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THE COHOMOLOGY OF A COXETER GROUP WITH
GROUP RING COEFFICIENTS

MICHAEL W. DAVIS

Introduction. Let (W, S) be a Coxeter system with S finite (that is, W is a
Coxeter group and S is a distinguished set of involutions which generate W, as in
[B, p. 11.]). Associated to (W, S) there is a certain contractible simplicial com-
plex E, defined below, on which W" acts properly and cocompactly. In this paper
we compute the cohomology with compact supports of E (that is, we compute
the "cohomology at infinity" of E). As consequences, given a torsion-free sub-
group F of finite index in W, we get a formula for the cohomology of F with
group ring coefficients, as well as a simple necessary and sufficient condition for
F to be a Poincar6 duality group.
Given a subset T of S denote by War the subgroup generated by T. (If T is the

empty set, then War is the trivial subgroup.) Denote by 6ef the set of those sub-
sets T of S such that War is finite; 6ef is partially ordered by inclusion. Let w6ef
denote the set of all cosets of the form wWar, with w W and T 6ef. w6ef is
also partially ordered by inclusion.
The simplicial complex E is defined to be the geometric realization of the

poset WS/’f. The geometric realization of the poset 6ef will be denoted by K.
For each s in S, let 6el be the subposet consisting of those T ,af- such that

s T and let Ks be its geometric realization. So, Ks is a subcomplex of K. (K is
called a chamber of E and Ks is a mirror of K.) For any nonempty subset T of S,
set

K is a contractible finite complex; it is homeomorphic to the cone on Ks.
For each w W, set

S(w) Sle(ws) <

T(w) S- S(w),

where g(w) is the minimum length of word in S which represents w. Thus, S(w) is
the set of elements of S in which a word of minimum length for w can end.
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For any locally finite simplicial complex Y, let C(Y) denote the cochain
complex of compactly supported simplicial cochains on Y. Its dual chain com-
plex, C(Y), of locally finite chains, is the chain complex of possibly infinite,
linear combinations of oriented simplices in Y.
We will use 1-I to denote a direct product and for a direct sum.

THEOREM A. H(E) g ) H*(K, KT(W)).
wW

The corresponding result for homology is

If (K, KT(w)

wW

COROLLARY. For any subgroup F offinite index in W,

wW

Using this result, one can determine when W is a virtual Poincar duality
group (that is, when the classifying space BF satisfies Poincar duality for any
torsion-free subgroup F of finite index in W).
The poset 6e>f, consisting of those T in 6ef other than the empty set, is iso-

morphic to the poset of simplices in a simplicial complex. We denote this sim-
plicial complex by L (or L(W, S)). Thus, the vertex set of L is S and a subset of T
of S spans a simplex if and only if T 6e>f.
The space X can be cellulated so that the link of each vertex is L (e.g., see

[D3], [M], or Section 6 of [CD]). Thus, X is a polyhedral homology n-manifold
if and only if L is a "generalized homology (n- 1)-sphere" in the sense that it
is a homology (n- 1)-manifold with the same homology as Sn-1. Moreover, it
is proved in [D1] that if L is a generalized homology (n- 1)-sphere, then the
singularities of Z can be resolved to get a contractible manifold X with a proper
cocompact W-action. Hence, if this condition holds, then, for any torsion-free
subgroup F of finite index in W, BF is homotopy equivalent to the closed mani-
fold X/F, and consequently W is a virtual Poincar duality group.
The next result states that this is essentially the only way in which W can be a

virtual Poincar6 duality group.

THEOREM B. Suppose W is a virtual Poincar duality group of dimension n.
Then W decomposes as a direct product W WTo x WT1, where WTI is finite and
where L (WTo, To) is a generalized homology (n 1)-sphere.

Theorem A is proved in 4 and Theorem B in 5. In 6 we show how to gen-
eralize Theorems A and B to groups constructed by the "reflection group trick"
(in Theorems 6.5 and 6.10, respectively).
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In [BB], Bestvina and Brady construct the first known examples of groups
that are type FP but not finitely presented. In Example 6.7, we use the reflec-
tion group trick to show how the Bestvina-Brady examples can be promoted to
examples of Poincar6 duality groups. This gives the following result.

THEOREM C. In each dimension >4, there are examples of Poincar duality
groups that are not finitely presented.

