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0. Introduction

Consider the following situation: MC is a complex manifold of complex dimension
n, and DC is a union of smooth complex codimension-one submanifolds (i.e., DC is a
smooth divisor). Examples of this situation include: (1) arrangements of projective
hyperplanes in CPn, as well as various blow-ups of such arrangements along inter-
sections of hyperplanes, (2) nonsingular toric varieties (whereDC is the complement
of the (C∗)n-orbit), and (3) certain compactifications of point-configurations in CP1

(where DC is the complement of the nondegenerate configurations). In such exam-
ples there is often a “real version” of (MC, DC) which we will denote by (M,D).
By this we mean that M is the fixed point set of a smooth involution on MC which
is locally isomorphic to complex conjugation on Cn and that D = DC ∩M . Thus,
M is a smooth n-manifold, and D is a union of codimension-one smooth submani-
folds. Our primary interest in this paper is the geometry and topology of the pair
(M,D). The examples in which we are interested will have the features discussed
in (A), (B), and (C) below.

(A) Cellulations by polytopes. The divisor D cuts M into regions, called cham-
bers, which are combinatorially equivalent to convex polytopes. In this case, we
say D gives a cellulation of M . In addition, D will be locally isomorphic to an
arrangement of hyperplanes. (If D has the last property, then each dual cell in M
will be a “zonotope”.)
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(B) The associated cellulation by cubes. If the above cellulation is by simple
polytopes (an n-dimensional polytope is simple if n-edges meet at each vertex),
then so is its dual cellulation. Moreover, these cellulations will have a common
subdivision by cubes.

(C) Nonpositive curvature and asphericity. Any cubical cell complex K has a
natural piecewise-Euclidean structure in which each cell is identified with a regular
Euclidean cube of some fixed size (say, of edge length 1). This then defines a
“length metric” on each component of K: the length of a linear path in some cell
is its Euclidean length, and the distance between two points in K is the infimum
of the lengths of all piecewise linear paths between them. It follows that any two
points in the same path component of K can be connected by a geodesic segment
(a geodesic segment is the image of an interval under an isometric embedding). By
comparing small geodesic triangles in K with the corresponding triangles of the
same edge lengths in the Euclidean plane, it then makes sense to ask if K has
nonpositive curvature in the sense of Aleksandrov. Gromov has shown that for a
cubical complex K, there is a simple combinatorial condition that is necessary and
sufficient for this to be the case. The condition is that the link of each vertex in
K is a “flag complex” (see Section 1.6). Gromov has also shown that the universal
cover of a nonpositively curved space is contractible. Thus, if the link of each
vertex in a cubical complex K is a flag complex, then K is aspherical. In other
words, it is a K(π, 1)-complex. (For a more detailed discussion of this material,
see [G] or [D3].) One of the main points of this paper is to show that for many of
the examples in which we are interested, Gromov’s condition holds. Thus, these
manifolds admit piecewise Euclidean metrics of nonpositive curvature, and hence,
are aspherical spaces.

0.1. Real subspace arrangements

Let V be a finite dimensional real vector space. Let H1, . . . ,Hm be a collection
of linear hyperplanes in V , and let H be the collection of all possible intersec-
tions of these hyperplanes. We call H the hyperplane arrangement generated by
{H1, . . . ,Hm}. Let S(V ) denote the sphere in V and P(V ) the projective space of
V . For 1 ≤ i ≤ m, P(Hi) is a projective subspace of codimension-one in P(V ); thus
D = P(H1) ∪ · · · ∪ P(Hm) is a divisor in P(V ). The arrangement H is essential if
H1 ∩ · · ·∩Hm = 0. We suppose that this is the case. Then the Hi cut V into poly-
hedral cones and S(V ) into spherical polytopes. Since these spherical polytopes
occur in pairs, consisting of a polytope and its image under the antipodal map, we
get a similar description of P(V ). Thus, D gives a cellulation of P(V ) as in para-
graph (A) above. The arrangement H is simplicial if each cell in this cellulation of
P(V ) is a simplex. Next we give some examples of simplicial arrangements.

Example 0.1.1. The coordinate hyperplane arrangement (also called the Boolean
arrangement). Let V = Rn+1 and let Hi, i = 1, . . . , n + 1, be the hyperplane
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defined by xi = 0. Then {Hi} generates the coordinate hyperplane arrangement.
The divisor P(H1) ∪ · · · ∪ P(Hn+1) cuts P(V ) (otherwise, known as RPn) into 2n

n-simplices. The picture for n = 2 is given in Figure 1.

Example 0.1.2. The braid arrangement. Let V be the hyperplane in Rn+2 defined
by
∑
xi = 0. For 1 ≤ i < j ≤ n + 2, let Hij denote the hyperplane in V defined

by xi = xj . Then {Hij} generates the braid arrangement H. The symmetric
group Sn+2 acts on V by permuting the coordinates. The transposition (ij) acts
as orthogonal reflection across Hij . The union of the Hij cuts V into simplicial
cones, each of which is a fundamental domain for the action of Sn+2. It follows
that the union of the P(Hij) cuts P(V ) apart into (n+2)!/2 simplices. The picture
for n = 2 is also given in Figure 1.

Coordinate arrangement Braid arrangement

Figure 1

Example 0.1.3. Reflection arrangements. More generally, suppose that W is a
finite group of linear transformations of V generated by orthogonal reflections.
Then W is a Coxeter group. Further, assume that the representation of W on V is
essential in the sense that the fixed subspace is {0}. Then the arrangement H of
all reflection hyperplanes is essential and simplicial. This is a generalization of the
previous two examples: if the Coxeter diagram of W is •–• · · · •–•, then we have
the braid arrangement; if it is • • · · · • •, then we have the coordinate hyperplane
arrangement.

Blow-ups of projective arrangements. Let A be a linear subspace of V and
P(A) the corresponding projective subspace of P(V ). To blow-up P(V ) along P(A),
remove P(A) and replace it by the projective space bundle associated to the normal
bundle of P(A) in P(V ). The projective space bundle (now a codimension-one
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submanifold of the blow-up) is called the exceptional divisor. If A is a hyperplane,
then blowing up along P(A) does not alter P(V ). However, if A is of codimension
greater than one, then the blow-up along P(A) is a new manifold denoted by
P(V )#P(A). Now suppose that H is an arrangement of hyperplanes in V and that
A is some intersection of hyperplanes in H. Then for each subspace B ∈ H such
that B 6⊂ A, the blow-up P(B)#P(B∩A) can be identified with a smooth submanifold
of P(V )#P(A). This submanifold is called the proper transform of P(B). The union
of the codimension-one proper transforms of the P(B), B ∈ H, and the exceptional
divisor give a new divisor D# in P(V )#P(A). We can then continue in this fashion,
blowing up along iterated proper transforms of elements in H. We denote such an
iterated blow-up by P(V )# with corresponding divisor D#.

If the arrangement H is essential, then the divisor D gives a cellulation of P(V )
by polytopes and D# gives a cellulation of P(V )#P(A). These two cellulations (of
different manifolds) are related as follows. The cellulation of P(V )#P(A) is obtained
by truncating each chamber of P(V ) which meets P(A) in a face (of the same di-
mension as P(A)) and then gluing this truncated chamber to the antipodal chamber
across P(A). For example, consider the coordinate hyperplane arrangement in RP2

in Figure 1. It gives a cellulation of RP2 by 4 triangles (any two of which share the
same three vertices). Blow up one of these vertices. The resulting 2-manifold is
RP2#RP2, which is a Klein bottle. The truncation of each triangle is a square, so
we obtain a cellulation of the Klein bottle by 4 squares. Similarly, we could have
blown up all three vertices. The result would be the non-orientable surface with
Euler characteristic −2 cellulated by 4 hexagons.

In [DP1], De Concini and Procesi define the notion of a “building set” for a
hyperplane arrangement H. Roughly speaking, this is a collection of subspaces
in H for which: (1) the iterated blow-up along proper transforms of elements
in this collection does not depend on the order of the blow-ups (for subspaces
of any given dimension), and (2) the resulting divisor D# in P(V )# has normal
crossings. In particular, they show that given any subspace arrangement, there is
a maximum building set as well as a minimum one. For a hyperplane arrangement,
the maximum building set consists of all intersections of hyperplanes, while the
minimum building set consists of the “irreducible” intersections (see Section 3.1).
Given a hyperplane arrangementH, we denote the corresponding minimal blow-up
by P(V )# min and the corresponding maximal blow-up by P(V )# max.

For the purposes of obtaining manifolds that satisfy conditions (A)-(C) above,
we introduce the weaker notion of a “partial building set” for H, dropping the
requirement that D# have normal crossings. In Section 3, we will give necessary
and sufficient conditions on a partial building set guaranteeing that the iterated
blow-up P(V )# will be cellulated by simple polytopes (in which case the dual
cellulation will be by simple zonotopes). Hence, by (B) and (C) above, these
blow-ups will have natural cubical subdivisions and natural piecewise Euclidean
metrics. In particular, any building set will satisfy these conditions (the normal
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crossing condition (2) is equivalent to the dual zonotopes all being cubes). We shall
prove the following two theorems in Section 4 and Section 5.

Theorem 0.1.4. Let H be an essential hyperplane arrangement in V . Then the
maximal blow-up P(V )# max has a nonpositively curved, cubical structure in the
sense of paragraph (C) above. In particular, P(V )# max is aspherical.

Theorem 0.1.5. Suppose H is a simplicial hyperplane arrangement in V . Then
the following statements are equivalent.

(i) The arrangement does not admit a decomposition into 3 or more irreducible
factors.

(ii) P(V )# min is aspherical.
(iii) The natural cubical structure on P(V )# min is nonpositively curved.

Before discussing more specific examples of these blow-ups, we need to define
two special polytopes, the permutohedron and the associahedron.

Pick a point in the complement of the n-dimensional braid arrangement and
consider its orbit under the symmetric group Sn+1. The convex hull of such an
orbit is an n-dimensional permutohedron. A 2-dimensional permutohedron is a
hexagon. Alternatively, start with an n-simplex and truncate all of its faces of
codimension ≥ 2. Thus, the maximal blow-up of any simplicial projective hyper-
plane arrangement is cellulated by permutohedra.

Consider the Coxeter diagram of An+1: •–• · · · •–•. Its nodes correspond to the
codimension-one faces of an n-simplex, and proper subsets of the set of nodes corre-
spond to proper faces of the simplex. Truncate the faces of the simplex which cor-
respond to connected subdiagrams of An+1. The resulting n-dimensional polytope
is the associahedron. For example, a 2-dimensional associahedron is a pentagon.
These polytopes were described almost 35 years ago by Stasheff [St] in connection
with the higher associativity properties of H-spaces.

Example 0.1.6. The maximal blow-up of the coordinate hyperplane arrangement
in RPn. This is cellulated by 2n permutohedra, all of which meet at any given
vertex. There is a dual cellulation by “big cubes” (zonotopes) as in paragraph (A),
and a common subdivision of the two cellulations by “small cubes” as in paragraph
(B). The n = 2 picture is shown in Figure 2 with a permutohedron (lightly shaded),
big cube (in grey), and small cube (in black). In the figure, the blow-up is obtained
by removing the interiors of the 3 white squares and identifying antipodal points
on their boundaries.

Example 0.1.7. The minimal blow-up of the braid arrangement in RPn. This
n-manifold, denoted P# min is cellulated by (n + 2)!/2 associahedra, 2n of which
meet at any vertex. (See [Ka1], section 4.) Again, there is a dual cellulation by big
cubes. For example, when n = 2, P# min is the blow-up of RP2 at 4 points (the triple
points in Figure 1); hence, it is the nonorientable surface of Euler characteristic−3,
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Figure 2

cellulated by 12 pentagons (See Figure 3. Again, opposite points on the boundary
of each of the white hexagons are identified.)

Example 0.1.8. Oriented blow-ups and complements of real arrangements. As
an application of partial building sets, we consider the K(π, 1)-problem for com-
plements of real codimension-2 arrangements. Instead of replacing P(A) in P(V )
with the associated projective-space bundle of its normal bundle, one could just as
well replace it with the associated sphere bundle. Topologically, this operation is
equivalent to removing an open tubular neighborhood of P(A), producing a man-
ifold with boundary. As before, we can iterate this blow-up procedure, obtaining
a manifold with corners which is cellulated by convex cells. We denote this “ori-
ented” blow-up of P(V ) with respect to a partial building set by P(V )�. If E is the
set of all codimension ≥ 2 subspaces in the partial building set, then it follows that
P(V )� and the complement P(V )−E are homotopy equivalent. Moreover, we will
show in Section 3.5 that P(V )# is nonpositively curved if and only if P(V )� is non-
positively curved. Using these facts, we prove the following theorem in Section 4.4,
settling a conjecture of Khovanov [Kh].

Theorem 0.1.9. Let E be a W -stable union of codimension-2 subspaces in a real
reflection group arrangement. Then the natural cubical metric on the oriented
blow-up is nonpositively curved; hence, P(V )−E is aspherical.
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Figure 3

0.2 Toric varieties

Consider the action on CPN of the algebraic torus HN
C = (C∗)N+1/(C∗). By

a nonsingular toric variety, we shall mean a complex submanifold MC ⊂ CPN
that is the closure of an orbit of an n-dimensional algebraic subtorus Hn

C ⊂ TN

(where the orbit has trivial isotropy subgroup). Such an MC is a union of Hn
C -

orbits. Let Tn = (S1)n be the compact subtorus of Hn
C . Both the algebraic

and compact torus act on MC. There is a “moment map” µ : MC → Rn which
serves as a quotient map for the T n-action in the following sense ([Jur], [A], [GS]);
the image is a simple convex polytope P , µ is constant on T n-orbits, and the
induced map µ : MC/T

n → P is a homeomorphism. Moreover, the preimage
of a k-dimensional face of P is a complex k-dimensional submanifold of MC. In
particular, the preimage of the boundary of P , called the toric divisor and denoted
DC, is a union of complex codimension-one submanifolds.

Let HN
R and Hn

R be the real parts of HN
C and Hn

C , respectively. Let J = Tn∩Hn
R ,

the maximal compact subgroup of Hn
R (so J ∼= (Z2)n and Hn

R
∼= J × (R+)n, where

R+ denotes the positive real numbers). Then Hn
R acts on MC and we let M denote
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the closure of a generic orbit. Each of the 2n components of such an orbit is mapped
homeomorphically by µ onto the interior of P , and the restriction µ : M → P is a
quotient map for the J-action. It follows that M is cellulated by 2n copies of P ,
and since the J-action is locally standard (Section 2.2), the complement of the
generic orbit is a divisor with normal crossings. As in paragraph (A) there is a
dual cellulation of M by big cubes and a common subdivision by small cubes.
The resulting piecewise-Euclidean metric is nonpositively curved if and only if the
boundary complex of P is dual to a flag complex. The following theorem is proved
in Section 2.

Theorem 0.2.1. Let MC be a smooth (projective) complex toric variety with real
part M and moment polytope P . Then the following statements are equivalent.

(i) M is aspherical.
(ii) The boundary complex of P is dual to a flag complex.
(iii) The dual cubical cellulation of M is nonpositively curved.

Example 0.2.2. The closure of a generic torus orbit in a generalized flag manifold.
Suppose GC is a complex semisimple Lie group of rank n with maximal torus
HC (∼= (C∗)n) and maximal compact subgroup U . Let HR be a maximal R-split
subtorus of HC, let GR be the real Lie group corresponding to HR, and let K =
U ∩ GR. Then T = HC ∩ U and J = HR ∩K are isomorphic to (S1)n and (Z2)n,
respectively. Let BC be the Borel subgroup of GC corresponding to HC, and let
BR = GR ∩ BC. Then GC/BC = U/T and GR/BR = K/J are both compact
manifolds.

There are natural left actions of HC on GC/BC and HR on GR/BR. Moreover,
there are projective embeddings into CPN and RPN , resp., such that these torus
actions are restrictions of actions of subgroups of the diagonal (see, for example,
[FH]). Let MC (resp., M) be the closure of a generic HC-orbit (resp., HR-orbit).
Then MC is a nonsingular toric variety with real part M . The image of the moment
map can be identified with a “generalized permutohedron”, i.e., the convex hull
of an orbit of the Weyl group action on Rn. Since the boundary complex of a
generalized permutohedron is a flag complex (c.f., Lemma 1.6.4), M is always
nonpositively curved.

For example, if GC = SL(n + 1,C), then HC is the set of diagonal matrices.
Let BC denote the Borel subgroup corresponding to HC. Then MC = GC/BC
(resp., M = GR/BR) is the variety of full flags in Cn+1 (resp., in Rn+1). The
corresponding Weyl group orbit is the generic one, and the convex hull of an orbit
is the n-dimensional permutohedron. Thus, M is cellulated by 2n copies of the
permutohedron. Since the dual polytope of the permutohedron is a flag complex,
M is aspherical. These manifolds M are interesting for a number of reasons. For
example, they support a “Toda flow” which has recently been studied by Kodama
and Ye [KY].
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0.3. Point configurations and Chow quotients

The minimal blow-up of the braid arrangement in Pn (Example 0.1.7) has been
shown by Kapranov in [Ka1] and [Ka2] to coincide with some other spaces of
classical importance. These include (1) certain compactifications of (n + 3)-point
configurations in RP1, and (2) the “Chow quotient” of the GrassmannianG(2, n+3)
of 2-planes in Rn+3 by the diagonal (R∗)n+3-action. We give a rough summary here.

