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Abstract

Many examples of nonpositively curved closed manifolds arise as real blow-ups of

projective hyperplane arrangements. If the hyperplane arrangement is associated to a finite

reflection group W and if the blow-up locus is W -invariant, then the resulting manifold will

admit a cell decomposition whose maximal cells are all combinatorially isomorphic to a given

convex polytope P: In other words, M admits a tiling with tile P: The universal covers of such
examples yield tilings of Rn whose symmetry groups are generated by involutions but are not,

in general, reflection groups. We begin a study of these ‘‘mock reflection groups’’, and develop

a theory of tilings that includes the examples coming from blow-ups and that generalizes the

corresponding theory of reflection tilings. We apply our general theory to classify the examples

coming from blow-ups in the case where the tile P is either the permutohedron or the

associahedron.

r 2003 Elsevier Science (USA). All rights reserved.

1. Introduction

Suppose Mn is a connected closed manifold equipped with a cubical cell structure.
(In other words, Mn is homeomorphic to a regular cell complex in which each
k-dimensional cell is combinatorially isomorphic to a k-dimensional cube.) It turns
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out that there is a rich class of examples of such manifolds satisfying the following
three properties.

(1) There is a group G of symmetries of the cellulation such that the action of G on
the vertex set is simply transitive and such that the stabilizer of each edge is
cyclic of order 2:

(2) In the dual cell structure on Mn each top-dimensional cell is combinatorially
isomorphic to some given simple convex polytope, for example, to a
permutohedron or an associahedron. (Such a top-dimensional dual cell will
be called a ‘‘tile’’.)

(3) The natural piecewise Euclidean metric on Mn (in which each combinatorial
cube is isometric to a regular cube in Euclidean space) is nonpositively curved.

It follows from (2) and (3) that the universal cover eMMn is homeomorphic to Rn: The

cubical cell structure on Mn lifts to a cellulation of eMMn as does the dual cell structure.
Although these two cell structures on Mn (the cubical one and its dual) carry exactly
the same combinatorial information, they correspond to two distinct geometric
pictures. Throughout this paper we shall go back and forth between these two
pictures. For example, property (1), that G acts simply transitively on the vertex set
of the cubical cellulation, means that G acts simply transitively on the set of n-

dimensional dual cells. So, eMMn is ‘‘tiled’’ by isomorphic copies of such an n-
dimensional dual cell.

Let A denote the group of all lifts of the G-action to eMMn: Fix a vertex x of the

cubical structure on eMMn: By property (1) each edge containing x is flipped by a

unique involution in A: Since eMMn is connected, these involutions generate A and the

1-skeleton of eMMn is the Cayley graph of A with respect to this set of generators. SinceeMMn is simply connected, a presentation for A can be derived by examining the 2-cells

that contain x and the 2-skeleton of eMMn is the Cayley 2-complex of this presentation.
(This is explained in Sections 4.7 and 5.) Furthermore, the fundamental group of Mn

is naturally identified with the kernel of the epimorphism A-G induced by the

projection eMMn-Mn: One of the purposes of this paper is to initiate the study of such
symmetry groups A:
This paper has two major thrusts:

* to describe a large class of examples of the above type (in Sections 1–4, 7 and 8),
and

* to develop a general theory of tilings and their symmetry groups (in Sections 5
and 6).

We first give a rough description of the examples. The first examples are fairly
standard and arise from actions of right-angled reflection groups on manifolds.

(In this setting eMMn is the manifold, and A is the reflection group.) The other examples
that we discuss arise by performing an equivariant blow-up procedure to
(not necessarily right-angled) reflection group actions and lifting to the universal

ARTICLE IN PRESS
M. Davis et al. / Advances in Mathematics 177 (2003) 115–179116



cover. In this case, eMMn is the universal cover, and A is the group of lifts of the
reflection group action. An important guiding principle underlying this paper is that
the group actions in the blow-up setting are tantalizingly similar to, but different
from, reflection group actions.
Our reflection-type examples can be constructed as in [D] or [DM]. Given a simple

polytope Pn that is a candidate for the fundamental tile, let W be the right-angled
Coxeter group with one generator for each codimension-one face and one relation

for each codimension-two face. Let eMMn be the result of applying the reflection group
construction to Pn and W ; and let G be a torsion-free, normal subgroup of W : Then

we get examples of the above type with Mn ¼ eMMn=G; G ¼ W=G; and A ¼ W : Again,
we note that these reflection type examples are not the ones of primary interest in this
paper.
Our primary examples are manifolds that are constructed by blowing up certain

subspaces of projective hyperplane arrangements in RPn: The theory of such blow-

ups was developed in [DJS]. Given a hyperplane arrangement in Rnþ1; there is an
associated ðn þ 1Þ-dimensional convex polytope Z called a ‘‘zonotope’’. An
equivalent formulation of the blowing-up procedure is described in [DJS]: one
‘‘blows up’’ certain cells of @Z=a (where a denotes the antipodal map). In this
generality, the resulting cubical cell complex might not admit a suitable symmetry
group G satisfying property (1). The condition needed is that the original zonotope Z

admit a group of symmetries that is simply transitive on the vertex set of Z: The most
obvious zonotopes with this property are the so-called ‘‘Coxeter cells’’. So, this paper
is a continuation and specialization of [DJS] to the case of hyperplane arrangements
associated to finite reflection groups. (N.B. a Coxeter cell is a zonotope
corresponding to a hyperplane arrangement associated to a finite reflection group

W on Rnþ1: A Coxeter cell complex is a regular cell complex in which each cell is
isomorphic to a Coxeter cell. For example, since an ðn þ 1Þ-cube is the Coxeter cell
associated to ðZ2Þnþ1; any cubical complex is a Coxeter cell complex.)
In [DJS] we also discussed a generalization of the blow-up procedure to zonotopal

cell complexes. Again, in order for property (1) to hold we need to require that the
zonotopal cell complex admit a group of automorphisms that acts simply transitively
on its vertex set. Examples of zonotopal cell complexes with this property are
provided by Coxeter groups. Associated to any Coxeter system ðW ;SÞ; there is a
Coxeter cell complex SðW ;SÞ such that W acts simply transitively on its vertex set.
(Here W might be infinite.) Thus, we also want to apply our blowing up procedures
to the complexes SðW ;SÞ:
As data for such a blowing up procedure it is necessary to specify the set of cells

which are to be blown up. There are two extreme cases, the ‘‘minimal blow-up’’ and
the ‘‘maximal blow-up’’. In the case of a minimal blow-up, this set of cells is the
collection of all cells that cannot be decomposed as a nontrivial product. In the case
of a maximal blow-up, it is the set of all cells.
Next we describe the motivating example for this paper (which was also one of the

motivating examples for [DJS]). Consider the action of the symmetric group Snþ2 as
a reflection group on Rnþ1: The associated hyperplane arrangement is called the
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‘‘braid arrangement’’. Let Mn denote the minimal blow-up (as in [DP] or [DJS]) of
the corresponding arrangement in RPn: The interesting feature of Mn lies in the
result of Kapranov [Ka1,Ka2] that Mn can be identified with %M 0;nþ3ðRÞ; the real
points of the Grothendieck–Knudsen moduli space of stable ðn þ 3Þ-pointed curves
of genus 0 (which, in turn, coincides with the Chow quotient ðRP1Þnþ3==PGLð2;RÞ).
Kapranov also showed that each tile of the dual cellulation of Mn was a copy of
Stasheff’s polytope, the n-dimensional associahedron, Kn:

As explained in [Lee] or in Section 8, the set of codimension-one faces of Kn can be
identified with the set of proper subintervals of ½1; n þ 1� with integer endpoints.
Moreover, given two such subintervals T and T 0; the corresponding faces intersect if
and only if either (i) the distance between T and T 0 (as subsets of ½1; n þ 1�) is at least
2 or (ii) T 0CT (or TCT 0).

In the case at hand, where Mn ¼ %M 0;nþ3ðRÞ; the symmetry group G is Snþ2: The
group A has one involutory generator aT for each proper subinterval with integer
endpoints T of ½1; n þ 1�: The codimension-two faces of Kn impose additional
relations of two types: (i) if the distance between T and T 0 is at least 2 then

ðaTaT 0 Þ2 ¼ 1 and (ii) if T 0CT ; then aTaT 0aT ¼ aT 00 (where T 00 denotes the image of T 0

under the order-reversing involution of T). The epimorphism A-Snþ2 sends aT to
the order-reversing involution in the subgroup of Snþ2 corresponding to T : Looking
at relation (ii), it is clear that if the interval T is not a single point, then aT will not

act as a reflection on eMMn: We call it a ‘‘mock reflection’’ and A a ‘‘mock reflection
group’’.

Similarly, given any finite Coxeter group W ; one can take the minimal blow-up of
the associated projective hyperplane arrangement to obtain a manifold Mn with a
cubical cell structure. When the Coxeter diagram of W is an interval, the tiles will
again be associahedra.
Other examples arise by taking the maximal blow-up of an arrangement associated

to a finite reflection group W : In any such example each tile is a permutohedron. (In

the case where W ¼ ðZ2Þnþ1 these examples occur in nature as real toric varieties
associated to flag manifolds.)
In Sections 7 and 8 we prove some classification results for the universal covers of

the permutohedral and associahedral tilings which arise from blow-ups. In Section 7,
we show that the universal covers of all such permutohedral tilings yield the same
tiling of Rn; moreover, the various symmetry groups A that arise in this fashion are
commensurable with each other (and with the right-angled reflection group
associated to the permutohedron). By way of contrast, in Section 8, we show that
the various associahedral tilings of Rn tend not to be isomorphic with each other.
The reason for this dichotomy lies in the fact that the associahedron is much less
symmetric than is the permutohedron. It turns out, however, that in dimensions p3
all of the symmetry groups arising from these permutohedral and associahedral
tilings are quasi-isometric to each other (Theorems 8.5.6 and 8.7.1).

Section 5, the longest section of the paper, concerns the general theory of tilings.
The results in this section are of a somewhat different nature than in the rest of the
paper. We develop the theory in a context which is considerably more general than is
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indicated by the above examples. All of our previous requirements are either
weakened or dropped as explained below in statements (a)–(e).

(a) The space is not required to be a manifold.
(b) The cell structure on the space need not be cubical; however, each cell is

required to be a Coxeter cell. (This is to accommodate the ‘‘partial blow-ups’’
of [DJS] and also to include arbitrary reflection type tilings in our general
theory).

(c) In view of (a), there may no longer be a well-defined dual cell structure;
however, there are still ‘‘dual cones’’ and ‘‘tiles’’ (that is, cones dual to vertices).

(d) The requirement that there exist a group G that acts simply transitively on the
vertex set is replaced by the requirement that the cell complex X admit a
‘‘framing’’ (which amounts to specifying isomorphisms between the links of
any two vertices of X ).

(e) The requirement of nonpositive curvature is dropped.

Thus, in Section 5 we shall largely abandon the notion of a fundamental tile (since,
in view of (c), it need not be a cell). By a ‘‘tiling’’ we will simply mean a Coxeter cell
complex X in which the links of any two vertices are isomorphic. The tiling is
‘‘symmetric’’ if X admits a group action which is simply transitive on its vertex set. If
X is symmetric and simply connected, then one can read off a presentation for its
symmetry group A (cf. Section 5.4) as before.
A key ingredient in our analysis of framed tilings and their symmetry groups is the

notion of a ‘‘gluing isomorphism’’. This is an isomorphism between two
‘‘codimension-one faces’’ of a fundamental tile. It determines how two adjacent
tiles are glued together. In practice (e.g. when the symmetry group is generated by
involutions), these gluing isomorphisms will always be involutions. For simplicity,
let us assume this. For example, in a reflection type tiling, each gluing involution is
the identity map. For blow-ups of SðW ;SÞ; the gluing involutions are determined by
the elements of longest length in various finite special subgroups of W : In 5.3 and
5.6, we give necessary and sufficient conditions on the sets of gluing involutions for
the universal covers of two tilings to be isomorphic. (This result is then used in
Sections 7 and 8 to classify certain permutohedral and associahedral tilings.) In
Theorem 5.10.1, we describe necessary and sufficient conditions under which a
given fundamental tile and set of gluing involutions can be realized by a symmetric
tiling.
In Sections 5 and 6 we also prove, under very mild hypotheses, some general

results about the symmetry group A of a symmetric and simply connected X : Since
these hypotheses are satisfied in our examples, these results apply to the universal
cover of a blow-up. First of all, even without the nonpositive curvature requirement,

X can always be ‘‘completed’’ to a CAT(0)-complex bXX by adding a finite number of
A-orbits of cells. (This is proved in Sections 5.7 and 5.9.) Thus, each such A is a
‘‘CAT(0) group’’ (cf. Theorem 5.9.3). In particular, if p is any torsion-free subgroup

of finite index in A; then bXX=p is a finite Kðp; 1Þ-complex. Secondly, A has a linear
representation analogous to the canonical representation for a Coxeter group
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(Section 6). Whether this representation is always faithful, however, remains an
interesting open question.

2. Some cell complexes associated to Coxeter groups

2.1. Coxeter systems

We first recall some standard facts about Coxeter groups; we refer the reader to
[Bo,Bro], or [H] for details.

Definition 2.1.1. Let S be a finite set. A Coxeter matrix on S is a symmetric S 	 S

matrix M ¼ ðmðs; s0ÞÞ with entries in N,fNg such that mðs; s0Þ ¼ 1 if s ¼ s0 and
mðs; s0ÞX2 if sas0: Given a Coxeter matrix M; the corresponding Coxeter group is
the group W defined by the presentation

W ¼ /S j ðss0Þmðs;s0Þ ¼ 1 for all s; s0ASS:

The pair ðW ;SÞ is a Coxeter system.

A Coxeter system ðW ;SÞ determines a length function l : W-ZX0: Given wAW ;
the length lðwÞ is defined to be the minimal n such that w ¼ s1s2?sn and siAS:
To any Coxeter system ðW ;SÞ we associate a labeled graph GðW ;SÞ; called the

Coxeter diagram, as follows. The vertex set is S and two vertices s; s0 determine an
edge if and only if mðs; s0Þ42: In this case, the edge joining s and s0 is labeled mðs; s0Þ:
Any subset TCS generates a subgroup WTCW ; which is itself a Coxeter group

with Coxeter system ðWT ;TÞ: WT is called a special subgroup of W : The Coxeter
diagram GðWT ;TÞ is the induced labeled subgraph of GðW ;SÞ with vertex set T : A
subset TCS is spherical if WT is finite. Any finite special subgroup WT has a unique
element of longest length, denoted by wT : Moreover, wT is an involution and
wT TwT ¼ T [Bo, Exercise 22, p. 43].
If W1 and W2 are Coxeter groups, then so is W ¼ W1 	 W2: Let ðW1;S1Þ and

ðW2;S2Þ be Coxeter systems for W1 and W2; respectively, and let S ¼ S1 	
f1g,f1g 	 S2: Then ðW ;SÞ is a Coxeter system for W ; and the Coxeter diagram
GðW ;SÞ is the disjoint union of the labeled graphs GðW1;S1Þ and GðW2;S2Þ:

2.2. Coxeter cells

Let W be a finite Coxeter group. Then W can be represented as a group generated
by orthogonal reflections on a finite dimensional Euclidean space V : The reflection
hyperplanes of this representation separate V into simplicial cones, called chambers,
and W acts transitively on the set of chambers. In fact, the representation of W can
be chosen such that for any Coxeter system ðW ;SÞ; the generators in S correspond
to the reflections through the supporting hyperplanes of a fixed chamber C: We call
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this fixed chamber the fundamental chamber, and we call the reflections in S the
simple reflections.

Definition 2.2.1. Let x be a point in C that is unit distance from each of the
supporting hyperplanes, and let Z ¼ ZðW ;SÞ be the convex hull of the orbit Wx:
The polytope Z is called a (normalized) Coxeter cell of type W. The intersection of Z

with C (or with any translate of C by an element of W ) is called a Coxeter block of

type W.

The group W acts isometrically on Z; and the Coxeter block B ¼ Z-C is a
fundamental domain (Fig. 1). B is combinatorially equivalent to a cube of dimension
Card S: Since W acts freely and transitively on the vertices of Z; we can identify the
vertices of Z with the elements of W (once we identify x with 1). Each vertex is
contained in a unique Coxeter block of type W :
The Coxeter block B has two types of codimension-one faces. One type is an

intersection of B with a codimension-one face of C: These are the mirrors of B: To
describe the others, we first describe the faces of a Coxeter cell. Let WT be a special
subgroup and let ZT be a normalized Coxeter cell of type WT : Then the inclusion
WT-W induces an isometry from ZT onto a face of Z (in fact, every face of Z is of
the form wZT for some TCS and wAW ). The remaining codimension-one faces of
the Coxeter block B can now be identified with the Coxeter blocks associated to the
codimension-one faces ZTCZ (i.e., where T has cardinality one less than S).
If Z1 and Z2 are (normalized) Coxeter cells of types W1 and W2; respectively, then

the product Z1 	 Z2 is a (normalized) Coxeter cell of type W1 	 W2: In particular,

the n-cube ½1; 1�n is a Coxeter cell; the Coxeter block containing the vertex

ð1; 1;y; 1Þ is ½0; 1�n (Fig. 1).

2.3. Coxeter cell complexes

A locally finite, regular cell complex X is a Coxeter cell complex if all of its cells are
Coxeter cells. Since any combinatorial isomorphism between two (normalized)
Coxeter cells Z and Z0 is induced by an isometry, any Coxeter cell complex X has a
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canonical piecewise Euclidean metric, and any isomorphism of Coxeter cell
complexes is induced by a unique isometry.

Let X be a Coxeter cell complex X ; and let X ðiÞ denote the set of i-cells in X : Let

xAX ð0Þ be a vertex of X : The link of x, denoted Lkðx;XÞ; is the (piecewise spherical)
simplicial complex consisting of all points in X that are unit distance from x: The

closed star of x; denoted Stðx;XÞ; is the subcomplex of X consisting of all cells that
contain x and all of their faces.

Definition 2.3.1. A Coxeter cell complex X is a tiling if for any two vertices x and x0;

there exists a combinatorial isomorphism Stðx;XÞ-Stðx0;XÞ taking x to x0:

Let ðW ;SÞ be a (possibly infinite) Coxeter system and let S be the set of spherical
subsets of S: (It is clear thatS4| is an abstract simplicial complex with vertex set S:)
We can then define a Coxeter cell complex S ¼ SðW ;SÞ that generalizes the Coxeter
cell of a finite Coxeter group. The vertex set of S is W : We take a Coxeter cell of
type WT for each coset wWT where TAS; and identify its vertices with the
elements of wWT : We then identify two faces of two Coxeter cells if they have the
same vertex set. If Z is the cell in S corresponding to the coset wWT ; we define its
type to be the subset T : (The type of a cell is well-defined since wWT ¼ w0WT 0 implies
T ¼ T 0:)
It is clear that S is a Coxeter cell complex and that W acts via combinatorial

automorphisms. Since W acts simply transitively on the vertices, S is a tiling. The
cells of S that contain the vertex 1 are in bijection with the set S4|; thus, Lkð1;SÞ
can be identified with S4|: More generally, we have the following:

Definition 2.3.2. Let L be a subcomplex of S4| with the same 1-skeleton. Then

the reflection tiling of type ðW ;S;LÞ; denoted SðW ;S;LÞ; is the subcomplex of
SðW ;SÞ consisting of cells corresponding to the cosets wWT where T is either the
empty set or the vertex set of a simplex in L: A reflection tiling is complete if
L ¼ S4|:

Example 2.3.3. If L is the 0-skeleton ofS4|; then SðW ;S;LÞ is the Cayley graph of
ðW ;SÞ: Similarly, if L is the 1-skeleton of S4|; then SðW ;S;LÞ is the Cayley 2-

complex associated to the standard presentation of W :

Example 2.3.4. Suppose W is finite. Then SðW ;SÞ is the zonotope ZðW ;SÞ: If L is
the boundary of the simplex S4|; then SðW ;S;LÞ ¼ @Z:

2.4. Coxeter tiles and the local geometry of Coxeter cell complexes

Let X be a Coxeter cell complex. For any vertex xAX ð0Þ; the dual cone at x;
denoted Dðx;X Þ is the union of all Coxeter blocks in X that contain the vertex x: It
can be identified with a subcomplex of the barycentric subdivision of X and
therefore, has a natural piecewise Euclidean metric.
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Definition 2.4.1. Let S be the reflection tiling of type ðW ;S;LÞ: Then the Coxeter tile

of type ðW ;S;LÞ; denoted DðW ;S;LÞ; is the dual cone Dð1;SÞ: If L ¼ S4|;

we shall denote the corresponding Coxeter tile DðW ;SÞ: An isomorphism

DðW ;S;LÞ-DðW 0;S0;L0Þ of Coxeter tiles is a bijection S-S0 that (1) extends
to a simplicial isomorphism L-L0; and (2) extends to a group isomorphism
W-W 0:

It is clear that the geometric realization of an isomorphism of Coxeter tiles is an
isometry.