The classifying space of such a Poincar6 duality group cannot be homotopy
equivalent to a closed manifold (since the fundamental group of a closed mani-
fold is finitely presented).

There is a geometric context in which to view these results. G. Moussong
proved in [M] that a natural polyhedral metric on E is CAT(O). (This means
that, in addition to being contractible, E is nonpositively curved.) It follows, as in
[Dr], that E can be compactified by adding its ideal boundary E(), the space
of asymptoty classes of geodesic rays. Moreover, as explained in [Be2], E()
is a Z-set in E wE(). It follows that H’(E) I:I*-lE((3)) and H/,f(E)=
H,St_l(E(oc)), where I:I* and HS, denote, respectively, Cech cohomology and
Steenrod homology (as explained in IF]). Thus, W is a virtual Poincar6 duality
group of dimension n if and only if E() has the homology of an (n 1)-sphere.
"Nonresolvable" ANR homology manifolds that are homotopy equivalent to
S- are constructed in [BFMW]. A. D. Dranishnikov has pointed out that
Theorem B implies ’(oc) can never be such a space; that is, nonresolvable
homotopy spheres do not occur as boundaries of Coxeter groups.

Acknowledgements. I would like to thank A. D. Dranishnikov for an illumi-
nating observation, C. Gonciulea for several useful suggestions, and J. Harlander
for pointing out an error in the first version of this paper.

1. Preliminaries on Coxeter groups. The basic reference for this material is
Chapter IV of [B].

(W, S) is a Coxeter system and S(w), T(w) and 6ef are as in the introduction.
For each subset T of S, define the following subsets of W:

Ar (w Wle(wt) > e(w), for all t e T},
{w wle(tw) > e(w), for all t T},

wT= {w WIS(w T}.

An element w is in AT (resp., BT) if and only if any reduced word that repre-
sents it does not end (resp., does not begin) with an element of T.

In the first lemma we collect a few tautologies.

LEMMA 1.1. Let T be a subset of S and w W.
(i) WT c BS-T.

(ii) WT c As-T. In particular, w AT(w).
(iii) S(w) ifand only ifw 1.
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LEMMA 1.2 (Lemma 7.12 in [D1]).
a finite group).

For each w W, S(w) ff’f (i.e., Ws(w) is

LEMMA 1.3 (Exercise 3, p. 37 in [B]). Given an element w in W and a subset T
of S, there is a unique element p’r(w) (resp., pr(w)) of shortest length in the coset
wWr (resp., in Wrw). Moreover, the following statements are equivalent:

(i) p’r(w) w (resp., pr(w) w)
(ii) w Ar (resp., w Br );

(iii) For each u Wr, e(wu) e(w) + g(u) (resp., e(uw) e.(u) + e(w)).

LEMMA 1.4 (Exercise 22, p. 43 in [B]). Suppose T flY. Then there is a unique
element wr in Wr of lonlest length. Moreover, the following statements are true.

(i) WT is an involution.
(ii) For any x WT’, x wr if and only if S(x) T.

(iii) For any x Wr, e(wrx) e(wr) e(x).

LEMMA 1.5 (Lemma 2(iv) in [D2]). Suppose T 6af. For any v Wr and
x wr, e(vx) e(v) e(x).

L.MMA 1.6. Suppose T 6ef and w W. Then there is a unique element in
wWr of lon#est len#th (namely, the element pr(w)wr). Moreover, the followin#
statements are equivalent:

(i) w is the element of longest length in wWr;
(ii) w uwr, for some u e

(iii) T S(w).

Proof Let u p’r(w) be the element of shortest length in wWr. Then u Ar
(Lemma 1.3). The other elements in this coset have the form ux, with x e Wr. By
Lemma 1.3, (ux) (u) + (x); hence, uwr, where wr is the element of longest
length in Wr, is the unique element of longest length in wWr. Thus, (i) is equiv-
alent to (ii).

Suppose (ii) holds. Since for each T, e(uwrt) e(u) + e(wrt) e(u) +
e(wr 1 e(uwr 1, we have that T S(w). So (ii) = (iii). Conversely, sup-
pose (iii) holds. Set u wwr. Since wr Wr WSw), Lemma 1.5 implies that
g(u) g(w) -g(wr), and hence, u is the element of shortest length in wWr. So,
(iii) = (ii).