Let U denote the set of generic GL(2,R)-orbits in (RP1)n+3 (where the action
is diagonal). Let U ′ be the set of generic (R∗)n+3-orbits in G(2, n + 3). There
is a bijection U → U ′ (the Gelfand-MacPherson correspondence [GM]) given as
follows. The GL(2,R)-orbit of the point ([x1, y1], . . . , [xn+3, yn+3]) in (RP1)n+3

corresponds to the (R∗)n+3-orbit of the 2-plane spanned by x = (x1, . . . , xn+3)
and y = (y1, . . . , yn+3). The set U (respectively, U ′) is naturally realized as a
subset of the Chow variety C (resp., C′) which parameterizes generic GL(2,R)-
orbit closures in (RP1)n+3 (resp., generic (R∗)n+3-orbit closures in G(2, n + 3)).
The closures of U and U ′ in these Chow varieties are called Chow quotients, and
denoted (RP1)n+3//GL(2,R) and G(2, n+ 3)//(R∗)n+3.

Theorem 0.3.1 (Kapranov [Ka1] and [Ka2]). For all n ≥ 1, the following varieties
are isomorphic.

(i) The minimal blow-up of the braid arrangement in RPn.
(ii) The Chow quotient G(2, n+ 3)//(R∗)n+3.
(iii) The Chow quotient (RP1)n+3//GL(2,R).
(iv) The real points of the Grothendieck-Knudsen moduli space for stable (n+3)-

pointed curves of genus 0.

0.4. Blowing up zonotopal cell complexes and Gromov’s Möbius band
hyperbolization procedure

A zonotope is a convex polytope whose poset of faces is dual to the face poset of
a hyperplane arrangement (the precise definition is given in Section 1.4). A key
property of zonotopes is that they are centrally symmetric. As we explained in 0.1,
a projective hyperplane arrangement in RPn divides it into cells. The dual cells
are zonotopes. Blowing up subspaces corresponds to a process of truncating cells,
and the dual cells become simpler zonotopes. In fact, one can describe this process
directly in terms of the dual cellulation by zonotopes. For example, in the braid
arrangement of Figure 1, the dual cell to a triple point is a hexagon P . To blow-up
the triple point, one removes the interior of P and replaces it by the Möbius band
(∂P × [−1, 1])/Z2, where Z2 acts on ∂P via the central symmetry and on [−1, 1]
via t 7→ −t. It turns out that the best way to view the blowing-up procedure is as
an operation of the above type on the dual cell structure. This is the point of view
we take in Section 3. One reason for doing this is that the construction can then
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be generalized to “zonotopal cell complexes”.
Another reason for taking this viewpoint is that it generalizes the “Möbius

band hyperbolization procedure” introduced by Gromov ([G], Section 3.4): given a
cubical cell complex K, Gromov described a functorial procedure for constructing
a new cubical cell complex h(K) which is nonpositively curved. One of our initial
observations when we began the research for this paper was that the manifold
obtained by performing Gromov’s hyperbolization to the boundary of the (n+ 1)-
dimensional cube and then dividing by the central symmetry is the same as the
closure of a generic orbit in the flag manifold SL(n + 1,R)/B (Example 0.2.2).
Furthermore, it follows from the theory of toric varieties that this generic orbit
closure coincides with the maximal blow-up of the coordinate arrangement in RPn
(Example 0.1.6). (Proofs of these coincidences will be given in Section 4.2.) The
constructions in Section 3 show that these are not just coincidences. The dual
cellulation of RPn corresponding to the coordinate arrangement is the boundary of
the (n+1)-cube divided by the central symmetry, and taking the maximal blow-up
is the same as applying Gromov’s Möbius band procedure.

A cubical cell complex is a special case of a more general type of cell complex
in which all of the cells are combinatorially equivalent to zonotopes. A natural
categorical framework for all of the real blow-ups in this paper is that of zonotopal
cell complexes. In this setting, the blow-up procedure can be described as a functor
which, given a zonotopal cell complex K and a suitable collection M of cells,
produces another zonotopal cell complex K#M. In particular, if M is the set of
all cells of K, then K#M is called the maximal blow-up, and if K is a cubical cell
complex, this maximal blow-up is precisely Gromov’s hyperbolization h(K). We
will show in Section 4 that the maximal blow-up of any zonotopal cell complex is
nonpositively curved.
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1. Nonpositively curved metrics on zonotopal cell complexes

1.1. Cells and cell complexes

Let P be a partially ordered set (i.e., a poset). A flag in P is a finite totally ordered
subset of P . The set Fl(P) consisting of all flags in P is itself partially ordered by
inclusion and is called the order complex (or “derived complex”) for P .

A cell or polytope P is the convex hull of a finite set of points in some real vector
space. The set of faces, partially ordered by inclusion, forms a poset P . For every
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face F of P , let vF denote the barycenter of F ( any point in the relative interior
would suffice). Then any flag α = (F1 < · · · < Fk) in Fl(P) can be identified with
the simplex with vertex set {vF1 , . . . , vFk}, and this decomposition of P will be
called the barycentric subdivision. Thus, the poset Fl(P) is precisely the partially
ordered set associated to the barycentric subdivision. Two cells are combinatorially
equivalent if their posets are isomorphic; in this case, the bijection between their
sets of barycenters extends to a piecewise linear homeomorphism between the cells.
We will call such a homeomorphism the realization of a combinatorial equivalence.

By a cell complex we shall mean a space K formed by gluing together cells
via certain (geometric realizations of) combinatorial equivalences of their faces,
together with the decomposition of K into cells. We shall also assume that different
faces of the same cell are not identified; thus, each cell will be homeomorphic to
its image in K. Let P(K) denote the associated poset of cells. Two cell complexes
K and L are combinatorially equivalent, written K ∼= L, if the corresponding
posets are isomorphic. By passing to barycentric subdivisions, two combinatorially
equivalent cell complexes are homeomorphic via a homeomorphism which restricts
to a linear map on each simplex.

Convention. We will drop the word “cell” if the intersection of two cells is either
empty or a single cell. (Thus, in a simplicial complex every simplex is determined
by its vertex set, while this need not be the case for an arbitrary simplicial cell
complex.)

A cell complex is a cubical cell complex if its cells are combinatorially equivalent
to cubes.

The boundary of a cell P is the union of all proper faces of P . It is naturally a
cell complex, and we denote it by ∂P . Given a convex polytope P , there is a dual
polytope P̌ which has the property that P(∂P̌ ) = P(∂P )op, where Pop denotes the
opposite poset of P , in which the order relation is reversed.

If F is a k-dimensional face of an n-dimensional cell P and x is a point of F , then
the link of F in P , denoted by Lk(F, P ) is the spherical (n− k− 1)-cell consisting
of all unit tangent vectors to P at a point x ∈ F which are inward pointing and
normal to F . Up to a linear isomorphism, the link of F is independent of the point
x, so we omit x from the notation. If F is a cell in a cell complex K, then Lk(F,K)
is the union of all Lk(F, P ), where P is a cell of K which contains F . Since any
spherical cell Lk(F, P ) is combinatorially equivalent to a (Euclidean) cell, Lk(F,K)
is equivalent to a cell complex.

By a cellulation of a manifold M , we shall mean a cell complex K together
with a homeomorphism K → M . One says that K is a PL n-manifold if for each
k-cell P of K, Lk(P,K) is piecewise linearly homeomorphic to Sn−k−1. In all
cases of interest to us, a stronger condition will hold: Lk(P,K) is combinatorially
equivalent to the boundary complex of a convex (n − k)-cell. When this happens
we will say that K is a nice PL-manifold. (A recent result of Mnev and Mani [MM]
states that any nice PL-manifold admits a canonical smooth structure.)
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If K is a nice PL-manifold, then there is a dual cell complex Ǩ defined as
follows. Let P(K) denote the poset of nonempty cells of K and for each P ∈
P(K), let P(K)≥P (resp., P(K)>P ) denote the subposet of cells which contain
(resp., properly contain) P . Thus, P(K)>P is isomorphic to the poset of cells
in Lk(P,K). Since K is nice, there is a dual cell D(P ) with the property that
P(∂D(P )) = P(Lk(P,K))op. Ǩ is defined to be the union of the D(P ) in a
natural way. To be explicit, let K ′ denote the barycentric subdivision of K. Then
the barycentric subdivision of D(P ) is naturally a subcomplex of K ′, and K ′ is the
union of the D(P ). The two cell complexes K and Ǩ are combinatorially dual in
the sense that P(K) is isomorphic to P(Ǩ)op. For example, if P is a convex n-cell,
then ∂P and ∂P̌ give dual cellulations of Sn−1.

1.2. The standard cubical subdivision of a simple cell complex

Suppose P is a poset and a ∈ P . If a, b ∈ P and a ≤ b, then the interval [a, b]
is the subposet P≥a ∩ P≤b. Let I(P) denote the poset of intervals of P (partially
ordered by inclusion).

Let e1, . . . , en be the standard basis of Rn. Denote the power set of {1, . . . , n}
by Sn. For each J ∈ Sn, set

eJ =
∑
i∈J

ei.

(If J = ∅, then eJ = 0.) Then {eJ} is the vertex set of the unit n-cube [0, 1]n.
For each interval [J1, J2] ∈ I(Sn), let �[J1,J2] denote the face of �n (= [0, 1]n)
spanned by {eJ}J∈[J1,J2]. It is a cube of dimension Card(J2 − J1). Hence, P(�n)
is isomorphic to I(Sn) via the isomorphism �[J1,J2] ↔ [J1, J2].

If α = (J0 < · · · < Jk) is a flag in Sn, let ∆α be the simplex spanned by
eJ0 , . . . , eJk . The standard simplicial subdivision of �n is the subdivision consisting
of all simplices ∆α, α ∈ Fl(Sn).

An n-dimensional polytope P is simple if exactly n codimension-one faces meet
at each vertex. For example, a cube is simple, an octahedron is not. Equivalently,
P is simple if ∂P̌ is a simplicial complex. A cell complex is simple if each cell is a
simple polytope.

Let P be a simple polytope and let P be its poset of faces. Let {vF }F∈P be
a collection of barycenters. For each flag α ∈ Fl(P), let ∆α be the corresponding
simplex in the barycentric subdivision of P . For each interval [F1, F2] in P , let
�[F1,F2] be the subcomplex of the barycentric subdivision of P consisting of all
simplices ∆α, α ∈ Fl([F1, F2]). Then �[F1,F2] is simplicially isomorphic to the
standard simplicial subdivision of the cube of dimension dimF2 − dimF1. The
subdivision of P into {�[F1,F2]}[F1,F2]∈I(P) is called the standard cubical subdivision
of P , denoted by P�. The subcomplexes �[F1,F2] are called small cubes. We note
that any combinatorial automorphism of P induces a simplicial automorphism of
the barycentric subdivision of P and this automorphism induces an automorphism
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of the standard cubical subdivision (since intervals of P are taken to intervals by an
automorphism). If K is a simple cell complex, then its standard cubical subdivision,
denoted K� is constructed by taking the standard cubical subdivision of each cell.

The proofs of the next two lemmas are straightforward unwindings of the defi-
nitions.

Lemma 1.2.1. Let x be the barycenter of a simple polytope P . Then there is a
simplicial isomorphism between Lk(x, P�) and the simplicial complex ∂P̌ .

Lemma 1.2.2. Let K be a simple cell complex and x a vertex of K�. Then x is
the barycenter of some cell Px of K and

Lk(x,K�) = ∂P̌x ∗ Lk(Px,K).

(Here ∗ is used to denote the join of two simplicial cell complexes. See Section 3.3.)

If a simple cell complex K is a nice PL manifold, then the dual cell complex is
also simple. Moreover, the standard cubical subdivisions K� and Ǩ� coincide.

1.3. Arrangements

Let V be a real vector space. A finite collection A of subspaces in V is a subspace
arrangement if it is closed under intersections (this is slightly nonstandard, but
simplifies the notation). A subspace arrangement is partially ordered by inclusion,
and two arrangements A1 and A2 are equivalent, written A1 ∼= A2 if there is
an isomorphism of posets A1 → A2 which preserves the dimension of subspaces.
An arrangement is essential if it contains the zero subspace. An arrangement is
a hyperplane arrangement if every element is an intersection of codimension-one
subspaces. An essential hyperplane arrangement H cuts V into polyhedral cones.
The set of these cones, partially ordered by inclusion, is the face poset of H.

Let V ∗ be the dual space of V and for any subspace A ⊂ V , let A⊥ be the
subspace of V ∗ defined by {w ∈ V ∗|w(A) = {0}} (the annihilator of A). For
any collection of subspaces A in V , let A⊥ denote the collection of subspaces A⊥,
A ∈ A. Thus, the posets A and A⊥ are anti-isomorphic.

1.4. Zonotopes

Associated to an essential arrangement of hyperplanes H in a real vector space V ,
there is a convex polytope ZH, called the “associated zonotope”. Let H1, . . . ,Hk

be the hyperplanes in H and let w1, . . . , wk be linear forms in V ∗ such that Hi =
w−1
i (0).

Definition 1.4.1. The standard zonotope ZH associated to H (and to w1, . . . , wk)
is the image of the cube [−1, 1]k in Rk under the linear map from Rk to V ∗ which
sends ei to wi.



Vol. 4 (1998) Nonpositive curvature of blow-ups 505

That is to say, ZH is the “Minkowski sum” (or vector sum) of the line segments
[−w1, w1], . . . , [−wk, wk], defined by

ZH =
{∑

tiwi|ti ∈ [−1, 1], 1 ≤ i ≤ k
}
.

Any polytope combinatorially equivalent to ZH will also be called a zonotope.
The main property of zonotopes is stated as the following lemma. (A proof can

be found as Prop. 2.2.2, p. 54, in [BLSWZ].)

Lemma 1.4.2. The poset of faces, P(ZH), is anti-isomorphic to the face poset
of H.

Examples 1.4.3.

(i) An m-gon is a zonotope if and only if m is even.
(ii) The n-dimensional cube [−1, 1]n is the zonotope corresponding to the ar-

rangement of coordinate hyperplanes in Rn.
(iii) More generally, a cartesian product of zonotopes is a zonotope (since a

product of hyperplane arrangements is a hyperplane arrangement).
(iv) Any face of a zonotope is a zonotope.
(v) If H is the braid arrangement in Rn, then the corresponding zonotope is

called the permutohedron.
(vi) More generally, if W is a finite reflection group on Rn (i.e., a finite Coxeter

group), then the zonotope corresponding to the arrangement of reflection
hyperplanes is called in [D3] a Coxeter cell. We denote it ZW .

The dual polytope XH to ZH is a convex polytope in V . The poset P(∂XH) is
canonically isomorphic to the poset of nonzero faces of H, i.e., ∂XH is combinatori-
ally equivalent to the cellulation of the unit sphere in V cut out by the hyperplanes
in H. It follows that the order complexes Fl(P(XH)) and Fl(P(ZH)) are canon-
ically isomorphic. This means that the barycentric subdivisions of XH and ZH
are canonically simplicially isomorphic. In what follows, we shall often use this to
identify subcomplexes of the barycentric subdivision of XH with subcomplexes of
the barycentric subdivision of ZH.

Parallel faces and subspace pieces. Let H be an essential hyperplane arrang-
ment in V with associated standard zonotope Z. Let C (= H⊥) be the collection
of subspaces dual to H. If F is a face of Z which is not a vertex, then the affine
subspace spanned by F is parallel to a unique subspace AF ∈ C. Let CZ denote
the set of parallel classes of faces of Z. Note that the dimension of an element of
CZ is well-defined as the dimension of any representative. The natural bijection
[F ]↔ AF between C and CZ induces a partial order on CZ . This partial order can
be described as follows. Given f1 and f2 in CZ , f1 ≤ f2 if and only if f1 and f2 have
representatives F1 and F2, respectively, such that F1 is a face of F2. If Ĉ = C ∪{0}



506 M. Davis, T. Januszkiewicz and R. Scott Sel. math., New ser.

and ĈZ = CZ ∪ {0} (where 0 denotes the equivalence class of vertices in Z), then Ĉ
and ĈZ are isomorphic lattices. Thus, any two elements f1, f2 ∈ ĈZ have a greatest
lower bound, f1 ∩ f2, as well as a least upper bound, f1 + f2 (called the span of f1
and f2). If dim(f1 + f2) = dim f1 + dim f2 (equivalently, if dim(f1 ∩ f2) = 0), then
we write f1 ⊕ f2 for f1 + f2.

