a finite set A together with a monoid map A* — G
and a language L over A, we will say that (A, L) is an automatic structure for G if
(1) L is regular.
(2) L=G.
(3) {(w,w')|w,w' € L, W =w'} is regular.
(4) For each g € A, {(w,w') | w,w' € L, W = w'g} is regular.
If G has an automatic structure, we say G is automalic.
If in addition L satisfies
(4') For each g € A, {(w,w') | w,w' € L, W = gw'} is regular,
we say that (A, L) is a biautomatic structure. If G has a biautomatic structure, we say
that G is biautomatic.

(This definition of a biautomatic structure is a paraphrase of [CEHPT, 24.1].)
If A is a monoid generating set for G and N is a constant, we say that u,v are N-fellow
travellers if for all ¢, d 4(u(t),v(t)) < N.

We will use the following as our criterion for automaticity.

Theorem 2.1. ([CEHPT, 6.7, 24.2] ) Let A be a monoid generating set for G, and let
L C A* be a regular language which surjects onto G. Then
(1) L is the language of an automatic structure for G if and only if there is a constant N

such that whenever u,v € L, g € AU{.} with ¥ = 7g, it follows that u and v are N —fellow
travellers.

(2) L is the language of a biautomatic structure for G if and only if L is the language
of an automatic structure for G and there is a constant N such that whenever u,v € L,
g € A with U = gv, it follows that u and gv are N-fellow travellers.

Definition. A partial order < on A* is regular if < = {(u,v) | u < v} is a regular product
language.

(As usual, this definition abuses notation by identifying < C A* x A* with its image in
As-)

Given a monoid map of A* onto G and a partial order relation <, we define

L = {u | u is < minimal for %}



The following lemma encodes a standard line of argument which might be dubbed
“falsification by a fellow traveller.”

Lemma 2.2. Suppose that < is a regular partial order. Suppose that there is a N so that
if u is not < minimal for %, then there is v’ so that @' = %, u' < v, and v’ and v are N
fellow travellers. Then L is regular.

Proof. We first use the “standard comparator automata” of [CEHPT, 6.5] to show that
Ly = {(¢,v) | =7 and u and v are N fellow travellers} is regular. We build a machine
My whose states are the vertices of B(N) = {g € G | €a(g) £ N} together with a fail
state. The start state is 1. For each state g € B(N) and each pair of letters (a;,a3) such
that a7 'gaz € B(N), there is an edge from g to a;'ga; labelled by (a1,a2). (We take
$ = 1.) For each state g and each pair of letters (a1, a2) such that ay'ga; ¢ B(N), there
is an edge from g to the fail state. There is no edge out of the fail state. The sole accept
state is 1. The reader may check that My accepts a pair (u,v) if and only if (u,v) € Ly.

We let p, denote projection on the second factor. It is a theorem that the projection of
a regular language is regular (see, for example [CEHPT, 2.2].) We have

L.< =A* \pz(LNn ~<).

Consequently L is regular. 0O

We set u <; v if &(u) < €(v). Thus L, is the language of geodesics. We fix an ordering
of A. This induces a lexicographic ordering on A’ for each i > 0. We then have a total
ordering <2 of A* by taking <2 to be the lexicographic ordering on each A’ and taking
A% <5 A' <, A%.... Thus L., contains the lexicographically least geodesic for each
element of G. We will refer to Ly, and L, as Lgeo and Liex, respectively.

The following lemma is a standard result. The proof is left to the reader.

Lemma 2.3. The partial orderings <, and <. are regular.

3. Coxeter Groups are Automatic
Theorem 3.1. Finitely generated Coxeter groups are automatic.

We fix a monoid generating set S so that (W, S) is a Coxeter System, where S = S,
and we fix an ordering on S.

We will prove Theorem 3.1 by showing that Lge, and Li.x are regular, and that Ljex
satisfies the Fellow Traveller Property (1) of Theorem 2.1.

Lemma 3.2. Let N = 2K + 2, where K is the constant of Theorem 1.7. Suppose that
there are elements s1,32 € S and a geodesic u such that ws; = 57%. Put v = syuse. Then
u and v are N-fellow travellers.
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Figure 3.

Proof. Consider the wall I'sy ( = ©l's;). We claim that for each ¢, 0 < ¢ < ¢(u), the distance
from u(t) to I'sy is £ K + . For otherwise, by Theorem 1.7, there would be a parallel
wall separating u(t) from I'zr; but u would cross such a wall at least twice, contradicting
the supposition that it is geodesic. Hence there is a path w of length < K + 1 from u(t)
to I'sr. The reflection of w across I's; is a path from 'z to v(t 4 1). Thus w together with
its reflected image gives a path of length < 2K + 1 from u(t) to v(t + 1). Consequently,
d(u(t),v(t)) <d(u(t),v(t+1))+1<2K+2=N.