LEMMA 1.7 (Th6orme 2, p. 20 in [B]). For any subsets T and T of S,
Wr c Wr, WriT,.

L.MMA 1.8 (p. 18 in [B]). Suppose s,s e S and w W are such that w
and ws’ B{s). Then sw ws’.

For each pair of elements s, in S, let m(s, t) denote the order of st in W.

L.MMA 1.9. Suppose T 6ef and s S- T. Then swr wrs if and only if
re(s, t) 2 for all t T.
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Proof. If m(s, t) 2, then s and t commute. Hence, if re(s, t) 2 for all T,
then s and wr commute.

Conversely, suppose s and wr commute, where s T. Then (wT.s)=
e(wT-) + 1, so s S(wrs). Since wT.s swr, T c S(wT.s). Therefore, S(wT.s)
T (s}. We want to show that re(s, t) 2 for all T. Suppose, to the contrary,
that re(s, t) > 2, for some T. Since {s, t} S(wrs), and since S(wrs) generates
a finite subgroup (Lemma 1.2), re(s, t) v . Consider the dihedral group
generated by {s, t}. By Lemma 1.5, for any u W{s,t}, (wT.su) (wT.s)- (u).
In particular, consider the element u sts. Since re(s, t) > 2, (sts) 3. There-
fore, e((wrs)(sts))= (wrs)- 3. On the other hand, ((wrs)(sts))= e(wrts)=
(wTt) + 1 (wT) (wrs) 1, a contradiction.

The following lemma plays a key role in the proof of Theorem B in 5.

LEMMA 1.10. Suppose that for some T e if’f, WT is a singleton. Then W
decomposes as a direct product: W WS-T X WT.

Proof Let wr be the element of longest length in Wr. By Lemma 1.4(ii),
S(w,) T, and hence, since WT is a singleton, W’= {w-}. Let s S-T.
Clearly, T S(swr) {s} w T, and since swr W, we must have S(swr)=
{s} w T. Thus, g(s(w,s)) g((swT,)s) g(sw,) 1 g((sw,) -1) 1 g(wrs)-
1. In other words, wT,s B(s}. Since wr B(}, Lemma 1.8 implies that
sw, wrs, and then Lemma 1.9 implies that re(s, t) 2 for all in T. Since this
holds for each s S- T, the Coxeter system is reducible (if T is nonempty) and
W decomposes as W Ws-7" x Wr (by Proposition 8, p. 22 in [B]).

{}2. Preliminaries on simplicial complexes. Let L be a simplicial complex.
Denote by V(L) the vertex set of L and by P(L) the set of simplices in L together
with the empty set. P(L) is partially ordered by inclusion. Throughout this sec-
tion, we shall identify any simplex in L with its vertex set. Thus, given a subset T
of V(L), T P(L) if and only if T spans a simplex in L or T .

Let P be any poset. Given p P, set P<p {x, PIx < p}. The subposets
P>p, P<p and P>p are similarly defined. P is an abstract simplicial complex if it is
isomorphic to P(L)> for some simplicial complex L; L is called the realization
of P.
For any T P(L), the poset P(L)>r is an abstract simplicial complex; its reali-

zation is denoted Lk(T,L) and is called the link of T in L. (If T , then
Lk(T, L) L.) In fact, Lk(T, L) can be identified with the subcomplex of L con-
sisting of all simplices T such that T c T- and T w T spans a simplex in L
(this simplex is called the join of T’ and T).
The derived complex of a poset P, denoted by P’, is the set of all finite chains

in P, partially ordered by inclusion. It is an abstract simplicial complex. The oeo-
metric realization of P, denoted geom(P), is defined to be the realization of P’.
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Given a simplicial complex L, we define another simplicial complex K and a
subcomplex cgK by

K geom(P(L))

t3K- geom(P(L)>).

Then dK is isomorphic to the barycentric subdivision of L, and K is the cone
on cOK (the empty set provides the cone point). For any T P(L), define sub-
complexes KT and dKT of K by

KT geom(P(L)> T)

CKT geom(P(L)>T).