A decomposition of a zonotope Z is a subset {f1, . . . , fk} of CZ such that for
all g ∈ CZ , f1 ∩ g, f2 ∩ g, . . . , fk ∩ g ∈ CZ and g = (f1 ∩ g)⊕ · · · ⊕ (fk ∩ g). If Fi is
a representative for fi, 1 ≤ i ≤ k, this means that Z is isomorphic to the product
F1×· · ·×Fk. Z is irreducible if it cannot be decomposed into more than one factor.

We shall now show that the parallel relation on P(Z) can be defined combi-
natorially. First suppose that dimZ = 2. Then Z is a 2m-gon and two edges
are parallel if and only if they are opposite (i.e., if there are exactly m − 1 edges
between them). This generates an equivalence relation on the set of edges of an
n-dimensional zonotope Z: two edges e and e′ are parallel if and only if we can find
a sequence of 2-dimensional faces F1, . . . , Fm and pairs (ei, e′i) of opposite edges
in Fi such that e = e1, e′ = e′m, and e′i−1 = ei for 1 < i ≤ m. This combinatorial
definition of parallelism can then be extended to faces as follows. Given a face F
of Z, let E(F ) denote the set of parallel classes of edges of Z which are represented
by edges of F . Then F and F ′ are parallel if and only if E(F ) = E(F ′). From
the fact that we can define parallelism combinatorially, we immediately deduce the
following.

Lemma 1.4.4. Parallelism is preserved by combinatorial isomorphisms of zono-
topes.

If F1 and F2 are parallel faces of a (standard) zonotope Z in V ∗, then there is
a translation of V ∗ which takes F1 onto F2. This induces a combinatorial isomor-
phism cF1,F2 , called the canonical isomorphism, between P(Z)≤F1 and P(Z)≤F2 .
As we shall see in the proof of the next lemma, this isomorphism can be defined
combinatorially.

Lemma 1.4.5. If φ : P(Z)→ P(Z ′) is an isomorphism and F1 and F2 are parallel
faces of Z, then cφ(F1),φ(F2) = φ ◦ cF1,F2 ◦ φ−1.

Before proving this lemma, we define “subspace pieces” in Z, the notion dual to
that of parallel classes of faces. For any f ∈ CZ , let A be the corresponding element
of C. Then the collection of quotient spaces C/A = {B/A|A ⊆ B, B ∈ C} is the
dual (lattice) of a hyperplane arrangement in A⊥. Let Zf denote the corresponding
zonotope in V ∗/A. We have natural identifications C/A ∼= C≥A ∼= (CZ)≥f . Define
a subposet P(Z)≥f of P(Z) by

P(Z)≥f = {F ∈ P(Z)|[F ] ≥ f},

where [F ] denotes the parallel class of F . Then there is a natural isomorphism of
posets P(Z)≥f ∼= P(Zf) (which takes a face F of Z to the face of Zf corresponding
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to the subspace AF /A in C/A). This isomorphism induces an injection of order
complexes Fl(P(Zf)) → Fl(P(Z)) and, hence, a simplicial embedding of barycen-
tric subdivisions Z ′f → Z ′. The image Pf is called the subspace piece dual to f (or
dual to A). If dim f = 1, then Pf is called a hyperplane piece. Figure 4 shows a
zonotope (the permutohedron) with one of its hyperplane pieces shaded.

Remark 1.4.6. Suppose X is the polytope dual to Z and E is the subspace in V
dual to A. Then X ∩ E is naturally a subcomplex of the barycentric subdivision
of X . That is, E ∩ ∂X is a subcomplex of ∂X , and E ∩ X is the cone on this
subcomplex. Since X and Z are dual, we can identify E ∩X with a subcomplex of
the barycentric subdivision of Z. This subcomplex is precisely the subspace piece
Pf defined above. For this reason we will also use E∩X to denote the subcomplex
associated to E, relying on the context to determine whether it is a subcomplex of
X ′ or a subcomplex of Z ′. As a subcomplex of Z ′, E ∩ X intersects each of the
faces in f in its barycenter.

Subspace piece in a zonotope

Figure 4

If L is a line in C, then an orientation for L induces an orientation on each edge
parallel to L. This can be said combinatorially as follows. If e and e′ are edges
parallel to L and v and v′ are vertices of e and e′, respectively, then v and v′ have
the same orientation if they lie on the same side of the hyperplane piece dual to L.

Proof of Lemma 1.4.5. Let n = dimZ. We will show by induction on n that
the canonical isomorphism between two faces of Z can be defined combinatorially.
This is obvious if n = 1. Let F1 and F2 be parallel faces of Z and let l be the
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parallel class of an edge of F1. Then P(Z)≥l is isomorphic to the poset of faces
of the zonotope Zl of dimension n − 1. Moreover, the subposets (P(Z)≥l)≤F1

and (P(Z)≥l)≤F2 correspond to parallel faces of this zonotope. By induction, the
canonical isomorphism can be combinatorially defined on (P(Z)≥l)≤F1 . Hence, it
can be defined on all faces in P(Z)≤F1 of dimension > 0. Now suppose that v is a
vertex of F1. We may as well assume that v is a vertex of an edge e in l and that
l is oriented. Then cF1,F2 takes e to an edge e′ of F2 parallel to e. Let v′ be the
vertex of e′ with the same orientation as v. Then define cF1,F2 on v to be v′. �

Central symmetry of a zonotope. It follows from the definition that multi-
plication by −1 stabilizes any (standard) zonotope in V ∗. Hence, it gives a well-
defined combinatorial symmetry a ∈ Aut(P(Z)). The next lemma shows that the
involution a can be defined combinatorially.

Lemma 1.4.7. The involution a lies in the center of Aut(P(Z)).

In view of this, a will be called the central symmetry of Z.

Proof. It suffices to give a combinatorial definition of a. Furthermore, it suffices
to give the definition on the vertex set of Z. We shall do this by induction on the
dimension n of the zonotope. If n = 1, then Z is the line segment, and a switches
its two vertices. Now suppose n > 1 and a combinatorial definition has been given
for all zonotopes of dimension n−1. Let v be a vertex of an n-dimensional zonotope
Z. Choose an edge e containing v, and let l be the parallel class of e. Then the
intersection of e and the hyperplane piece Pl = Im(Zl → Z) is a vertex w of Zl.
By induction, the central symmetry al of Zl is defined. Let a(e) be the edge of Z
which is dual to Pl and which intersects Pl in al(w). Then a(e) has two vertices
v′ and v′′. One of these, say v′ lies on the opposite side of Pl from v. Define
a(v) = v′. Since hyperplane pieces are defined combinatorially (Lemma 1.4.4), this
definition is combinatorial and clearly agrees with the linear definition. The lemma
follows. �

1.5. Zonotopal cell complexes

A cell complex K is zonotopal if each cell is (combinatorially isomorphic to) a
zonotope. For example, any cubical cell complex is zonotopal and simple. We will
call the cells of a cubical complex K “big cubes” to distinguish them from the
“small cubes” of the standard subdivision K�.

A Cartesian product of zonotopal cell complexes is a zonotopal cell complex.
Any subcomplex of a zonotopal cell complex is zonotopal.

Example 1.5.1.

(i) If Z is an n-dimensional zonotope, then ∂Z is a zonotopal complex home-
omorphic to Sn−1.
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(ii) The central involution a : ∂Z → ∂Z freely permutes the cells of ∂Z. Hence
the orbit space

P(Z) = ∂Z/a

is a zonotopal cell complex, homeomorphic to RPn−1.
(iii) The blow-up of Z at its center, denoted by Z#, is the quotient of ∂Z×[−1, 1]

by the involution â defined by â(z, t) = (a(z),−t), i.e.,

Z# = ∂Z ×Z2 [−1, 1].

In other words, Z# is the total space of the canonical interval bundle over
P(Z). Z# is naturally a zonotopal complex: the cells are restrictions of
the interval bundle to cells of P(Z), so a cell of Z# is a zonotope of the
form F × [−1, 1]. We also note that the barycentric subdivision of P(Z)
is naturally identified with a subcomplex of the barycentric subdivision of
Z#. This subcomplex is called the zero-section or exceptional divisor. The
zero section is a “hyperplane” in the sense that any cell F × [−1, 1] of Z#
intersects the zero section in the hyperplane piece F × 0.

Example 1.5.2. (The dual cell complex and its blow-up.) Suppose, as in Section
1.4, that Z is the zonotope associated to an essential hyperplane arrangement in
Rn and that X is the dual polytope. Then ∂X is isomorphic to the cellulation of
Sn−1 cut out by the hyperplanes, and

P(X) = ∂X/a

is the dual cell complex to P(Z). Let X# denote the total space of the canonical
interval bundle over P(X):

X# = ∂X ×Z2 [−1, 1].

The cells of X# are restrictions of the interval bundle to the cells of P(X). Hence,
the n-cells of X# are in one-to-one correspondence with the (n− 1)-cells of P(X).
The process of constructing X# from X can be thought of as follows. Subdivide
X as the cone on ∂X so that each cell C in ∂X determines a cone whose vertex
is the center of X . Truncating the vertex of each such cone, we obtain a cell of
the form C × [0, 1]. A cell of X# is obtained by gluing the two cells C × [0, 1] and
−C × [0, 1] by identifying C × 0 and −C × 0 via the antipodal map.

Example 1.5.3 (Modified Coxeter complexes.). There is a zonotopal complex
associated to any Coxeter system (W,S) (as in [Bo], W is the Coxeter group and S
is a distinguished set of generators). The details of the following construction can
be found in [CD2] or [D3]. For each subset T of S, let WT denote the subgroup
generated by T . Let Sf = {T |T ⊆ S and CardWT < ∞} and let WSf be the
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set of all cosets of the form wWT , with w ∈ W and T ∈ Sf , partially ordered by
inclusion. The subposet (WSf )≤wWT is isomorphic to the poset of faces of the
Coxeter cell associated to (WT , T ). Thus, the geometric realization Σ of WSf is
naturally a zonotopal complex. One of the principal features of this construction is
that W acts simply transitively on the vertex set of Σ. This implies that the links
of any two vertices in Σ are isomorphic. Other examples of zonotopal complexes
can be constructed by the following two operations: (1) taking a subcomplex of Σ
and (2) taking the quotient by a torsion-free subgroup Γ of W .

Example 1.5.4. (Salvetti complexes.) Let H be a hyperplane arrangement in a
real vector space V and ZH the corresponding zonotope. Salvetti [Sal] defined a
zonotopal cell complex, which we will denote SalH, such that (a) each cell in SalH
is combinatorially equivalent to a face of ZH and (b) SalH is a deformation retract
of the complement of the union of the complexified hyperplanes in V ⊗ C. To
define SalH we first construct its poset SH of cells. SH is the set of all pairs of
the form (F, v) where F is a face of ZH and v is a vertex of F . The partial order
on SH is described as follows. For each subspace E in H, let H≥E be the (usually
nonessential) hyperplane arrangement consisting of all subspaces containing E.
An E-sector is a chamber for H≥E . For example, if E = 0, then an E-sector is a
chamber for H; if E is a hyperplane, then an E-sector is a half space. In general,
an E-sector is an intersection of half-spaces. If F is a face of ZH, then let EF
denote its dual subspace in H. If v is a vertex of ZH, then Cv denotes its dual
chamber. For each (F, v) ∈ SH, we define Sec(F, v) to be the EF -sector which
contains Cv. (If F = v is a vertex, then put EF = V and Sec(F, v) = V .) The
partial order on SH is now defined as follows: (F ′, v′) ≤ (F, v) if and only if F ′ ≤ F
and Sec(F, v) ⊆ Sec(F ′, v′).

It is straightforward to see that given (F, v) ∈ SH and a face F ′ of F , there is
a unique vertex v′ of F ′ such that (F ′, v′) ≤ (F, v). It follows that (SH)≤(F,v)

∼=
P(ZH)≤F . In other words each subposet (SH)≤(F,v) is isomorphic to the poset of
faces of a polytope (in fact, a zonotope).

We call such a poset an abstract cell complex. It has a geometric realization
as a cell complex where, up to combinatorial equivalence, the cells are determined
by the poset. In the case at hand, the geometric realization of SH is the Salvetti
complex SalH. Salvetti [Sal] proved that the complex hyperplane complement is
homotopy equivalent to SalH. One way to see this is to construct a cover of the
hyperplane complement in V ⊗ C by open convex sets indexed by the elements
of SH so that the nerve of the covering is the order complex of SH. See [Sal]
and [CD2].)

In [De] Deligne proved that if H is a simplicial arrangement, then the complex
hyperplane complement is aspherical. In other words, if ZH is simple, then SalH
is aspherical. For example, if dimV = 1, then ZH is the interval [−1, 1] and SalH
is the boundary of a digon (which is homeomorphic to a circle). Hence, if H is
a product of one-dimensional arrangments (i.e., if H is the coordinate hyperplane
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arrangement in Rn), then SalH is an n-torus, cellulated by 2n n-cubes. On the
other hand, it follows from Remark 2.3.2 in [CD2], that if ZH is simple but not a
cube, then the cubical structure, described below, on the zonotopal cell complex
SalH will not be nonpositively curved.

Classes of parallel faces and subspaces in zonotopal cell complexes. The
equivalence relation of parallelism on the set of faces of a zonotope extends naturally
to zonotopal cell complexes. That is, two cells F and F ′ of a zonotopal cell complex
K are parallel if there exists a sequence of cells Z1, . . . , Zk and pairs of parallel faces
Fi, F

′
i ⊂ Zi such that F = F1, F ′ = F ′k, and Fi+1 = F ′i , for 1 ≤ i ≤ k − 1. Note

any such sequence determines an isomorphism F → F ′, but this isomorphism is
no longer canonical since it depends on the “path” Z1, . . . , Zk. Given a zonotopal
cell complex K, we let CK denote the set of equivalence classes of parallel faces. It
is clear that any class has a well-defined dimension.

For any parallel class in CK , there is a dual notion of an immersed “subspace”
in the barycentric subdivision of K. On any given cell Z of K, such a subspace
will restrict to a union of subspace pieces in the barycentric subdivision of Z. Let
f be a parallel class in CK . We shall define (a) a subcomplex Êf of the barycentric
subdivision of K, (b) a connected zonotopal complex Ef , and (c) an “immersion”
i : Ef → K such that the image of i is Êf (generically, i will be an injection).
We will say that i : Ef → K is a (codimension-k) subspace of K (a hyperplane if
k = 1).

Let f be a (k-dimensional) parallel class of cells in K. Let Kf denote the set of
pairs (Z,P ), where Z is a cell in K and P is a subspace piece in Z corresponding
to a parallel class g ∈ CZ with g ⊂ f . (Restricting f to Z will, in general, be a
union of parallel classes, and g is one of them.) We will say that (Z1, P1) is a face
of (Z2, P2), written (Z1, P1) ≤ (Z2, P2), if Z1 is a face of Z2 and P1 = P2. The
subcomplex Êf is defined by

Êf =
⋃

(Z,P )∈Kf

P.

Note that it might happen that Kf contains two pairs of the form (Z,P1) and
(Z,P2) where P1 6= P2. In this case P1 ∩ P2 is also a subspace piece in Z. To
define Ef , we desingularize Êf by removing these extraneous intersections. First
form the disjoint union of the P , where (Z,P ) ∈ Kf . Then glue P1 to P2 along a
common face P0 if and only if there is a (Z0, P0) in Kf that is a common face of
(Z1, P1) and (Z2, P2). Let i : Ef → Êf ⊂ K be the natural map.

The codimension-0 subspaces of a zonotopal complex K are precisely the con-
nected components of K. Hence, a cell in a zonotopal cell complex is a codimen-
sion-0 subspace piece of itself. A subspace is proper if its codimension is positive.

The next lemma follows immediately from the definitions.



512 M. Davis, T. Januszkiewicz and R. Scott Sel. math., New ser.

Lemma 1.5.5. (Isomorphic links.) Let i : Ef → K be a subspace in a zono-
topal complex K and let (Z,P ) ∈ Kf . Then Lk(P,Ef ) is naturally identified with
Lk(Z,K).

Corollary 1.5.6. If a zonotopal complex is a PL-manifold, then so is any subspace.

Remark 1.5.7. If each cell of a zonotopal complex K is simple, then the image
Êf of any subspace is a subcomplex of the standard cubical subdivision of K.

1.6. Nonpositively curved cubical complexes

A metric space X is nonpositively curved (in the sense of Aleksandrov) if (a) any
two points of X can be joined by a geodesic segment and (b) any sufficiently small
triangle in X is “thinner” than the corresponding comparison triangle in R2 (in
other words, for every point x ∈ X there exists a small ε-ball B about x such that
any geodesic triangle in B satisfies the CAT(0)-inequality of [G], p. 107). If X is
nonpositively curved, then any two points in its universal cover X̃ can be connected
by a unique geodesic segment. It follows that X̃ is contractible and hence, that X
is aspherical (see Section 4 of [G]).