Lemma 3.3. Let N = 2K + 2, where I is the constant of Theorem 1.7.

(1) If u is not <; minimal for u,then there is u' such that v’ = %, v’ <y u, and v’ and
u are N-fellow travellers.

(2) If u is not <2 minimal for @, then there is u' such that u' =%, u' <3 u, and u' and
u are N-fellow travellers.

Proof. (1) Suppose u is not <; minimal for %, that is to say, u is not geodesic. Then by
the Deletion Condition (Lemma 1.3), we can write u = xs,ys22, where 51,32 € S, y is
geodesic, and ¥ = Tyz. Put v’ = zyz. Then u' <; u. For t < {(z), u(t) = v'(t), while for
t 2 z) + y) + 2, u(t) = u'(t — 2). Finally, for {(z) <t < &(z) + £(y) + 2, Lemma 3.2
implies that d(u(t),u'(t)) £ N. Hence u and u' N—fellow travel.

(2) Suppose that u is geodesic, but not lexicographically least for 7. We then have
% = u”, where u = zy, u" = zy" where y" <, y and y" = §. (See Fig. 4.)

“

&
Figure 4.

Let y = s1...8%, ¥ = t;...1, where each s; and ¢; are elements of S. In particular,
) <2 81. Let ', be the wall containing the ¢; mirror of Z. Now y and y"” must cross the
same set of walls, so there is j, 1 < j < k so that the s; mirror of T577.-3;-7 is also ;.
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Let v label the path given by the reflection of s ...s;-1 across I';. Then v =37...3;.
Both of these are geodesic, so by Lemma 3.2, {;v and s; ... si are N-fellow travellers. Let
u' = xtyvsjp18k. Then W =7, u' <2 uand u and u' are N—fellow travellers as required.
O

From Lemmas 2.2, 2.3, and 3.3 we immediately get the following,

Corollary 3.4. Let (W, S) be a Coxeter system. Then Lge, and Liex are regular.

Finally, we must show the following.

Lemma 3.5. Suppose w,w' € Liex, and s € S. @ = w's then w and w' are N-fellow
travellers.

Proof. We first suppose that @ = w's, and without loss of generality assume that £(w) <
f(w'). We then have w = zs;...3; and w' = xt; ...%x41, where each s; and s, are in S,
and s; # t). Since w' is <2 minimal for w' and ws is also a geodesic for w’, it follows that
t) <2 s3.

Let T'; be the wall containing the s mirror of w. Then for some j, I'; also contains the
t; mirror of xt; ...t;. We distinguish two cases.

Case 1. j = 1. (See Fig. 5.) In this case 57--.5F = f2...¢x41. Since both must be <,
minimal, it follows that s;...sr = t2...fx41. The path labelled s; ... si starting at T and
the path labelled 2, ...%;4; starting at zZ; are reflections of each other in T',.. Since they
are both geodesics, by Lemma 3.2, they are N-fellow travellers.

Figure 5.

Case2 j # 1. (See Fig. 6.) Applying the Deletion Condition again, we see that
t .. .tj-ltj+1 . .tk+1 = 8] ...8. But, t) .. .tj_ltj+1 voutrpr <2 S1...8k, and hence
by ... tjo1tigr ..tk <2 T8y ... S = w, contradicting the <; minimality of w. O
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Figure 6.

This concludes the proof of Theorem 3.1 modulo the proof of the Paralle] Wall Theorem.
We prove the Parallel Wall Theorem in Section 4.

Remark 1 We have seen that the Parallel Wall Theorem implies that Lge, is regular. This
is closely connected with the question of cones and cone types.

Suppose that w = $1...8, € Lgeo and that W = g. For 0 < ¢ < n we let r; =
31...8:8i-1...51, and let H; be the half-space corresponding to r; which does not contain
the identity. It then follows from Lemma 1.2 that the set H = {H;} depends only on ¢
and not on w. We define the cone at g to be

o(9)= [ H

HeH

(When g = 1, we take the empty intersection to be all of I.)

Notice that W{(c(g)) (the set of vertices of I' in ¢(g)) consists of those 2 € W which are
outbound from g. That is to say W{(c(g)) consists of those A for which there is a geodesic
from 1 to h which passes through g. Notice also that if C denotes the fundamental chamber
then c(g) = W(c(g))C.