KT is called the dual face to T; it is isomorphic to the cone on COKT, and g3KT is
isomorphic to the barycentric subdivision of Lk(T, L). If v is a vertex, write Kv
instead of K(v). Thus, Ko is the closed star of v in the barycentric subdivision of L.
For any nonempty subset J of V(L), set

3. The simplicial complex X. (W, S) is a Coxeter system and 6af and W6"f

are the posets defined in the introduction. 6e>f is an abstract simplicial complex;
its realization is denoted L (so that V(L) S and P(L) 6"f). Also,

K geom(6ef) and

g geom(W6af).

(So, K is the cone on the barycentric subdivision of L.) The group W acts on Z via
simplicial automorphisms.
The natural projection W,.V’f 6af defined’by wWT T induces a projection

Z- K that is constant on W-orbits and induces an identification Z/W K.
The embedding f --’+ W,9f defined by T - WT induces an embedding K
which we regard as an inclusion. A translate of K by an element w in W is
denoted wK and called a chamber of g.
A simplex cr in K corresponds to chain To < T1... < Tn in sef. Set S(a) To.

(So, Ks(,) is the smallest dual face which contains a.) The stabilizer of
and this group fixes Ks(,) pointwise.
For any subset X of W, define a subcomplex E(X) of g by

x(x) 0 w C.
wX
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We are particularly interested in the subcomplexes E(Br), where Br is as defined
in 1. We shall call such a subcomplex a positive sector. (It is "positive" because it
contains the fundamental chamber K.) Similarly, for each s S, E(B(s}) is a posi-
tive half-space. The involution s acts on Z as a "reflection" interchanging the half-
spaces E(B(s)) and E(sB(s)). For each subset T of S, E(Br) is the intersection of
the positive half-spaces, Z(B(s)),s T.
The map pr" W Br, defined in Lemma 1.3, induces a projection

rr E E(Br) which sends a simplex wtr to pr(w)a. The map nr is constant on
Wr-orbits and induces an identification Z/Wr Z(Br ).

[}4. The isomorphism p. For any subset T of S, we have that
E(Br {1)) K Ks-r. Hence, C*(E(Br),E(Br {1})) can be identified
with C*(K, KS-r). Let jr denote the inclusion, C*(K, KS-r)=C*(E(Br),
Z(Br-(1})) C(E(Br)). If Wr is finite, then the projection map nr" E-
Z(Br) is finite-to-one; hence, it induces a cochain map C(E(Br)) C(E).
So, for each T 6ef, we have the cochain map Pr Jr’C*(K, Ks-r) --C(E). For each w W, define Pw C*(K, Kr(w)) C’(E) by

-1
Pw W o ps(w),

where w-1 C(E) C(E) is the automorphism induced by translation by w-1.
If a e Cck(E) and z is an oriented k-simplex in E, then denote the value of a on z

by (a,

LEMMA 4.1. Suppose that v, w W, that a Ck(K, KT(w)), and that tr is an
oriented k-simplex in K. Then

(a, ) if v wWs(w)
(Pw(a),

0 otherwise.

Consequently,
(i) (pw(a), wa) (a, a), and

(ii) /fg(v) > g(w) anct v : w, then (p(a), va) O.

Proof. By definition,

(pw(a), vtr)
(a,

0

if Ps(w) (w-lv) Ws(r
otherwise.

Suppose (a, tr) 4: 0. Then S(tr) c S(w). (If S(a) is not contained in S(w), then a
is contained in Kr(w) and consequently, (a, tr) 0.) Hence, Ps(w)(w-lv) Ws(w),
that is, v wWs(w). This proves the first formula in the lemma. Formula (i)
follows immediately. By Lemma 1.6, w is the element of longest length in
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wWs(w). Hence, if v # w and g(v) > g(w), then v 6 wWs(w). Therefore, by the first
formula, (pw(a), va) O.

Define

p. c;(x)
weW

to be the sum of the Pw.
Theorem A is an immediate consequence of the following result, after taking

cohomology.

THEOREM 4.2. p is an isomorphism.