Examples of such nonpositively curved X are given by polyhedra which admit
certain piecewise Euclidean metrics. For example, if K is a cubical cell complex,
then there is an obvious way to give K a metric in which each cell is isometric to
a Euclidean cube of unit edge length. Any piecewise-linear path in K is given a
length by adding the (Euclidean) lengths of the segments of the path in each cell.
The distance between two points in K is then defined to be the infimum of the
lengths of all piecewise-linear paths joining the two points.

It turns out that there is a simple combinatorial condition on links of cells which
is necessary and sufficient for a cubical complexK to be nonpositively curved. Since
the link of a face in a cube is a simplex, the link of any cell in a cubical cell complex
is a simplicial cell complex. To formulate the condition on these links, we need the
definition of a “flag complex”. We will say that a subcomplex of a cell complex L
is an empty simplex if it is isomorphic to the 1-skeleton of a simplex but does not
span a simplex of L.

Definition 1.6.1. A simplicial cell complex L is a flag complex if it is a simplicial
complex and any finite set {v0, . . . , vm} of pairwise joinable vertices spans a simplex
in L (two vertices are “joinable” if they span a simplex). Equivalently, L is a flag
complex if and only if it is a simplicial complex and contains no empty simplices
of dimension ≥ 2.

Example 1.6.2.
(i) An m-gon is a flag complex if and only if m > 3.
(ii) The order complex of any poset is a flag complex. In particular, the

barycentric subdivision of any cell complex (in the sense of Section 1.1)
is a flag complex.
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In the following lemma we collect some standard properties of flag complexes.

Lemma 1.6.3.
(i) A join of two simplicial complexes K and L is a flag complex if and only if

both K and L are flag complexes.
(ii) The link of any simplex in a flag complex is a flag complex.
(iii) A full subcomplex of a flag complex is a flag complex (a subcomplex L ⊂ K

is full if L contains all simplices of K which are spanned by vertices in L.)

Another class of flag complexes is provided by the following lemma.

Lemma 1.6.4 ([Bro], p. 29). Let H be a simplicial arrangement and XH the
simplicial polytope defined in Section 1.4. Then ∂XH is a flag complex.

We now state the fundamental result on nonpositive curvature for cubical com-
plexes.

Lemma 1.6.5 (Gromov [G], p. 122). The natural piecewise Euclidean metric on a
(connected) cubical complex is nonpositively curved if and only if the link of every
vertex is a flag complex.

Corollary 1.6.6. Suppose that K is a simple cell complex and that K� is its
standard cubical subdivision. Then the natural piecewise Euclidean metric d� on
K� is nonpositively-curved if and only if the following two conditions are satisfied:

(i) For each vertex v of K, Lk(v,K) is a flag complex.
(ii) For each cell P in K, ∂P̌ (the boundary of the dual simplicial polytope) is

a flag complex.

Proof. By Lemma 1.2.2, any vertex x of K� is the barycenter of a unique cell Px
in K and

Lk(x,K�) = Lk(x, Px) ∗ Lk(Px,K) ∼= ∂P̌x ∗ Lk(Px,K).

By Gromov’s Lemma (Lemma 1.6.5), K� is nonpositively curved if and only if
Lk(x,K�) is a flag complex for each vertex x. Suppose this is the case. Taking
x to be a vertex of K we see that (i) holds. By Lemma 1.6.3(ii), Lk(P,K) is a
flag complex for any cell P in K (since Lk(P,K) can be identified with a link in
Lk(v,K) for any vertex v of P ). Therefore, taking x to be the barycenter of a cell
P , we see by Lemma 1.6.3(i), that (ii) holds. Conversely, if (i) and (ii) hold, then
Lk(x,K�) is a flag complex since both ∂P̌x and Lk(Px,K) are. �

By Lemma 1.6.4, condition (ii) is superfluous in the case of a simple zonotopal
cell complex. This gives the following corollary.

Corollary 1.6.7. Suppose that K is a simple zonotopal cell complex. Then d� is
nonpositively curved if and only if the link of every vertex in K is a flag complex.

Corollary 1.6.8. Suppose that a simple cell complex K is an n-dimensional nice
PL-manifold and that its dual cell complex Ǩ is zonotopal. Then d� is nonpositively
curved if and only if for each n-cell P of K, ∂P̌ is a flag complex.
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1.7. Totally geodesic immersions

If K is a simple zonotopal complex and i : E → K is an immersed subspace, then
E is a simple zonotopal complex and i maps the standard cubical subdivision of E
onto a subcomplex of the standard cubical subdivision of K.

We can abstract this situation as follows. Suppose K ′ and K are cubical com-
plexes. A map i : K ′ → K is an immersion if

(i) For each cell P in K ′, i(P ) is a cell of K and the restriction P → i(P ) is a
combinatorial isomorphism.

(ii) For each vertex v of K ′, the induced simplicial map Lk(i) : Lk(v,K ′) →
Lk(i(v),K) is a simplicial embedding.

Next equip K ′ and K with their natural cubical metrics. Then the immersion
i : K ′ → K is totally geodesic if each point x in K ′ has a geodesically convex
neighborhood Ux such that i|Ux is an isometric embedding.

Proposition 1.7.1. An immersion i : K ′ → K is totally geodesic if and only if
for each vertex v of K ′, the embedding Lk(i) maps Lk(v,K ′) onto a full subcomplex
of Lk(i(v),K).

Proof. Given a point x in a (locally finite) piecewise Euclidean cell complex X ,
let Cx denote the cone on the piecewise spherical polyhedron Lk(x,X). Thus,
Cx = ([0,∞) × Lk(x,X))/ ∼ where the equivalence relation identifies all points
with first coordinate 0. The distance d between points (r1, θ1) and (r2, θ2) in Cx
is given by the usual formula for Euclidean distance in polar coordinates,

d2 = r2
1 + r2

2 − 2r1r2 cos θ

where θ = min{π, d(θ1, θ2)} and d(θ1, θ2) is the distance in Lk(x,X). It follows
from this formula that a geodesic segment from (r1, θ1) to (r2, θ2) goes through
the origin (= the cone point) if and only if θ = π. Now suppose that X ′ is a
subcomplex of X containing x, and that C′x is the cone on Lk(x,X ′). Then C′x is a
convex subset of Cx if and only if the following condition holds: (∗) given any two
points θ1, θ2 in Lk(x,X ′), and a geodesic segment γ in Lk(x,X) between them,
then if the length l(γ) of γ is < π, γ is contained in Lk(x,X).

Since the metric on X is such that a small ball about X is isometric to a
small ball about the origin in Cx, for X ′ to be totally geodesic in X , we need to
check (∗) at each point x ∈ X ′. In the case at hand, X ′ = K ′ and X = K are
cubical complexes. The link of a k-face in an (n+ k)-cube is an “all right” (n− 1)-
simplex. (This means that it is isometric to the spherical simplex spanned by the
standard basis in Rn.) Similarly, links in cubical complexes are all right simplicial
cell complexes in the sense that each simplex is all right. Hence, the following
lemma verifies condition (∗) and completes the proof of the proposition. �
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Lemma 1.7.2. Let L′ be a full subcomplex of an all right simplicial cell complex
L. Let θ1, θ2 be points in L′, and let γ be a geodesic segment in L connecting them.
Then if l(γ) < π, then γ lies in L′.

Proof. For i = 1, 2, θi belongs to the relative interior of some simplex in L′. Let
Vi denote the vertex set of this simplex. Let V be the set of vertices v such that
γ intersects the open star of v in L. (The open star is the same as the open ball
of radius π/2 about v.) Then V = V1 ∪ V2. (If v ∈ V − (V1 ∪ V2), then, by the
argument on p. 122 of [G], γ must intersect the ball of radius π/2 about v in a
segment of length π, contradicting the assumption that l(γ) < π.) Obviously, γ is
contained in the full subcomplex of L spanned by V1 ∪ V2. But since L′ is a full
subcomplex and V1 ∪ V2 ⊂ L′, this complex (and hence γ) lies in L′. �
Corollary 1.7.3. Suppose that K is a simple zonotopal cell complex and that
i : E → K is a subspace as in Section 1.5. Taking standard cubical subdivisions,
we get an immersion i : E� → K�. This immersion is totally geodesic.

Proof. Let v be a vertex of E�. Let Z be the cell of K determined by the vertex
i(v) ∈ K� (Lemma 1.2.2). The link of i(v) in K is naturally identified with the join
Lk(i(v), Z) ∗ Lk(Z,K). By Lemma 1.5.5, the image of Lk(v,E�) is ∅ ∗ Lk(Z,K)
which is a full subcomplex. The corollary then follows from Proposition 1.7.1. �

Remark 1.7.4. Suppose K2 is nonpositively curved and that i : K1 → K2 is a
totally geodesic immersion. Then

(i) K1 is nonpositively curved.
(ii) If K2 is simply connected (and hence CAT(0)), then any totally geodesic

immersion is an embedding onto a geodesically convex subspace.
(iii) Let K̃1 and K̃2 denote the universal covers of K1 and K2, respectively. The

immersion K̃1 → K1 → K2 lifts to an immersion ĩ : K̃1 → K̃2 and by (ii)
this must be an embedding.

(iv) It follows that the induced map i∗ : π1(K1)→ π1(K2) is a monomorphism.
(v) When K2 is a 3-manifold and K1 is a surface, condition (iv) means that K1

is an immersed incompressible surface. For nonpositively curved cubical
structures on 3-manifolds, this fact has been examined by Aitchison and
Rubinstein in [AR].

1.8. Splitting fundamental groups of nonpositively curved zonotopal cell
complexes

In [Ca], Cappell defined G0 to be the smallest class of groups that contains the
trivial group and that is closed under amalgamated products and HNN-extensions.
This class includes fundamental groups of surfaces of genus > 0, as well as the
fundamental groups of Haken 3-manifolds. (Cappell proved that the Novikov Con-
jecture holds for groups in G0.)
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Theorem 1.8.1. Suppose K is a connected, finite, simple zonotopal cell complex.
Suppose further that K� is nonpositively curved and that each hyperplane in K is
embedded. Then π1(K) is in Cappell’s class G0.

Proof. Let H be any hyperplane in K. Cut K open along H and denote the result
by K̂�. Since, locally, H is a convex subspace, K̂� is also a nonpositively curved
cubical complex. If H ′ is any other hyperplane in K, then any component of its
image in K̂� is again a totally geodesic subspace, which we continue to call a
“hyperplane”.

If K̂� has two connected components (i.e., if H separates), then π1(K) is an
amalgamated product. IfH is two-sided and nonseparating, then π1(K) is an HNN-
extension. If H is one-sided, then, letting H0 denote its normal S0-bundle, we have
that π1(H0) is a subgroup of index two in π1(H) and that π1(K) is the amalgamated
product of π1(K̂�) and π1(H) along π1(H0). We continue this process, cutting
along a hyperplane in K̂�. The process terminates after we have cut along the
images of all the original hyperplanes in K, after which all components, as well as
all hyperplanes, have become contractible. (Such a component is the closed star of
the barycenter of a maximal cell of K.) Hence, π1(K) is in G0. �
Remark 1.8.2. The above theorem applies to all of the nonpositively curved blow-
ups of projectivized hyperplane arrangements which we consider in Section 4 since
in these cases the hyperplanes are indeed embedded.

Further properties of groups acting on simply-connected, nonpositively curved
cubical cell complexes can be found in [NR] and [Sag].

2. Toric varieties

2.1. Toric manifolds

As an application of the previous section (and as a warm up for the next), we
consider the question of asphericity for some manifolds related to toric varieties.
Since we are only interested in the topology of nonsingular examples, the generality
of “toric manifolds” and “small covers” studied in [DJ1] is the most appropriate
context.

Let MC be a smooth 2n-manifold on which an n-dimensional torus T n = (S1)n

acts with quotient homeomorphic to a convex polytope P . The quotient map is fur-
ther assumed to be locally modeled on the quotient map of the standard T n-action
on Cn, i.e., the map Cn → (R≥0)n which takes (z1, . . . , zn) to (|z1|2, . . . , |zn|2). In
other words, any point m ∈ MC has a Tn-stable neighborhood which is equivari-
antly homeomorphic (up to an automorphism of T n) to a Tn-stable neighborhood
of Cn. It follows that the polytope P must be simple. Such a manifold MC will be
called a toric manifold. We denote the quotient map MC → P by µ.
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Example 2.1.1. Consider an algebraic action of (C∗)n on CPN . It is known that
such an action lifts to a linear action on CN+1 and any such action is conjugate to
a diagonal action. We assume then, without loss of generality, that the action on
CPN is given by

t · [z0, . . . , zN ] = [tm0z0, . . . , t
mN zN ],

where mi = (mi(1), . . . ,mi(n)) ∈ Zn and tmi = t
mi(1)
1 · · · tmi(n)

n for 0 ≤ i ≤ N .
Let M be the closure of the orbit of [1, 1, . . . , 1]. Under suitable conditions on the
action (see, for example, [Od] and the references therein), M is a projective toric
variety. If P is the convex hull (in Rn) of the weights {m0, . . . ,mN}, then there is
a natural “moment map” M → P given by

[z0, . . . , zN ] 7→
∑
|zi|mi∑
|zi|

,

which is a quotient map for the action of the compact torus T n ⊂ (C∗)n ([Jur]).
The vertices of P correspond to Tn-fixed points and if M is smooth (hence, a
Kähler manifold) the exponential map at these fixed points gives a T n-equivariant
local homeomorphism with Cn. Thus, a smooth projective toric variety is a toric
manifold. (In general,MC need not be a complex manifold. For example, CP2#CP2

can be realized as a toric manifold, but does not admit a complex structure.)

Toric manifolds have an elementary topological description as a quotient of
P × T by an equivalence relation defined over proper faces of P . Let F be the set
of codimension-one faces of P . A map λ : F → Zn is a characteristic function for
P if, for every vertex v of P , the set of vectors {λ(F )|F ∈ F , v ∈ F} is a basis
for Zn. Given λ, we define an equivalence relation ∼ on P × T as follows. Each
element λ(F ) of Zn determines a one-dimensional subtorus of T n = Rn/Zn; we set
(x, s) ∼ (x, t) if x ∈ F and st−1 is in the subtorus determined by λ(F ). The action
of Tn on itself descends to an action on the quotient (P × T )/ ∼. A proof of the
following can be found in Section 1.5 of [DJ1].

Proposition 2.1.2. Let M be a toric manifold over P . Then there is a charac-
teristic function λ for P and a T n-equivariant homeomorphism M → (P × T )/ ∼,
where ∼ is the equivalence relation determined by λ.

Conversely, (P × T )/ ∼ is equivariantly homeomorphic to a toric manifold for
any λ.

2.2. Small covers

Let (Z2)n be the subgroup {(±1, . . . ,±1)} in Tn, and letM be a smooth n-manifold
with a (Z2)n-action and quotient space homeomorphic to a convex polytope P . If,
in addition, M → P is locally modeled on the quotient map of the standard (Z2)n-
action on Rn, then M is called a small cover of P .
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Example 2.2.1. In Example 2.1.1, replace (C∗)n with the split torus (R∗)n and
CPN with RPN . Let M be the corresponding (R∗)n-orbit closure. The restriction
of the moment map µ to M ⊂ RPN ⊂ CPN still maps onto P (the convex hull of
the weights) and is a quotient map for the (Z2)n-action. Under suitable conditions
on the action, M is a nonsingular real projective toric variety and a small cover
of P .

More generally, if MC is a toric manifold over P , then by Proposition 2.1.2,
there is a section P → MC for the quotient map, and this section can be taken
to be smooth. Let M be the (Z2)n-orbit of this section. It is a small cover of P
and any two such small covers are equivariantly diffeomorphic (a consequence of
Proposition 2.2.2, below). M will be called the small cover associated to MC.

Again there is an elementary topological description of a small cover. Let F be
the set of codimension-one faces of P . A map λ : F → (Z2)n is a real characteristic
function for P if, for every vertex v, the set {λ(F )|F ∈ F , v ∈ F} is a basis for
(Z2)n. Let ∼ be the equivalence relation on P × (Z2)n defined by (x, s) ∼ (x, t) if
x ∈ F and s ≡ t mod λ(F ). The (Z2)n-action is compatible with this equivalence
relation, hence descends to the quotient P × (Z2)n/ ∼.

Proposition 2.2.2. Let M be a small cover of P . Then there exists a real charac-
teristic function λ and an equivariant homeomorphism M → P × (Z2)n/ ∼ where
∼ is the equivalence relation defined by λ.

We now address the nonpositive curvature question for small covers. It follows
from the proposition above that M is homeomorphic to a simple cell complex K
all of whose cells are isomorphic to faces of P . This cell complex has a natural
subdivision K� into small cubes. Since the (Z2)n-action on M is modeled on the
standard action on Rn, the dual cell complex to K is zonotopal, the zonotopes being
big cubes. Since the vertices of this zonotopal complex are dual to the maximal
cells (which are all copies of P ), Corollary 1.6.7 then implies the following.