While ¢(g) is defined to be the intersection of £(g) half-spaces, in fact c(g) is the inter-
section of a bounded number of half-spaces where the bound is independent of ¢(g). For
suppose that h ¢ c(g). We let u be a geodesic from 1 to g and v be a geodesic from g to
h. Then uv is not geodesic, and must cross some wall twice. Let T, be the first wall which
is crossed twice. As is shown in the proof of Lemma 3.2, d(¢,T',) < K + % where K is the
constant of the Parallel Wall Theorem. Letting By(K + ) denote the ball of radius K + §
around g and H' = {H; € H | Ty, N By(K + 1) # 0}, we have

c(g) = ﬂ H.

HeH!

Left multiplication induces an equivalence relation on cones. That is, ¢(g) and c(g’) are
equivalent if g7'c(g) = ¢''c(g’'). We call the equivalence class of c(g) the cone type of
g- (This does not agree with standard usage. However, it suffices to carry the standard
argument in the present case.) Since a fixed number of walls meet any ball of radius X' +1,
there are only finitely many cone types.
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One may take these cone types (together with a fail state) as the states of a finite state
automaton whose language is Lgeo. For further details (and a correct definition of cone
types!) see [C ].

Remark 2 One might ask whether the automatic structure (8, Liex) is always a biau-
tomatic structure. That is to say, we would like to know whether for each s € S, the
language {(w,w') | w,w' € Liex and W = sw'} is regular. The answer is no. Consider the
Coxeter system (W, S), where S = {a,b,¢,,y}, and W is the direct product of

W, =(g,bc|a=b =8 =1)

and
W,=(Z,7|z°=7"=1).

Notice that in W; and W, there is exactly one geodesic word for each element. Thus,
in W geodesics for any given element differ only by commuting generators of W; past
generators of Wj.

If we take the lexicographical ordering determined by

a <3 b=y c<x <2y,

Then Liex(W) = Liex(W1)Liex(W2). (The notation here has the obvious meaning.) The
reader may check that this is indeed the language of a biautomatic structure. However, if
we take the ordering

a<3b<yz <y <2c,

we no longer have a biautomatic structure. To see this, choose n and consider the word
w = (ab)™(zy)". This word is the lexicographically least representative for . On the other
hand, the lexicographically least representative for Tw = c(ab)*(zy)® is w' = (zy)" c(ab)”.
But now d(cw(n),w'(n)) = 4n. Since we may choose n to be arbitrarily large, for any
given N we can find w and w' so that @ = w’ but cw and w' are not N fellow travellers.
Thus Ljex(W) is not the language of a biautomatic structure.

4. Proof of the Parallel Wall Theorem

Theorem 1.7. (The Parallel Wall Theorem) Let (W, S) be a Coxeter system. Then there
is a constant K(= K(W, S)) with the property (*) below.
(*) For anyr € R and h € W, if the distance from the vertex h to the wall T, is greater
than K, then there is another reflection r' € R such that T, is parallel to T, and T
separates h from I'.

The proof is based on Lemmas 4.1 and 4.2 below. In order to state these lemmas we
first need to develop some more terminology.

Any Coxeter system (W, S) can be decomposed as a direct product of irreducible Coxeter
systems, cf. [B, IV §1.9]. This means that S can be partitioned as $ = S, I -.- 11 S,
where for ¢ # j each element of S; commutes with each element of S; and where if W;
denotes the subgroup generated by S;, then (W;, ;) is an irreducible system. Let Sy, be
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the union of those S; such that W; is finite and let Sins be the union of the remaining
Si’s. Let Wyin and Wins be the subgroups generated by Syin and Siaj, respectively, so
that W = Wyin X Wiay.

Let I denote the set of conjugacy classes of elements in S. Since no element of Syin is
conjugate to one of Sins, the partition § = Syin I Sins induces a partition I = Iyin U Linyg.
By definition, any element r in R is conjugate to an element of S; the image of this element
in I is well-defined and denoted by Type(r). We say that r belongs to a finite factor if

Type(r) € Ifin.

Lemma 4.1. Suppose that r does not belong to a finite factor. Then there is a reflection
' such that T, and '+ are parallel.

In order to state the next lemma we need some more definitions.

Suppose that S = {sg,...,8n}. Let m;; denote the order of 5;5; in W. The (n +1)
by (n + 1) matrix (m;;) is called the Cozeter matriz of (W, S). Associated to the Coxeter
matrix we have the cosine matriz C = (cij)o<i,j<n defined by

cij = — cos(w/mij)

(where /oo is interpreted to be 0).