Proof. The proof is similar to the argument on page 101 of [D2]. Order the
elements of W" wl, w2,..., so that e(wi) < e(Wi+l). Set

Zn ((wili > n}),

that is, En is the union of chambers wiK, > n. First observe that if < n, then, by
part (ii) of Lemma 4.1, the image of Pw, is contained in C*(Z, Zn). We shall prove,
by induction on n, that

i=n i=n

(1) @Pw," @C*(K, KT(w’)) -+ C*(Z, Zn)
i=1 i=1

is an isomorphism. Since C(Z) is the direct limit of the C*(Z, Xn) as n --* , the
theorem follows.

Since Z0 Z, statement (1) holds trivially for n O. So, suppose n > 1 and
that (1) holds for n- 1. Consider the triple (Z,Z,_l,X,). We have a short exact
sequence,

(2)

TO simplify notation, put w Wn. For any m > n, Wm K c wK c wKT(w). Hence,
C*(En-l,En) can be identified with C*(wK, wKT(w)). Translation by w- gives an
isomorphism,

C*(wK, wKT(w)) - C*(K, KT(W)).

Let 2 denote the composition of the natural projection C*(Z,,) C*(Xn_l,X.)
with this isomorphism. So, (2) can be rewritten as

0 --+ C*(Z, Zn_I) ----+ C*(Z, Zn) C*(K,KT(w)) -+ O.

By part (i) of Lemma 4.1, the map Pw" C*(K, Kr(w)) C*(Z,Yn) splits 2.
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Therefore,

C*(Z,Z._) ( C*(K,Kr(w)) , C*(Z,Z.),

where the first factor is mapped by the inclusion and the second by Pw. Applying
the inductive hypothesis, we see that (1) holds.

Remark 4.3. Let Z(Wr) denote the free abelian group on Wr. Then the for-
mula in Theorem A can be rewritten as

H(E) ) E(WT) (R) H*(K, KS-T).
Tf

H*(K, KT(w)).COROLLARY 4.4. (i) H*(W;W) ww
(ii) If r is a torsion-free subgroup offinite index in Ire", then

H*(K, KT(W)).
wW

Proofi Statement (ii) follows from Proposition 7.5, p. 209, in [Br], and (i) fol-
lows from Exercise 4 on the same page.

5. Generalized homology spheres. In the first part of this section we return
to the general situation of 2: L is any simplicial complex, and K geom (P(L)).
Notation is as in 2; in particular, if T P(L), then T is the vertex set of a
simplex in L or T .

Let R be a commutative ring with unit. Then L is a #eneralized homology
m-sphere over R if for each T P(L) (including T ) we have that

H,(Lk(T,L); R) - H,(sm-Card(T); R).

Thus, a generalized homology m-sphere is a polyhedral homology m-manifold with
the same homology as Sm.
We say that (K, K) is a generalized homology n-disk over R if for each

T P(L),

H.(KT, t3KT; R) H.(Dn-k, sn-k-1; R),

where k Card(T). (In particular, when T , this says that (K, cK) has the
same homology as (Dn, S"-).)

Since t3Kr is the barycentric subdivision of Lk(T,L), it is obvious that
(K, t3K) is a generalized homology n-disk if and only if L is a generalized
homology (n- 1)-sphere.
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Here is a third variation of this condition. Given an integer n > 0 and a com-
mutative ring R, we say that (K, t3K) satisfies hD(n; R) if the following condition
holds:
hD(n; R):

(a) for any T P(L), T # ?J, Hi(K, KV(L)-r; R) 0, for all > 0;

(b) Hi(K, t3K; R) I O’ ivan
R, i=n.

In other words, for each T P(L)>, (t3K, Kv(r’)-T) has the same homology as
(sn-l,Dn-1), while for T , t3K has the same homology as Sn-1.

LEMMA 5.1. Let L be a simplicial complex and let K geom(P(L)). The fol-
lowin# statements are equivalent:

(i) L is a #eneralized homolo#y (n- 1)-sphere over R;
(ii) (K, t3K) is a #eneralized homology n-disk over R;

(iii) (K, t3K) satisfies hD(n; R).

Proof. As was previously observed, (i) and (ii) are equivalent. We first show
that (iii)=(ii). So, suppose (K, dK) satisfies hD(n;R). We must show that
(KT, t3KT) has the same homology as (Dn-k, sn-k-1), where k Card(T). This
holds for T by part (b) of hD(n; R).