Proposition 2.2.3. The natural piecewise Euclidean cubical metric on a small
cover of P is nonpositively curved if and only if the boundary of P is dual to a flag
complex.

It follows from this proposition that if ∂P is dual to a flag complex, then M is
aspherical. The proof of the converse follows from the main result of [D1]. We recall
the basic construction in the case of the “right-angled” Coxeter group associated
to P . Let (W,S) be the Coxeter system defined as follows. There is one generator,
which we denote by sF , for each codimension-one face F ∈ F . The relations are
(sF )2 = 1 for all F , and sF sE = sEsF whenever E and F intersect (necessarily in
a codimension-two face). The pair (W,S) is called the right-angled Coxeter system
associated to the 1-skeleton of the simplicial polytope dual to P . Once again, we
define an equivalence relation, this time on P ×W . We set (x, s) ∼ (x, t) if st−1 is
in the subgroup generated by {sF |x ∈ F}.
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Lemma 2.2.4. The quotient space M̃R = (P ×W )/ ∼ is the universal cover of
every small cover of P .

Proof. The construction M̃R is precisely the space U(W,X) of [D1] with P =
X . The group W acts on M̃R with quotient space P (Section 13 of [D1]). The
characteristic function λ for MR determines a surjective homomorphism W →
(Z2)n given on generators by sF → λ(F ). The kernel K acts freely on M̃R with
quotient M . That M̃R is simply-connected follows from Corollary 10.2 of [D1]. �

Combining the previous proposition with the main result of [D1] applied to the
universal cover MR gives the following.

Theorem 2.2.5. Let M be a small cover of P . Then the following statements are
equivalent.

(i) M is aspherical.
(ii) The boundary of P is dual to a flag complex.
(iii) The natural piecewise Euclidean metric on the dual cubical cellulation of M

is nonpositively curved.

Proof. (ii)⇔(iii) is Proposition 2.2.3, so it suffices to prove (i)⇒(ii). The main
theorem of [D1] states that M̃R will be contractible if and only if for every subset
S of F which generates a finite subgroup ofW , the intersection ∩F∈SF is nonempty.
This is equivalent to the condition that ∂P be dual to a flag complex, since the
subsets S which generate finite subgroups are precisely those with the property
that any two elements are adjacent codimension-one faces. �

Remark 2.2.6. It is immediate from the construction of the universal cover M̃R
that it is homeomorphic to a simple cell complex all of whose cells are faces of P .
In fact, the associated poset is anti-isomorphic to the poset WSf defined in Exam-
ple 1.5.3. Thus, M̃R has the structure of a zonotopal complex (the zonotopes are
big cubes) and the link of every vertex is isomorphic to the dual of ∂P .

3. Blowing up zonotopal cell complexes

Suppose we are given an essential hyperplane arrangement in Rn+1. It cuts the
sphere Sn into convex spherical polytopes (which are combinatorially isomorphic
to convex polytopes in affine space). Dividing by the antipodal map, we get a
cell structure on RPn, which is isomorphic to the cell complex P(X) described in
Example 1.5.2. The dual cells are zonotopes (because the local picture is that of
a hyperplane arrangement in Rn), and the dual cell complex is the zonotopal cell
complex P(Z) described in Example 1.5.1 The projective subspaces of the projec-
tivized arrangement in RPn are actually subspaces of the zonotopal cell complex
P(Z) in the sense of Section 1.5.
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In [DP1], De Concini and Procesi introduce compactifications of complements
of subspace arrangements in which the union of subspaces in the arrangement is
replaced by a divisor with normal crossings. In the De Concini-Procesi procedure,
certain subspaces of the arrangement are blown up. In the case of a projectivized
hyperplane arrangement, the effect of their procedure on P(X) is to truncate some
of the faces of some of the n-cells, obtaining a new cell complex P(X)# with the
same number of n-cells. The dual cell complex P(Z)# is a new zonotopal cell
complex with the same vertex set as P(Z) but with certain cells “blown up” as in
Example 1.5.1. The new divisor is a union of subspaces in P(Z)#. The fact that
the divisor has normal crossings translates to the statement that the zonotopal
cells of P(Z)# are actually (big) cubes.

3.1. Building sets and minefields

The fundamental notion for the construction in [DP1] is that of a “building set”.
If H is a hyperplane arrangement in a vector space V with dual collection C =
H⊥, then a building set is a subset of C with respect to which all subspaces in
C have natural direct sum decompositions. Given the correspondence between C
and parallel classes of faces in the associated zonotope ZH, we can give a similar
definition for zonotopes and extend it to zonotopal cell complexes. The following
should be compared with the definitions and properties in [DP1].

Let Z be a zonotope, and let CZ denote the set of parallel classes of faces of
Z as defined in Section 1.4. Recall that a subset {f1, . . . , fk} of CZ is called a
decomposition of f if, for every g ≤ f , g = (f1 ∩ g)⊕· · ·⊕ (fk ∩ g). A parallel class
f is called irreducible if it admits no decomposition with more than one factor,
and we denote by IZ the set of all irreducible elements of CZ . A subset of a
decomposition is called a partial decomposition.

Definition 3.1.1. A subset GZ of CZ is a (partial) building set for Z if for any
f ∈ CZ , the set of maximal elements of (GZ)≤f is a (partial) decomposition of f .

Of course, any partial decomposition F of f can be extended to a decomposition
{f1, . . . , fk} of f . Although there may be more than one possible way to extend
F , there is a unique one with a minimal number of elements (namely, adjoin to F
the sum of the missing fi’s). We call this the minimal decomposition containing F .
Given a partial building set GZ for Z, the minimal decomposition of f containing
the maximal elements of (GZ)≤f is called the GZ-decomposition of f .

Example 3.1.2.
(i) The set IZ of irreducible elements is a building set for Z. Moreover, any

building set must contain all of the irreducibles. For this reason, we call IZ
the minimal building set for Z.

(ii) The set CZ is a building set for Z, called the maximal building set for Z.

The next lemma provides examples of partial building sets.
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Lemma 3.1.3. Let A be any subset of CZ and let GZ be a building set for Z. Let
G≥A denote the set of all elements g in GZ such that g ≥ a for some a ∈ A. Then
G≥A is a partial building set. In particular, (CZ)≥A is a partial building set (and
partial building sets of this form will be called “maximal partial building sets”).

Proof. It suffices to show that, for any f ∈ CZ , the maximal elements of (G≥A)≤f
are all maximal in (GZ)≤f . But this is clear since any element g of (GZ)≤f which
is greater than or equal to an element in (G≥A) is necessarily greater than or equal
to an element of A; hence, g ∈ (G≥A)≤f . �

More generally, let CK be the set of parallel classes of cells in any zonotopal
cell complex K. If GK is a subset of CK , then for any subcomplex K ′, there is a
corresponding subset GK′ of CK′ defined by

GK′ = {f ′ ∈ CK′ |f ′ is parallel to some f ∈ GK},

which we call the restriction of GK to K ′ (note that the parallel relation in CK′
might be finer than the parallel relation in CK). In particular, if Z is a zonotope
and F is any face, then the restriction of a (partial) building set GZ to F is a
(partial) building set. This leads us to the general definition.

Definition 3.1.4. Let K be any zonotopal cell complex. Then a subset GK of CK
is a (partial) building set if and only if for every cell Z in K, its restriction GZ is a
(partial) building set for CZ .

The following lemma is a straightforward consequence of the definition of a
partial building set.

Lemma 3.1.5. Let GK be any building set for K, and let A be any collection of
parallel classes in CK. Let G≥A be the set of all parallel classes f ∈ CK such that
f ≥ a for some a ∈ A. Then G≥A is a partial building set.

We will need to distinguish between parallel classes in a building set and the
cells in these classes. We introduce the notion of a “minefield” as the collection of
cells in a building set (the point being that these cells are precisely the ones which
will be “blown-up” in the next subsection). A subset M of P(K) is a (partial)
minefield for K if it has the following properties

(a) If Z ∈M, then M contains all cells in P(K) which are parallel to Z.
(b) The set of parallel classes in M are a (partial) building set for K.

If G is a (partial) building set for K, then there is an associated (partial) minefield
M, consisting of all cells whose parallel classes lie in G. A partially mined zonotopal
complex is a pair (K,M) where M is a partial minefield for K. It is mined if M
is a minefield. If K ′ is a subcomplex of K, then let MK′ be the set of all cells of
K ′ which lie in M.

It is clear that for any partially mined zonotopal cell complex (K,M) and
any subcomplex K ′ of K, the pair (K ′,MK′) is a partially mined zonotopal cell
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complex, called a subcomplex of (K,M). The product (K1,M1) × (K2,M2) of
two partially mined zonotopal cell complexes is the partially mined zonotopal cell
complex (K1 ×K2,M1 ×M2), where M1 ×M2 consists of all products Z1 × Z2
where Z1 ∈M1 and Z2 ∈ M2. The following lemma is clear.

Lemma 3.1.6. Let Z be a zonotope and letM be the partial minefield correspond-
ing to a partial building set GZ . Let F be the GZ-decomposition of Z. Fix a vertex
v of Z. Then for each f ∈ F , there is a unique Zf ∈ f which has v as a vertex.
Moreover, if (Zf ,Mf) is the subcomplex of (Z,M) corresponding to Zf , then there
is a natural identification

(Z,M) =
∏
f∈F

(Zf ,Mf ).

By a morphism of zonotopal cell complexes φ : K1 → K2, we shall mean an
isomorphism onto a subcomplex. Equivalently, a morphism φ : P(K1) → P(K2)
is an order-preserving injection such that for every Z ∈ P(K1), φ restricts to an
isomorphism P(K1)≤Z ∼= P(K2)≤φ(Z).

Similarly, a morphism φ : (K1,M1) → (K2,M2) is an isomorphism onto a
subcomplex of (K2,M2).

3.2. Blowing up zonotopal cell complexes

Let Z be the category of zonotopal cell complexes, and let Z̃ be the category of
mined zonotopal cell complexes (with morphisms defined above). We denote by
Zn and Z̃n the full subcategories consisting of complexes of dimension ≤ n.

We are going to define a functor from Z̃ to Z which we denote by (K,M) →
K#M and call the blow-up of K along M. (We shall write simply K# when there
is no ambiguity.) Roughly speaking, we shall blow-up (as in Example 1.5.1) the
cells in M and no others.

The construction will also satisfy the following two properties.
(P1) (Identity property.) If M = ∅, then K#M = K.
(P2) (Naturality with respect to products.) If (K,M) = (K1,M1) × (K2,M2),

then K#M = (K1)#M1 × (K2)#M2 .

The definition of this construction is inductive, i.e., we define it on the sub-
categories Z̃n by induction on n. (The following is fairly close to the exposition
of the “Möbius band hyperbolization procedure” on pages 334-335 of [CD3].) If
dimK ≤ 1, then K#M = K. (Hence, the construction leaves the 1-skeleton alone.)
In other words, on Z̃1, the functor is the natural projection onto Z1. Now suppose
by induction that, for n > 1, the functor has been defined on Z̃n−1 and that it
satisfies (P1) and (P2) for mined complexes in Z̃n−1. Let (K,M) be a partially
mined complex of dimension n. The (n−1)-skeleton of K#M must then be defined
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to be the blow-up of the (n− 1)-skeleton of K, i.e.,

(K#M)(n−1) = (K(n−1))#M
K(n−1) .

Suppose Z is an n-cell in K. Let GZ be the partial building set associated to MZ

(the restriction ofM to Z).

Case 1. Z 6∈ M. Let

(Z,MZ) =
∏
f∈F

(Zf ,Mf )

be the decomposition given in Lemma 3.1.6. The boundary ∂Z decomposes as⋃
f∈F

∂fZ

where
∂fZ = ∂Zf ×

∏
g∈F−{f}

Zg.

Since (P2) holds for complexes of dimension n− 1,

(∂fZ)#M = (∂Zf )#Mf
×

∏
g∈F−{f}

(Zg)#Mg .

In other words, (∂Z)#M is naturally identified with a subcomplex of the product∏
f∈F

(Zf )#Mf
.

Hence, we define Z# = Z#M to be∏
f∈F

(Zf )#Mf
.

Case 2. Z ∈ M. Consider the central symmetry a : ∂Z → ∂Z. It induces an
involution on any parallel class of faces in Z; hence, it takesM∂Z to itself. That is
to say, a : (∂Z,M∂Z) → (∂Z,M∂Z) is an automorphism of mined complexes. By
induction (∂Z)# is defined and by functoriality, we get an involution a# : (∂Z)# →
(∂Z)#. As in Example 1.5.1, we shall define Z# to be the canonical interval-bundle
over (∂Z)#/a#. In other words, Z# is the quotient space of (∂Z)# × [−1, 1] by
the involution defined by (z, t) 7→ (a#(z),−t). We note as before, that (∂Z)# is
canonically identified with the subcomplex (∂Z)# ×Z2 {±1} of Z#.
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This shows how to perform the construction on each n-cell. To do it on an n-
dimensional complex K, we glue each blown up n-cell Z# to K(n−1)

# via the natural

identification of (∂Z)# with a subcomplex of K(n−1)
# . We must also say how to

extend morphisms across the n-cells. In Case 1, this follows since (by Lemma 3.1.6)
any morphism of a product of mined zonotopes preserves the GZ -decompositions.
In Case 2, we take the product of the morphism on (∂Z)# with the identity map
on [−1, 1]. Since, by Lemma 1.4.7, a lies in the center of Aut(P(Z)), this map is
equivariant with respect to the involution. Hence, it induces a morphism on Z#.

Remark 3.2.1. There is a functorial “blow-down” map π : K# → K defined as
follows. We define π by defining its restriction to Z# for every cell Z in K. If
Z ∈ M, we can assume by induction that π : (∂Z)# → ∂Z is defined. Identifying
Z with the cone on ∂Z (= ∂Z × [0, 1]/ ∼ where (z, 0) ∼ (z′, 0)), we define π on
Z# = (∂Z)# ×Z2 [−1, 1] by π([z, t]) = [π(z), |t|]. If Z 6∈ M, then Z is a product
ΠfZf of cells inM and we take π to be the product Z# = Πf (Zf )# → Z = ΠfZf
of the corresponding blow-down maps.

The locus in K consisting of points which have more than one preimage in K#
is called the center of the blow-up. It is the union of the images of the subspaces
Ef → K (Section 1.5) as f runs over all parallel classes in G. The preimage in K#
of the center is a union of hyperplanes Hf → K#, again indexed by f ∈ G. This
union of hyperplanes is called the exceptional divisor of the blow-up.

3.3. Links in blow-ups

It is immediate from the definition of the blow-up functor that the vertices of K
correspond bijectively with the vertices of the blow-up K#M. Moreover, it turns
out that the link of a vertex in K#M is a subdivision of the link of the corresponding
vertex in K. An example is shown in Figure 5. The two figures on the left are
neighborhoods of the corresponding vertices in K and K#. A corner of a zonotope
is shown intersecting each neighborhood in a small cube. The figures on the right
represent the links of the vertices (the second one being a subdivision of the first).
We next describe the functorial setting for the description of the link of a vertex
in a blow-up K#M. It is more or less analogous to the construction of blow-ups.

Suppose σ1 and σ2 are two convex polytopes in general position in some affine
space of dimension greater than dimσ1 +dimσ2. Then their convex hull is denoted
σ1 ∗σ2 and called the join of σ1 and σ2. The combinatorial type of σ1 ∗σ2 does not
depend on the affine space or the embedding. For example, the join of a j-simplex
and a k-simplex is a (j + k + 1)-simplex.

A collection of disjoint faces {σ1, . . . , σk} of a convex cell σ is a join decompo-
sition if σ is the join σ1 ∗ · · · ∗ σk. A cell σ is join-irreducible if it does not admit
a nontrivial join decomposition. A subset of a join decomposition for σ is called a
partial join decomposition for σ.
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Figure 5

Definition 3.3.1. Let L be a cell complex. A subset S of P(L) is a (partial)
subdivision set for L if for every σ ∈ P(L), the set of maximal elements of S≤σ is
a (partial) join decomposition of σ.

Example 3.3.2. The fundamental example of a partial subdivision set is the one
which is induced on the link of a vertex in a zonotopal cell complex by a partial
minefield. Let (K,M) be a partially mined zonotopal cell complex, v a vertex of
K, and L = Lk(v,K). Then the induced subset S = {Lk(v, Z)|Z ∈ M and v ∈
Z} ⊆ P(L) is a partial subdivision set for L.

Example 3.3.3. Given any subset T ⊂ P(L) and any subdivision set S, let S≥T
be the set of all σ ∈ S such that there exists τ ∈ T with σ ≥ τ . Then S≥T is a
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partial subdivision set for L. In particular, if C≥A is a maximal partial building
set (as in Lemma 3.1.3) for a zonotopal cell complex K with corresponding partial
minefieldM, then the induced partial subdivision set on Lk(v,K) (Example 3.3.2)
is P(L)≥T where T is the set {Lk(v, Z)|[Z] ∈ C≥A, v ∈ Z}.