Example 2.4.2. Let ðW ;SÞ be the (infinite) Coxeter group with generating set S ¼
fa; b; cg and Coxeter diagram as in Fig. 2. Then the complete reflection tiling
SðW ;SÞ is an infinite 2-dimensional cell complex whose 2-cells are regular hexagons
and squares. The Coxeter tile DðW ;SÞ is a union of two Coxeter blocks, one from
the hexagon and one from the square. See Fig. 2.
If we take L to be the 0-skeleton of S4| obtained by removing the spherical

subsets fa; bg and fa; cg; we obtain the second reflection tiling SðW ;S;LÞ shown in
Fig. 2. The associated Coxeter tile DðW ;S;LÞ is the cone on three vertices. (Note
that in this example, SðW ;S;LÞ is the Cayley graph of ðW ;SÞ; and SðW ;SÞ is the
Cayley 2-complex.)

Example 2.4.3. Suppose W is finite. Then S4| is a simplex and DðW ;SÞ is the

Coxeter block of type ðW ;SÞ; as in Definition 2.2.1. If L ¼ S4|  fSg is the

boundary of the simplex S4|; then DðW ;S;LÞ is called the fundamental simplex. It

is the intersection of @Z with the fundamental chamber C: The image of @Z-C in
projective space is a simplex. So, we think of the cell complex D ¼ DðW ;S;LÞ as
being a subdivision of the simplex into Coxeter blocks.

Remark 2.4.4. The Coxeter tile DðW ;S;LÞ is a fundamental domain for the W -
action on the reflection tiling SðW ;S;LÞ:
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If X is any Coxeter cell complex and x is a vertex of X ; then the dual cone Dðx;XÞ
is a Coxeter tile. To determine its type, we let Lx ¼ Lkðx;X Þ; we let Vx be the set of
vertices in Lx (equivalently, the set of edges containing x), and we define a Coxeter
matrix Mx on Vx as follows:

mxðv; v0Þ ¼
1 if v ¼ v0;

m if v and v0 correspond to distinct edges of a 2m-gon in X ;

N otherwise:

8><>:
Letting ðWx;VxÞ be the corresponding Coxeter system, it is clear that Lx consists of
spherical subsets of Vx: It follows that Dðx;XÞ can be identified with the Coxeter tile
of type ðWx;Vx;LxÞ:

Remark 2.4.5. If X is a tiling, then there exists a Coxeter tile D ¼ DðW ;S;LÞ and,
for each xAX ð0Þ; an isomorphism fx : D-Dðx;X Þ: Since D may have nontrivial
automorphisms, the isomorphism fx need not be unique.

3. The blow-up R# of a reflection tiling R

3.1. The blow-up of a Coxeter cell

Let W be a finite Coxeter group, ðW ;SÞ be a Coxeter system, and let Zð¼
ZðW ;SÞÞ be the corresponding Coxeter cell. Its boundary @Z is a Coxeter cell

complex homeomorphic to Sn1: It is the reflection tiling SðW ;S;LÞ where L is the
boundary complex of the simplex S4|: A fundamental domain for the W -action on

@Z is the fundamental simplex D ¼ @Z-Cð¼ DðW ;S;LÞÞ: A mirror of D is its
intersection with a codimension-one face of C: The Coxeter block B ¼ Z-C is
homeomorphic to the cone on D:
The antipodal map a : Z-Z defined by x/ x; restricts to an isometric

involution on @Z: This involution on @Z freely permutes the cells; hence the quotient

PðZÞ ¼ @Z=a is a Coxeter cell complex, homeomorphic to RPn1:

Definition 3.1.1. The blow-up of Z at its center, denoted Z#; is the quotient of

@Z 	 ½1; 1� by the involution â defined by â ðx; tÞ ¼ ðx;tÞ; i.e.,

Z# ¼ @Z 	â ½1; 1�:

The blow-up Z# is an interval bundle over PðZÞ: Let p : Z#-PðZÞ be the

projection. For any face FC@Z; F-F ¼ |; hence, pðFÞ is embedded in PðZÞ:
Moreover, p1ðpðFÞÞ can be identified with F 	 ½1; 1� (where F 	 f1g corresponds
to F and F 	 f1g to F ). Since F is a Coxeter cell, so is F 	 ½1; 1�: Thus, Z# is

naturally a Coxeter cell complex. Since the antipodal map a commutes with the W -
action, there is an induced W -action on Z#:
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Similarly, pðDÞ is embedded in PðZÞ and p1ðpðDÞÞDD	 ½1; 1�: Since wS maps D
to D; the stabilizer of D	 ½1; 1� is the cyclic group of order two generated by wS:
Thus, D	 ½0; 1� is a fundamental domain for W on Z#: Put

B# ¼ D	 ½0; 1�:

We think of B# as being obtained from B by ‘‘truncating’’ its vertex (the cone point)

and introducing a new codimension-one face corresponding to D	 f0g: A mirror of
B# is either a codimension-one face of the form Dfsg 	 ½0; 1�; where Dfsg is a mirror of

D; or the codimension-one face D	 f0g:
The space Z# is tiled by the translates of B# by elements of W : The adjacent

tile to B# across the mirror D	 f0g is wSB#: If we identify wSB# with

D	 ½0; 1� via wS; then B#,wSB# (DD	 ½1; 1�) is homeomorphic to two

copies of D	 ½0; 1� glued along D	 f0g: The gluing map jS : D-D is given by
jS ¼ a3wS:
Let 1 denote the vertex of Z that is contained in the interior of C: We note that D

is the union of all Coxeter blocks in @Z which contain the vertex 1 and that B is the
union of all Coxeter blocks in Z that contain 1. Similarly, B# is the union of all

Coxeter blocks in Z# that contain 1.

Remark 3.1.2. Suppose ðW ;SÞ is a finite irreducible Coxeter group. The element
of longest length, wS; is equal to the antipodal map, a; in the following cases
[Bo, Appendix I–IX, pp. 250–275]: A1 (the cyclic group of order 2), I2ðpÞ with
p even (the dihedral group of order 2p), Bn (the hyperoctahedral groups), Dn

with n even, H3; H4; F4; E7; and E8: Hence, in all these cases, jS is the identity
map.
In the remaining cases wS is not the antipodal map, and conjugating by it induces

a nontrivial diagram automorphism of GðW ;SÞ: These cases are: An with n41; Dn

with n odd, I2ðpÞ with p odd, and E6: In each of these cases, the Coxeter diagram
admits a unique nontrivial automorphism which, in fact, coincides with the diagram
automorphism induced by conjugation by wS:
If W is finite and reducible, then wS is the product of the elements of longest

length in each factor and, therefore, is the antipodal map if and only if it is antipodal
in each factor.

3.2. The blow-up of a reflection tiling SðW ;S;LÞ

Our goal in this section is to describe a functorial generalization of the
blow-up of a Coxeter cell that (1) allows for iterated blow-ups of faces, (2)
makes sense for the complexes SðW ;S;LÞ; and (3) preserves the W -action. Given
a complex SðW ;S;LÞ and a suitable collection of cells to be blown up, this
functor will produce for every subcomplex KCS a cell complex K# called the ‘‘blow-

up of K ’’. Our primary interest in this paper is the topology of the blow-up S# ¼
SðW ;S;LÞ#:
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Definition 3.2.1. Suppose L is a simplicial complex with vertex set V : We let PðLÞ
denote the poset consisting of those subsets T of V such that either T ¼ | or T is the
vertex set of a simplex in L: Thus, we can identify L with PðLÞ4|:

Let S be the reflection tiling SðW ;S;LÞ; and let P be the poset PðLÞ: Then the
cells of S are indexed by the set WP ¼ fwWT j TAPg (see Definition 2.3.2). Any
collection of cells defining one of our blow-ups S# will satisfy the following

condition: if a face Z0 of a cell Z is blown up, then either

(1) Z is blown up also, or
(2) Z is of the form Z0 	 Z00 and the blow-up functor is applied to the two factors

independently.

In addition, if the W -action on S is to induce an action on the blow-up S#;
the collection of cells we blow-up should be W -invariant. Since the cells of S are
indexed by the poset WP; the blow-up collection will be indexed by a subset of the
form WR for some subset RCP: With this in mind, we let R be any subset of P;
and define a category whose objects are all subcomplexes of S; but whose morphisms
depend on R:
A subcomplex of S is a Coxeter cell complex K together with an injective cellular

map K-S: Via this map, we will often identify K with its image in S: In particular,
any cell Z of a subcomplex K has a well-defined type T where TAP (cf. Section 2.3).
An R-morphism f : K1-K2 between two subcomplexes of S is an injective cellular
map satisfying the condition: for every cell ZCK1; the type of Z is in R if and only if
the type of f ðZÞ is in R:
There are primarily two kinds of R-morphisms relevant to our construction. Since

the W -action on S preserves the cells of a given type, the automorphism w : S-S is
an R-morphism for every wAW : Other R-morphisms are provided by antipodal
maps on cells in S (though in general only some of these areR-morphisms). To make
sense of (1) above, i.e., to iterate the blow-up procedure, we need the antipodal map
on Z to be a morphism in our category.

Lemma 3.2.2. Given TAP; let jT : PpT-PpT be the involution defined by

T 0/wT T 0w1
T where wT is the longest element in WT : Let ZTCS be the cell with

vertices WT ; and let aT : @ZT-@ZT be the antipodal map x/ x: Then aT is an R-
morphism if and only if

jTðRpT Þ ¼ RpT :

Proof. The involution wT is an R-morphism and the composition a3wT maps the
face ZT 0 onto the face ZjT T 0 : &

To make sense of (2), we recall the basic facts about product decompositions of
Coxeter cells. Let G denote the Coxeter diagram GðW ;SÞ; and for every TCS; let GT

denote the subdiagram GðWT ;TÞ: Two spherical sets T1 and T2 in P are completely
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disjoint if they are disjoint and no edge of GT1,T2
connects a vertex of GT1

to a vertex
of GT2

: Given TAP; a collection fT1;y;TkgCP is called a decomposition of T if
T ¼ T1,?,Tk and the Ti’s are pairwise completely disjoint. If fT1;y;Tkg is a
decomposition of T ; then there is a corresponding direct product decomposition of
groups

WT ¼ WT1
	?	 WTk

and a corresponding direct product decomposition of cells

ZT ¼ ZT1
	?	 ZTk

:

If our blow-up collection R is to satisfy (1) and (2) above, then whenever ZT is not
blown up and ZT1

;y;ZTk
are the maximal faces of ZT that are blown up, there

should be some other subset T0CT and a decomposition

ZT ¼ ZT0
	 ZT1

	?	 ZTk
:

We make this precise as follows.
Given TAP; we define RT ; the R-maximals in T, to be the set of maximal

elements of RpT ; and we define T0; the R-fixed part of T, to be the complement of
the union of the R-maximals in T : To satisfy (1) and (2), fT0g,RT ; must be a
decomposition of T : Thus, if RT ¼ fT1;y;Tkg; then the Ti’s must be pairwise
completely disjoint. Combining this requirement with the condition of Lemma 3.2.2,
we make the following definition.

Definition 3.2.3. A collection RCP is admissible if it satisfies the following two
conditions:

(1) For every TAR; jTðRpT Þ ¼ RpT :
(2) For every TAP; the set fT0g,RT is a decomposition of T :

The collection R is fully admissible if, in addition, whenever s; tAS and
2omðs; tÞoN; then fs; tgAR: The collection fT0g,RT is called the R-decomposi-

tion of T, and the elements T1;y;Tk of RT are the blow-up factors of the

decomposition.

Let K ¼ KRðW ;S;LÞ be the category whose objects are the subcomplexes of S
and whose morphisms are R-morphisms. Let C be the category whose objects are
Coxeter cell complexes and whose morphisms are isomorphisms onto sub-
complexes.

Proposition 3.2.4. Let R be admissible. Then there exists a unique functor K-C;
denoted by K/K# (and f/f#), satisfying the two properties:

(1) If TAR; then ðZTÞ# is the quotient of ð@ZTÞ# 	 ½1; 1� by the in-

volution â : ðx; tÞ/ða#ðxÞ;tÞ; where a : @ZT-@ZT is the antipodal
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map. That is,

ðZTÞ# ¼ @ZTð Þ#	â ½1; 1�:

(2) If TAP has R-decomposition fT0;T1;y;Tkg; then

ðZTÞ# ¼ ZT0
	 ðZT1

Þ# 	?	 ðZTk
Þ#:

Proof. This functor is a special case of the blow-up of ‘‘partially mined zonotopal
cell complexes’’ as defined in [DJS]. If R is admissible, then the pair ðS;WRÞ is a
partially mined zonotopal cell complex (cf. [DJS]), and for any subcomplex KCS
one obtains a partially mined subcomplex ðK ;MÞ: Any R-morphism f : K1-K2

between subcomplexes of S correspond to a morphism f : ðK1;M1Þ-ðK2;M2Þ of
partially mined zonotopal cell complexes. The functor K/K# (and f/f#) is

then precisely the blow-up functor ðK ;MÞ/K#M (and f/f#) defined in [DJS].

(If R is fully admissible, then we can omit the term ‘‘partially’’ from the above
discussion.)
Properties (1) and (2) are evident from the construction in [DJS], and uniqueness

follows from the fact that the functor is defined inductively by these properties (and
the W -action). &

Definition 3.2.5. Let S be a reflection tiling SðW ;S;LÞ; and let R be an admissible
subset of PðLÞ: Then the Coxeter cell complex S# obtained by applying the blow-up

functor to S is called the R-blow-up of S (or just the blow-up of S if there is no
ambiguity).

Remark 3.2.6. If R is fully admissible, then each Coxeter cell in S# is a cube.

Remark 3.2.7. If TAR; then since ðZTÞ# is an interval bundle over ð@ZTÞ#=a#; the

fundamental group of ðZT Þ# is isomorphic to that of ð@ZTÞ#=a#:

Remark 3.2.8. Blow-up functors are compatible in the following sense. Suppose S is

the complex SðW ;S;LÞ; and R is an admissible subset of PðLÞ: Let S0 be a complex
of the form SðW 0;S0;L0Þ where S0CS; W 0CW ; and L0CL: Then S0 can be naturally
identified with a subcomplex of S:Moreover, the setR0 ¼ R-PðL0Þ is an admissible
subset of PðL0Þ; and the R0-blow-up of S0 coincides with the R-blow-up of S0 (where
S0 is viewed as a subcomplex of S).

Remark 3.2.9. If R is admissible, then so is the collection R0; obtained by removing
from R all elements of the form fsg where sAS:Moreover, it follows from properties
(1) and (2) of the blow-up functor that for any singleton set fsgAP; the blow-up
ðZfsgÞ# is canonically isomorphic to Zfsg regardless of whether fsg is in R or not.

Thus, for any subcomplex KCS; the R-blow-up of K and the R0-blow-up of K are
the same. For this reason, we shall assume for the remainder of the article that all
admissible sets R contain no singleton subsets in P:
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Definition 3.2.10. R is the maximal blow-up set if it contains every spherical set in P
of cardinality at least two.

Definition 3.2.11. R is the minimal blow-up set if it consists of the spherical sets T in
P such that CardðTÞX2 and GT is connected.

3.3. The link of a vertex in S#

Let L# denote the link of the vertex 1 in an R-blow-up S#: In this subsection we

shall describe the poset of simplices in L#: First we introduce a subset S# of P which

will be used to index the vertices of the link. Let

S# ¼ R,ffsg j sASg:

Next, we want to define a poset N of subsets of S#: It plays the same role for S#

as does P for S:
Let T be a subset of S#: It is partially ordered by inclusion. The support of T;

denoted SuppT is the union of all elements of T: The R-fixed part of T;
denoted T0 is the set of all singletons fsgAT where seSuppT-R: (If R
contains no singleton sets, then T0 consists of the elements fsg that are maximal
in T:)

Definition 3.3.1. Given a subset TCS#; let T ¼ SuppT; T0 ¼ SuppT0; and let

T1;y;Tk be the maximal elements of T-R: We give an inductive definition of

what it means for T to be R-nested; the induction is on CardT: If T ¼ |; then it is
R-nested. If CardT40; then it is R-nested if and only if the following two
conditions hold:

(1) TAP and fT0;T1;y;Tkg is the R-decomposition of T ;
(2) ToTi

is R-nested (as defined by induction) for all 1pipk:

It is clear that for each TAS#; fTg is R-nested. The next lemma (which is easily

verified) describes which two-element subsets of S# are R-nested.

Lemma 3.3.2. Let T and T 0 be distinct elements of S#: Then fT ;T 0g is R-nested if and

only if one of the following three cases holds:
Case 1: T ¼ fsg and T 0 ¼ fs0g where s; s0AS; mðs; s0ÞoN; and fs; s0geR:
Case 2: fT ;T 0g is the R-decomposition of T,T 0:
Case 3: T 0CT (or TCT 0).

Let N be the set of all R-nested subsets of S#; partially ordered by inclusion. It is
not difficult to see that any subset of an R-nested set is R-nested. In other words,
N4| is an abstract simplicial complex with vertex set S#: A subset of S# spans a

simplex of N4| if and only if it is R-nested. The edges of N4| are described

explicitly in Lemma 3.3.2. It is proved in Section 3.3 of [DJS] that N4| is a certain
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simplicial subdivision of P4| and that it can be identified with the link L# of the

vertex 1 in S#:

3.4. Nonpositive curvature

Suppose that ðW ;SÞ is a Coxeter system, that L is a subcomplex of S4|; that

S ¼ SðW ;S;LÞ (as in Definition 2.3.2), and that R is an admissible subset of PðLÞ:
Let S# denote the R-blow-up of S: In this section, we want to determine when the

natural piecewise Euclidean metric on S# is nonpositively curved. Throughout this

section, we shall assume, for simplicity, that R is fully admissible (cf. Definition
3.2.3), so that S# is a cubical cell complex. Let L# denote the link of the vertex 1 in

S#; as described in the previous section.

In [G] Gromov showed that a cubical cell complex is nonpositively curved if and
only if the link of each of its vertices is a flag complex. (Recall that a simplicial
complex K is a flag complex if any finite, nonempty, collection of vertices in K that
are pairwise connected by edges spans a simplex in K :) Therefore, we have the
following lemma.

Lemma 3.4.1. S# is nonpositively curved if and only if L# is a flag complex.

3.5. Condition (F)

Consider the following condition on a spherical set T in S4|:

(F) Suppose there exists a decomposition fT1;y;Tkg of T such that

(1) TiAS# for 1pipk;
(2) Ti,TjAPR for 1piojpk; and

(3) kX3:

Then TAPR:

In [DJS], we analyzed when links of vertices in blow-ups were flag complexes. Here
we are interested in the case where each such link is isomorphic to L#: The analysis
in [DJS] yields the following.

Theorem 3.5.1. S# is nonpositively curved if and only if Condition (F) holds for each

TAS4|:

Proof. We want to see that Condition (F) is equivalent to the condition that L#

is a flag complex. To check this we must consider collections fT1;y;Tkg where
each Ti is a vertex of L#; and each pair fTi;Tjg spans an edge of L# and then

show that fT1;y;Tkg is R-nested. To verify this, we only need consider the case
where the Ti’s are pairwise incomparable, and this is precisely the case covered by
Condition (F). &
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Corollary 3.5.2. Suppose S ¼ SðW ;S;LÞ and that R is the maximal blow-up set (cf.,
Definition 3.2.10). Then S# is nonpositively curved.

Proof. Condition (F) holds for any TAS4| (since condition (2) will never be

satisfied). &

Corollary 3.5.3. Suppose that S ¼ SðW ;S;LÞ and that R is the minimal blow-up set

(cf., Definition 3.2.11). Then S# is nonpositively curved if and only if the following

condition holds: given any three completely disjoint spherical sets T1;T2;T3 in PðLÞ4|

with GTi
connected for i ¼ 1; 2; 3 and with Ti,TjAPðLÞ for fi; jgCf1; 2; 3g; then

T1,T2,T3APðLÞ:

Corollary 3.5.4. Suppose S ¼ SðW ;SÞ: Then the minimal blow-up of S is

nonpositively curved.

4. The dual tiling of R#

4.1. The role of D#

The quick and clean description of the blow-up functor is the one given above
in 3.2, in terms of blowing up certain collections of Coxeter cells. However,
this description leaves obscure an important aspect of the construction, namely,
the definition of the fundamental domain (or ‘‘fundamental tile’’) D# for the

W -action on S#: In fact, many of the geometric ideas about these blow-ups are

best explained in terms of D#: The goal of this section is to give the definition of

D# and discuss some of its properties. The case where W is finite is particularly

simple since D# can be thought of as a convex polytope. So we shall deal with this

case first.