First consider the case where T {v}, v a vertex in L. Set L Lk(v,L)
and g _= geom(P(/,)). Then K is isomorphic to g, and for any T P(),
(K, KV(t’)-r) is isomorphic to (Kv, Kv c KV()-({v}r)). By excision, H,(Ko, Ko c
KV()-({o}r)) H,(KV()-r, KV(t’)-({v}r)). By hD(n; R), KV(’)-({v}r) is acyclic,

and for T :/: j?J, KV()-r is also acyclic. Thus, for T # , Hi(K,gV()-r) -0
for all i. When T=, we have Hi(,c3g)=Hi(KV(t’),KV(r’)-{}). Since
Kv(L)(= t3K) has the same homology as Sn-, and KV(t’)-{v} is acyclic, (g, t3g) has
the same homology as (Dn-l, sn-2). Thus, (, t3) satisfies hD(n- 1; R).
Next suppose that T is the vertex set of an arbitrary simplex in L and

that Card(T)= k. We may suppose by induction that (Kr,,Kr,) satisfies
hD(n- k’;R) for all T’ P(L) with k’= Card(T’) and k’ < k. Let T’ be the
vertex set of a codimension-one face of the simplex spanned by T so that
T (v} u T’ (i.e., T is the join of v and T). There is a natural identification
Lk(T,L) Lk(v, Lk(T’,L)). Then hD(n- k- 1; R) holds for (Kr,, t3Kr,) by
inductive hypothesis and hence, for Lk(T, L) by the argument in the preceding
paragraph. In particular, (Kr, t3Kr) has the same homology as (Dn-k,sn-k-)
and therefore, (K, t3K) is a generalized homology n-disk.

Finally, we need to see that (i) = (iii). Suppose that L is a generalized homol-
ogy (n- 1)-sphere and that T P(L). If T , then Kv(r) (= t3K) has the
same homology as Sn-1. If T , then Kr is a regular neighborhood of the
simplex T in the barycentric subdivision of L; hence, Kr is contractible. Since L
is a polyhedral homology (n- 1)-manifold, Kr is a homology (n- 1)-manifold
with boundary, its boundary being KTKV(L)-T. By Poincar6 duality,
(KT, KTc Kv(L)-T) has the same homology as (on-X,sn-2). Hence, H,(Kv(L),



COHOMOLOGY OF A COXETER GROUP 307

KV(L)-T) H,(KT, KT Kv(L)-T) -H,(Dn-I,sn-2) which implies condition
hD(n; R). l-]

Definition 5.2. Let R be a commutative ring and F a torsion-free group. Then
F is of type FP over R if R (regarded as a trivial RF-module) admits a finitely
generated projective resolution of finite length. F is of type FL over R if R admits
a finitely generated free resolution of finite length. The group F is an n-dimen-
sional Poincar duality #roup over R if it is of type FP over R and if

Hi(F;RF)=0; i:n

R; i=n

where F acts on R via some homomorphism wl F - { 1}. A group G is a vir-
tual Poincar. duality #roup over R if it contains a torsion-free subgroup F of finite
index such that F is a Poincar6 duality group over R. (If we omit reference to R,
then R 7z..)

If F acts freely and cellularly on a CW-complex U, with U/F compact, and if
U is acyclic over R, then F is of type FL over R. (The cellular chain complex,
C.(U), provides the free resolution.) In particular, if BF is homotopy equivalent
to a finite complex, then F is of type FL (since the universal cover of BF is con-
tractible). Conversely, if F is finitely presented and of type FL, then BFis homo-
topy equivalent to a finite complex.

It can be shown that F is a Poincar6 duality group if and only if BF satisfies
Poincar6 duality with respect to any local coefficient system (see Theorem 10.1,
p. 222 in [Br]). So, if BF has the homotopy type of a closed manifold (or even a
homology manifold), then F is a Poincar6 duality group. Similarly, if BF has the
homotopy type of a closed homology manifold over R, then F is a Poincar6
duality group over R.

Remark 5.3. In [Fa] Farrell proved that, for R a field, if Hi(F; RF) -0 for
all < n, and if Hn(F; RF) is nonzero and finite dimensional over R, then F is a
Poincar6 duality group over R.