As in Section 3.1, any partial join decomposition J can be extended to a join
decomposition with a minimal number of elements. We call this extension the
minimal join decomposition containing J .

Given a partial subdivision set S and a cell σ in L, the S-decomposition of σ is
the minimal join decomposition of σ containing the maximal elements of S≤σ. If
{σ1, . . . , σk} is the S-join decomposition of a cell σ, then

S≤σ =
k∐
i=1

Si,

where Si = S≤σi , 1 ≤ i ≤ k (note at most one of the Si will be empty).
Given a pair (L,S) where S is a partial subdivision set on a cell complex L,

there is a functorial subdivision L�S of L such that:

(i) If S contains only vertices, then L�S = L, and
(ii) If (L,S) = (L1 ∗ L2,S1

∐
S2), then L�S = (L1)�S1

∗ (L2)�S2
.

The definition of L�S is again by induction on dimension. L
(0)
�S is equal to the

vertex set of L. We suppose a subdivision L(n−1)�S of the (n−1)-skeleton has been
constructed. Let σ be an n-cell, and let {σ1, . . . , σk} be the S-join decomposition
of σ. If this decomposition has more than one factor, then we define σ�S to be

σ�S = (σ1)�S1
∗ · · · (σk)�Sk .

If this decomposition has only one factor, then σ ∈ S. In this case, the boundary
subdivision ∂σ�S has been defined, and we introduce a barycenter in the interior
of σ and cone off the subdivision of the boundary.

Remark 3.3.4. If L is the boundary complex of the dual of a convex polytope P ,
then L�S is the boundary complex of the dual of a polytope obtained by “truncat-
ing” certain faces of P . Namely, one truncates exactly those faces which are dual
to cells in S. See Figure 5.

Example 3.3.5. The set S of all cells of L forms a subdivision set, called the max-
imal subdivision set, and it follows from the description that L�S is the barycentric
subdivision of L. In particular, if L is the boundary of an n-simplex, then it follows
from the previous remark that L�S is the boundary complex of the polytope dual
to the n-dimensional permutohedron (i.e., the permutohedron is the full truncation
of the simplex).
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Combinatorics. The combinatorics of the subdivision L�S can be described as
follows. The cells of L�S correspond bijectively with collections Σ = {F1, . . . , Fk}
where Fi (1 ≤ i ≤ k) is a flag of the form

σ1 < · · · < σj ,

where σi ∈ S for all i > 0 and where the set consisting of maximal elements of the
flags F1, . . . , Fk is the S-join decomposition of a cell in L. The partial ordering
is the obvious one: Σ ≤ Σ′ if and only if for every F ∈ Σ there exists an E ∈ Σ′

with F ≤ E. The cell corresponding to Σ is isomorphic to the join of the cells
corresponding to each of the flags in Σ. Hence, we have the following.

Lemma 3.3.6. The subdivision L�S is a simplicial cell complex if and only if S
contains every join-irreducible element of P(L) which is not a simplex.

Recall that a cell complex L is a complex if the intersection of any two cells
is either empty or a single cell. Thus, any cell in a complex is determined by its
vertex set. Clearly any subdivision of a complex is again a complex. Suppose S is
a partial subdivision set for a complex L, and S satisfies the conditions of Lemma
3.3.6. Then L�S is a simplicial complex. Let S̃ be the union of S and the set of
vertices of L. Then the vertices of L�S correspond to singleton flags which are
precisely the elements of S̃, and the simplices of L�S correspond to certain subsets
of S̃.

Definition 3.3.7. A subset S ⊂ S̃ is nested if every subset of S whose elements
are pairwise noncomparable is a join decomposition of a cell not in S (two elements
σ1 and σ2 in a poset are noncomparable if σ1 6≤ σ2 and σ2 6≤ σ1).

Remark 3.3.8. The notion of nested subsets for indexing strata in compactifica-
tions of configuration spaces was introduced by Fulton and MacPherson in [FM].
De Concini and Procesi generalized this notion to study the combinatorics of their
compactifications of complements of subspace arrangements [DP1].

The following proposition follows immediately from the combinatorial descrip-
tion of the cells of L�S in terms of collections of flags. Note that the hypothesis
that L be a complex (rather than just a cell complex) cannot be weakened.

Proposition 3.3.9. Assume that L is a complex and that S̃ contains every join
irreducible element of P(L), then the simplices of L�S are in one-to-one correspon-
dence with nested subsets of S̃. In particular, L�S is a flag complex if and only if
every subset of S̃ consisting of pairwise nested elements is nested.

As a special case, note that if S = P(L), then the cells of L�S correspond to
flags in P(L). Thus, P(L�S) = Fl(P(L)) and L�S is the barycentric subdivision
of L. More generally, suppose S is a partial decomposition set of the form P(L)≥T
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(as in Example 3.3.3) where T is a subset of P(L) consisting of cells of positive
dimension (subdividing vertices has no effect). Then the S-join decomposition of
any cell σ is {σ}; hence, L�S is an iterated stellar subdivision of L.

Lemma 3.3.10. Let T be any subset of P(L) (with no vertices) and let S =
P(L)≥T . Assume further that L is a complex. Then L�S is a flag complex if and
only if S̃ contains every join irreducible cell of P(L) and T contains an edge of
every empty simplex in L.

Proof. Any subset S of S̃ consisting of pairwise nested elements must be of the
form S = {v0, . . . , vj , σ1, . . . , σk} where σ1 < · · · < σk is a flag of cells in S and
v0, . . . , vj are pairwise joinable vertices of σ1 whose edges are not in T . If T
contains an edge of every empty simplex in L, then v0 ∗ · · · ∗ vj is a simplex in σ1
and S is nested. Conversely, if v0, . . . , vj are vertices of an empty simplex with no
edge in T (and therefore no edge in S), then {v0, . . . , vj} is not nested. �

Links of vertices in blow-ups. The significance of the partial subdivision con-
struction above is that it describes the link of a vertex in a blow-up K#M in terms
of the link of the vertex in K (note that the vertex sets of K and K# are the same).
Let Z be an n-dimensional cell in K and let v be a vertex of Z. Let

Z =
∏
f∈F

Zf

be the decomposition given in Lemma 3.1.6, so v is a vertex of each Zf . On the
level of links, we have by property (P2),

Lk(v, Z#) = Lk(v, (
∏

Zf )#)

= Lk(v,
∏

(Zf )#)

= ∗f∈F Lk(v, (Zf )#)

If there is more than one factor in the above join decomposition (Case 1), then
each Zf has dimension less than n. By induction, this determines Lk(v, Z#). If
the join decomposition has only one factor (Case 2), then the blow-up construction
on Z introduces a new one-dimensional cell IZ (corresponding to the restriction of
the canonical interval bundle over P(Z)# to the single point v). It follows from the
blow-up construction that

Lk(v, Z#) = Lk(v, (∂Z)#) ∗ Lk(v, IZ).

In other words, Lk(v, Z#) is the cone on Lk(v, (∂Z)#). Hence, the subdivision
construction and this description of the links in the blow-up coincide. We state
this as the following lemma.
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Lemma 3.3.11. Let (K,M) be a mined zonotopal cell complex, and let v be a
vertex of K. Let S be the induced partial subdivision set S = {Lk(v, Z)|Z ∈
M and v ∈ Z} for Lk(v,K). Then

Lk(v,K#M) = Lk(v,K)�S .

Combining this with Lemma 3.3.6 we have the following corollary.

Corollary 3.3.12. Let (K,M) be a partially mined zonotopal cell complex. Then
K#M is simple if and only if M satisfies the condition:

(S) M contains every irreducible cell Z in K which is not simple.

Example 3.3.13.

(i) LetM be any minefield on K (not just a partial minefield). Then K#M is
a cubical cell complex (in particular, the cells are simple).

(ii) Let K be a zonotopal cell complex and let A be any subset of CK which
contains the parallel class of every irreducible, non-simple cell. Then G =
C≥A (see Lemma 3.1.3) is a partial building set, and K#G is simple.

3.4. Comparison with the DeConcini-Procesi procedure

Let H be an essential hyperplane arrangement in an n-dimensional real vector
space V , C (= H⊥) the dual arrangement in V ∗, and Z and X the corresponding
zonotope and its dual. Recall that C and CZ are naturally identified. A partial
building set for C is defined analogously to Definition 3.1.1, i.e., it corresponds to a
partial building set for CZ . Let G be a partial building set for C. Following [DP1],
put

V̂ = V −
⋃
A∈G

A⊥

and let
π : V̂ → V ×

∏
A∈G

P(V/A⊥)

be the natural map. Then V#, the blow-up of V with respect to G, is defined to
be the closure of π(V̂ ) in the product. The blow-up of P(V ), denoted by P(V )# is
similarly defined except that one replaces V by P(V ) in the product. The closure
of the image of X ∩ V̂ in V# is denoted by X#.

Let s : V → X be radial projection. That is, s(v) = v if v ∈ X and if v 6∈ X
then s(v) is the point where the line segment from 0 to v intersects ∂X . Since
s preserves subspaces through the origin, it induces a map s# : V# → X#. The
following lemma is then clear.
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Lemma 3.4.1. s# : V# → X# is a deformation retraction.

We recall that P(X) = ∂X/a and P(Z) = ∂Z/a are dual cell complexes. It
follows from Example 1.5.2 and the fact that P(V )# can be obtained by a sequence
of blow-ups, as in [DP1], that if σ is an open (n− 1)-cell in P(X), then its closure
σ in P(V )# is an (n− 1)-cell obtained from σ by truncating certain faces. (To be
precise one truncates those faces of σ which are dual to faces in the partial minefield
M.) Thus, P(V )# is naturally a cell complex which we denote by P(X)#. The set
of (n− 1)-cells in P(X)# is naturally bijective with the set of (n− 1)-cells in P(X).
Let P(Z)# be the functorial blow-up of the zonotopal cell complex P(Z) along the
partial minefield M. The main result of this subsection is the following.

Theorem 3.4.2. P(X)# and P(Z)# are dual cell complexes.

Proof. The link of a vertex v in P(Z)# is obtained by subdividing Lk(v,P(Z)),
as described in the previous subsection. This subdivision process is dual to the
process of truncating Dv (where Dv denotes the cell in P(X) which is dual to v).
The result follows. �
Remark 3.4.3. It follows from [DP1] that the manifold P(V )# (= P(X)# =
P(Z)#) can be obtained from the real projective space P(V ) by a sequence of
blow-ups along smooth centers (in the sense of algebraic geometry). This shows
that P(V )# has a natural smooth structure (in fact, a nonsingular real algebraic
structure) in which the subspaces of P(Z)# are smooth submanifolds.

3.5. Oriented blow-ups

If Z is a zonotope, the oriented blow-up of Z at its center is the product ∂Z× [0, 1].
The entire construction of the functor # can be repeated for oriented blow-ups. In
other words, there is a functor from mined zonotopal cell complexes to zonotopal
cell complexes, denoted (K,M)→ K�M, which has the properties:

(P1) K�∅ = K
(P2) (K1 ×K2)�M1×M2 = (K1)�M1 × (K2)�M2 .

Again the construction is by induction. K
(1)
� = K(1) where K(1) is the 1-

skeleton of K. Assume by induction that K(n−1)
� has been defined. For any n-cell

Z, let
(Z,MZ) =

∏
F

(Zf ,Mf )

be the decomposition of Lemma 3.1.6. If there is more than one factor, then each
factor has dimension less than n, so define Z�M =

∏
(Zf )�Mf

. If there is only
one factor (i.e., if Z ∈ M or if P(Z) ∩M = ∅), then (∂Z)� has been defined, and
Z� is defined to be the product (∂Z)� × [0, 1].

In both cases, (∂Z)� is naturally identified with a subcomplex of Z�. In the
first case, this follows from the product structure. In the second case, (∂Z)� is the
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subcomplex (∂Z)� × {1} of Z�. For each n-cell Z, the complex Z� is then glued
to K(n−1)

� along the subcomplex (∂Z)�.

Remarks 3.5.1.

(i) If Z is minimal in M, then Z� = ∂Z × [0, 1] while Z# = (∂Z × [0, 1])/ ∼
where the equivalence relation identifies (z, 0) and (a(z), 0). To put this
another way, Z� is obtained from Z# by cutting Z# open along ∂Z/a(=
the image of ∂Z × 0). More generally, K# is an identification space of K�
formed by identifying certain points in the boundary via involutions.

(ii) The notion of a maximal oriented blow-up makes sense for any cell complex,
not just one which is zonotopal.

(iii) In our definition of K� we have not altered the 1-skeleton of K. Dually,
we have not blown up codimension-one subspaces. Instead, we could have
defined the oriented blow-up construction starting with the 0-skeleton of
K, in which case 1-cells in the partial minefield would be divided into two
intervals. K� would then tend to break up into more connected compo-
nents. For example, if one were to apply this procedure to the maximal
minefield for ∂Z, the result would be a disjoint union of the truncation of
all top dimensional cells in ∂X (= the dual of ∂Z).

Let K̂ be the complement of all codimension ≥ 2 immersed subspaces of K (see
Section 1.5) which are dual to cells in M. Then K� and K̂ both retract onto a
common subcomplex of K. Namely, let UM be the union of the interiors of all
cells of K which have a face in M. Then the following is clear from the various
constructions.

Lemma 3.5.2. There are deformation retracts K� → K−UM and K̂ → K−UM.
In particular, K� and the complement K̂ are homotopy equivalent.

The oriented blow-up K� can also be obtained by “cutting open” the ordi-
nary blow-up K# along all of the hyperplanes in the exceptional divisor (see Re-
mark 3.2.1 and Figure 6). In fact the identification map q : K� → K# in the
previous remark (part (i)) is just the corresponding regluing map. If M contains
every irreducible non-simple cell of K, then K# will be a simple zonotopal cell
complex by Corollary 3.3.12, hence, it has a natural cubical subdivision into small
cubes. Moreover, the exceptional divisor will be a subcomplex of this cubical subdi-
vion (K#)�, so K� will have a natural decomposition (K�)� with respect to which
the identification map q : (K�)� → (K#)� will be a map of cubical complexes.
Observing the effect on the links when a simple zonotope is cut along hyperplane
pieces, we obtain the following lemma.

Lemma 3.5.3. SupposeM contains every irreducible, non-simple cell in K. Then
for every vertex v ∈ (K�)�, the simplicial complex Lk(v, (K�)�) is a full subcom-
plex of Lk(q(v), (K#)�).
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Figure 6

3.6. “Doubling” an oriented blow-up

Suppose that K is a zonotopal cell complex, that G is a partial building set for
K, and that M is the associated partial minefield. For simplicity, let us also
assume that for each g ∈ G the corresponding immersed subspace of K is actually
embedded. (In other words, for any g ∈ G and Z ∈ P(K) with [Z] ≥ g, there is
exactly one parallel class of faces in Z in the equivalence class of g.) Let G(2) denote
the set of subspaces in G of codimension ≥ 2 (i.e., G(2) consists of those parallel
classes which are represented by cells of dimension ≥ 2). We will define below a
distinguished family (δgK�)g∈G(2) of codimension-one subcomplexes ofK� indexed
by G(2). Roughly speaking, δgK� is the boundary of a regular neighborhood of the
subspace corresponding to g in K. (Equivalently, δgK� is the double cover of the
exceptional divisor corresponding to g in K#.) Once the δgK� have been defined,
it will then be possible to glue together 2m copies of K�, where m = Card(G(2)),
along the δgK� to get a new zonotopal cell complex DK�, called the “double”
of K�.

By definition, δgK� will be the union of the δgZ� where Z is a cell in K with
[Z] ≥ g, and where δgZ� will be defined below. If g is not less that or equal to
[Z], then set δgZ� = ∅. Suppose by induction that δgK ′� has been defined for all
subcomplexes K ′ of dimension < n, and that Z is an n-cell with [Z] ≥ g. As in
the previous section, let

(Z,M) =
∏
f∈F

(Zf ,Mf)

be the GZ -decomposition of Lemma 3.1.6. If there is more than one factor, then
there is exactly one element of F , call it f ′, such that g ≤ f ′ (since we are assuming
each subspace is embedded). In this case, set

δgZ� = δg(Zf ′)×
∏

f∈F−f ′
Zf .
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If there is only one factor, then Z ∈ M and by the inductive hypothesis δg(∂Z�)
has been defined. If [Z] 6= g, then set

δgZ� = δg(∂Z�)× [0, 1],

while if [Z] = g, then set
δgZ� = (∂Z�)× 0.