4.2. The case where W is finite

When W is finite, D is the Coxeter block of type ðW ;SÞ: It is a fundamental
domain for W on Z: The tile D# is obtained from D by truncating those faces that

correspond to elements of R: Thus, D# is combinatorially equivalent to a convex

polytope. The mirrors of D# either correspond to the original mirrors of D (these are

indexed by S) or to the new codimension-one faces introduced in the truncation
process (these are indexed by R).
Similarly, the simplex D is a fundamental domain for W on @Z: By Remark 3.2.8,

the R-blow-up of the @Z (viewed as a subcomplex of Z) coincides with the R0-blow-
up (where R0 ¼ R fSg) of @Z (viewed as a reflection tiling in its own right). The
fundamental tile D# is obtained by truncating the faces of D corresponding to

elements of R0: (Here we are thinking of D simply as a convex simplex, that is, we are
temporarily ignoring its subdivision into Coxeter blocks.) Again, D# is a convex
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polytope, each codimension-one face is a mirror, and the mirrors are indexed either

by the elements of S or by elements of R0:

Example 4.2.1. The maximal blow-up of Z means the case where R ¼ S4|: In this

case, D# is a permutohedron and D# ¼ D# 	 ½0; 1�:

Example 4.2.2. By the minimal blow-up of Z; we mean the case where TAR if and
only if the Coxeter diagram GðWT ;TÞ is connected. If the Coxeter diagram is a
straight line segment (i.e., if GðW ;SÞ is of type An; Bn; I2ðpÞ; H3; H4; or F4), then it
turns out that D# is an associahedron (as defined by [Sta]) (see Section 8).

The next lemma gives an alternative description of D# in terms of Coxeter blocks.

Its proof follows from the discussion in 3.1

Lemma 4.2.3. D# is the union of all Coxeter blocks in Z# that contain the vertex 1.

It follows from this lemma that D# is a fundamental domain for the W -action on

Z# in the following sense: the W -orbit of any point x in Z# intersects D# in at least

one point; moreover, this intersection is exactly one point if x does not belong to a
mirror of any Coxeter block.

4.3. The general case

We now allow W to be infinite and consider its action on the complex S#: As
before, we choose a vertex of S# and denote it by 1. Lemma 4.2.3 suggests the

following.

Definition 4.3.1. The fundamental tile D# for W on S# is the union of all Coxeter

blocks in S# that contain the vertex 1.

As before, we see that D# is a fundamental domain for the W -action on S#: We

will describe the mirrors of D# in the next subsection.

4.4. Mirrors

Suppose that L is a subcomplex of S4|: We begin by recalling some facts about

the poset P ¼ PðLÞ: We note that P4| is an abstract simplicial complex, in other

words, the vertex set of P4| is S; and a subset TCS spans a simplex if and only if

TAP4|: The poset P plays two roles in the description of S: First of all P4| can be

identified with the link of a vertex in the cellulation of S by Coxeter cells. Secondly, if
the fundamental chamber D is defined to be the union of all Coxeter blocks in S that
contain the vertex 1, then D can be identified with the geometric realization of P:

(If P is a poset of subsets of some set V ; if |AP; and if P4| is an abstract simplicial

complex, then for any TAP; the geometric realization of PpT is isomorphic to a
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standard simplicial subdivision of a cube of dimension Card T : It follows that the
geometric realization of P can be identified with the union of all such cubes.) Having
made this identification, the mirror of D corresponding to sAS is then identified with
the geometric realization of PXfsg:

We now apply the same construction to the blow-up S#: In this case, the link of

the vertex 1 is associated to the abstract simplicial complex N4| where N is the

poset of R-nested subsets of P: It follows that there is one Coxeter block BT

containing 1 for each R-nested set T: (The dimension of BT is CardT:) In other
words, D# can be identified with the geometric realization of N:

Definition 4.4.1. For each TAS#; the mirror of D# corresponding to T, denoted D#T ;
is the geometric realization of NXfTg:

Each Coxeter block in S# has a well-defined type—it is an element of N:
(Translate the Coxeter block by an element of W so that it contains the vertex 1.)
Each 1-dimensional Coxeter cell also has a well-defined type—it is an element of S#:
(In Section 5 the function that assigns to each oriented edge of S# the type of its

underlying 1-cell will be called a ‘‘framing’’.) In general, however, there is
no consistent way to assign a ‘‘type’’ to the Coxeter cells in S# of dimension X2:
(See Case 3 of Fig. 4.)

4.5. The involution jT

Let TAS#: Next we shall describe the self-homeomorphism of D#T which is

needed to glue together the tiles D#T and wT D#T : To this end we want to define an

appropriate extension of the automorphism jT : RpT-RpT ; defined in Lemma
3.2.2, to an automorphism of NXfTg; the closed star of the vertex T in N4|: This

automorphism will also be denoted by jT :
For any T 0AP4|; let aT 0 denote the antipodal map on the Coxeter cell ZðWT 0 ;T 0Þ:

If T 0AS#; then it corresponds to a Coxeter 1-cell connecting the vertex 1 to aT 0 ð1Þ ¼
wT 0 ð1Þ: The gluing map jT is induced by the action of aT wT on those vertices T 0 that
lie in NXfTg: By Lemma 3.3.2 there are three cases to consider. First we consider

Case 3, when T 0CT : The face ZðWT 0 ;T 0Þ of ZðWT ;TÞ is mapped by aT wT to the
face ZðWT 00 ;T 00Þ; where T 00 ¼ wT T 0wT : Hence, aT wT maps the vertex aT 0 ð1Þ to
aT 00 ð1Þ: So in this case, the correct definition of jT is as in Lemma 3.2.2: jT ðT 0Þ ¼ T 00:
On the other hand, if TCT 0; then aT 0 commutes with aT and with wT : Hence aT wT

maps aT 0 ð1Þ to aT 0aT wTð1Þ ¼ aT 0 ð1Þ: Thus, in this case, we see that the appropriate
definition is: jTðT 0Þ ¼ T 0: A similar argument shows that in Cases 1 and 2,
the appropriate definition is jT ðT 0Þ ¼ T 0: Thus jT is defined on any vertex T 0

of NXfTg by

jTðT 0Þ ¼
wT T 0wT if T 0CT ;

T 0 ifT 0gT :

(
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It is then not difficult to check that for any R-nested set TANXfTg; jT ðTÞ is also
R-nested. That is to say, jT induces an automorphism of NXfTg: The geometric

realization of jT is a self-homeomorphism of the mirror D#T ; which we shall

continue to denote by jT :

Remark 4.5.1. In general, jT will not extend to an automorphism of N:

Remark 4.5.2. The subspace D#,wT D# of S# is homeomorphic to two copies of

D# glued together along the mirror D#T via the homeomorphism jT : D#T-D#T :

Definition 4.5.3. The mirror D#T is a reflecting mirror if jT is the identity map on

D#T : If jT is not the identity, then D#T is a mock reflecting mirror.

4.6. Local pictures around codimension-two corners

By Lemma 3.3.2, the intersection of distinct mirrors D#T and D#T 0 is nonempty if

and only if one of the three cases in the lemma holds. In Cases 1 and 2 the picture of
the tiles around D#T-D#T 0 is the usual two-dimensional picture for reflection

groups. In Case 3 it is slightly different. All three cases are depicted in Fig. 3. In the
figure we have labeled the tile wD# by the corresponding element w and the mirror

wD#T by the corresponding element TAS#:
There are similar pictures for the corresponding Coxeter 2-cells containing the

vertex 1 as in Fig. 4. Here we have labeled the vertices by group elements and
the Coxeter 1-cells by their corresponding type.
Since D# is the dual cone in a Coxeter cell complex, it is a Coxeter tile as defined

in 2.4.1. Given the local pictures around 2-dimensional cells, we can now
determine the type of this dual cone (cf., Section 2.4). We define a Coxeter matrix
M#ð¼ ðm#ðT ;T 0ÞÞÞ on S# according to the three cases of Lemma 3.3.2:

m#ðT ;T 0Þ ¼

1 if T ¼ T 0;

mðs; s0Þ in Case 1;

2 in Cases 2 and 3;

N iffT ;T 0geN:

8>>><>>>:
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Let ðW#;S#Þ be the Coxeter system determined by M#:With respect to this Coxeter

system, we have the notion of a spherical subset of S# (namely,TCS# is spherical if

and only if the special subgroup ðW#ÞT is finite). Let SðS#Þ denote the set of

spherical subsets of S#: It is not hard to see that the simplicial complex N4| is a

subcomplex of SðS#Þ4| (i.e., that every R-nested set T is spherical). Denoting this

subcomplex L#; we then have the following.

Proposition 4.6.1. The fundamental tile D# is isomorphic to the Coxeter tile

DðW#;S#;L#Þ (as defined in 2.4.1).

4.7. The universal cover of S# and the group A

Let p : eSS#-S# denote the projection map of the universal cover eSS# onto S#: Let

A denote the group of all lifts of the W -action on S# to eSS#: The projection map

p : eSS#-S# induces a surjective homomorphism f : A-W ; and p1ðS#Þ is naturally
identified with the kernel of f: The goal of this subsection is to give a presentation
for A: The method is essentially due to Poincaré.

The cellulation of S# by Coxeter cells lifts to a cellulation of eSS#: Thus, eSS# is a

Coxeter cell complex. Since D# is contractible, p maps each component of p1ðD#Þ
homeomorphically onto D#: Hence, eSS# is also tiled by copies of D#: First choose a

component of p1ðD#Þ and denote it by eDD#: Let e11 denote the point of eDD# that lies

above the vertex 1 in D#: ( eDD# should be thought of as the Dirichlet domain centered

at e11 for the A-action on eSS#:) The set of elements of A that map eDD# to an adjacent

chamber across a mirror is a set of generators for A: A set of relations can be read off
by considering the local pictures around the intersections of two mirrors.
There is a dual and equivalent method to this which is easier to make

mathematically precise. Consider the 2-skeleton of eSS# in its Coxeter cell structure.

Since W acts simply transitively on the vertex set of S#; A acts simply transitively

on the vertex set of eSS#: Since we have chosen a distinguished vertex e11 in eSS#; each

vertex of eSS# is labeled by an element of A: Each 1-cell in eSS# is then labeled by its

ARTICLE IN PRESS

Fig. 4.

M. Davis et al. / Advances in Mathematics 177 (2003) 115–179 135



type (an element of S#). The set of edges in the star of the vertex e11 then gives a set of
generators for A while the set of 2-cells in this star gives a set of relations.
We now give the details of this method. For each TAS#; let aT denote the

unique lift of wT that maps eDD# to the adjacent tile across eDD#T : (Here is a more

precise definition of aT : Let xT be the midpoint of the edge in S# connecting the

vertex 1 to wT ð1Þ: Then wT fixes xT : Let exxT denote the lift of xT in eDD#: Then aT

is defined to be the unique lift of wT that fixes exxT :) Since ðaTÞ2 also fixes exxT and

covers the identity map on S#; ðaT Þ2 must be the identity on eSS#; i.e., aT is an

involution.

Definition 4.7.1. The involution aT is called a reflection if jT ¼ Id and a mock

reflection otherwise.

Theorem 4.7.2. The set A ¼ faTgTAS#
is a set of generators for A. Moreover, the

following relations give a presentation for A:

(0) ðaTÞ2 ¼ 1 for all TAS#:

(1) ðafsgafs0gÞmðs;s0Þ ¼ 1 whenever mðs; s0ÞoN and fs; s0geR:

(2) ðaTaT 0 Þ2 ¼ 1 whenever T,T 0AS and fT ;T 0g is the R-decomposition of T,T 0:
(3) aTaT 0 ¼ aT 00aT whenever T 0CT (where T 00 ¼ wT T 0wT ).

Proof. For each TAS# there is a Coxeter 1-cell connecting e11 to aTðe11Þ: Since the 1-
skeleton of eSS# is connected, A is a set of generators for A:
As we have already observed, aT is an involution, so the relations in (0) hold in A:

Examining the local pictures around the intersection of two mirrors in Fig. 3, we see

that the relations of type (1), (2), and (3) hold in A: In terms of the 2-skeleton of eSS#;
the relations of the form (1), (2), and (3) correspond to the 2-dimensional Coxeter

cells that contain the vertex *1: Hence, the Cayley 2-complex of the group defined
by this presentation is a covering space of the 2-skeleton. Since the 2-skeleton is
simply-connected, this covering must be trivial; hence, this presentation is a
presentation for A: &

Remark 4.7.3. The homomorphism f : A-W is defined on the generating set A by
fðaT Þ ¼ wT :

5. Tilings of Coxeter cell complexes

5.1. Framings

A framing is an additional structure on a Coxeter cell complex X : It is used to
rigidify the situation and to provide a notion of ‘‘parallel transport’’ along curves.
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The existence of a framing implies that X is tiled (cf., Definition 2.3.1). In
the converse direction, if X admits a group of automorphisms that acts

simply transitively on its vertex set X ð0Þ; then there is an associated framing
(cf., Example 5.1.6).
Recall that an orientation for an edge of X is an ordering of its two endpoints.

Let OEðXÞ denote the set of oriented edges in X : For any eAOEðXÞ; let iðeÞ
denote its first endpoint (its ‘‘initial vertex’’) and tðeÞ its second (‘‘terminal
vertex’’). Also, %e denotes the same edge with the opposite orientation. An edge

path in X is a sequence e ¼ ðe1;y; enÞ of oriented edges such that iðekþ1Þ ¼ tðekÞ;
for 1pkon: Its initial vertex iðeÞ is defined to be iðe1Þ and its terminal vertex tðeÞ
is tðenÞ:

Definition 5.1.1. A framing system is a triple ðV ;M;LÞ where

(i) V is a finite set,
(ii) Mð¼ mðv; v0ÞÞ is a Coxeter matrix on V ; and
(iii) L is a subcomplex of SðVÞ4| containing its 1-skeleton.

There is an obvious notion of an isomorphism between two framing systems
ðV ;M;LÞ and ðV 0;M 0;L0Þ (namely, it is a bijection f : V-V 0 that induces a
simplicial isomorphism L-L0 and pulls back M 0 to M).
Associated to a framing system ðV ;M;LÞ there is the reflection tiling

SðWðMÞ;V ;LÞ defined in 2.3.2.

Example 5.1.2. Associated to any vertex xAX ð0Þ; we have three sets Ex; Ox; and Ix

called, respectively, the unoriented edges, the outward pointing edges, and the inward

pointing edges at x: Their definitions are:

Ex ¼ funoriented edges with one endpoint xg;
Ox ¼ feAOE j iðeÞ ¼ xg;
Ix ¼ feAOE j tðeÞ ¼ xg:

We note that these three sets are canonically isomorphic. A Coxeter matrix Mx ð¼
mxðe; e0ÞÞ on Ex (or on Ox or Ix) is defined as follows: if e ¼ e0; then mxðe; e0Þ ¼ 1; if e

and e0 are distinct edges of a 2-cell in X that is a 2m-gon, then mxðe; e0Þ ¼ m;
otherwise, mxðe; e0Þ ¼ N: Let WðMxÞ denote the Coxeter group corresponding to
Mx with fundamental set of generators Ex; and let SðExÞ be the poset of spherical
subsets of Ex: The link, Lx; of x in X is then a subcomplex of SðExÞ: Thus, to each

xAX ð0Þ we have associated three canonically isomorphic framing systems:
ðEx;Mx;LxÞ; ðOx;Mx;LxÞ; and ðIx;Mx;LxÞ:

Definition 5.1.3. Suppose X is a Coxeter cell complex, that ðV ;M;LÞ is a framing

system and that r : OEðXÞ-V is a function. For each xAX ð0Þ; denote the

restriction of r to Ox and Ix by rx : Ox-V andrx : Ix-V ; respectively. Then r is
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called a framing if for each xAX ð0Þ; both rx and rx are isomorphisms of framing
systems.

Remark 5.1.4. The canonical isomorphism cx : Ox-Ix is defined by cxðeÞ ¼ %e:

If r is a framing on X ; then for each xAX ð0Þ; we get an involution of
framing systems ix : V-V defined by the condition that the following diagram
commutes

In all cases of interest in this paper, the involution ix will be the identity map for

each xAX ð0Þ:

Example 5.1.5. Suppose that ðW ;SÞ is a Coxeter system, that R is an admissible
subset of S; and that S# is the subset of S defined in 3.3. Let M# be the Coxeter

matrix on S# defined in 4.6, and let L# be the simplicial complex N4|: Then
ðS#;M#;L#Þ is a framing system. If S# denotes the R-blow-up of SðW ;SÞ; then
there is a natural framing on S# with framing system ðS#;M#;L#Þ which associates
to each edge its type (as defined in 4.4).

Example 5.1.6. Suppose A is a group of automorphisms of a Coxeter cell complex X

that acts simply transitively on X ð0Þ: Set V ¼ Ox; M ¼ Mx; and L ¼ Lx: A framing
r : OEðXÞ-V is defined as follows. For any eAOEðX Þ; let a be the unique element
of A that takes iðeÞ to x: Then rðeÞ ¼ aðeÞ:

Example 5.1.7. Suppose r is a framing of X with framing system ðV ;M;LÞ:
Let ðV 0;M 0;L0Þ be another framing system and f : V-V 0 an isomorphism.

Then there is an induced framing rf of X with system ðV 0;M 0;L0Þ defined by

rfðeÞ ¼ fðrðeÞÞ:

Example 5.1.8. Suppose that p : X-X 0 is a covering projection of Coxeter cell

complexes and that r0 is a framing on X 0: We define a framing p�r0 on X (with the

same framing system as r0) by the formula ðp�r0ÞðeÞ ¼ r0ðpðeÞÞ:

Definition 5.1.9. Suppose that ðX ;rÞ and ðX 0;r0Þ are framed Coxeter cell complexes

with the same framing systems. A framed map from ðX ;rÞ to ðX 0;r0Þ is a covering
projection p : X-X 0 such that r ¼ p�r0:

Remark 5.1.10. Suppose p1 and p2 are two framed maps from ðX 0;r0Þ to ðX ;rÞ and
that for some vertex x0 of X 0; p1ðx0Þ ¼ p2ðx0Þ: Since the maps preserve the framing,
this implies that p1 and p2 also agree on any vertex adjacent to x0: (Two vertices are
adjacent if they are connected by an edge.) Hence, if X 0 is connected, we must have
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p1 ¼ p2: In other words, provided X 0 is connected, if two framed maps agree at a
single vertex, then they are equal.

Henceforth, we shall assume that all Coxeter cell complexes are connected.
As a special case of Definition 5.1.9, note that any automorphism f : X-X

is a covering projection. It is framed if f �r ¼ r: Let AutðX ;rÞ denote the group
of framed automorphisms of ðX ;rÞ: By Remark 5.1.10, AutðX ;rÞ acts freely

on X ð0Þ:
Suppose that ðX ;rÞ and ðX 0;r0Þ are framed with framing systems ðV ;M;LÞ and

ðV 0;M 0;L0Þ; respectively, and that p : X-X 0 is a covering projection (not necessarily

framed). Then for each vertex xAX ð0Þ there is an induced isomorphism px : V-V 0 of
framing systems defined by the condition that the following diagram commutes:

Thus, after changing ðV 0;M 0;L0Þ by an isomorphism of framing systems, we may
assume that ðV 0;M 0;L0Þ ¼ ðV ;M;LÞ and that at a given vertex x; px is the identity.

The framing r is symmetric if AutðX ;rÞ acts transitively on X ð0Þ: Thus, up to
isomorphism of framing systems, every symmetric framing arises from the
construction in Example 5.1.6.

5.2. The action of FV on the vertex set

Suppose ðX ;rÞ is a framed Coxeter cell complex with framing system ðV ;M;LÞ:
Let FV denote the free group on V : Given a vertex xAX ð0Þ and an element vAV ; let

eAOx and e�AIx be the oriented edges defined by rxðeÞ ¼ v and rxðe�Þ ¼ v;

respectively. Define x � v ¼ tðeÞ and x � v1 ¼ iðe�Þ: Clearly, ðx � vÞ � v1 ¼ x ¼
ðx � v1Þ � v; hence, these formulas define a right FV -action on X ð0Þ: The action is
transitive since X is connected.

If f : ðX ;rÞ-ðX 0;r0Þ is a framed map then the restriction of f to the vertex set,

f ð0Þ : X ð0Þ-X 0ð0Þ; is obviously FV -equivariant. Conversely, we have the following.

Lemma 5.2.1. Suppose ðX ;rÞ and ðX 0;r0Þ are two framed Coxeter cell complexes

with the same framing system ðV ;M;LÞ: Let y : X ð0Þ-X 0ð0Þ be an equivariant map of

FV -sets. Then there exists a unique framed map f : ðX ;rÞ-ðX 0;r0Þ with f ð0Þ ¼ y:

Proof. The map y defines f on the 0-skeleton of X : If eAOEðXÞ; then there
is a unique oriented edge e0 in X 0 from yðiðeÞÞ to yðtðeÞÞ; namely, the edge e0

with iðe0Þ ¼ yðiðeÞÞ and with r0ðe0Þ ¼ rðeÞ: (By FV -equivariance, tðe0Þ ¼
iðe0Þ � r0ðe0Þ ¼ yðiðeÞÞ � rðeÞ ¼ yðtðeÞÞ:) We extend f to the 1-skeleton by mapping
e isometrically to e0: A similar argument for higher dimensional cells shows that y
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extends to a map f ; which is clearly a covering projection. Uniqueness follows from
Remark 5.1.10. &

Corollary 5.2.2. Suppose that ðX ;rÞ and ðX 0;r0Þ are two framed Coxeter cell

complexes with the same framing system. Then the correspondence f/f ð0Þ is a

bijection from the set of framed maps from ðX ;rÞ to ðX 0;r0Þ with the set of FV -

equivariant maps from X ð0Þ to X 0ð0Þ: In particular, ðX ;rÞ is framed isomorphic to

ðX 0;r0Þ if and only if their vertex sets are isomorphic as FV -sets.