Example 5.4. In Lemma 11.3 of [D1], it is proved that given any finite sim-
plieial complex X, there is a Coxeter system (W, S) with L( L(W, S)) equal to
the barycentrie subdivision of X. For example, we can find (W, S) with L a lens
space S2k-1/Zm or the suspension of such a lens space. Such an L will be a gen-
eralized homology sphere over .[1/m]. Since E has a cell structure in which the
link of each vertex is isomorphic to L, E is a homology manifold over Z[1/m]
and consequently, W is a virtual Poinear6 duality group over Z[1/m]. On the
other hand, for m 1, H*(K, OK; ) -H*-I(L; 7/,) has nontrivial m-torsion and
hence, by Theorem A, so does H(E; Z). Thus, W is not a virtual Poinear6 dual-
ity group over
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The following result is a more precise version of Theorem B in the Intro-
duction.

THEOREM 5.5. A Coxeter group W is a virtual Poincar duality group of
dimension n over a principal ideal domain R if and only if W decomposes as a
direct product W WTo X WT1 with T1 of, SO that the simplicial complex Lo
associated to (WT0, To) is a generalized homology (n- 1)-sphere over R.

Proof First suppose that W decomposes as a direct product as in the theo-
rem and that L0 is a generalized homology (n- 1)-sphere over R. Then Z0
(-- Z(WT0, To)) is a homology n-manifold over R. Hence, WTo is a virtual Poin-
car6 duality group over R and, since WTI is finite, so is W.

Conversely, suppose that W is a virtual Poincar6 duality group over R of
dimension n. Then

{0,R, i= n.

By Theorem 4.2,

H(E; R) 0) H* (K, Kw(w); R).
weW

Since R is a principal ideal domain, only one summand on the fight-hand side can
be nonzero. Therefore, there is a T1 6ef such that

(a) if T e 6ef and T 4: TI, then Hi(K, KS-r; R) 0 for all i;

(b) Hi(K, KS-T R) I O’ 4: n
R, n;

(c) WT is a singleton.
According to Lemma 1.10, (c) implies that W decomposes as a direct product
W WTo x WT. It follows that

K=KoxK

Z=Zo
L L0 * L1 (the join of L0 and Lx),

where Ki, Ei, Li are the complexes associated to (WT,, Ti). Moreover, L is a
simplex, while K1 and E1 are both cells. Thus,

(a)’ if T 6t’f(WTo, To) and T , then Hi(Ko, K-T;R) 0 for all i, and

(b)’ n(Ko, tKo; R) { 0; n
R; i=n.

That is to say, Ko satisfies hD(n; R). By Lemma 5.1, Lo is a generalized homology
(n- 1)-sphere.
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Suppose W Wr0 x Wrl is a virtual Poincar6 duality group of dimension n
over Z/2. Then L0 is a generalized homology (n- 1)-sphere over E/2 and the
fixed point set of each s To on E(Wr0, To) is a contractible /2-homology
(n-1)-manifold. Since Cw(s), the centralizer of s in W, acts properly and
cocompactly on this fixed set, it follows that Cw(s) is a virtual Poincar6 duality
group of dimension (n- 1) over E/2. (This observation is due to S. Prassidis.) If
s e T1, then Cw(s) is of finite index in W and, hence, is a virtual Poincar6 duality
group of dimension n over /2. These observations lead to the following corol-
lary of Theorem 5.5.

COROLLARY 5.6. Suppose that a Coxeter #roup W acts effectively, properly
and cocompactly on a Z/2-acyclic n-manifold M. Then W acts as a group #en-
crated by reflections in thefollowing sense. For each s S, let Ms denote the fixed-
point set of s on M. Then Ms is a Z/2-acyclic, Z/2-homology (n- 1)-manifold
which separates M, and s interchanges the two components ofM- Ms.

Proof. By Smith theory, the fixed point set of any involution in W is 7z/2-
acyclic and a ./2-homology manifold. Since M is a 7z/2-acyclic manifold and W
acts properly, effectively and cocompactly, W is a virtual Poincar6 duality group
of dimension n over /2. Hence, W WT-0 x WT1, as in Theorem 5.5. For any
s S, since Cw(s) acts properly and cocompactly on Ms, and since Ms is Z/2-
acyclic, we see that the dimension of Ms must equal the virtual cohomological
dimension of Cw(s) over Z/2. If s e T1, this virtual cohomological dimension
is n; hence, Ms M. Since the action is supposed to be effective, this can
only happen if T . So, W Wr0. If s To, then dim Ms n- 1. Then, by
Alexander duality, M- Ms has two components and these must be interchanged
by s. [--!