Definition. Suppose that C is the cosine matrix associated to Coxeter system (W, S) of
rank n + 1 (where the rank is the number of elements in S). Then W is of hyperbolic type
if the cosine matrix has n positive eigenvalues and 1 negative one. It is of Euclidean type
if C is positive semidefinite and precisely one eigenvalue is 0.

Remarks. The group W is finite if and only if its cosine matrix is positive definite (cf
Théoréme 2 in [B, V §4.8]). In particular, W is infinite if it is of Euclidean or hyperbolic
type. Since ¢;j = 0 if and only if m;; = 2, it is obvious that a decomposition of (¥, S) into
direct factors is equivalent to a decomposition of its cosine matrix into blocks (possibly after
renumbering the elements of §). If (W, S5) is of Euclidean type (respectively, hyperbolic
type), then clearly the cosine matrix of any direct factor must be either positive definite
or of Euclidean type (respectively, hyperbolic type); moreover, (W, S) cannot have more
than one direct factor of Euclidean type (respectively, hyperbolic type). It follows that
(Wings, Sins) is irreducible and of Euclidean type (respectively, hyperbolic type).

The second lemma is the following special case of Lemma 4.1.

Lemma 4.2. Suppose that (W, S) is of Euclidean or hyperbolic type and that r is a
reflection which does not belong to a finite factor. Then there is a reflection r' so that T,
and I'; are parallel walls.

We shall now show that Lemma 4.2 = Lemma 4.1 = The Parallel Wall Theorem. Then
we will prove Lemma 4.2.

Proof that Lemma 4.2 = Lemma 4.1. Let (W, S) be an arbitrary Coxeter system and r a
reflection in W. After replacing r by a conjugate, we may assume that r € S. Furthermore,
without loss of generality we may assume that S = Sins # 0 and that W = W;,,s. (Lemma
4.1 only concerns r which do not belong to a finite factor.)
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Let P be the poset of all subsets T of S satisfying the following three conditions:

1) reT

(2) Not every element of T' commutes with r.

(3) Wr is infinite.
(For any subset X of S, Wx denotes the subgroup generated by X.) The poset P
is nonempty, since S € P. Choose a minimal element T in P. We can write T =
{50,515--.,9n} where g = r. Fori = 1,2,...n, put §i = T — {s;}. If n = 1 then
since W is infinite, mg; = order(sps;) = oo and therefore 'y, and I'y, = ', are parallel
and we are done. Therefore, we assume n > 2. Since T is minimal, either property (2) or
(3) fails for each S;. But property (2) cannot fail for more than one S;. Hence, there exists
an S; such that (3) fails, i.e., such that Wy, is finite. The cosine matrix of (Ws;, 5;) is
therefore positive definite. Since the matrix for (Ws;, S;) is a principal minor of the cosine
matrix for (Wr,T) it follows that (W, T) is either of Euclidean or hyperbolic type. By
Lemma 4.2, there is a reflection ' in Wr (and then e fortiori in W) such that rr' is of
infinite order, i.e., I'; and I';+ are parallel. (]

Proof that Lemma 4.1 = The Parallel Wall Theorem. For each reflection r in R, let H}
denote the half-space in the Cayley graph I’ which is bounded by I’ and which contains
the vertex 1. For each s € Siny let R(s) denote the set of r in R such that T, and I'; are
parallel and such that H} C H;}. We note that if ', and T, are parallel, then by Lemma
1.6 either H} C H} or H} C H},,. Hence, Lemma 4.1 implies that R(s) is nonempty
for all s € Sins. The distance from a vertex h in T' to a wall I',. is denoted by d(h,T;) (a
half-integer). Put
m(s) = ré%{a) d(1,T,), and

M = sup m(s).
aest'n}
Since Siny is a finite set, M < co. Let M’ be the length of the element of longest length

in Wyi,. We note that if s € Syin, then the distance from any vertex h to Iy is bounded
by M'. (In fact, it is < [M'/2] + 7). We claim that

K = max(M, M'")

is the desired constant in the Parallel Wall Theorem.