5.3. Gluing isomorphisms

Suppose Z is a Coxeter cell and that x is a vertex of Z: Let OxðZÞ denote the set of
oriented edges of Z with initial vertex x: Let WZ denote the Coxeter group
associated to Z: (WZ is a well-defined group of symmetries of Z generated by
reflections across hyperplanes.) Suppose x and x0 are two vertices of Z: Then there is
a unique element wAWZ such that wx ¼ x0: The element w gives us a canonical
bijection, which we denote by w� : OxðZÞ-Ox0 ðZÞ:
Now suppose that ðX ;rÞ is a framed Coxeter cell complex, that Z is a Coxeter cell

in X ; and that x is a vertex of Z: Set rxðZÞ ¼ rxðOxðZÞÞ: It is a spherical subset of
V : If x0 is another vertex of Z; then we have a canonical isomorphism jðx;x0;ZÞ :

rxðZÞ-rx0 ðZÞ defined by jðx;x0;ZÞ ¼ rx3w�3ðrx0 Þ1; where wAWZ is such that

x0 ¼ wx:
For each vAV let StðvÞ denote the star of v in the simplicial complex L: We shall

now define, for each eAOEðX Þ; an isomorphism je : StðrðeÞÞ-Stðrð%eÞÞ: Let x0 ¼
iðeÞ and x1 ¼ tðeÞ be the endpoints of e: For any simplex s in StðrðeÞÞ let Zs be the
corresponding Coxeter cell (i.e., Zs contains e; and rx0ðZsÞ is the vertex set of s).
Let s0 be the simplex in Stðrð%eÞÞ with vertex set rx1ðZsÞ: Then je is defined to be the
simplicial map that takes s to s0 via jðx0;x1;ZsÞ: We note that the maps je and j%e are

inverses of one another; hence, je is an isomorphism, called the gluing isomorphism

associated to e:

Remark 5.3.1. The definition of je depends only on the values of r on the edges of
the 2-cells that contain e:

Remark 5.3.2. Suppose that e ¼ ðe1;y; enÞ is an edge path in a Coxeter cell Z in X

with iðeÞ ¼ x and tðeÞ ¼ x0: Then jen
3?3je1 maps rxðZÞ to rx0 ðZÞ and

jen
3?3je1 jrxðZÞ ¼ jðx;x0;ZÞ: That is to say, the composition of gluing isomorphisms

corresponding to an edge path in Z depends only on the endpoints of the path. In
particular, suppose that F is a 2-dimensional face of Z and that e ¼ ðe1;y; e2mÞ is an
oriented edge path around the boundary of F : Then je2m

3?3je1 is the identity map on

rxðZÞ: This last condition can be rephrased as follows: if s is the 1-cell in L with
vertex set rxðFÞ and if StðsÞ denotes its star in L; then je2m

3?3je1 maps StðsÞ to itself
and je2m

3?3je1 jStðsÞ ¼ IdStðsÞ:
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Suppose ðe1;y; enÞ is an edge path in Z and that xk ¼ tðekÞ: Then xk ¼ wkx for
some unique element wkAWZ: Since rxðZÞ is a fundamental set of generators for
WZ we get a corresponding word ðv1;y; vnÞ in rxðZÞ defined by wk ¼ vk?v1: How
do we express the rðekÞ in terms of the vk? The answer is simple: rðe1Þ ¼ v1 and for
1pkon; rðekþ1Þ ¼ jek

3?3je1ðvkþ1Þ:

Remark 5.3.3. If X is a Coxeter cell complex of reflection type (i.e., isomorphic to a
reflection tiling) with the obvious symmetric framing, then each gluing automorph-
ism je is the identity map on StðrðeÞÞ:

The following lemma gives a necessary condition for two framable Coxeter cell
complexes to be isomorphic (not necessarily by a framed isomorphism).

Lemma 5.3.4. Suppose that ðX ;rÞ and ðX 0;r0Þ are two framed Coxeter cell

complexes with the same framing system ðV ;M;LÞ: Let f : X-X 0 be a covering

projection that induces the map f at a given vertex x (i.e., fx ¼ f : V-V ). For each

eAOx; let je : StðrðeÞÞ-Stðrð %eÞÞ and jf ðeÞ : Stðr0ð f ðeÞÞÞ-Stðr0ðf ðeÞÞÞ be the

corresponding gluing isomorphisms of X and X 0; respectively. Set Je ¼ jf ðeÞ3f3ð jeÞ1 :
Stðrð%eÞÞ-Stðr0ðf ðeÞÞÞ: Then Je extends to an automorphism eJJe : V-V of framing

systems.

Proof. Let %x denote tðeÞ: Then the following diagram of isomorphisms clearly
commutes:

Hence, eJJe ¼ f %x is the desired extension of Je: &

5.4. Homogeneous framings

Definition 5.4.1. A framing r on X is homogeneous if for each eAOEðXÞ; the gluing
isomorphism je : StðrðeÞÞ-Stðrð%eÞÞ depends only on the value of rðeÞ (in other
words, whenever rðeÞ ¼ rðe0Þ; we have rð %eÞ ¼ rð %e0Þ and je ¼ je0 ).

For homogeneous framings we shall often write jrðeÞ instead of je:

Remark 5.4.2. If X is homogeneously framed, then the involution ix : V-V defined
in Remark 5.1.4 is independent of x: We shall denote this involution by v/%v:

Suppose that ðX ;rÞ is homogeneously framed. We shall now explain the

consequences of homogeneity for the FV -action on X ð0Þ: Fix a vertex xAX ð0Þ: For
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each 1-simplex s in L; let Zs denote the corresponding Coxeter 2-cell at x (i.e.,
rxðZsÞ is the vertex set of s). Let ðe1;y; e2mÞ be the edge cycle that starts at x and
goes once around Zs; and let rðe1Þ?rðe2mÞ be the corresponding word in V : Let rs
denote the image of rðe1Þ?rðe2mÞ in FV : Finally, let Ar be the quotient of FV

by the normal subgroup N generated by fv%v j vAVg,frs j s a 1-simplex of Lg: In
other words, Ar is the group with one generator av for each element of V ;

and relations ðavÞ1 ¼ a%v as well as relations corresponding to rs for each 1-simplex
s of L:
A different choice of vertex x0 leads to a relation r0s that is conjugate to rs in

FV : Hence, the choice of x0 yields the same normal subgroup N and the same

quotient group Ar: Moreover, in the FV -action on X ð0Þ; the subgroup N acts
trivially. Hence, we have a well-defined transitive action (from the right) of Ar
on X ð0Þ:

Remark 5.4.3. Something significant has been gained. Two reduced edge paths e and
e0 with the same endpoints are homotopic real endpoints if and only if one can be
pushed to the other across 2-cells. Therefore, the element ae of Ar corresponding to e

depends only on the homotopy class of e:

This remark has the following immediate consequence.

Proposition 5.4.4. Suppose ðX ;rÞ is a homogeneously framed Coxeter cell complex

and that Ar is the group defined above. Then the isotropy subgroup of the Ar-action on

X ð0Þ at xAX ð0Þ is naturally identified with p1ðX ; xÞ:

As a consequence of Lemma 5.2.1 we get the following.

Proposition 5.4.5. Suppose ðX ;rÞ and ðX 0;r0Þ are two homogeneously framed

Coxeter cell complexes with the same framing system and the same set of

gluing isomorphisms fjvgvAV : Then the groups Ar and Ar0 are canonically

isomorphic. Moreover, given vertices xAX ð0Þ and x0AX 0ð0Þ there is a framed

map f : ðX ;rÞ-ðX 0;r0Þ taking x to x0 if and only if p1ðX ; xÞ is a subgroup of

p1ðX 0; x0Þ:

Corollary 5.4.6. Suppose ðX ;rÞ is a homogeneously framed Coxeter cell complex. Let

A ¼ Ar and p ¼ p1ðX ; xÞ: Then the following statements are true.

(1) AutðX ;rÞDNAðpÞ=p; where NAðpÞ denotes the normalizer of p in A.
(2) r is symmetric if and only if p is normal in A.
(3) If X is simply-connected, then r is symmetric and AutðX ;rÞDA:

Remark 5.4.7. If the framing is homogeneous and if the involution on V is trivial,
then each gluing map jv : StðvÞ-StðvÞ is an involution.
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Suppose ðX ;rÞ is homogeneously framed. Let

FX ¼ fvAV j jv does not extend to an automorphism ðV ;M;LÞg:

Also, let tX ¼ Card ðFX Þ: The next lemma, which is a special case of Lemma 5.3.4,
gives a necessary condition for two homogeneously framed Coxeter cell complexes to
be isomorphic. It will be used in Section 8 to distinguish among various
associahedral tilings.

Lemma 5.4.8. Suppose that ðX ;rÞ and ðX 0;r0Þ are homogeneously framed with the

same framing system ðV ;M;LÞ: Suppose further that there is a covering projection

f : X-X 0: Then there is an automorphism fAAutðV ;M;LÞ that takes FX to FX 0 : In

particular, tX ¼ tX 0 :

Proof. Let f be the automorphism induced by f at a given vertex x: Put Jv ¼
jfðvÞ3f3ð jvÞ1: By Lemma 5.3.4, Jv extends. Therefore, jv extends if and only if jfðvÞ
extends. &

5.5. Maximally symmetric tilings

Definition 5.5.1. A proper action of a discrete group G on a space Y is rigid if for all
gAG  f1g; there does not exist a nonempty open subset U of Y that is fixed
pointwise by g:

For example, if Y is a connected manifold, then it follows from Newman’s
Theorem [Bre, p. 153] that any proper effective action on Y is rigid.
Suppose ðX ;rÞ is a homogeneously framed Coxeter cell complex with framing

system ðV ;M;LÞ: Let AutðX Þ denote the automorphism group of the cell complex

X ; and for x in X ð0Þ; let StabðxÞ be the stabilizer subgroup of x: Assume further that
the action of AutðXÞ on X is rigid. Let Aut0ðV ;M;LÞ be the subgroup of all
fAAutðV ;M;LÞ that are equivariant with respect to the involution v/%v: Then the
natural homomorphism F : StabðxÞ-Aut0ðV ;M;LÞ is injective. If, in addition, F is
surjective we say that X is maximally symmetric.

Proposition 5.5.2. Suppose X is simply connected. Then X is maximally symmetric if

and only if f3jv3f
1
3ð jfðvÞÞ1 extends to an automorphism of framing systems for all

vAV and fAAut0ðV ;M;LÞ:

Proof. If X is maximally symmetric, then the condition follows from Lemma 5.3.4.

Let r0 be the framing of X defined by r0 ¼ rf1
: Then ðX ;r0) is homogeneously

framed and the corresponding gluing isomorphisms j0v are given by j0v ¼ f1
3jfðvÞ3f:

If the condition holds, then fj0vgvAV ¼ fjvgvAV : So, by Proposition 5.4.5, Ar is

canonically isomorphic to Ar0 (the isomorphism is induced by v/fðvÞ), and since X
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is simply connected there is a framed isomorphism f : ðX ;rÞ-ðX ;r0Þ taking x to x:
Since Fð f Þ ¼ f; F is surjective. &

Example 5.5.3. If AutðV ;M;LÞ is trivial, then X is maximally symmetric
and AutðXÞ ¼ Ar: If X ¼ SðW ;S;LÞ is a tiling of reflection type, then X is
maximally symmetric (each jv is trivial). In fact, in this case, the full symmetry group
of X is

AutðXÞ ¼ WsAutðV ;M;LÞ:

5.6. A sufficient condition for two Coxeter cell complexes to be isomorphic

Suppose that ðX ;rÞ is a framed Coxeter cell complex with framing system
ðV ;M;LÞ: Let S ¼ SðW ;M;LÞ be the corresponding Coxeter cell complex of
reflection type (where W ¼ WðMÞ). In this section we give sufficient conditions for
finding a covering projection p : S-X such that p takes the distinguished vertex

1ASð0Þ to a given vertex xAX ð0Þ so that the induced map of framing systems px :
V-V at the vertex 1 is the identity. The two conditions we shall give are necessary
by Lemma 5.3.4 and Remark 5.3.2. The first condition is the following
‘‘Extendability Condition’’:

(E) For each eAOEðXÞ; the map je : StðrðeÞÞ-Stðrð%eÞÞ extends to an

automorphism j̃e : V-V of framing systems.

The second condition (H) is the condition of ‘‘no holonomy around 2-cells’’. It is
justified by the first paragraph of Remark 5.3.2.

(H) The extended gluing isomorphisms of (E) can be chosen so that j̃%e ¼ ðj̃eÞ1 and
so that if ðe1;y; e2mÞ is a cycle around a 2-cell of X ; then j̃e2m

3?3j̃e1 is the identity
map.

Remark 5.6.1. Suppose ðe1;y; e2mÞ is a cycle around a 2-cell FCX ; that y ¼ iðe1Þ ¼
tðe2mÞ; and that s is the 1-cell of L spanned by ryðe1Þ and ryð%e2mÞ: Then Remark

5.3.2 asserts that je2m
3?3je1 jStðsÞ is the identity map. The content of Condition (H) is

that j̃e2m
3?3j̃e1 is an extension of this to the identity map of V :

Remark 5.6.2. If the action of AutðLÞ on L is rigid, then the extension

j̃e of Condition (E) is unique (if it exists); moreover, Condition (H) is then
automatic.

Now suppose that ðX ;rÞ satisfies (E) and (H). Given a word ðv1;y; vnÞ in V we
will define an edge path e ¼ ðe1;y; enÞ beginning at x ¼ x0:We will use the notation
xk ¼ tðekÞ: By definition e1 is the unique edge at x0 such that rx0ðe1Þ ¼ v1: Suppose
by induction that ðe1;y; ekÞ has been defined. Then ekþ1 is the unique edge at xk
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satisfying rxk
ðekÞ ¼ j̃ek

3?3j̃e1ðvkþ1Þ: (Compare this to the formula in the second

paragraph of Remark 5.3.2.)
Set wk ¼ v1?vk:

Lemma 5.6.3. Suppose Conditions (E) and (H) hold. Then with notation as above, the

vertex xnAX ð0Þ depends only on the element w ¼ wnAW (and not on the choice of word

v1?vn representing w). Moreover, this gives a right action of W on X ð0Þ defined by

x � w ¼ xn:

Proof. Any two words for an element w in a Coxeter group differ by a sequence of
moves of one of the following two types: (1) cancelling a subword of the form vv or
(2) replacing a subword which goes half way around a 2-cell in S by the subword
which goes half way around the 2-cell in the other direction. A subword of the form

vv in ðv1;y; vnÞ corresponds to an edge subpath of the form e%e and since j̃e3j̃%e ¼ Id;
we can cancel. So the issue comes down to the following. Suppose ðv1;y; vnÞ
contains a subword s ¼ ðs; t;yÞ which is an alternating word of length m ¼ mðs; tÞ
in letters s and t: We want to show that if we replace this subword by the other
alternating word s0 ¼ ðt; s;yÞ of length m then the initial and final segments of the
new edge path in X remain unchanged. Suppose ðe1;y; emÞ is the portion of the edge
path corresponding to s: Let ð%e2m;y; %emþ1Þ be the edge path with the same initial
vertex that corresponds to s0: Its opposite path is ðemþ1;y; e2mÞ and ðe1;y; e2mÞ is a
cycle around a 2-cell in X : By Condition (H)

j̃em
3?3j̃e1 ¼ j̃%emþ13?3j̃ %e2m

:

Hence, we can replace the segment ðe1;y; emÞ by ð%e2m;y; %emþ1Þ without affecting
the definition of any succeeding edges. &

Define pð0Þ : Sð0Þ-X ð0Þ by pð0Þð1 � wÞ ¼ x � w: It follows as in Lemma 5.2.1 that this
extends to a covering projection p : S-X : We have proved the following.

Theorem 5.6.4. Suppose that Conditions (E) and (H) hold for a framed Coxeter cell

complex ðX ;rÞ and that S is the associated tiling of reflection type. Then for any

vertex xAX ð0Þ; there is a covering projection p : S-X taking 1 to x:

5.7. The completed complex bXX
Suppose ðX ;rÞ is a framed Coxeter cell complex with framing system ðV ;M;LÞ:

Let bLL denote the simplicial complex SðVÞ4|: Our goal in this section is to try to

construct a new Coxeter cell complex bXX such that

(a) X is a subcomplex of bXX and they have the same 2-skeleton, and

(b) for each vertex xA bXX ð0Þð¼ X ð0ÞÞ its link bLLx; is isomorphic to bLL and the framing

gives an isomorphism rx : bLLx-bLL:
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If we are successful in this construction then, since OEð bXXÞ ¼ OEðXÞ; we will have an
induced framing on bXX with framing system ðV ;M; bLLÞ:
There are two obvious conditions for (b) to hold: first, each gluing isomorphism

must extend to an isomorphism of the appropriate stars in bLL and second, there can

be no holonomy around 2-cells in the star of the appropriate edge of bLL: For each
subset T of V ; let MðTÞ denote the restriction of the Coxeter matrix to T : For each
vAV ; let Vv denote the vertex set of StðvÞ: The gluing isomorphism je :
StðrðeÞÞ-Stðrð%eÞÞ restricts to a map of vertex sets which we also denote by je :

VrðeÞ-Vrð %eÞ:We next discuss a Condition (M) (for ‘‘Matrix Condition’’). It has two

parts (M1) and (M2). The first part (M1) is a weak version of (E) in 5.6, and the
second (M2) is a weak version of (H).

(M1) For each eAOEðXÞ and for each pair v1; v2 in VrðeÞ  frðeÞg;
mð jeðv1Þ; jeðv2ÞÞ ¼ mðv1; v2Þ:

Condition (M1) says that je pulls back MðVrð %eÞÞ to MðVrðeÞÞ: Hence, if (M1)

holds, then each je induces a simplicial isomorphism

bjje : SðVÞ
XfrðeÞg-SðVÞ

Xfrð%eÞg

between the appropriate stars in bLL:
Note that Condition (M1) is automatic if frðeÞ; v1; v2g spans a 2-simplex in

StðrðeÞÞ (since je maps this 2-simplex to a 2-simplex in Stðrð%eÞÞ). Thus, Condition
(M1) holds automatically if L has no ‘‘missing 2-simplices’’.
Suppose F is a 2-cell of X ; that ðe1;y; e2mÞ is a cycle around F ; and that x ¼ iðe1Þ:

The second part of Condition (M) is the following:

(M2) For any 2-cell F of X ; with notation as above,

bjje2m
3?3bjje1 : SXrxðFÞ-SXrxðFÞ

is the identity map.

We note that Condition (M2) is automatic if there are no missing simplices in the
star of the edge s of L which corresponds to rxðFÞ: Thus, Condition (M) holds
automatically if L has no missing simplices.

Supposing that (M) holds, the idea for the construction of bXX is the following. We
want to fill in the ‘‘missing’’ cells of X that correspond to the ‘‘missing’’ simplices of
L: The first problem is to describe subcomplexes of X which will serve as the (partial)
boundaries of the missing cells to be filled in. This is done essentially by the same
method as in 5.6. Condition (M) is exactly the hypothesis needed to carry out this
procedure. A second problem then arises. Our putative boundaries of missing cells
might not be embedded subcomplexes of X : Instead, they might be the image of the
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actual boundary of a cell under a covering projection. Thus, the completion bXX might
turn out to be a ‘‘Coxeter orbihedron’’ (as defined below).
For each TASðVÞ4| let LT be the subcomplex of L spanned by T : By

condition (iii) of Definition 5.1.1, the 1-skeleton of LT is the complete graph
on T : Let WT be the finite Coxeter group corresponding to MðTÞ; let Z be

the corresponding Coxeter cell, and let 1AZð0Þ be a distinguished vertex (such
that OE1ðZÞ ¼ T). Let ZðLT Þ be the subcomplex of Z corresponding to LT ; i.e.,
ZðLTÞ ¼ SðWT ;T ;LTÞ:
Fix a vertex xAX ð0Þ and let T be any spherical subset of rxðOExÞ: We now

propose to define a subcomplex CðLT Þ of X containing the vertex x; and a map
f : ZðLTÞ-CðLTÞ such that fð1Þ ¼ x: (If T is the vertex set of a simplex s in L;
then CðLT Þ will be Zs; the corresponding Coxeter cell at x:)
We regard T as a set of fundamental generators for WT :We proceed as in 5.6. Let

u ¼ u1?un be a word in T : For 1pkpn; let wk be the element of WT represented by
uk?u1: Assuming that (M) holds, we are going to define, by induction on k; an edge
path e ¼ ðe1;y; enÞ and a sequence of subsets T0;y;Tn of V : We will use
the notation: vk ¼ rðekÞ; xk ¼ tðekÞ; and x0 ¼ x: We will also show by induction
that Tk is a spherical subset of rðOExk

Þ: Let T0 ¼ T and let e1AOEx0
be the unique

element satisfying rðe1Þ ¼ u1: Assuming that ei and Ti1 have been defined for

1pipk; set Tk ¼ bjjek
ðTk1Þ ¼ bjjek

3?3bjje1ðTÞ and let vkþ1ATk be the element defined

by vkþ1 ¼ bjjek
3?3bjje1ðukþ1Þ: (Here we have used induction and Condition (M) to

show that bjjek13?3bjje1ðukþ1Þ lies in the domain of bjjek
:) Let ekþ1AOExk

be the unique

element satisfying rðekþ1Þ ¼ vkþ1: The proof of Lemma 5.6.3 then gives the
following.