Let J = (Z2)G
(2)

be a product of cyclic groups of order 2, and let {sg}g∈G(2) be
a set of generators. Define

DK� = (K� × J)/ ∼

where the equivalence relation is defined by (x, j) ∼ (x′, j′) if and only if x = x′

and j−1j′ belongs to the subgroup generated by {sg|x ∈ δgK�}. The group J acts
naturally on DK� (as a reflection group) and the orbit space is K�.

In the case of a maximal blow-up or maximal partial blow-up (i.e., a blow-up
with respect to a maximal partial building set as in Lemma 3.1.3), there is a smaller
“double” of K�. Suppose that dimK = n. For each i ∈ {2, . . . , n}, let δiK� denote
the union of the δgK� where g corresponds to a subspace of codimension i. Let
{si}2≤i≤n be a set of generators for (Z2)n−1 and set

D̃K� = (K� × (Z2)n−1)/ ∼

where the equivalence relation is defined as above. Since we are dealing with the
maximal blow-up, δgK� ∩ δg′K� = ∅ if g and g′ are distinct and have the same
codimension. It follows that DK� is a covering space of D̃K�.

Remark 3.6.1. If G is the maximal building set, then D̃K� is the “cross-with-
interval hyperbolization procedure” of [DJ2] applied to the cell complex K. In this
case, the (Z2)n−1-action on D̃K� is discussed on page 334 of [CD3].

Remark 3.6.2. K� is a retract of DK�. Hence, if DK� is aspherical, so is K�.

Remark 3.6.3. If K is a smooth manifold (e.g., if K = P(Z)), then K� is a
manifold with corners, and the δgK� are its codimension-one strata. Thus, K�
has the structure of an orbifold (a right-angled “reflectofold” as in [CD3]), and
DK� is a smooth manifold.

4. Nonpositive curvature of blow-ups

Let K be a zonotopal cell complex, and let K# be the blow-up with respect to some
partial minefield. In this section we consider the question of when K# admits a
piecewise Euclidean metric of nonpositive curvature. We treat three cases: (1) K is
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any zonotopal cell complex andM consists of all cells, (2) K = P(Z) where Z is a
simple zonotope andM is the set of all irreducible cells, and (3) K is any zonotopal
cell complex and M is a partial minefield with the property that every cell with
a face in M is also in M. In the first two cases, M is a minefield, hence the
blow-ups will be zonotopal cell complexes whose cells are all (big) cubes. Passing
to the standard cubical subdivision does not essentially alter the metric. On the
other hand, for case (3) the resulting zonotopes need not be cubes, so here we must
use the cubical subdivision (provided the zonotopes are simple) in order to get a
natural piecewise Euclidean structure. Case (3) is a generalization of case (1).

4.1. Maximal blow-ups

Let K be a zonotopal cell complex, and let M be the minefield consisting of all
cells in K. We call K#M the maximal blow-up of K. The maximal blow-up
is a generalization of Gromov’s “Moebius band hyperbolization” (see [CD3], for
details). In particular, it is always nonpositively curved.

Theorem 4.1.1. Let K be a zonotopal cell complex. Then the maximal blow-up
K# has a natural piecewise Euclidean (cubical) metric of nonpositive curvature.

Proof. By Gromov’s Lemma (Corollary 1.6.7), it suffices to show that Lk(v,K#)
is a flag complex for every vertex v. But it follows from the explicit description of
the links (Section 3.3) that Lk(v,K#) is isomorphic to the barycentric subdivision
of Lk(v,K). The latter is a flag complex by Example 1.6.2. �
Remark 4.1.2. By Lemma 3.5.3, the link of any vertex of the maximal oriented
blow-up K�M is isomorphic to a full subcomplex of the link of a vertex in K#M
and is, therefore, a flag complex. Hence, K�M is nonpositively curved. Since
K�M is homotopy equivalent to the complement K̂ of all codimension-2 immersed
subspaces of K (Lemma 3.5.2), it follows that K̂ is aspherical.

Applying this theorem to the case of hyperplane arrangements, we have the
following.

Corollary 4.1.3. Let H be an essential hyperplane arrangement in V , let P(V )#
denote the maximal blow-up of P(V ) as in [DP1] (see Section 3.4). Then P(V )#
admits a metric of nonpositive curvature.

Proof. Let Z be the zonotope associated to H. From Section 3.4, P(Z)# is a
cell decomposition for P(V )#, so (1) follows from Theorem 4.1.1 applied to
K = P(Z). �

4.2 Manifolds tiled by permutohedra

We have previously mentioned several different constructions of closed n-manifolds
cellulated by n-dimensional permutohedra with precisely 2n of the permutohedra
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meeting at each vertex. It turns out that these manifolds are “commensurable”
in the sense that any two have a common finite-sheeted covering space. We begin
by discussing their common universal covering space. We let Pn denote the n-
dimensional permutohedron.

Example 4.2.1 (The universal cover). This is a special case of the construction
described in the paragraph preceding Lemma 2.2.4. Let S be an index set for the
set of codimension-one faces of Pn and let (W,S) be the corresponding right-angled
Coxeter system (generators s and t commute if and only if the corresponding faces
Fs and Ft intersect). Set

U = (Pn ×W )/ ∼

where (x,w) ∼ (x′, w′) if and only if x = x′ and w−1w′ belongs to the subgroup
generated by {s ∈ S|x ∈ Fs}. Then U is a simply-connected manifold tiled by
permutohedra. Moreover, it follows from the fact that the dual of ∂P is a flag
complex that U is contractible (e.g., see [D2]).

An equivalent point of view to that of the preceding paragraph is the following.
Pn can be regarded as a right-angled Coxeter orbifold in the sense of [CD3] or
[DJ1]. Its orbifold fundamental group is W , and its universal covering space (in
the sense of orbifolds) is U . Hence, if Γ is any torsion-free subgroup ofW , then U/Γ
is a manifold tiled by permutohedra, and the natural map U/Γ→ Pn is an orbifold
covering. Conversely, if Mn → Pn is an orbifold covering and Mn is a manifold,
then the universal covering space of Mn is U , and π1(Mn) can be identified with
a torsion free subgroup of W . We restate this as the following.

Theorem 4.2.2. Suppose that Mn is a manifold tiled by permutohedra, with 2n

meeting at each vertex, and that p : Mn → Pn is a map such that
(i) the restriction of p to any n-dimensional permutohedron in Mn is a home-

omorphism, and
(ii) the map p is locally isomorphic to the orbit map Rn → Rn/(Z2)n (where

(Z2)n acts as a linear reflection group on Rn).
Then the universal cover of Mn is U , and π1(Mn) is a torsion-free subgroup of W .
If Mn is compact, then π1(Mn) has finite index in W .

The full group of symmetries Λ of the cellulation of U by permutohedra is
slightly larger than W . In fact, we have an exact sequence

1→W → Λ→ Gn → 1

where Gn is the group of combinatorial symmetries of Pn. It follows from the
definition of Pn that the symmetric group Sn+1 is contained in Gn. Since Pn is a
zonotope, its symmetry group also contains the central symmetry. It is not hard to
see that, in fact, Gn is the product Sn+1 ×Z2 (the second factor being the central
symmetry). Hence, there are 2n! copies of a fundamental domain for Gn in Pn.
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1 1 1 1

Figure 7

We also remark that (i) Sn+1 acts on Pn as a group generated by reflections with
quotient space a combinatorial cube, and (ii) the inverse image of Sn+1 in Λ is a
Coxeter group W ′ with diagram as in Figure 7, discussed on page 337 of [CD3].

Theorem 4.2.2 applies to any small cover of Pn (see Section 2). Next we consider
some specific small covers. First we state formally the coincidences among the
examples mentioned in the Introduction (Section 0.4).

Theorem 4.2.3. For each integer n ≥ 0, the following three manifolds are iso-
morphic as manifolds tiled by permutohedra.

(i) Mn
1 , the maximal blow-up of the coordinate hyperplane arrangement in RPn.

(ii) Mn
2 , the closure of a generic (R∗)n-orbit in the flag manifold SL(n+1,R)/B

(where B is the Borel subgroup of upper triangular matrices).
(iii) Mn

3 , the quotient of the Möbius band hyperbolization of the boundary com-
plex of an (n+ 1)-cube by the central involution.

Proof. The coordinate hyperplanes give RPn the structure of a small cover of the
n-simplex ∆n (it is the real part of the complex toric variety CPn → ∆n). If
we blow-up such a toric variety along all (R∗)n-stable subvarieties (in order of
increasing dimension), we obtain another toric variety over the full truncation of
∆n, that is, over the permutohedron. Thus, Mn

1 → Pn is a small cover as well as
the real part of a toric variety. Mn

2 is also the real part of a toric variety over Pn.
An explicit computation (e.g., see [FH]) shows that Mn

1 and Mn
2 have the same

characteristic function; hence, Mn
1 = Mn

2 . The coordinate hyperplane arrangement
cuts RPn into n-simplices and, hence, gives it the structure of an n-dimensional
simplicial cell complex. Explicitly, this cell complex is the boundary complex of an
(n+ 1)-dimensional octahedron divided by the antipodal map. Its dual zonotopal
complex is the boundary of the (n+ 1)-cube divided by the antipodal map. Hence,
its maximal blow-up (which in this case is Gromov’s Möbius band construction) is
diffeomorphic to Mn

1 . More precisely, if Mn
3 is the dual cell complex to this cubical

manifold, then Mn
3 is cellulated by permutohedra and Mn

3 = Mn
1 . �

Example 4.2.4 (Tomei manifolds). Fix a set Ω = {ω1, . . . , ωn+1} of distinct real
numbers and let Nn be the set of symmetric tridiagonal matrices with spectrum
equal to Ω. As explained in [D2] and [T], (Z2)n acts as a reflection group on Nn,
and each chamber is isomorphic to Pn. Hence, Nn → Pn is also a small cover
of Pn. For n > 1, the manifold Nn is not diffeomorphic to the n-dimensional
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manifold in the previous theorem. For example N2 is orientable while M2
2 is not

(however both have Euler characteristic −2). In fact, contrary to the assertion in
the final paragraph of [DJ1], Nn is not the real part of a toric variety.

The natural action of Sn+1 on Pn extends to an action on Mn
2 and to one on Nn

(as shown in [D2]). Hence, both Mn
2 and Nn can be regarded as orbifold covers

of the cube with orbifold fundamental group W ′ (whose diagram is the “comb” in
Figure 7, above). Hence, π1(Mn

2 ) and π1(Nn) are both subgroups of W ′ of index
2n(n + 1)!. Let Bn+1 denote the semidirect product of (Z2)n+1 with Sn+1 where
Sn+1 acts on (Z2)n+1 by permuting the coordinates. Since Mn

2 = Mn
3 , it follows

from Proposition 4.1, p. 338 of [CD3], that π1(Mn
2 ) can be identified with the

kernel of a natural surjection W ′ → Bn+1. There is another natural surjection
W ′ → (Z2)n+1 × Sn+1 (namely, (φ1, φ2) where φ1 sends the generators on the top
of the comb to the generators of (Z2)n+1 and the others to the identity element,
and where φ2 : W ′ → Sn+1 sends the generators on the bottom of the comb to
those of Sn+1 via the obvious surjection and the others to the identity element).
It follows from [D2] that π1(Nn) is the kernel of (φ1, φ2) : W ′ → (Z2)n+1 × Sn+1.

There are many different small covers of Pn. What distinguishes the Tomei
manifold Nn as well as one of the manifolds Mn of Theorem 4.2.3 from the oth-
ers is that they both admit an action of the symmetric group Sn+1 inducing the
reflection group action on Pn. Thus, both Nn and Mn are orbifold covers (with
the same number of sheets) of the n-cube with the orbifold structure having W ′ as
fundamental group.

Example 4.2.5 (Maximal blow-ups). Suppose that H is a simplicial hyperplane
arrangement in Rn+1 and that we are considering the maximal blow-up (so that
the building set G consists of all subspaces of H⊥). Let X be the corresponding
simplicial polytope. Then the boundary of each n-cell in P(X)# is dual to the
barycentric subdivision of the boundary of an n-simplex (see Example 3.3.5). In
other words, each n-cell of P(X)# is a permutohedron. We now show that any two
of these maximal blow-ups are commensurable (as well as being commensurable
with manifolds in Theorem 4.2.3 and Example 4.2.4. First we need a lemma.

Lemma 4.2.6. Let X be the simplicial polytope associated to a simplicial arrange-
ment in Rn+1 and let ∆n be a top dimensional simplex (or chamber) in ∂X. Then
there is a simplicial projection p : ∂X → ∆n which takes each simplex in ∂X
isomorphically onto a face of ∆n.

Proof. Suppose that ∆′ is an adjacent chamber to ∆. Let v′ (resp., v) be the vertex
of ∆′ (resp., ∆) opposite to ∆′ ∩∆. Then there is a unique simplicial isomorphism
∆′ → ∆ which fixes ∆′ ∩∆ and which maps v′ to v. Hence, if γ = (∆0, . . . ,∆m) is
any sequence of adjacent chambers (i.e., a gallery) from ∆ = ∆0 to ∆′′ = ∆m, we
get a simplicial isomorphism θγ : ∆′′ → ∆ by composing the above isomorphism.
In fact this isomorphism depends only on the chambers ∆′′ and ∆, not on the
gallery γ. The reason for this is that two galleries with the same endpoints are
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equivalent by a sequence of moves which involves going around a codimension-two
face in a different direction. Since each codimension-two face is contained in an
even number of chambers, such moves do not affect θγ . If ∆′′ and ∆′ are adjacent
chambers, then the simplicial isomorphism ∆′′ → ∆ and ∆′ → ∆ must agree on
∆′′ ∩∆′. It follows that we have a well-defined simplicial map p : ∂X → ∆n. �

Corollary 4.2.7. The map p : ∂X → ∆n induces a projection p# : ∂X# → Pn

which is an orbifold covering.

Combining this with Theorem 4.2.2 we have the following.

Corollary 4.2.8. Let P(X)# be the maximal blow-up of a projective (n + 1)-
dimensional simplicial arrangement. Then the universal cover of P(X)# is U (de-
scribed in Example 4.2.1). Moreover, the maximal blow-ups of two such simplicial
arrangements (of the same dimension) are commensurable.

Proof. By the previous corollary, the universal cover of ∂X# is U . Since ∂X# is a
2-fold covering of P(X)#, it follows that U is also the universal covering of P(X)#.

Next suppose that X1 and X2 are polytopes corresponding to simplicial ar-
rangements in Rn+1. Then the fundamental groups of (∂X1)# and (∂X2)# are
torsion-free subgroups Γ1 and Γ2 of W , and U/(Γ1 ∩ Γ2) is the desired common
finite sheeted cover of both. �

Remark 4.2.9. One might speculate that any simply connected n-manifold, cel-
lulated by permutohedra, with 2n at each vertex is isomorphic (as a cell complex)
to U . In fact, this is false for n ≥ 3. To see this, consider the 3-dimensional version
of U . At each vertex of a permutohedron P 3 we have two hexagons and one square.
There is a two-dimensinonal subspace (= wall) containing each of these polygons.
In the case of the hexagons, such a subspace is isomorphic to the hyperbolic plane
tiled by right-angled hexagons. For the square, it is isomorphic to the standard
tiling of R2 by squares. Now cut U open along one of the hyperbolic planes, rotate
by π/2, and glue back. The resulting manifold Û is cellulated by permutohedra,
and the cellulation is not isomorphic to that of U . (The reason that this does not
contradict the previous discussion is that there is no map Û → P 3.)

4.3. Minimal blow-ups of simple zonotopes

The minimal blow-up of the braid arrangement described in the Introduction (Ex-
ample 0.1.7) is a special case of the blow-up of a zonotopal cell complex of the
form P(Z) along the minefieldM consisting of all irreducible cells. If Z is a simple
zonotope (i.e., if Z is the zonotope associated to any simplicial hyperplane arrange-
ment), then the following theorem gives a simple necessary and sufficient condition
for this irreducible blow-up P(Z)#M to be nonpositively curved.
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Theorem 4.3.1. Let Z be a simple zonotope. Let M be the set of all irreducible
cells in P(Z). Then P(Z)#M is nonpositively curved if and only if the irreducible
decomposition of Z has fewer than 3 factors.

In terms of hyperplane arrangements, we have the following.

Corollary 4.3.2. If H is a simplicial hyperplane arrangement in P(V ), then the
natural cubical metric on the minimal blow-up P(V )# is nonpositively curved if and
only if the irreducible decomposition of V ∗ has fewer than 3 factors.

We will first reduce the proof of Theorem 4.3.1 to comparing the number of
connected components in certain graphs associated to Z and to each vertex of Z.
The first graph Γ is defined as follows. The vertex set of Γ is the set of parallel
classes of edges in Z. Two such classes e1 and e2 determine an edge of Γ if and only
if {e1, e2} is not a decomposition of a face (i.e., if and only if any representative
face for e1 + e2 is not a square). There is a natural correspondence between the
factors in the irreducible decomposition of Z and the connected components of Γ.