To check this we suppose that & is a vertex of I, that r € R and that d(A,T,) > K.
Choose a geodesic from h to I'; which realizes this distance. Denote the last vertex it passes
through before it gets to I';. by g. Then g and rg are adjacent vertices and the midpoint of
the edge between them is in T',. It follows that g~!I", = (r¢g)~'T, is a fundamental wall,
ie., g7'rg € S. Put s = g”'rg. Translating the geodesic from h to ', by (rg)~! we see
that

(1) T, separates 1 from (rg)~'h

(2) d((rg)~1h,T,) =d(h,T,) > K.
Since K > M', s cannot belong to Sfin. Since K > m(s) there is a v € R(s) such
that I'; and Iy are parallel and such that d(1,I'v) = m(s) < K. Since " € R(s)
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and d((rg)"'h,T,) > K it follows that I'm# separates (rg)‘lh from T';. Putting r' =
(rg)r"(rg)~! and translating back by rg we find that I'w (= rgl',) separates  from T';
(= rgl's), as was to be proved. 0

Before embarking on the proof of Lemma 4.2, let us sketch the general idea behind the
proof. The Coxeter system (W, S) is of Euclidean or hyperbolic type. As before, we may
assume that (W, 8) = (Wias, Sins). Then (W, S) is an irreducible Coxeter system and it
acts as a discrete group generated by isometric reflections on M", where M™ denotes either
Euclidean space R™ or hyperbolic space H* and where n = Card(S) — 1. The fixed point
set of a reflection in R is a hyperplane in M". A fundamental domain (= “chamber”) for
W on M™ is an intersection of half-spaces indexed by the reflections in S.

Suppose that r is the given reflection and that P, is the corresponding hyperplanein M".
We seek another reflection ' such that 7'r is of infinite order. This is clearly equivalent
to finding an r' so that the hyperplanes P~ and P, are disjoint. The idea for doing this is
to find an element h € W so that hP, and P, are disjoint. Noting that hP, = P),-1, we
will then be done by setting »' = hrh™1.

Proof of Lemma 4.2 in the Euclidean case. Since W is a discrete group of isometries of R®,
the subgroup consisting of translations is of finite index in W. Since (W, S) is irreducible,
it follows from Proposition 10, p. 101, in [B, V §4.9] that a fundamental chamber for W
on R" is a simplex; in particular, it is compact. Thus, the set of directions of translations
in W span R". Hence, we can find a translation h in W in a direction not parallel to the
hyperplane P, C R™. Then P, and hP, will be disjoint as was to be proved. 0O

Before turning to the hyperbolic case, we first recall a few basic facts of hyperbolic
geometry. Two geodesic rays in H" are asymptotic if they remain a bounded distance
apart. This is an equivalence relation on the set of rays and the set of equivalence classes
is naturally an (n — 1)-sphere, denoted by S, and called the “sphere at infinity”. The
sphere at infinity can be used to compactify H®: there is a topology on H" U S, so that it
is homeomorphic to the n-disk. Every isometry of H" extends to a homeomorphism of the
compactification; it turns out that this defines an action of Isom (H") on S as a group of
conformal transformations. If % is an orientation-preserving isometry of H" and if it fixes
no points in H", then it fixes either one or two points in So,. If it fixes one point it is
called parabolic. In this case, if I{ is any compact subset of S, then as m — +oo0, A™K
approaches the fixed point. If h fixes two points in S, then it is hyperbolic. The two fixed
points determine a geodesic in H" called the azis of h. The isometry h stabilizes its axis
and acts as a translation on it. In this case, for any compact subset X of S, h™ K goes to
one fixed point as m — +o00 and to the other as m — —oo. If W is a discrete subgroup of
Isom(H"), then let L(W) be the closure of the subset of So consisting of all fixed points
of hyperbolic or parabolic elements of W.

If X™ is an m-dimensional totally geodesic subspace of H", then its sphere at infinity,
denoted by Seo(X™) is an (m — 1)-dimensional subsphere of So,. This sets up a bijective
correspondence between totally geodesic subspaces of H* an subspheres of Seo.

Proof of Lemma 4.2 in the hyperbolic case. Let S™~! be the smallest subsphere of Sq
which contains L{(W). Then $™~! is clearly W-stable. It follows that the subspace X™
corresponding to this subsphereis also W-stable. If X™ # H" then we get a decomposition



16

of the linear representation of W on R™*! into linear subspaces (one subspace being the
(m + 1)-dimensional linear subspace corresponding to X™). Since (W, S) is irreducible
there is no such nontrivial decomposition. Thus, S™~! = S.,. That is to say, L(WW) is not
contained in any proper subsphere of S.

Now let r be the reflection in question and P, the corresponding hyperplane in H". By
the previous paragraph there is a parabolic or hyperbolic element & € W whose fixed set
is not contained in Soo(P,). For a sufficiently large m, A™(Sco(P;)) will then be contained
in a single component of Soo — Soo(Pr), and therefore, h™(P.) N P, = 0. As before, this
implies that the walls corresponding to r and r' = A™r h~™™ are parallel. O
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