Lemma 5.7.1. Assume (M) holds for ðX ;rÞ: With notation as above, the vertex

xnAX ð0Þ; the spherical subset Tn; and the isomorphism bjjen
3?3bjje1 : T-Tn depend only

on the element w ¼ wnAWT (and not on the choice of word un?u1 representing w).

Hence, we can use the notation w � x ¼ xn; wT ¼ Tn; and w� ¼ bjjen
3?3bjje1 : T-wT :

For each simplex s of LT and wAWT ; wWsx is the vertex set of a cell in X : The
subcomplex CðLTÞ is the union of these cells. The map f : ZðLTÞ-CðLT Þ is defined
on vertices by w/w � x: The map f is a covering projection and induces an
isomorphism ZðLTÞ=WT ;xDCðLTÞ; where WT ;x denotes the isotropy subgroup of

WT at x:
A Coxeter orbicell is the quotient of a Coxeter cell (of type WT ) by a subgroup of

WT : A Coxeter orbihedron is an orbihedron that is locally isomorphic to the product
of a cell and some Coxeter orbicell. Thus, a Coxeter orbihedron is decomposed into
Coxeter orbicells. The link of a vertex in a Coxeter orbihedron is defined as before; it
is a simplicial cell complex.

The Coxeter orbihedron bXX is constructed by gluing onto X a copy of Z=WT ;x for

each subcomplex of the form CðLT Þ: In more detail, one constructs a sequence of
Coxeter orbihedra X ¼ X2;X3;y where Xn is supposed to be the union of X and the

ARTICLE IN PRESS
M. Davis et al. / Advances in Mathematics 177 (2003) 115–179 147



n-skeleton of bXX ; and Xnþ1 is obtained from Xn by gluing in the missing Coxeter
orbicells of dimension n þ 1: We have proved the following.

Theorem 5.7.2. Suppose ðX ;rÞ is a framed Coxeter cell complex and that Condition

(M) holds. Then X is a subcomplex of a Coxeter orbihedron bXX with the same 2-

skeleton such that for each xAX ð0Þ; rx induces an isomorphism from bLLx to
SðVÞ4|:

Lemma 5.7.3. As in Section 3, suppose S# is the R-blow-up of SðW ;SÞ: Then the

natural framing on S# (defined in Example 5.1.5) satisfies Condition (M).

Proof. An empty k-simplex of L#; kX2; corresponds to a subset fT1;y;Tkþ1g
of S# that is not R-nested, but such that any proper subset is. In particular,

TigTl for all ial (if TiCTl then adding Ti to the R-nested set fT1;y; bTiTi;y;Tkg
would give an R-nested set). Thus, if T is one of these vertices, say Ti; then it follows
from the definition of jT in 4.5 that jT ðTlÞ ¼ Tl for lai: In other words, jT
acts trivially on any empty k-simplex in NXfTg: This implies that Condition (M)

holds. &

Example 5.7.4. Suppose that Z# is the blow-up of the n-cube at its center. Thus, Z#

is an interval bundle over RPn1ð¼ @Z#=aÞ: Let ðS#;M#;L#Þ be the framing system

for the natural framing on Z# described in Example 5.1.5. If S ¼ fs1;y; sng; then
R ¼ fSg and S# ¼ ffs1g;y; fsng;Sg: The link L# is the subdivision of the ðn  1Þ-
simplex with vertex set T ¼ ffs1g;yfsngg obtained by introducing a barycenter S:
The picture for n ¼ 3 is given in Fig. 5.

The complex bLL ¼ SðS#ÞX| is the full n-simplex on S#: To describe the orbihedronbZZ#; we note that there are two missing simplices in L#: The first is the ðn  1Þ-
simplex spanned by T ; and the second is the full n-simplex on S#: Clearly, CðLTÞ ¼
@Z# ¼ @ð½1; 1�nÞ: We fill in the missing n-cell to obtain

Xn ¼ Z#,@Z#
½1; 1�n
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which is isomorphic to RPnð¼ @ð½1; 1�nþ1Þ=aÞ: The missing ðn þ 1Þ-cell is ½1; 1�nþ1;
but its boundary is no longer embedded (it is the complex Xn). Thus,

bZZ# ¼ ½1; 1�nþ1=a:

Example 5.7.5. Suppose Y is the universal cover of the complex Z# in the previous

example. Thus, Y is isomorphic to Sn1 	 ½1; 1�ð¼ @ð½1; 1�nÞ 	 ½1; 1�Þ: This time
there are two missing n-cells with boundaries Sn1 	 f1g and Sn1 	 f1g: We fill

these in to obtain Yn ¼ @ð½1; 1�nþ1Þ: Filling in the missing ðn þ 1Þ-cell we obtainbYY ¼ ½1; 1�nþ1:

5.8. Metric flag complexes

The natural piecewise Euclidean metric on a Coxeter cell complex induces a
piecewise spherical metric on the link of each vertex. Results of Gromov [G] and
Moussong [M] show that the condition that a Coxeter cell complex be nonpositively
curved in the sense of Aleksandrov and Gromov is equivalent to a condition on the
link of each vertex. We shall now recall this condition. (For more details see [BH] or
[DM].)
A spherical simplex has size Xp=2 if the length of each of its edges is at least p=2:

Similarly, a piecewise spherical simplicial cell complex has size Xp=2 if each of its
simplices does.

Example 5.8.1. The link of a vertex in a Coxeter cell of type WT is a spherical
simplex s with vertex set T : The length of the edge connecting the vertices t1 and t2 is
p p=mðt1; t2Þ; which is Xp=2: Hence s has size Xp=2: It follows that the link of
any vertex in a Coxeter cell complex has size Xp=2: Similarly, if ðV ;M;LÞ is any
framing system, then the natural piecewise spherical structure on L (in which the
length of an edge from v1 to v2 is given by p p=mðv1; v2Þ) has size Xp=2:

The definition of flag complex in 3.4 can be generalized as follows.

Definition 5.8.2. Suppose L is a piecewise spherical simplicial cell complex of size
Xp=2: Then L is a metric flag complex if it is a simplicial complex and if given any
nonempty finite collection T of vertices of L such that (a) any two elements of T are
connected by an edge in L and (b) it is possible to find a spherical simplex with the
same set of edge lengths, then T spans a simplex in L:

Example 5.8.3. With regard to condition (b), if the length of the edge connecting any
two vertices t1; t2AT is given by a Coxeter matrix (i.e., if it is p p=mðt1; t2Þ), then
there exists a spherical simplex with this set of edge lengths if and only if the
associated Coxeter group WT is finite (see Example 6.7.3 in [DM]). It follows that if

ðV ;M;LÞ is a framing system, then L is a metric flag complex if and only if L ¼ bLL
(where bLL ¼ SðVÞ4|).
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Remark 5.8.4. If L has size Xp=2 and if it is a flag complex, then it is a metric flag
complex. Conversely, when the length of each edge is p=2; then L is a metric flag
complex only if it is a flag complex.

Moussong generalized Gromov’s criterion for nonpositive curvature of a cubical
complex (stated in 3.4) by showing that a Coxeter cell complex is nonpositively
curved if and only if the link of each vertex is a metric flag complex. (Proofs can be
found in [M] or [DM, Section 6.7].) A corollary of this is the following.

Theorem 5.8.5 (Moussong). Suppose X is a framed Coxeter cell complex with

framing system ðV ;M;LÞ: Then X is nonpositively curved if and only if L ¼ bLL:
5.9. bXX is nonpositively curved

In this subsection ðX ;rÞ is a framed Coxeter cell complex satisfying Condition

(M) of 5.7 and bXX is the Coxeter orbihedron constructed in Theorem 5.7.2. It follows

from Moussong’s result (Theorem 5.8.5) that bXX is nonpositively curved.

Theorem 5.9.1. If X is simply connected, then bXX is actually a Coxeter cell complex.

Some evidence for this theorem is provided by Examples 5.7.4 and 5.7.5

Proof. Nonpositively curved orbihedra are ‘‘developable’’ (see [BH, p. 562]). This
means that the local isotropy group at any point in the universal orbihedral cover is
trivial. Thus, the universal orbihedral cover of any nonpositively curved Coxeter

orbihedron is a Coxeter cell complex. The 2-skeleton of bXX (as an orbicell complex) is

the same as that of X : So, if X is simply connected, then so is bXX and hence, bXX is its
own orbihedral cover. &

If a complete metric space is nonpositively curved and simply connected, then it is
a CATð0Þ-space (meaning that Gromov’s CAT(0)-inequalities hold for all triangles
in the space). This implies, for instance, that the space is contractible. Let us say that
a group G is a CAT(0)-group if it admits a representation as a discrete, cocompact
group of isometries on a finite dimensional CAT(0)-space. In the following theorem
we list some well-known properties of CAT(0)-groups. (Proofs can be found in
[BH].)

Theorem 5.9.2. Suppose G is a discrete, cocompact group of isometries of a CATð0Þ
polyhedron K : Then the following statements are true.

(1) G is finitely presented.
(2) The word problem and the conjugacy problem are solvable for G:
(3) G has only finitely many conjugacy classes of finite subgroups.
(4) If H is any solvable subgroup of G; then H is virtually abelian.
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(5) H�ðG;QÞ is finite dimensional and cdQðGÞ is no greater than dim K :
(6) If p is any torsion-free subgroup of G; then p acts freely on K and K=p is a Kðp; 1Þ-

complex for p:

If G is any discrete, cocompact group of automorphisms of the Coxeter cell

complex X ; then it extends to a cocompact group of automorphisms of bXX : If, in

addition, X is simply connected, then bXX is CAT(0) and these automorphisms are
isometries. Thus, G will be a CAT(0)-group. So, as a corollary to Theorem 5.9.2 we
have the following.

Theorem 5.9.3. Suppose that X is a simply-connected, framed Coxeter cell complex

satisfying Condition (M) of 5.7. Suppose further that X admits a discrete, cocompact

group of automorphisms G: Then the following statements are true.

(1) G is finitely presented.
(2) The word problem and the conjugacy problem are solvable for G:
(3) G has only finitely many conjugacy classes of finite subgroups.
(4) If H is any solvable subgroup of G; then H is virtually abelian.
(5) H�ðG;QÞ is finite dimensional and cdQðGÞ is no greater than dim bXX :
(6) If p is any torsion-free subgroup of G; then p acts freely on X : If, in addition, p has

finite index in G; then we can add finitely many cells to X=p to obtain a Kðp; 1Þ-
complex.

Proof. All statements but (6) follow immediately from the previous theorem applied

to the G-action on bXX : For (6), since the p-action is free on bXX ; it is also free on X : The

Kðp; 1Þ-complex is then bXX=p: &

From Theorem 5.9.3 and Lemma 5.7.3 we immediately get the following.

Corollary 5.9.4. Suppose that eSS# is the universal cover of an R-blow-up of SðW ;SÞ
and that A is its symmetry group as defined in 4.7. Then A is a CAT(0)-group (and,
hence, has all the properties listed in Theorem 5.9.3).

5.10. Construction of the group and the complex from the gluing isomorphisms

Suppose we are given a Coxeter matrix M ð¼ mðu; vÞÞ on a finite set V and an
involution on V denoted by v/%v: Call two distinct elements u and v of V adjacent if
mðu; vÞaN: Let L denote the 1-skeleton of SðVÞ4| (i.e., L is the graph with vertex

set V and with an edge connecting any two adjacent vertices). As before, Vv denotes
the star of v in L (i.e., Vv ¼ fuAV j mðu; vÞaNg). Also suppose that we are given as
‘‘gluing data’’ a set fjvgvAV of bijections jv : Vv-V%v such that jvðvÞ ¼ %v: The question
we address here is: when can we find a group A and a simply connected,
2-dimensional, Coxeter cell complex X such that (a) the link of each vertex in X is L;
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(b) A acts simply transitively on X ð0Þ; and (c) fjvgvAV is the corresponding set of

gluing isomorphisms?
There are four obvious conditions that should be imposed on the jv: First,

(1) j %v ¼ ð jvÞ1 for all vAV :

The second condition is just a rewording of Condition (M1) from 5.7:

(2) For each pair v1; v2 in Vv  fvg; mð jvðv1Þ; jvðv2ÞÞ ¼ mðv1; v2Þ:

Before stating the third condition we need to develop some more notation. Given an
ordered pair ðu; vÞ of adjacent elements in V ; define a sequence of elements
v0; v1; v2;y by the formulas:

v0 ¼ %u; v1 ¼ v; and vk ¼ jvk1ð%vk2Þ ¼ jvk1 jvk2ðvk2Þ for kX2: ð�Þ

(Just as in 5.7, it follows by induction that %vk2AVvk1 and hence, that the above

formula makes sense.) We note that v2l ¼ jv2l1?jv1ðuÞ and v2lþ1 ¼ jv2l
?jv1ðvÞ: Our

third condition is the following:

(3) Given any ordered pair ðu; vÞ of adjacent elements in V ; let v0; v1;y be the
sequence defined above, and let m ¼ mðu; vÞ: Then v2m ¼ v0 ¼ %u and v2mþ1 ¼
v1 ¼ v:

We note that (3) implies that v2mþk ¼ vk for all kX0:
These first three conditions are enough for us to be able to define the group A by

the same procedure as in 5.4. For each ordered pair ðu; vÞ of adjacent elements in V ;
let rðu; vÞ be the word in V defined by

rðu; vÞ ¼ v1v2?v2m:

Let A be the quotient of FV (the free group on V ) by the normal subgroup generated
by fv%v j vAVg,frðu; vÞ j u and v are adjacentg: Let av denote the image of v in A

and let A ¼ favgvAV be the corresponding set of generators. Finally, for each

ordered pair ðu; vÞ of adjacent elements we define a sequence a1ðu; vÞ; a2ðu; vÞ;y of
elements of A by the formula:

akðu; vÞ ¼ av1av2?avk
;

where v1; v2;y is the sequence defined by (�). Our last condition is the following:

(4) (i) ava1; for each vAV :
(ii) auaav; if uav:
(iii) For each ordered pair ðu; vÞ of adjacent elements, let ðakÞ ¼ ðakðu; vÞÞ

be the above sequence and let m ¼ mðu; vÞ: Then the elements
1; a1; a2;y; a2m1 are distinct.

Theorem 5.10.1. Suppose V ; M; and L are as above and that fjvgvAV is a set of gluing

isomorphisms satisfying conditions (1)–(4) above. Then there is a simply connected,
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2-dimensional Coxeter cell complex X and a group A of automorphisms of X such that

ðaÞ the link of each vertex is L; ðbÞ A is simply transitive on X ð0Þ; and ðcÞ fjvgvAV is the

corresponding set of gluing isomorphisms.

Proof. The Cayley 2-complex associated to the presentation of A is such an
X : (Condition (4) is needed to check that X is a Coxeter cell complex;
for example, (4)(iii) implies that the 2-cell associated to rðu; vÞ is a 2mðu; vÞ-
gon.) &

Remark 5.10.2. If, in addition, X satisfies Condition (M2) of 5.7, then applying
Theorems 5.7.2 and 5.9.2 we see that X is actually the 2-skeleton of a CAT(0)

Coxeter cell complex bXX on which A acts as a group of isometries.

Example 5.10.3. Here we present an example of a finite 2-dimensional Coxeter cell
complex X which violates the conclusion of the previous remark. Although X will be
homogeneous and simply connected, it cannot be completed to a CAT(0) complexbXX : The reason is that Condition (M2) of 5.7 does not hold: there is nontrivial
holonomy around each 2-cell.
Suppose that V consists of four elements fa; b; c; dg; that L is the complete graph

on V (i.e., L is the 1-skeleton of a 3-simplex), and that M is the right-angled Coxeter
matrix associated to L (i.e., mðu; vÞ ¼ 2 for any two distinct elements u; vAV ). Since
the automorphism group of L is S4 (the symmetric group on 4 letters), we can specify
candidates for gluing isomorphisms by giving 4 permutations. We choose the
following involutions:

ja ¼ ðbdÞ;

jb ¼ ðcdÞ;

jc ¼ ðadÞ;

jd ¼ Id:

(Thus, ja; jb; and jc are transpositions.) Conditions (1) and (2) clearly hold.
Next we need to check Condition (3) for each pair ðu; vÞ of distinct elements
in V : Since reversing the order of ðu; vÞ only reverses the order of the vk; it suffices
to check each of the 6 unordered pairs. In each case, we get a relation of
length four:

rða; bÞ ¼ bada; rða; dÞ ¼ daba;

rðb; cÞ ¼ cbdb; rðb; dÞ ¼ dbcb;

rðc; dÞ ¼ dcac; rða; dÞ ¼ acdc:

Notice that the relations in the same row differ by a cyclic permutation, so we really
have only three independent relations.
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This gives a presentation for a group

A ¼ /a; b; c; d j a2; b2; c2; d2; rða; bÞ; rðb; cÞ; rðc; dÞS:

It can be checked that A is isomorphic to the dihedral group of order 14, and it
follows from this that condition (4) holds. As above, let X be the Cayley 2-complex

of the presentation. It is simply connected and A acts simply transitively on X ð0Þ:
Each 2-cell is a square and the link of each vertex is L: X obviously cannot be

completed to a CAT(0) complex bXX : Indeed, the Coxeter cell corresponding to L is

the 4-cube, so bXX would have to be the 4-cube. But the 4-cube has 16 vertices while X

has only 14.
The problem is that Condition (M2) does not hold. (It is not automatic since L is

not rigid.) For example, if we compute the holonomy around a 2-cell labeled adab;
we get jb3ja3jd3ja ¼ ðcdÞ:

6. A linear representation

6.1. The partial order

Let M be a Coxeter matrix on the set V ; and let fjvgvAV be a set of gluing maps as

defined in 5.10. In addition, we assume that the involution v/%v on V is trivial, thus
each jv is an automorphism of Vv: In this section we describe conditions that allow us
to define a linear representation of the resulting group A:We will show that when M;
V ; and fjvg arise from an R-blow-up S#; these conditions are satisfied, giving a

linear representation of the group A acting on the universal cover eSS# (as described

in 4.7). This representation generalizes the standard geometric representation of a
Coxeter group.
Our first assumption is that there is a partial order (denoted byo) on V satisfying

the following condition:

(P) (i) If u and v are comparable (i.e., uov or vou), then they are adjacent (i.e.,
mðu; vÞoN).

(ii) If 3pmðu; vÞoN; then u and v are minimal.
(iii) If u0pu; v0pv; and u and v are noncomparable and adjacent, then u0 and v0

are noncomparable and adjacent.
(iv) Let M denote the Coxeter matrix M with all N entries replaced by 2’s.

Then for each v in V ; the subset Vovð¼ fuAV j uovgÞ is spherical with
respect to M:

Next we consider the set of gluing automorphisms fjv : Vv-VvgvAV with jvðvÞ ¼ v

as in 5.10. In the presence of the partial order, we can formulate the following
condition on the jv’s, which is much simpler than are the conditions in 5.10.

(C) (i) jv is an involution.
(ii) If v1; v2AVv  fvg; then mð jvðv1Þ; jvðv2ÞÞ ¼ mðv1; v2Þ:
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(iii) jv preserves the partial order on Vv:
(iv) If jvðuÞau; then uov:
(v) If uov and u0 ¼ jvðuÞ; then jujvju0 jvðyÞ ¼ y for all you:

Lemma 6.1.1. If fjvgvAV satisfies Conditions (C)(i)–(iv), then Conditions (1)–(3) of

5.10 hold.