For any vertex v of Z, there is a similar graph Γv defined as follows. The vertex
set of Γv is the set of edges of Z which contain v. Two such edges of Z determine
an edge of Γv if and only if they are both contained in an irreducible 2-dimensional
face of Z (i.e., a face which is not a isomorphic to a square). Since any parallel
class of edges in Z meets a given vertex v in at most one edge, Γv is an embedded
subgraph of Γ. Let v denote the image of v in P(Z) and let L = Lk(v,P(Z)). (L is
just the boundary complex of a simplex.) It follows from Lemma 3.3.11 that the
link of v in P(Z)#M is the subdivision L�Sv where Sv is the set of all simplices in
L spanned by the vertex sets of connected subgraphs of Γv.

Lemma 4.3.3. L�Sv is a flag complex if and only if Γv has fewer than 3 compo-
nents.

Proof. For a given simplex σ in L, let Γv(σ) denote the full subgraph of Γv contained
in σ. Then S = {σ1, . . . , σk} is a nested subset of Sv if and only if each Γv(σi)
is in a different connected component of Γv and the union of the Γv(σi) is not
all of Γv (since L itself is an empty simplex). The lemma then follows from Propo-
sition 3.3.9. �

We shall prove Theorem 4.3.1 by showing that Γv and Γ have the same number
of components for any vertex v of Z.

For any vertex v in Z, we let E(v) denote the set of edges of Z which contain
v; thus, E(v) is the vertex set of Γv. For any collection of edges E1, . . . , Ek in
E(v), we let E1 + · · ·+ Ek denote the unique k-dimensional face which they span.
Suppose E is an edge of Z with vertices v and v′. Then there is a natural bijection
θ : E(v)→ E(v′) given by θ(E) = E and for any other F ∈ E(v), θ(F ) is the unique
edge in E(v′)− {E} with the property that E + F = E + θ(F ). More generally, if
γ is any sequence (v1, . . . , vm) of adjacent vertices (or “path”) in Z, then we get
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a bijection θγ : E(v1) → E(vm) by composing the bijections θ along each joining
edge. Since the path around any 2-dimensional face induces the identity map on
E(v), there is a well-defined bijection θ : E(v)→ E(w) for any two vertices v and w,
independent of the path joining them (this is just the dual version of statements
in the proof of Lemma 4.2.6).

Lemma 4.3.4. Let v and v′ be two adjacent vertices and E the joining edge. Let
θ : E(v)→ E(v′) be the bijection defined above. Suppose E1 and E2 are two edges in
E(v)−{E}, and F is the 3-dimensional zonotope E1 +E2 +E. Then the following
are equivalent.

(i) E +E1 and E +E2 are reducible.
(ii) E1 is parallel to θ(E1) and E2 is parallel to θ(E2).
(iii) a(E1 +E2) = θ(E1) + θ(E2) where a is the antipodal map in F .

Proof. (i) and (ii) are equivalent since two faces F1 and F2 of a face F3 in a
zonotope Z are parallel in Z if and only if they are parallel in F3. For the remaining
implications, suppose P1 and P2 are the hyperplane pieces in F which correspond
to the parallel classes of E1 and E2, respectively. Then (ii)⇒(iii) follows from the
fact that Z is simple. That is, P1 and P2 must intersect in the barycenters of
E1 + E2 and θ(E1) + θ(E2), and the antipodal map exchanges these barycenters.
To see that (iii)⇒(ii), suppose a(E1 + E2) = θ(E1) + θ(E2). Since the antipodal
map is combinatorially defined, a(E1) and a(E2) are adjacent edges. It follows that
the edge parallel to a(E1) (resp., a(E2)) in the 2-dimensional face a(E1 +E2) must
be θ(E1) (resp., θ(E2)) (see Figure 8). Since antipodal edges in F are parallel, (ii)
must hold. �

v
0

v

E2

a(E1)

a(E2)

E1

P2

P1

Figure 8

Next suppose that E(v) can be partitioned into two nonempty subsets E1(v)
and E2(v) such that E1 + E2 is reducible for every E1 ∈ E1(v) and E2 ∈ E2(v).
For any other vertex w, let θ be the bijection E(v) → E(w) defined above. Then
E1(w) = θ(E1(v)) and E2(w) = θ(E2(v)) give a partition of E(w) into two disjoint
subsets.
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Lemma 4.3.5. If E1 ∈ E1(v) and E2 ∈ E2(v), then θ(E1) + θ(E2) is reducible.

Proof. We might as well assume that w is adjacent to v and that the edge E which
joins them is contained in E1(v). Let v, v′, w, w′, E′, E′1, and θ(E1)′ be as in
Figure 9. By the previous lemma (applied to v and v′), a(E +E1) = E′ +E′1. On
the other hand, E + E1 = E + θ(E1) and E′ + E′1 = E′ + θ(E1)′. This implies
a(E + θ(E1)) = E′ + θ(E1)′, so by the previous lemma (applied to w and w′), we
have that θ(E1) + θ(E2) is reducible.

E2

E

�(E2)

E
0

�(E1) �(E1)
0

E1 E
0

1

v v
0

w w
0

Figure 9

Proof of Theorem 4.3.1. Let v be a vertex of Z. Suppose E1(v) and E2(v) are a
partition of E(v) such that no element of E1(v) is connected by an edge in Γv to an
element of E2(v). Let E be the set of parallel classes of edges in Z (i.e., the vertex
set of the graph Γ). For i = 1, 2 let Ei be the set of parallel classes generated by
edges in Ei(v) as v ranges over all vertices. It follows from the previous lemma that
E1 and E2 partition E into disjoint subsets, and e1 +e2 is reducible for every e1 ∈ E1
and e2 ∈ E2. Hence, two elements of Γv are in the same connected component of Γv
if and only if they (their parallel classes) are in the same connected component of
Γ. Thus, Γv and Γ have the same number of connected components. The theorem
then follows from Gromov’s Lemma (Lemma 1.6.5) and Lemma 4.3.3. �

4.4. Maximal partial blow-ups and a conjecture of Khovanov

In this section we consider the nonpositive curvature question for maximal partial
blow-ups of zonotopal cell complexes. Let K be a zonotopal cell complex with
the property that the link of every vertex is a complex. Let A be a subset of
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parallel classes of dimension greater than one (blowing up 0 and 1-dimensional cells
does nothing), and let M be the partial minefield corresponding to the maximal
partial building set C≥A (defined in Lemma 3.1.3). We will call such a minefield
the maximal partial minefield associated to A. For any vertex v of K, the induced
partial subdivision set Sv for L = Lk(v,K) is of the form P(L)≥T where T consists
of all Lk(v, Z) where Z ∈ M. It follows from Lemma 3.3.10 that the link of v
in K#M will be a flag complex if and only if it is simplicial and every empty
simplex in L contains an edge in Sv. Hence, we have the following generalization
of Theorem 4.1.1.

Theorem 4.4.1. Let K be a zonotopal cell complex all of whose links are com-
plexes. Let M be the maximal partial minefield corresponding to a subset A of CK .
Suppose that M contains every irreducible, nonsimple cell of K. Then the natural
cubical metric on K#M is nonpositively curved if and only if for every vertex v,
every empty simplex in Lk(v,K) has an edge in Sv.

Proof. By Corollary 3.3.12, K# is a simple zonotopal cell complex (so the natural
cubical decomposition is into small cubes). By Corollary 1.6.7, the metric d�
is nonpositively curved if and only if the link of every vertex in K# is a flag
complex. �

Corollary 4.4.2. If Z is a simple zonotope and M is as above, then (∂Z)#M is
nonpositively curved if and only if every vertex v is contained in some 2-dimensional
cell in M.

Proof. If Z is simple, then the 1-skeleton of Lk(v, ∂Z) is an empty simplex and
the only empty simplices which appear in links of vertices in ∂Z are of this form.
Hence, the condition of Theorem 4.4.1 that every empty simplex in Lk(v, ∂Z) has
an edge in Sv is precisely the condition that v is a vertex of a 2-dimensional cell
in M. �

In [Kh], Khovanov conjectures that for any real arrangement H associated to
an orthogonal reflection group W , the complement of any W -invariant union of
codimension-2 subspaces in H is a K(π, 1)-space. This follows immediately as a
special case of the following corollary.

Corollary 4.4.3. Let H be a simplicial real hyperplane arrangement in V . Let E
be any union of codimension-2 subspaces in H which intersects every chamber in a
codimension-2 subcomplex. Then V̂ = V −E is aspherical.

Proof. Suppose Z is the (simple) zonotope corresponding to H, and suppose X
is its dual polytope. Let A be the set of all parallel classes of faces in ∂Z which
are dual to the codimension-2 subspaces in E, and let M be the maximal partial
minefield associated to A. Since E intersects each chamber (i.e., the dual of a vertex
of Z) in a codimension-2 subcomplex, every vertex of Z is a vertex of some 2-cell
in M. By Corollary 4.4.2, (∂Z)#M is, therefore, nonpositively curved. Hence, by
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Lemma 3.5.3, the oriented blow-up (∂Z)�M is nonpositively curved and therefore
aspherical. Let ∂̂Z be the complement of all subspaces dual to faces in M (or
equivalently, the complement of all subspaces dual to elements of A). Then by
Lemma 3.5.2, ∂̂Z is aspherical. But the latter is homeomorphic to V̂ ∩ ∂X which
is a deformation retract of V̂ . Hence, V̂ is aspherical. �

5. Asphericity of blow-ups

Nonpositive curvature implies asphericity; however, a priori, a cubical complex
might be aspherical even if its natural piecewise Euclidean metric is not nonposi-
tively curved. (For example, the natural metric on the cubical subdivision of any
triangulation of an aspherical manifold will never be nonpositively curved.) In this
section we give some necessary conditions for the blow-up of a projective space to
be aspherical.

5.1. The number of factors

Suppose Z is a zonotope, G ⊂ CZ is a building set, and thatM is the corresponding
minefield. Also suppose that Z admits a maximal proper decomposition. By this we
mean that G<Z is a building set. Hence, the set {Z1, . . . , Zk} of maximal elements
in G<Z is a decomposition of Z (and k ≥ 2). (If Z 6∈ G, then its G-decomposition is
a maximal proper decomposition.) Let Mi be the minefield for Zi corresponding
to G≤[Zi] where [Zi] denotes the parallel class of Zi. Let ai : ∂Zi → ∂Zi and
a : ∂Z → ∂Z be the antipodal maps. We let P(Zi)# = (∂Zi)#/(ai)# and P(Z)# =
(∂Z)#/a#. (Note that P(Z)# can also be obtained by blowing up P(Z) along the
image of the minefield M.)

Lemma 5.1.1. P(Z)# is an RPk−1-bundle over P(Z1)# × · · · × P(Zk)#.

Proof. (Zi)# is a [−1, 1]-bundle over P(Zi)# and (ai)# acts on (Zi)# by multipli-
cation by −1 on each fiber. Hence, (Z1)# × · · · × (Zk)# is a [−1, 1]k-bundle over
P(Z1)# × · · · × P(Zk)# and a# = (a1)# × · · · × (ak)#. It follows that ∂Z# is a
∂([−1, 1]k)-bundle (i.e., an Sk−1-bundle) over P(Z1)# × · · · × P(Zk)#. Taking the
quotient by a#, we obtain the result. �

Corollary 5.1.2. Suppose Z has a maximal proper decomposition with respect to
G: Z = Z1 × · · · × Zk. Then πk−1(P(Z)#) contains an infinite cyclic subgroup. In
particular, if k ≥ 3, then P(Z)# is not aspherical.

Proof. In general, suppose E → B is a bundle with fiber F . If E → B admits a
section, then in the homotopy sequence of the fibration, the map πi(E)→ πi(B) is
surjective and, hence, πi−1(F )→ πi−1(E) is injective. In the case at hand, P(Z)#

is an RPk−1 bundle over B = P(Z1)# × · · · × P(Zk)#. Moreover, since P(Z)# is
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the projective space bundle associated to a sum of line bundles, there is a section
b 7→ [Lb] where L is the line bundle determined by one of the summands, Lb is
its fiber at b, and [Lb] is the corresponding point in projective space. Hence, the
infinite cyclic group πk−1(RPk−1) injects into πk−1(P(Z)#). �
Corollary 5.1.3. Let Z be a simple zonotope, P(Z) the associated zonotopal cell
structure on projective space, and P(Z)# the minimal blow-up (with respect to the
minefield corresponding to IZ). Then the following are equivalent:

(i) The cubical metric on P(Z)# is nonpositively curved.
(ii) P(Z)# is aspherical.
(iii) Z has fewer than 3-irreducible factors.

Proof. The universal cover of any complete, nonpositively curved space is con-
tractible so (i)⇒(ii). By the previous corollary, (ii)⇒(iii). By Theorem 4.3.1,
(iii)⇒(i). �

5.2. Retractions onto faces

In this subsection G is a partial building set for Z, M is the corresponding partial
minefield, and G ∈ M is a face of Z to be blown up. LetMG be the restriction of
the partial minefield to G (corresponding to G≤[G]) and let Z# and G# be the blow-
ups with respect to M and MG, respectively. Thus, G# is a subcomplex of Z#.
Likewise, if P(G)# and P(Z)# are the corresponding blow-ups of the associated
projective spaces, then P(G)# is a subcomplex of P(Z)#.

Theorem 5.2.1. G# is a retract of Z#, and P(G)# is a retract of P(Z)#.

What makes the proof difficult to write down is that the retraction is most
naturally defined in terms of the dual complexes X# and (XG)# (the dual of G#).
We take notation from Section 3.4: H is the hyperplane arrangement in V , C is the
dual arrangement. We identify C with CZ and G with the corresponding subset of C.
Also, let A ∈ C be the subspace corresponding to G. Put VG = V/A⊥. Then C≤A
is the dual of a hyperplane arrangement in VG. In addition, we have the convex
polytope X (= XH) in V and similarly XG (cut out by the induced hyperplane
arrangement) in VG.

Proof of Theorem 5.2.1. The natural projection V → VG induces a projection

π : V ×
∏
B∈G

P(V/B⊥)→ VG ×
∏

B∈G≤A

P(V/B⊥).

Recalling that X# is the closure of the image of X∩ V̂ in the domain, π restricts to
a map X# → (VG)#. Now choose a disk around the origin in VG of small enough
radius to be contained in π(X#) and scale XG so that it is contained in the disk.
Define retractions sG : VG → XG and (sG)# : (VG)# → (XG)# as in Lemma 3.4.1.
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The retraction r : X# → (XG)# is defined to be the composition (sG)# ◦ π|X# .
Noting that X# and (XG)# can be identified with the barycentric subdivisions of
Z# and G#, respectively, we see that r is indeed a retraction.

To see that P(G)# is a retract of P(Z)#, we can suppose without loss of gener-
ality that Z ∈ M. Then Z# is the canonical [−1, 1]-bundle over P(Z)# and G# is
the canonical [−1, 1]-bundle over P(G)#. The result then follows from the previous
paragraph. �
Remark 5.2.2. The map π in the previous proof factors as p ◦ q where the range
of q (= the domain of p) is the partial product

V ×
∏

B∈G≤A

P(V/B⊥),

and where p is the product of the projection V → VG with the identity map.
Moreover, q(V#) = A⊥ × (VG)# and the inverse image of each point by the map
p : q(X#)→ p ◦ q(X#) is a convex subset of A⊥. It follows that q(X#)→ (XG)#
is a homotopy equivalence.

Corollary 5.2.3. For any G ∈ M, the inclusion P(G)# → P(Z)# induces a
monomorphism of homotopy groups. In particular, if P(Z)# is aspherical, then so
is P(G)#.

Combining this with the results of the previous subsection we get some necessary
conditions for the asphericity of P(Z)#.

Corollary 5.2.4. If P(Z)# is aspherical, then (i) the minimal elements of G are
at most 2-dimensional and (ii) no G ∈M admits a maximal proper decomposition
G = G1 × · · · ×Gk with k ≥ 3.

Proof. Suppose A ∈ G is minimal and G is a representative face for the corre-
sponding parallel class. Then G# is an interval bundle over P(G)# = P(G) which
is aspherical if and only if G has dimension 1 or 2. For (ii), let A be the sub-
space corresponding to G. Applying Corollary 5.1.2 to the building set G≤A for
the induced hyperplane arrangement in V/A⊥, we have that G# is not aspherical
if k ≥ 3. �

References

[A] M.F. Atiyah. Convexity and commuting Hamiltonians. Bull. London Math. Soc 14
(1982), 1–15.

[AR] I. R. Aitchison and J. H. Rubinstein. An introduction to polyhedral metrics of non-
positive curvature on 3-manifolds. Geometry of Low-Dimensional Manifolds, Volume
II. Cambridge University Press, 1990, pp. 127–161.



546 M. Davis, T. Januszkiewicz and R. Scott Sel. math., New ser.

[BLSWZ] B. Björner, M. Las Vergnas, B. Sturmfels, N. White and G. Ziegler. Oriented Matroids.
Cambridge University Press, Cambridge, 1993.
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