Proof. (C)(i) implies Condition (1), and (C)(ii) is the same as Condition (2). Consider
Condition (3) of 5.10. If 3pmðu; vÞoN; then by (P)(ii) u and v are minimal and
hence, by (C)(iv), jvðuÞ ¼ u and juðvÞ ¼ v and the sequence v0; v1; v2; v3;y is
u; v; u; v;y : The same conclusion holds if mðu; vÞ ¼ 2 and u and v are
noncomparable. Hence, Condition (3) holds in these cases. Finally, if uov; then
mðu; vÞ ¼ 2 and the sequence v0; v1; v2; v3;y begins as u; v; jvðuÞ; v;y and has the
same period, 4, so Condition (3) again holds. &

Remark 6.1.2. Condition (C)(v) is related to the holonomy condition (M2) of 5.7.
Given any pair ðu; vÞ with m ¼ mðu; vÞoN; the sequence v0 ¼ u; v1 ¼ v; v2 ¼
jv1ðv0Þ;y gives rise to the holonomy automorphism jv2m

?jv1 : Vuv-Vuv where Vuv ¼
fyAV j fu; v; yg is sphericalg: For most pairs, this holonomy will be trivial as a
consequence of the properties listed in (P) and (C)(i)–(iv). For example, if mðu; vÞX3;
then u and v are minimal; thus ju and jv are identity maps so the holonomy
automorphism jujv?jujv is trivial. However, to ensure trivial holonomy in the case
uov the additional condition (C)(v) is needed.

Henceforth, we assume that (C) holds. It follows that we can define the group A as
in 5.10. Condition (4) of 5.10 then becomes the following:

(40) (i) ava1:
(ii) auaav if uav:
(iii) If u and v are adjacent and noncomparable, then the order of auav is

mðu; vÞ: If uov and u0 ¼ jvðuÞ; then the elements 1; au; auav; auavau0 are
distinct.

In the next subsection, we shall define a representation for the group A and use it to
show that ð40Þ always holds (cf., Corollary 6.2.6, below).

Lemma 6.1.3. Let S# denote the R-blow-up of SðW ;S;LÞ; and let ðV ;MÞ ¼
ðS#;M#Þ: Then the partial order on S# defined by inclusion satisfies Condition (P) and

the natural set of gluing involutions fjTgTAS#
satisfies Condition (C).

Proof. If T and T 0 are comparable, then m#ðT ;T 0Þ ¼ 2; so T and T 0 are adjacent.
Thus, (P)(i) holds. If 3pm#ðT ;T 0ÞoN; then T and T 0 are singleton subsets of S;
hence they are minimal, so (P)(ii) holds. For (P)(iii), we just note that two subsets T

and U are adjacent and noncomparable if and only if they are both minimal or they
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are completely disjoint. Thus, if T and U are noncomparable and adjacent, T 0CT ;
and U 0CU ; then T 0 and U 0 must be noncomparable and adjacent.

To show that (P)(iv) holds, suppose TAS#; and let M#T denote the restriction

of M# to ðS#ÞoT : We have to show that M#T is the matrix for a finite

Coxeter group. Let GT denote the Coxeter diagram for the (finite) special sub-

roup WT : Then the Coxeter diagram for M#T is obtained from GT in the

following two steps. First, for each subset T 0AðS#ÞoT of the form T 0 ¼ fs; s0g;
we delete the edge joining s and s0: (This corresponds to replacing the N-
entry m#ðfsg; fs0gÞ of M# with a 2.) Since the resulting diagram represents a product

of special subgroups of WT ; its Coxeter group is finite. Second, for each
nonsingleton element T 0AðS#ÞoT ; we add a new disjoint node. (This new node is

not connected to any other node since m#ðT 0;T 00Þ is either 2 or N for any

nonminimal T 0AS#:) Since adding a disjoint node to a Coxeter diagram corresponds

to adding a Z2 factor to its Coxeter group, the resulting diagram represents a finite
Coxeter group.
Condition (C) follows directly from the definition of the jT ’s given in 4.5. &

6.2. The representation

Let M be a Coxeter matrix on a set V ; and let E denote the vector space RV

with standard basis fevgvAV : For each tAR; we define a symmetric bilinear form

Bt ð¼ BtðMÞÞ on E by

Btðeu; evÞ ¼
cosðp=mðu; vÞÞ if mðu; vÞoN;

t if mðu; vÞ ¼ N:

(

(Note that when t ¼ 1; BtðMÞ is the canonical bilinear form associated to the
Coxeter matrix M:)

Lemma 6.2.1. Assume that (P) holds for ðV ;MÞ and that fjvgvAV is a set of gluing

involutions satisfying Condition (C). For each vAV ; let EvCE denote the subspace

defined by

Ev ¼ Spanfeu  eu0 j uAVv and u0 ¼ jvðuÞg:

Then for t sufficiently large, the restriction of Bt to Ev is nondegenerate for all vAV :

Proof. Let vAV ; and let UvCE be the subspace Uv ¼ Spanfeu j uAVovg: We let B

denote the canonical bilinear form associated to the Coxeter matrix M: Then when

t ¼ 0; BtðMÞ coincides with B; and the restriction BtjUv
coincides with the restriction

BjUv
: By (P)(iv), the latter is positive definite, hence detðBjUv

Þa0: It follows that

detðBtjUv
Þ is a nonzero polynomial in t; so for t sufficiently large, BtjUv

is

nondegenerate. To complete the proof, we note that EvCUv (by Condition (C)(iv))
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and that Uv splits as an orthogonal direct sum

Uv ¼ Ev"Spanfeu þ eu0 j uAVov and u0 ¼ jvðuÞg

(by (C)(ii)). Thus, for t sufficiently large, BtjEv
is nondegenerate. &

Let Bt be one of the bilinear forms that is nondegenerate on the subspace Ev

for all vAV : Let vAV : The definition of the gluing involution jv implies that ev is
orthogonal to the subspace Ev: Moreover, since Btðev; evÞ ¼ 1 and Bt is
nondegenerate on Ev; we know that Bt is nondegenerate on Rev"Ev: Letting Fv

denote the orthogonal complement of Rev"Ev; we then have an orthogonal
decomposition

E ¼ Rev"Ev"Fv:

With respect to this decomposition, we define an involution rv : E-E by the
formula

rv ¼ IdjRev
" IdjEv

"IdjFv
:

It is clear that rv preserves the bilinear form Bt; that rvðevÞ ¼ ev and that rvðEvÞ ¼
Ev for all vAV :

Lemma 6.2.2. (1) If v is minimal, then Ev ¼ f0g and rv is the orthogonal reflection

across the hyperplane Fv ¼ e>v : In other words, rvðlÞ ¼ l 2Btðl; evÞev for

all lAE:
(2) If uov; then rvðeuÞ ¼ eu0 and rvðEuÞ ¼ Eu0 where u0 ¼ jvðuÞ:
(3) If u and v are noncomparable and mðu; vÞ ¼ 2; then rvðeuÞ ¼ eu and rvðEuÞ ¼ Eu:

Proof. For (1), if v is minimal, the involution jv is trivial. This means Ev ¼ f0g; so rv

is the orthogonal reflection with the given formula. For (2), we note that both u and
u0 are adjacent to v; and v is nonminimal; hence, by (P)(ii), mðu; vÞ ¼ mðu0; vÞ ¼ 2: It
follows that the vector eu þ eu0 is orthogonal to ev: By (C)(ii), this vector is
also orthogonal to the subspace Ev: So eu þ eu0 is in Fv and, thus, fixed by rv: We
then have

rvð2euÞ ¼ rvðeu  eu0 Þ þ rvðeu þ eu0 Þ ¼ ðeu  eu0 Þ þ ðeu þ eu0 Þ ¼ 2eu0 :

Hence, rvðeuÞ ¼ eu0 : To see that rvðEuÞ ¼ Eu0 ; suppose you: By (C)(v), we have
jujvju0 jvðyÞ ¼ y or, in other words, jvjuðyÞ ¼ ju0 jvðyÞ: Applying rv to ey  ejuðyÞAEu; and

using the fact that juðyÞouov; we obtain

rvðey  ejuðyÞÞ ¼ rvðeyÞ  rvðejuðyÞÞ ¼ ejvðyÞ  ejvjuðyÞ ¼ ejvðyÞ  eju0 jvðyÞ:

Since this last term is in Eu0 ; it follows that rvðEuÞCEu0 : The same argument shows
rvðEu0 ÞCEu; hence, rvðEuÞ ¼ Eu0 : The proof of (3) is similar. &
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Theorem 6.2.3. The map av/rv extends to a homomorphism r : A-GLðEÞ: (In fact

the image of r lies in the orthogonal subgroup OðBtÞCGLðEÞ:)

Proof. A is the group with one generator av for each vAV and relations of
the form

(a) ðavÞ2 ¼ 1 for all vAV ;
(b) ðauavÞm ¼ 1 if u and v are minimal and m ¼ mðu; vÞ;
(c) auavau0av ¼ 1 if uov and u0 ¼ jvðuÞ; and
(d) ðauavÞ2 ¼ 1 if u and v are noncomparable and mðu; vÞ ¼ 2:

Since each rv is an involution (preserving Bt), it suffices to show that relations
(b)–(d) hold under the substitution av/rv: In case (b), ju and jv are trivial; hence, the
involutions ru and rv are the usual orthogonal reflections through the hyperplanes Fu

and Fv; respectively. Since ru and rv fix the codimension-two subspace Fu-Fv

pointwise, it suffices to show that rurv has order m when restricted to Spanfeu; evg: A
simple calculation shows that Bt is positive definite on Spanfeu; evg and that rurv is a

rotation through an angle of 2p=m: Thus, ðrurvÞ
m ¼ Id:

In case (c), Lemma 6.2.2 (part 2) implies that the following diagram
commutes:

Since all of these maps are involutions, we have rurvru0rv ¼ Id:
In case (d), Lemma 6.2.2 (part 3) implies that we have the same commutative

diagram as in case (c) but with u0 ¼ u: Thus, rurvrurv ¼ Id: &

Remark 6.2.4. It seems likely that all of the mock reflection groups considered in this
paper are linear. Indeed, the representation r : A-GLðEÞ; constructed above, is
probably always faithful; however, we do not have a proof of this and the linearity of
A is an open question.

Example 6.2.5. Let S be the set fa; b; cg; and let ðW ;SÞ be the Coxeter
system corresponding to the diagram A3: The corresponding Coxeter cell ZðW ;SÞ
is the 3-dimensional permutohedron. The collection R ¼ ffa; bg; fb; cgg is admis-
sible with respect to P ¼ S ffa; b; cgg; and the corresponding R-blow-up
is a blow-up of @Z: (The Coxeter tile is a pentagon, the 2-dimensional associahedron
D# as in Example 4.2.2.) The corresponding group A has a generator for each

element of

S# ¼ ffag; fbg; fcg; fa; bg; fb; cgg:
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With respect to the standard basis ea; eb; ec; eab; ebc for E ¼ R5; the family of forms Bt

is given by

½Bt� ¼

1 t 0 0 t

t 1 t 0 0

0 t 1 t 0

0 0 t 1 t

t 0 0 t 1

26666664

37777775;

and the representation r : A-GLðR5Þ is defined by the involutions

ra ¼

1 2t 0 0 2t

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

26666664

37777775; rb ¼

1 0 0 0 0

2t 1 2t 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

26666664

37777775; rc ¼

1 0 0 0 0

0 1 0 0 0

0 2t 1 2t 0

0 0 0 1 0

0 0 0 0 1

26666664

37777775;

rab ¼

0 1 t
1þt

0 t
1þt

1 0 t
1þt

0 t
1þt

0 0 1 0 0

0 0 2t 1 2t

0 0 0 0 1

26666664

37777775; rbc ¼

1 0 0 0 0
t

1þt
0 1 t

1þt
0

t
1þt

1 0 t
1þt

0

0 0 0 1 0

2t 0 0 2t 1

26666664

37777775;

Corollary 6.2.6. Suppose ðV ;MÞ satisfies Condition (P), and fjvgvAV is a set

of involutions satisfying Condition (C). Then Condition ð40Þ holds. In particular, the

triple ðV ;M; fjvgÞ yields a group A and an action of A on a CAT(0) Coxeter cell

complex.

Proof. (40)(i) follows since rv is a nontrivial involution for every vAV : Similarly,
since uav implies ru and rv have different 1-eigenspaces, we have ruarv: Thus,
auaav; so (40)(ii) holds. Cases (b) and (d) of the proof of Theorem 6.2.3 show that if
u and v are adjacent and noncomparable, then rurv has order mðu; vÞ: This means
that the order of auav is at least mðu; vÞ; and therefore exactly mðu; vÞ: Similarly, if
uov; then case (c) of Theorem 6.2.3 shows that Id, ru; rurv; and rurvru0 are all
distinct. Thus, 1; au; auav; auavau0 must be distinct elements of A: By Theorem 5.10.1,
A acts on a 2-dimensional Coxeter cell complex, and since condition (M2) holds
(Remark 6.1.2), this complex can be completed to a CAT(0) Coxeter cell complex
(Remark 5.10.2). &
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7. Permutohedral tilings

Suppose that we are given a tiling of a Coxeter cell complex with fundamental tile
an n-simplex. Its maximal blow-up (as defined in [DJS, Section 4.1]), will then be a
cubical n-manifold tiled by permutohedra. This situation can arise from a Coxeter
system ðW ;SÞ of rank n þ 1 in two ways. The first is where W is finite and we take
the maximal blow-up of @ZðW ;SÞ (the boundary of the Coxeter cell). The second
way occurs when ðW ;SÞ is a ‘‘simplicial’’ Coxeter system (defined in Section 7.3),
and we take the maximal blow-up of SðW ;SÞ (the complete reflection tiling of type
ðW ;SÞ). As it turns out, it follows from Theorem 5.6.4 that the universal covers of all
such examples yield the same right-angled tiling of Rn by permutohedra. Hence, the
fundamental groups of any two closed n-manifolds that arise from such
constructions are commensurable. (Essentially, the same result was asserted in
[DJS, Section 4.2]; however, as we shall explain in Section 7.5, there was a mistake in
the proof.)

7.1. The permutohedron

There are three equivalent definitions of the n-dimensional permutohedron P:
First, it can be defined as the convex polytope obtained by truncating all of the faces
of an n-simplex Dn of codimension X2: A second definition is that it is the polytope
whose boundary complex is dual to the barycentric subdivision of @Dn: The third
definition is that Pn is the Coxeter cell associated to the symmetric group Snþ1 ðSnþ1
is the Coxeter group with Coxeter graph An:)
Let us fix a set S of cardinality n þ 1 and suppose that the elements of S index

the codimension-one faces of Dn: Regard Snþ1 as the symmetric group on S:
Let VðPnÞ denote the set of all proper nonempty subsets of S: Thus, VðPnÞ
naturally indexes the set of codimension-one faces of Pn: Let NðPnÞ denote the
poset of all subsets of VðPnÞ that are chains. (If R ¼ VðPnÞ; then NðPnÞ is the poset
of all R-nested subsets of VðPnÞ as in Definition 3.3.1.) Thus, NðPnÞ4| is

the barycentric subdivision of @Dn: We shall also denote this simplicial complex
by LðPnÞ:
The action of Snþ1 on S induces an action on Pn as a group of combinatorial

automorphisms. A fundamental domain for this action is the associated Coxeter
block Bn: As is the case for any Coxeter cell, the orbit space Pn=Snþ1 can be identified
with this Coxeter block. The permutohedron has one further symmetry: the
antipodal map. In fact, it is easy to see that its full group of combinatorial
symmetries, AutðPnÞ; is just Snþ1 	 Z2:

7.2. The reflection tiling

Let M 0 be the right-angled Coxeter matrix associated to the flag complex
LðPnÞ and let W 0 be the associated Coxeter group. That is to say, W 0 has a
generator for each codimension-one face of Pn (i.e., for each element of VðPnÞ), and
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two such generators commute if and only if the corresponding faces intersect.
Let SPn be the complete reflection tiling of type ðW 0;VðPnÞÞ: The natural
framing is symmetric, and the group of frame-preserving automorphisms is
AðSPnÞ ¼ W 0:
The full symmetry group of SPn is GðSPnÞ ¼ AðSPnÞsAutðPnÞ: This has a

subgroup of index two, G0ðSPnÞ defined by

G0ðSPnÞ ¼ AðSPnÞsSnþ1:

In fact, G0ðSPnÞ is a also a Coxeter group and its action on SPn is as a group
generated by reflections. A fundamental chamber for this action is the Coxeter block
Bn: Thus, SPn=G0ðPnÞDPn=Snþ1DBn: (The Coxeter diagram for G0ðPnÞ is given in
Fig. 7, p. 536 of [DJS].)

7.3. Simplicial coxeter systems

Definition 7.3.1. A Coxeter system ðW ;SÞ is simplicial if W is infinite and each
proper subset of S is spherical.

Suppose that ðW ;SÞ is simplicial and that CardðSÞ ¼ n þ 1: Then the funda-
mental chamber for the W -action on SðW ;SÞ is an n-simplex. In 1950 in [L],
Lanner showed that each such SðW ;SÞ can be identified with either hyperbolic
n-space Hn or Euclidean n-space En so that the W -action is as a classical
group of isometries generated by reflections across the faces of a hyperbolic or
Euclidean n-simplex. He also listed possible Coxeter diagrams of simplicial Coxeter
systems.
In the Euclidean case, there are four families in each dimension nX4: Their

Coxeter diagrams are denoted eAAn; eBBn ðnX2Þ; eCCn ðnX3Þ; and eDDn ðnX4Þ: There
are also five exceptional Euclidean simplicial Coxeter systems: eGG2; eFF4; eEE6; eEE7; eEE8:
In the hyperbolic case, in dimension two, there are the ðp; q; rÞ triangle groups

(where p1 þ q1 þ r1o1). In dimension three, there are the nine tetrahedral
hyperbolic Coxeter systems, and in dimension four there are five more hyper-
bolic examples. Finally, there are no hyperbolic simplicial Coxeter systems in
dimensions 44: (The Coxeter diagrams of all these groups can be found, for
example, in [Bo] or [L]).
Because SðW ;SÞ is either En or Hn; its quotient by any torsion free subgroup

GCW will be a manifold M: If S# is any R-blow-up, then the quotient M# ¼ S#=G
is a blow-up of M:

Remark 7.3.2. The group W corresponding to the eAAnþ1 Coxeter diagram is the
semidirect product of Zn with the symmetric group Snþ1: In this case, the
fundamental tile of the minimal blow-up S# is a polytope called the ‘‘cyclohedron’’.

The quotient of this tiling by Zn is discussed in [De] in relation to compactifications
of configuration spaces.
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7.4. Maximal blow-ups of simplicial tilings

Suppose ðW ;SÞ is a Coxeter system with CardðSÞ ¼ n þ 1 and with W finite.

Let eZZ# be the universal cover of the maximal blow-up of the Coxeter cell ZðW ;SÞ;
and let X be the universal cover of ð@ZÞ#: Since Z# is an interval bundle

over ð@ZÞ#=a# and a# is a free involution, eZZ# is an interval bundle over X : It is

easy to see that the natural framing on X obtained by restricting the framing
on Z# is symmetric and the group of frame-preserving symmetries is the subgroup

A ð¼ AðXÞÞ of AðW ;SÞ (see 4.7) generated by all aT where T is a proper nonempty
subset of S:

Theorem 7.4.1. Suppose ðW ;SÞ is a Coxeter system with CardðSÞ ¼ n þ 1 and with

W finite. Let X denote the universal cover of the maximal blow-up of @ZðW ;SÞ; and

let A ð¼ AðXÞÞ be the group described above. Then

(1) X is isomorphic to SPn ; and

(2) A is isomorphic to a subgroup of index n! in G0ðSPnÞ:

Theorem 7.4.2. Suppose ðW ;SÞ is a simplicial Coxeter system, with CardðSÞ ¼ n þ 1:

Let eSS# denote the universal cover of the maximal blow-up of SðW ;SÞ; and let

A ð¼ AðeSS#ÞÞ denote its frame-preserving symmetry group from 4.7. Then

(1) eSS# is isomorphic to SPn ; and

(2) A is isomorphic to a subgroup of index n! in G0ðSPnÞ:

Both of these theorems follow from Theorem 5.6.4. We must first verify that
Conditions (E) and (H) hold. For Condition (E), we must show that for each proper,
nonempty subset T of S; the involution

jT :NðPnÞ
XfTg-NðPnÞ

XfTg

extends to an involution of NðPnÞ: The map jT is induced by the permutation of T

defined by aT wT (we continue to denote this permutation by jT ). Extend jT to a

permutation j̃T of S by letting j̃T jST be the identity permutation of S  T :

Thus, j̃TASnþ1 and hence can naturally be regarded as an element of
AutðNðPnÞÞ ð¼ AutðPnÞÞ:
Condition (H) follows from Remark 5.6.2 and the fact that the link of a

vertex in X (or eSS#) is the boundary complex of the n-dimensional octa-

hedron.

Example 7.4.3. As in Theorem 7.4.2 suppose that ðW ;SÞ is a simplicial Coxeter
system of rank n þ 1; that S ¼ SðW ;SÞ; and that S# is the maximal blow-up. Let H

be a torsion-free subgroup of finite index in W : Then S=H and S#=H are
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nonpositively curved, closed n-manifolds. If f : AðeSS#Þ-W denotes the natural

projection, then p1ðS#=HÞDf1ðHÞ: So, Theorem 7.4.2 implies that p1ðS#=HÞ is
also a subgroup of finite index in G0ðSPnÞ:

7.5. Maximal blow-ups of simplicial arrangements

Suppose we are given a simplicial hyperplane arrangement in Rnþ1: Let Z

be the corresponding zonotope, and let K be the triangulation of Sn induced
by the arrangement. In Corollary 4.2.8 of [DJS], we asserted that the universal
cover of the maximal blow-up ð@ZÞ# of @Z could be identified with SPn : Although

this is correct, the proof given in [DJS] is not. We take this opportunity to
correct it.
The ‘‘proof’’ of [DJS] had three steps.
Step 1: There is a simplicial projection (or ‘‘folding map’’) p : K-Dn [DJS,

Lemma 4.2.6].
Step 2: The map p induces p# : ð@ZÞ#-Dn

# ¼ Pn [DJS, Corollary 4.2.7].

Step 3: The map p# is the projection map of an orbifold covering.

Step 2 is incorrect—the map p# is not well-defined. Of course, the

problem is caused by the fact that p need not be compatible with the
antipodal map a: if sn is an n-simplex in K then, in general, pjsnap3ajsn :
(This phenomenon causes a problem when we are considering the normal
arrangement to a subspace.) However, if we divide out by Snþ1; the symmetry

group of Dn; then we do get a well-defined map ð@ZÞ#-Dn
#=Snþ1: To see this, let D0

be an n-simplex in the barycentric subdivision of Dn: Then Dn=Snþ1 ¼ D0; so we have
a folding map q :Dn-D0: Let p0 ¼ q3p : K-D0: Then Step 2 can be replaced by the
following:
Step 20: p0 induces a map p0

# : ð@ZÞ#-D#=Snþ1:

As for the last step, we have D#=Snþ1 ¼ Pn=Snþ1 ¼ SPn=G0ðSPnÞ: Further-

more, the map p0
# : ð@ZÞ#-SPn=G0ðSPnÞ is an orbifold covering. (This just

means that the map is locally isomorphic to Rn-Rn=H where the finite group

H is either a subgroup of ðZ2Þn or Snþ1:) Therefore, we have proved the following
result.

Theorem 7.5.1. Suppose that Z is an ðn þ 1Þ-dimensional simple zonotope (i.e., it is

associated to a simplicial hyperplane arrangement in Rnþ1) and let ð@ZÞ# denote the

maximal blow-up of its boundary. Then

(1) The universal cover of ð@ZÞ# is isomorphic to SPn ; and

(2) p1ðð@ZÞ#Þ is a subgroup of finite index in G0ðSPnÞ:

Remark 7.5.2. Note that this proof of Theorem 7.5.1 gives another proof of
Theorem 7.4.2.
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8. Associahedral tilings

Manifolds tiled by associahedra arise as minimal blow-ups of the boundaries of
certain Coxeter cells and as the minimal blow-ups of SðW ;SÞ for certain simplicial
Coxeter systems. In contrast to permutohedral tilings, the universal covers of these
examples tend not to be isomorphic (although they all give tilings of Rn). The reason
is that the associahedron is less symmetric than the permutohedron. More precisely,
two adjacent associahedral tiles are glued together by an involution jT of a
codimension-one face, and these gluing involutions tend not to all extend to
symmetries of the full associahedron.

8.1. The associahedron

Following [Lee] we give two equivalent descriptions of a simplicial complex
N4| that is dual to the boundary complex of the n-dimensional associahedron

Kn: The first description is the one given in 4.2: it shows how Kn arises as a
truncation of the n-simplex. The second description is in terms of diagonals in an
ðn þ 3Þ-gon: it is more convenient for describing the group of combinatorial
symmetries of Kn:
Let S be a set with n þ 1 elements and suppose that G is a graph with vertex

set S such that G is homeomorphic to an interval. We might as well assume
that S ¼ f1; 2;y; n þ 1g and that G is the interval ½1; n þ 1�: Let V be the set
of proper nonempty subsets T of S such that the full subgraph GT spanned by

T is connected. In other words, V can be identified with sets of consecutive
integers of the form ½k; l� where 1pkplpn þ 1 and l  kon: A decomposition

of a subset T of S is a collection fT1;y;Tkg of disjoint subsets of T such
that T ¼ T1,?,Tk; each TiAV ; and GT1

;y;GTk
are the connected components

of GT : A subset T of V is nested if either T ¼ | or if the maximal elements
T1;y;Tk in T give a decomposition of T1,?,Tk: N is defined as the poset
of all such nested subsets of V : Then N4| is a simplicial complex of dimension

n  1 which can be identified with a certain simplicial subdivision of @Dn (see
[Lee] or [DJS]). Moreover, it is proved in [Lee] that this subdivision of @Dn

can be identified with the boundary complex of a convex simplicial polytope in Rn:

The dual polytope Kn is the n-dimensional associahedron. K0 is a point, K1 is an

interval, and K2 is a pentagon. We shall also denote the simplicial complex N4| by

LðKnÞ:
The second description of this complex is more illuminating. Let Pnþ3 be a regular

ðn þ 3Þ-gon. A diagonal d in Pnþ3 is a line segment connecting two nonadjacent
vertices of Pnþ3: Two diagonals d and d 0 are noncrossing if their interiors are disjoint.
Let V 0 denote the set of all diagonals of Pnþ3: We next define a simplicial complex

N0
4| with vertex set V 0: A k-simplex om N0

4| is a collection s ¼ fd0;y; dkg of

pairwise noncrossing diagonals. So, a maximal simplex in N0
4| corresponds to a

triangulation of Pnþ3 with no additional vertices. The dimension of such a maximal
simplex is easily seen to be n  1:
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A bijection V-V 0 is defined as follows. Number the vertices of Pnþ3
cyclically around the boundary by 0; 1;y; n þ 2: Let ½k; l�AV : The corresponding
diagonal d½k;l� is defined to be the diagonal connecting the vertices k  1 and l þ 1 of

Pnþ3: Clearly, this is a bijection. Furthermore, it is easy to see (cf, [Lee]) that it

induces an isomorphism N4|DN0
4|: Henceforth, we identify V with V 0 and N4|

with N0
4|:

Each diagonal dAV corresponds to a codimension-one face, FðdÞ; of Kn:Next, we
investigate the combinatorial type of FðdÞ:
The diagonal d divides Pnþ3 into two polygons Q and Q0 as indicated in Fig. 6. Let

mðQÞ þ 3 and mðQ0Þ þ 3 be the number of vertices of Q and Q0; respectively. One
checks easily that mðQÞ þ mðQ0Þ ¼ n  1: Without loss of generality, we may
suppose that mðQÞpmðQ0Þ: Set mðdÞ ¼ mðQÞ:
It is completely straightforward to check that the link of d in N4| is isomorphic

to the join of the corresponding complexes of diagonals for Q and Q0: This implies
the following result.

Proposition 8.1.1. Suppose the diagonal d divides Pnþ3 into two polygons Q and Q0 as

above. Then

FðdÞDKmðQÞ 	 KmðQ0Þ:

We note that if mðdÞ ¼ 0; then KmðQÞ is a point and hence FðdÞ is an ðn  1Þ-
dimensional associahedron. We will need to use the following lemma in the next
subsection.

Lemma 8.1.2. Kn is not combinatorially isomorphic to a product of the form Ki 	
Kni; with 0oion:

Proof. Let vðnÞ ¼ ðnþ3
2
Þ  ðn þ 3Þ be the number of diagonals in Pnþ3: A

computation shows that vðnÞXvðiÞ þ vðn  iÞ; with equality if and only if i ¼ 0 or

i ¼ n: In other words, for 0oion; Ki 	 Kni has fewer codimension-one faces than
does Kn:
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8.2. Symmetries of the associahedron

Let AutðKnÞ ð¼ AutðNÞÞ denote the group of combinatorial symmetries of Kn:
The symmetry group of Pnþ3 is Dnþ3; the dihedral group of order 2ðn þ 3Þ: An

element of Dnþ3 takes diagonals to diagonals and collections of noncrossing
diagonals to collections of noncrossing diagonals. Hence, it gives an automorphism
of Kn: This defines a homomorphism f : Dnþ3-AutðKnÞ:

Lemma 8.2.1. For nX2; f : Dnþ3-AutðKnÞ is an isomorphism.

Proof. For each i ¼ 0;y; n þ 2; we let di denote the diagonal with mðdiÞ ¼ 0 that
cuts off the vertex i from Pnþ3:We then let Fi be the corresponding codimension-one

face FðdiÞ: By Proposition 8.1.1 each Fi is isomorphic to Kn1 and by Lemma 8.1.2

these are the only faces isomorphic to Kn1: Thus, the collection fF0;y;Fnþ2g is
preserved by any combinatorial automorphism of Kn: In fact, the relative positions
of the vertices 0; 1;y; n þ 2 on the circle are uniquely determined by the posetN4|:

To see this, we just note that di and dj are crossing diagonals (i.e., fdi; djgeN4|) if

and only if j ¼ i þ 1 or j ¼ i  1 (modulo n þ 3). It follows that any combinatorial
automorphism of Kn must preserve the relative positions of 0;y; n þ 2; hence f is
surjective.
To see that f is injective we simply note that the face F0 is stabilized by the two-

element subgroup generated by the reflection rADnþ3 across the line perpendicular to
the diagonal d0: The reflection r does not act trivially on Kn since it exchanges the
diagonals d1 and dnþ2 (and, hence, the faces F1 and Fnþ2). On the other hand, any
nontrivial element of Dnþ3 other than r moves the diagonal d0; hence does not act
trivially on Kn: It follows that f is injective. &

Remark 8.2.2. For n ¼ 1; f : D4-AutðK1Þ is not injective. There are two types of
reflections in D4: A line of symmetry of the square P4 can connect either two
opposite vertices or the midpoints of two opposite edges: we say that the
corresponding reflection is of vertex type or edge type, respectively. Clearly, f takes

each vertex type reflection to the identity element of AutðK1Þ and each edge-type
reflection to the nontrivial element.

A nontrivial involution in Dnþ3 is either the antipodal map (when n þ 3 is even) or
a reflection. Let us say that an involution f : Kn-Kn is of R-type if f ¼ fðrÞ for
some reflection rADnþ3:
Suppose d is a diagonal of Pnþ3 subdividing it into polygons Q and Q0: Let pd be

the midpoint of d and let LðdÞ be the line perpendicular to d at the point pd : Thus,
LðdÞ is a line of symmetry of Pnþ3: The corresponding reflection in Dnþ3 is denoted
by rLðdÞ (see Fig. 7).

A diagonal of Pnþ3 is a main diagonal if n þ 3 is even and if it connects opposite
vertices of Pnþ3:
The next lemma is geometrically clear.
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Lemma 8.2.3. Let d be a diagonal Pnþ3:

(1) If d is not a main diagonal, then its stabilizer in Dnþ3 is the cyclic group of order 2
generated by the reflection rLðdÞ:

(2) If d is a main diagonal, then its stabilizer in Dnþ3 is isomorphic to Z2 	 Z2 and the

generators can be taken to be rLðdÞ and the reflection rd across d:

Corollary 8.2.4. Suppose d is a diagonal of Pnþ3; nX2; and that L ¼ LðdÞ is the

corresponding line of symmetry.

(1) If mðdÞ ¼ 0; then FðdÞDKn1 and fðrLÞ acts on FðdÞ as a nontrivial R-type

involution.
(2) If mðdÞ40; then FðdÞDKmðdÞ 	 KnmðdÞ1 and the restriction of fðrLÞ to FðdÞ can

be written as fðrLÞ ¼ r1 	 r2 where r1 : KmðdÞ-KmðdÞ and r2 : KnmðdÞ1-

KnmðdÞ1 are both (nontrivial) R-type involutions.
(3) Suppose d is a main diagonal. Then FðdÞDKk 	 Kk where k ¼ ðn  1Þ=2 and

fðrdÞ acts on FðdÞ by switching the factors. Furthermore, the restrictions of fðrLÞ
and fðrdÞ are not equal.

8.3. Gluing involutions

Manifolds tiled by associahedra arise from minimal blow-ups in cases where
the Coxeter diagram is an interval. The associahedra are glued together via
involutions jT ; TAV ; defined on the codimension-one faces of Kn: If T corresponds
to a subinterval of the Coxeter diagram, then jT is induced by an involution of the
subinterval. This involution might be trivial (e.g., if the subgraph is of type Bm) or it
might be the nontrivial involution that flips the subinterval (e.g., if it is of type Am;
mX2). Here we are concerned with the question of when jT extends to an
automorphism of Kn: Since the identity always extends, we shall analyze the case
jT ¼ iT ; where iT is induced by the nontrivial involution of the subinterval.
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As in 8.1, let S be the set of integers in ½1; n þ 1�: T will denote a proper nonempty
subset of S consisting of consecutive integers. By an abuse of notation, we will write
T ¼ ½k; l� to mean T ¼ fk;y; lg: Let iT be the order reversing involution of T : Then
iT induces an involution of NXfTg; also denoted by iT : (If fT 0;Tg is a vertex of

N4fTg such that TCT 0 or such that the subintervals corresponding to T and T 0 are

disjoint, then iTðT 0Þ ¼ T 0:) Its geometric realization is again denoted iT : Let dðTÞ be
the diagonal of Pnþ3 corresponding to T :
We note that iT : FðdðTÞÞ-FðdðTÞÞ extends to an automorphism of Kn if and

only if it coincides with the action of an element of the stabilizer of dðTÞ in Dnþ3 on
this face. The main result of this subsection is the following key lemma, which
determines precisely when this happens.

Lemma 8.3.1. The involution iT : FðdðTÞÞ-FðdðTÞÞ lies in the stabilizer of dðTÞ in

Dnþ3 if and only if mðdðTÞÞ ¼ 0:

Proof. Suppose T ¼ ½k; l�: So, dðTÞ connects the vertices of Pnþ3 numbered k  1
and l þ 1: It divides Pnþ3 into two polygons Q1 and Q2 where Q2 contains the
vertices numbered k  1;y; l þ 1: Let L ¼ LðdðTÞÞ be the line of symmetry for Pnþ3
that stabilizes dðTÞ: Then L is also a line of symmetry for Q1 and Q2: Let r2 denote
the restriction of rL to Q2:

The codimension-one face FðdðTÞÞ decomposes as FðdðTÞÞ ¼ KmðQ1Þ 	 KmðQ2Þ: It
follows from the definitions that

iT ¼ Id	 fðr2Þ :KmðQ1Þ 	 KmðQ2Þ-KmðQ1Þ 	 KmðQ2Þ:

Comparing this with Lemma 8.2.3 and Corollary 8.2.4, we see that iT does not
belong to the stabilizer of dðTÞ unless mðQ2Þ ¼ 0 (in which case iT is the identity) or
mðQ1Þ ¼ 0 (in which case iT ¼ fðr2Þ).

Remark 8.3.2. There are two ways in which it can happen that mðdðTÞÞ ¼ 0: The
first is that T is a singleton. In this case iT is the identity and FðdðTÞÞ is a reflection-
type face. The second way is that T is a maximal proper subinterval of ½1; n þ 1�; i.e.,
T ¼ ½1; n� or T ¼ ½2; n þ 1�: In both these cases, the involution iT is nontrivial, but it
is the restriction of a symmetry of the full associahedron.

8.4. Schläfli symbols

As before, suppose that S ¼ f1;y; n þ 1g and that there is a corresponding
Coxeter diagram G with underlying graph the interval ½1; n þ 1�: The labels on the
edges of G are then given by an n-tuple ðm1;y;mnÞ of integers, eachX3; where mi is
the label on ½i; i þ 1�: Classically, this n-tuple is called the Schläfli symbol of G: For
example, the Schläfli symbol for Anþ1 is ð3;y; 3Þ; while for Bnþ1 it is ð4; 3;y; 3Þ:
By allowing these integers to be 2, this notation can be extended to cover certain

reducible Coxeter diagrams, namely, those with underlying graph a disjoint union
of subintervals ½1; n þ 1�: For example, the Schläfli symbol ð2;y; 2Þ should be
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understood as representing the diagram consisting of n þ 1 vertices and no edges,

i.e., A1 	?	 A1 ðDðZ2Þnþ1Þ:
The Schläfli symbols that we will be interested in correspond to Coxeter systems

that are either simplicial (cf., 7.3) or spherical. Moreover, in the simplicial case, the
diagram is necessarily irreducible. The Schläfli symbols corresponding to irreducible
spherical or simplicial Coxeter systems are listed in Table 1.

8.5. Examples of symmetric associahedral tilings

As previously, we let S ¼ f1;y; n þ 1g and R be the set of all subsets of S that
correspond to proper subintervals of ½1; n þ 1� of nonzero length. In what follows we
only consider spherical or simplicial Coxeter systems that can be described by
Schläfli symbols as in the previous subsection.

Example 8.5.1 (Minimal blow-ups of boundaries of Coxeter cells). Suppose ðW ;SÞ is
spherical and irreducible with Schläfli symbol ðm1;y;mnÞ (see Table 1) and that
Z ¼ Zðm1;y;mnÞ is the corresponding Coxeter cell. Then R is the set for the
minimal blow-up ð@ZÞ# of @Z: Hence, ð@ZÞ# is tiled by associahedra (as is its

universal cover).

Example 8.5.2 (Nonminimal blow-ups of boundaries of Coxeter cells). Suppose that
ðm1;y;mnÞ is the Schläfli symbol for a finite Coxeter group W (not necessarily
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Table 1

Schläfli symbols of irreducible spherical and simplicial Coxeter systems

Dimension Spherical Euclidean Hyperbolic

Symbol t Symbol t Symbol t

2 (3,3) 0 (4,4) 0 ðp; qÞ with 0

(4,3) 0 (6,3) 0 p1 þ q1 þ 21o1

(5,3) 0

3 (3,3,3) 3 (4,3,4) 1 (3,5,3) 3

(4,3,3) 2 (5,3,4) 2

(5,3,3) 3 (5,3,5) 3

(3,4,3) 2

4 (3,3,3,3) 7 (4,3,3,4) 3 (5,3,3,3) 6

(4,3,3,3) 5 (3,4,3,3) 4 (5,3,3,4) 4

(5,3,3,5) 5

nX5 ð3; 3;y; 3Þ an ð4; 3;y; 3; 4Þ cn

ð4; 3;y; 3Þ bn

where

an ¼ nðn þ 1Þ  6

2
; bn ¼ nðn  1Þ  2

2
; cn ¼ ðn  2Þðn  1Þ

2
:
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irreducible). For n ¼ 1 or 2, the set R is always admissible (cf., Definition 3.2.3);
however, for nX3; it might not be. In fact, for nX3;R is admissible if and only if any
time a 2 occurs in ðm1;y;mnÞ; the numbers before and after it are both even. (This
can be checked by using Remark 3.1.2.) For example, if ðm1;y;mnÞ is ð2;y; 2Þ or
ð3;y; 3; 4; 2; 4; 3;y; 3Þ; then R is admissible. For any Schläfli symbol such that W

is finite and R is admissible, the R-blow-up of @Zðm1;y;mnÞ will be tiled by
associahedra.

Example 8.5.3 (Minimal blow-ups of simplicial Coxeter systems). Let ðm1;y;mnÞ
be a Schläfli symbol of a simplicial Coxeter system (see Table 1). Then R is the set
for the minimal blow-up of S ð¼ Sðm1;y;mnÞ). Hence S# is tiled by associa-

hedra.

Notation 8.5.4. Given a Schläfli symbol ðm1;y;mnÞ as above, let X ðm1;y;mnÞ
denote the universal cover of the R-blow-up described in either Examples 8.5.1,
8.5.2, or 8.5.3. Also, let Aðm1;y;mnÞ denote the symmetry group of the natural
framing on Xðm1;y;mnÞ:

Remark 8.5.5. In Example 8.5.2, when the Schläfli symbol is ð2;y; 2Þ; R is
admissible. In this case, each gluing involution jT is trivial. Hence, the
universal cover Xð2;y; 2Þ is the usual reflection type tiling corresponding to
ðV ;M;LðKnÞÞ:

In the next four theorems we classify some of these examples X ðm1;y;mnÞ up to
isomorphism. In fact, in the first three theorems we classify all such examples for
np4: In the last theorem, we show that in each dimension X5; the three irreducible
examples are distinct.
The basic method for showing that two such tilings are not isomorphic is to use

Lemma 5.4.8. In fact, in most cases, the number tX of mirrors (i.e., codimension-one
faces) of the associahedron that have nonextendable gluing involutions is sufficient
to distinguish among the examples. The number tX is easily computable. It is the
number of subsets T of f1;y; n þ 1g such that GT is connected, 1oCardðTÞon and
such that jT is not the antipodal map (cf., Remark 3.1.2). (The numbers tX are also
given in Table 1.) Conversely, the basic method for showing that two such tilings are
isomorphic is to use Proposition 5.4.5.

Theorem 8.5.6 (Dimension 2). Let ðm1;m2Þ be a pair of integers X2: Then

Xðm1;m2Þ is isomorphic to the reflection tiling X ð2; 2Þ: Thus, all 2-dimensional

examples are isomorphic to the tiling of the hyperbolic plane by right-angled

pentagons.

Proof. In dimension 2, all gluing involutions are extendable. &

Theorem 8.5.7 (Dimension 3). For n ¼ 3; the universal covers of the examples in

8.5.1, 8.5.2, and 8.5.3 fall into four isomorphism classes as indicated below. (The
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corresponding values of t ¼ tX are indicated in parentheses. Also, p and q denote

arbitrary even integers X2:)

(i) (t ¼ 0): all three integers are even, i.e., X ðp; 2; qÞ or X ð2; p; 2Þ:
(ii) (t ¼ 1): Xð4; 3; 4ÞDX ð2; 4; 3Þ:
(iii) (t ¼ 2): Xð4; 3; 3ÞDX ð4; 3; 5ÞDX ð3; 4; 3Þ:
(iv) (t ¼ 3): Xð3; 3; 3ÞDX ð5; 3; 3ÞDX ð3; 5; 3ÞDXð5; 3; 5Þ:

Proof. The four isomorphism types can be distinguished by the indicated value
of t: The existence of the indicated isomorphisms follows from Proposition 5.4.5
(possibly after changing one of the framings by an automorphism of framing
systems). &

Theorem 8.5.8 (Dimension 4). For n ¼ 4; the universal covers of the examples in

8.5.1, 8.5.2, and 8.5.3 fall into nine isomorphism classes as indicated below. (The

corresponding values of t ¼ tX are indicated in parentheses. Also, p and q denote

arbitrary even integers X2:)

(i) (t ¼ 0): all four integers are even, i.e., X ð2; p; 2; qÞ (DXðp; 2; 2; qÞ).
(ii) (t ¼ 1): Xð3; 4; 2; pÞ:
(iii) (t ¼ 3): Xð4; 3; 3; 4ÞDX ð2; 4; 3; 3Þ:
(iv) (t ¼ 4): Xð3; 3; 4; 3Þ:
(v) (t ¼ 4): Xð5; 3; 3; 4Þ:
(vi) (t ¼ 5): Xð4; 3; 3; 3Þ:
(vii) (t ¼ 5): Xð5; 3; 3; 5Þ:
(viii) (t ¼ 6): Xð5; 3; 3; 3Þ:
(ix) (t ¼ 7): Xð3; 3; 3; 3Þ:

Proof. The only question is to distinguish the example in (iv) from (v) and to

distinguish (vi) from (vii). In Xð3; 3; 4; 3Þ there are three mirrors of type K1 	 K2

with extendable gluing involutions (in fact the identity maps), namely, the mirrors
corresponding to (3,4), (4,3) and (4). The mirror corresponding to (4) intersects the
other two. In X ð5; 3; 3; 4Þ there are also three such mirrors corresponding to (5,3),
(3,4), and (4). The mirror corresponding to (5,3) is disjoint from the other two.

Hence, there is no automorphism of K4 that takes the first set of mirrors into the
second. So by Lemma 5.4.8, X ð3; 3; 4; 3ÞD/ X ð5; 3; 3; 4Þ: For a similar reason,
Xð4; 3; 3; 3ÞD/ Xð5; 3; 3; 5Þ:

In dimensions 44; we shall only consider the examples coming from irreducible
Coxeter systems.

Theorem 8.5.9 (Dimension n44). For n44; the universal covers of the minimal blow-

ups in 8.5.1 and 8.5.3, namely X ð3;y; 3Þ; Xð4; 3;y; 3Þ; and Xð4; 3;y; 3; 4Þ are

mutually nonisomorphic.
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Proof. The corresponding values of t given as an; bn; and cn in Table 1 are distinct for
each nX5: &

Remark 8.5.10. If X ðm1;y;mnÞDX ðm0
1;y;m0

nÞ; then the corresponding groups

Aðm1;y;mnÞ and Aðm0
1;y;m0

nÞ are commensurable.

More generally, we pose the following question.

Question 8.5.11. When do the different associahedral tilings of Theorems 8.5.7, 8.5.8,
and 8.5.9 give commensurable mock reflection groups? When do they give quasi-

isometric mock reflection groups? (We answer the 3-dimensional quasi-isometry

question below in 8.7.)

8.6. Maximally symmetric associahedral tilings

Let X be one of the associahedral tilings discussed above. Recall that d/FðdÞ
defines a bijection between the set of diagonals in Pnþ3 and the set of codimension-
one faces of Kn: Let D denote the set of diagonals, and let jd denote the gluing
involution on the face FðdÞ: Then by Proposition 5.5.2, we know that X will be
maximally symmetric if and only if for all fAAutðKnÞ ðDDnþ3Þ and dAD; the

composition f3jd3f
1
3ð jfðdÞÞ1 is the restriction of an element of AutðKnÞ: For all of

the tilings in 8.5 except Xð2; 2;y; 2Þ and X ð3; 3;y; 3Þ there exists a symmetry
fAAutðKnÞ that conjugates a nonextendable gluing involution to an extendable one,
hence these cannot be maximally symmetric. In the case of Xð2; 2;y; 2Þ the tiling is
of reflection type, so we already know it is maximally symmetric (Example 5.5.3).
Moreover, its symmetry group is

AutðXÞ ¼ AsDnþ3:

In the case of X ð3; 3;y; 3Þ; each gluing involution jd ð¼ jdðTÞÞ is the involution iT
described in the proof of Lemma 8.3.1. Recall the face Fðd 0Þ is adjacent to FðdÞ if
and only if the diagonals d 0 and d do not cross. Letting Dd denote the set of
diagonals that do not cross d; we see that jd : FðdÞ-FðdÞ induces an involution
(which we also denote by jd) on Dd : Let e denote the edge f0; n þ 2g of Pnþ3: Then
the involution jd :Dd-Dd is given by

jdðd 0Þ ¼
rLðdÞðd 0Þ if d 0 and e are on opposite sides of d;

d 0 if d 0 and e are on the same side of d;

(

(where LðdÞ is as in Fig. 7). Now suppose fADnþ3: If d 0 and fðdÞ do not cross,
then

ðf3jd3f1Þðd 0Þ ¼
jfðdÞðd 0Þ if fðeÞ and e are on the same side of d;

ðrLðfðdÞÞ3jfðdÞÞðd 0Þ if fðeÞ and e are on opposite sides of d:

(
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Thus, f3jd3f
1
3ð jfðdÞÞ1 extends to an automorphism of Kn (it is either the

restriction of Id or the restriction of rLðfðdÞÞ), so by Proposition 5.5.2, X ð3; 3;y; 3Þ is
maximally symmetric.
In the remainder of this subsection, we will discuss the symmetry group of the

tiling X ¼ Xð3; 3;y; 3Þ: By Theorem 4.7.2 the subgroup A of AutðX Þ is generated
by involutions aT where T is a proper subinterval of ½1; n þ 1�: (In what follows we
shall denote this generator by ad where dAD is the diagonal corresponding to T :)
Since X is maximally symmetric, we also know that for any element f of Dnþ3 there

is a unique lift *f to AutðXÞ that stabilizes the fundamental tile Kn:We let rd : X-X

denote the lift of the reflection rLðdÞ in Dnþ3: Then the group AutðX Þ is generated
by the ad and rd ; dAD: This generating set, however, is not symmetric with respect
to AutðKnÞ: A more symmetric generating set arises from the following observation.

Lemma 8.6.1. The involutions rd and ad commute.

Proof. Let Q1 and Q2 be the two subpolygons of P with diagonal d; and assume the
edge e (with vertex labels 0 and n þ 2) is contained in Q1: Let r1 and r2 denote the
restriction of rLðdÞ to Q1 and Q2; respectively. If Q1 is an ðm1 þ 3Þ-gon and Q2 is an

ðm2 þ 3Þ-gon, then the face FðdÞ is isomorphic to the product Km1 	 Km2 ; and as in
the proof of Lemma 8.3.1, the restriction of ad to FðdÞ is Id	 fðr2Þ: By Corollary
8.2.4, the restriction of rd to FðdÞ is fðr1Þ 	 fðr2Þ: It follows that the automorphism
ðadrdÞ

2 takes the fundamental tile Kn to itself and fixes the face FðdÞ pointwise. By
rigidity, it must be the trivial automorphism. &

Let S denote the set of all subpolygons of Pnþ3; and let d :S-D be the 2-to-1
map that takes each subpolygon to its corresponding diagonal. Letting Q be an
element of S and d ¼ dðQÞ; we define an involution bQ :X-X by

bQ ¼
ad if egQ;

rdad if eCQ:

(

It follows that if Q1 and Q2 are the two subpolygons sharing the diagonal d; then the
two involutions bQ1

and bQ2
both take the fundamental tile Kn to the adjacent tile

across the face FðdÞ: As in 4.7, we obtain relations among these involutions by
considering local pictures around codimension-two faces of Kn (or, dually, by
considering 2-dimensional cells in the dual cellulation of X by Coxeter cells—in this

case cubes). Thus, around any codimension-two face, there are a priori 24

automorphisms of the form bQ1
bQ2

bQ3
bQ4

that take Kn to itself, and since the

stabilizer of Kn is Dnþ3; there is an element f ð¼ fðQ1;Q2;Q3;Q4ÞÞ in Dnþ3 such
that

bQ1
bQ2

bQ3
bQ4

¼ *f:

We work out these relations explicitly, below.
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Suppose b; cAD is a pair of noncrossing diagonals, and I ¼ ði1;y; i4Þ is a 4-tuple
in ðZ2Þ4: Let B denote the subpolygon of Pnþ3 such that dðBÞ ¼ b and cgB; and let
C denote the subpolygon such that dðCÞ ¼ c and bgC: We define a sequence of

subpolygons inductively by Q0 ¼ B;Q1 ¼ C;Q2 ¼ ðr1Þi1ðQ0Þ;Q3 ¼ ðr2Þi2ðQ1Þ;Q4 ¼
ðr3Þi3ðQ2Þ;Q5 ¼ ðr4Þi4ðQ3Þ; where ri denotes the reflection of Pnþ3 that takes the
subpolygon Qi to itself. The product bQ1

bQ2
bQ3

bQ4
will take the fundamental tile of

X to itself, and the resulting automorphism of Kn corresponds to the element
fADnþ3 defined by fðQ0Þ ¼ Q4 and fðQ1Þ ¼ Q5: In other words,

*f ¼ ðrcÞ
i1ðrbÞ

i2ðrcÞ
i3ðrbÞ

i4 :

Fig. 8 shows an example with n ¼ 5 and I ¼ ð1; 1; 0; 1Þ: The fundamental tile Kn is
labeled 1, and the tile bKn is labeled b: (b is just one of the possible labels on the tile

bKn; since any label of the form b *f where fADnþ3 describes the same tile). The
shading indicates which side of the fixed diagonal is affected by the next gluing
involution. The shaded side contains the other diagonal if and only if the
corresponding element of ði1; i2; i3; i4Þ is 1.
Let RI ðb; cÞ denote the word

RIðb; cÞ ¼ bQ1
bQ2

bQ3
bQ4

ðrbÞ
i4ðrcÞ

i3ðrbÞ
i2ðrcÞ

i1 :

Letting mðb; cÞ denote the order of the rotation rbrc in Dnþ3; we then have the
following.
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Theorem 8.6.2. The group AutðXÞ has a presentation with generators bQ; QAS; and

rd ; dAD; and relations:

ðbQÞ2 for all QAS;

ðrdÞ
2

for all dAD;

ðbQ1
bQ2

Þ2 whenever dðQ1Þ ¼ dðQ2Þ;
ðbQrdÞ

2
whenever dðQÞ ¼ d;

ðrbrcÞ
mðb;cÞ

for all b; cAD;

RI ðb; cÞ for all IAðZ2Þ4 and noncrossing diagonals b; c:

Remark 8.6.3. The generators rd can be eliminated from the presentation, since
rd ¼ bQ1

bQ2
if Q1 and Q2 are the two subpolygons that share the diagonal d:

Let Snþ3 be the group of permutations on the set f0; 1;y; n þ 2g (i.e., the set of
vertex labels for Pnþ3). Then for any dAD; the reflection rLðdÞ induces an involution

%rdASnþ3: Similarly, for any QAS; we obtain an involution %bQASnþ3 as follows. Let
a0; a1;y; akþ1 be labels on the vertices of Q ordered sequentially with a0 and akþ1
being the vertices of the diagonal dðQÞ: Then %bQ is the involution that reverses the

order of the sequence a1; a2;y; ak:

Proposition 8.6.4. There is a surjective homomorphism c : AutðXÞ-Snþ3 defined by

rd/ %rd ; bQ/ %bQ:

Proof. All of the relations in Theorem 8.6.2 hold for %rd and %bQ: &

Remark 8.6.5. Let Mn denote the minimal blow-up of the projectivized
braid arrangement in RPn: (That is, Mn ¼ ð@Z#Þ=a# where Z is the Coxeter

cell of type Anþ1:) Then Mn can be identified with the real points of the moduli

space %M 0;nþ3 (see [Ka1,Ka2]), and the Snþ3-action on %M 0;nþ3ðRÞ respects the

Coxeter cell decomposition of Mn: The homomorphism c : AutðXÞ-Snþ3 arises

when one lifts the Snþ3-action to the universal cover X ¼ eMMn: In particular,
p1ðMnÞ ¼ kerðcÞ:

8.7. The 3-dimensional examples

In this subsection we discuss the question of when two 3-dimensional tilings are
quasi-isometric. Nowadays any such discussion should be within the context of
Thurston’s Geometrization Conjecture. A closed orientable irreducible 3-manifold
with infinite fundamental group has a canonical ‘‘JSJ-decomposition’’ into ‘‘simple
pieces’’ and Seifert fibered pieces. Each such piece is a compact 3-manifold with
boundary, and each boundary component is a torus. Thurston’s Conjecture is that
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each simple piece is hyperbolic. By definition, a compact 3-manifold M3 is a
hyperbolic piece if its interior is homeomorphic to a complete hyperbolic 3-manifold
of finite volume. Each boundary component then has a collared neighborhood C

such that each component of the inverse image of C in H3 is a horoball. Identifying

M3 with the complement of a collared neighborhood of the boundary, we obtain an

identification of its universal cover eMM3 and H3 with all these horoballs chopped off.

Such an eMM3 is called a neutered hyperbolic space.
In the case of 3-manifolds that are tiled by associahedra or permutohedra, it turns

out that (1) each piece in the JSJ-decomposition is hyperbolic, and (2) the neutered
hyperbolic spaces that arise as universal covers of hyperbolic pieces are all identical.
The question of whether the universal covers of two such tilings are quasi-isometric
then comes down to the question of whether or not the lifts of certain gluing
involutions extend to quasi-isometries of the neutered hyperbolic space. It turns out,
somewhat surprisingly, that the lift of such a gluing involution extends to an

isometry of H3 that commensurates the lattice associated to the neutered hyperbolic
space. (Hence, the gluing involution extends to a quasi-isometry of the neutered
hyperbolic space.)

Theorem 8.7.1. Suppose A1 and A2 are mock reflection groups associated to either the

3-dimensional permutohedral tiling SP3 (see Theorems 7.4.1 and 7.4.2) or to one of the

3-dimensional associahedral tilings of Theorem 8.5.7. Then A1 and A2 are quasi-

isometric.

Before proving this theorem we need to develop some notation. Let R3;1

denote Minkowski space, that is, it is a 4-dimensional real vector space
with coordinates x ¼ ðx1; x2; x3;x4Þ; equipped with the indefinite bilinear form
defined by

/x; yS ¼ x1y1 þ x2y2 þ x3y3  x4y4:

Hyperbolic 3-space H3 can be defined as one sheet of the hyperboloid /x; xS ¼ 1;
defined by x440: Let Oð3; 1Þ denote the isometry group of the bilinear form
and let Oþð3; 1Þ be the index-two subgroup that preserves the sheets of
the hyperboloid. Then Oþð3; 1Þ is the isometry group of the Riemannian

manifold H3:

Given a spacelike vector vAR3;1 (i.e., a vector v with /v; vS40), define a reflection
rvAOþð3; 1Þ by the formula

rvðxÞ ¼ x  2
/x; vS
/v; vS

v:

Remark 8.7.2. Let Oþð3; 1;ZÞ denote the subgroup of Oþð3; 1Þ that preserves the
standard integer lattice Z4CR3;1 (i.e., Oþð3; 1;ZÞ ¼ Oþð3; 1Þ-GL4ðZÞ). If vAZ4 and

if /v; vS ¼ 1 or 2, then rv preserves Z
4; i.e., rvAOþð3; 1;ZÞ:

ARTICLE IN PRESS
M. Davis et al. / Advances in Mathematics 177 (2003) 115–179176



Suppose P is the permutohedron or the associahedron. It turns out that after
collapsing each rectangular face of P to a vertex, one ends up with a polytope Q that

can be realized as a right-angled convex polytope in H3 of finite volume. Moreover,
the vertices of Q corresponding to the collapsed faces of P will be ideal vertices of the
realization. This is a special case of a well-known theorem of Andreev, but we shall
verify it directly. If P is a permutohedron, then Q is an octahedron. If P is an
associahedron, then Q is a double pyramid on a triangular base. (In other words, Q

is the suspension of a triangle.) When we write down specific realizations of these
polytopes, we find an interesting surprise: the normal vectors to their faces are
integral vectors v satisfying /v; vS ¼ 1 or 2. In fact, consider the following four

polytopes in H3:

* The fundamental 3-simplex Q0: Normal vectors to the faces are u1 ¼ ð1; 1; 1; 1Þ;
v1 ¼ ð1; 0; 0; 0Þ; w1 ¼ ð1;1; 0; 0Þ and t1 ¼ ð0; 1;1; 0Þ: Q0 has one ideal vertex,
where the faces normal to v1; w1; and t1 meet. The Coxeter group generated by the
reflections across its faces has Coxeter diagram

4 4

* The pyramid Q1: Normal vectors to the faces are u1 ¼ ð1; 1; 1; 1Þ; v1 ¼ ð1; 0; 0; 0Þ;
v2 ¼ ð0; 1; 0; 0Þ; and v3 ¼ ð0; 0; 1; 0Þ: It is again a 3-simplex, this time with 3 ideal
vertices. The corresponding Coxeter diagram is

4

4

4

The base of the pyramid is the face normal to u1: It is an ideal triangle. The other

three faces meet at the vertex ð0; 0; 0; 1ÞAH3:
* The double pyramid Q2: The reflection ru1 carries the vectors v1; v2; and v3 into

v01 ¼ ð0;1;1;1Þ; v02 ¼ ð1; 0;1;1Þ; and v03 ¼ ð1;1; 0;1Þ; respectively.
The normal vectors to Q2 are then v1; v2; v3; v01; v02; v03:

* The regular ideal octahedron Q3: The normal vectors to the faces are the eight
vectors ð71;71;71; 1Þ:

Observations 8.7.3.

(1) Q0CQ1; Q1CQ2; and Q1CQ3:
(2) The Coxeter group generated by reflections across the faces of Q0 is Oþð3; 1;ZÞ:
(3) The symmetry group of the associahedron (i.e., the dihedral group D6 of order

12) acts on Q2; and Q0 is a fundamental domain.
(4) The symmetry group of the permutohedron (i.e., S4 	 Z2) acts on the octahedron

Q3 as its full symmetry group. Again Q0 is a fundamental domain. (Q0 is a
simplex in the barycentric subdivision of Q3).
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We are now in a position to prove Theorem 8.7.1. Let X1 and X2 be associahedral
tilings corresponding to groups A1 and A2: Consider a nonextendable gluing
involution i defined on a face of the 3-dimensional associahedron. By Lemma 8.3.1,
the face is rectangular. By the proof of Lemma 8.3.1, i is a reflection of the
rectangular face about a line of symmetry connecting the midpoints of two opposite
edges. Any such rectangular face corresponds to an ideal vertex of the double
pyramid Q2: For the sake of definiteness, let us fix this vertex to be the one where the
faces normal to v1 and v2 intersect the base triangle (normal to u1). The reflection rw

defined by the vector w ¼ ð0; 2; 1; 1Þ then has the desired effect—its restriction to the
corresponding rectangular face in the horosphere is i: Since /w;wS ¼ 4; rw is not
represented by an integral matrix, rather its entries are rational numbers with
denominators at most 2: It follows that rw commensurates Oþð3; 1;ZÞ: (In fact,
conjugation by rw maps the congruence subgroup, consisting of all matrices that are
congruent to the identity mod 2; into itself.)
Let O denote the neutered hyperbolic space for Oþð3; 1;ZÞ: The isometry rw

does not quite map O into itself (rw does map the set of lifts of all cusps into itself,
but it might not preserve their horoball neighborhoods). However, it can be modified
to a homeomorphism preserving O that extends the gluing involution i and that
is a bounded distance from rw: The hyperbolic pieces of Xi; i ¼ 1; 2; give a

partition into copies of O; and these copies are glued together via quasi-isometries.
Hence, X1 is quasi-isometric to X2: Similarly, X1 and X2 are both quasi-isometric to
the simply-connected, symmetric permutohedral tiling. This completes the proof of
Theorem 8.7.1.
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