COROLLARY 5.7. Suppose that M is a symmetric space ofnoncompact type, and
that a Coxeter group W is a discrete, cocompact subgroup of the group of iso-
metrics of M. Then M must be a product of a Euclidean space and (real) hyper-
bolic spaces.

Proof. Since W acts on M by isometries, the fixed-point set of each s in S
must be a totally geodesic submanifold of M. By the previous corollary, this
submanifold must be of codimension one. But symmetric spaces of noncompact
type do not contain totally geodesic submanifolds of codimenion one unless each
irreducible factor is IR or a real hyperbolic space.

Remark 5.8. An m-dimensional simplicial complex L is a Cohen-Macaulay
complex if (a) every simplex is contained in an m-simplex, (b) the reduced homol-
ogy ,(L) vanishes for i m, and (c) for each simplex T in L, i(Lk(T,L))
vanishes for i m- Card(T). A torsion-free group F of type FP is a duality
group of dimension n, if Hi(F;;EF) vanishes for i-n. It then follows that
Hi(F;M) Hn-i(F;D (R) M) for any F-module M, where D Hn(F;F). (See
Theorem 10.1, p. 220, in [Br].) It follows easily from Theorem A that if L(W, S)
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is a Cohen-Macaulay complex of dimension (n- 1), then W is a virtual duality
group of dimension n.

6. The reflection group trick. Suppose we are given the following data:
(1) a CW-complex X, a group n, and an epimorphism (p rl(X) -, n;
(2) a Coxeter system (W, S) with associated simplicial complex L; and
(3) a continuous map f- L --, X.

Replacing f by a cellular approximation and X by the mapping cylinder of f, we
can assume that L is a subcomplex of X and that f is the inclusion.
One can construct a W-space f from these data in exactly the same manner

as Z is constructed from K. Thus, f- (W x X)/,-,, where the equivalence rela-
tion is defined as follows: for each s S, let Xs denote the closed star of s
in the barycentric subdivision of L, and for each x X, let S(x) be the set of s
such that x belongs to Xs; then (w,x),-, (w’,x’) if and only if x x’ and
w-lw . l/V_s(x).

Let p" X - X be the covering space associated to q" nl(X) r. Thus, acts
on 2 as the group of deck transformations. Let L denote the inverse image of L
in 2. The vertex set of L (i.e., p-1 (S)) is denoted . We define a Coxeter matrix
on as follows. Suppose , are elements of lying over s and t in S, respec-
tively. Define m(, ) to be m(s, t) (the order of st in W) if or if and are
connected by an edge in L and to be c otherwise. Denote the resulting Coxeter
system by (W, S); its associated simplicial complex is clearly L. The fundamental
group n of X acts on (via deck transformations) and hence on I. The group G
is defined to be the semidirect_product_: G W > n.
We can construct a space f from W and X exactly as before. For each t S,

let )t denote the closed star of t in the barycentric subdivision of L. Then
f (W x X)/,,,_, where the equivalenc_e relation is defined as before. The group

acts freely on f: if r and [, ] f, then . [, ] [_0(), ], where 0 is
the automorphism of W induced by . The orbit sp_ace f/z is identified with
f via the natural surjection # x W x X. (So, f is the covering space of
f associated to the epimorphism p o r." nl(f) r, where r" X denotes
natural retraction.) Furthermore, the actions of ld and r generate an action
of the semidirect pro_duct G on and /G -X. (So, G is the gr_oup of
homeomorphisms of f consisting of all lifts of the W-action on f to f.)

Remark 6.1. Actually one can carry out the above construction under
slightly weaker assumptions: the space L need not be the simplicial complex
associated to a Coxeter system. All one need assume is that (a) L is the simplicial
complex associated to a Coxeter system (I’, , (b) L/n L, and (c) the Coxeter
matrix m(,) is n-equivariant.

For the remainder of the paper we shall assume the following.

HYPOTHESES 6.2. (i) The set S is finite (i.e., the Coxeter #roup W is finitely
generated).
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(ii) X is a finite complex.
(iii) The covering space X is acyclic.

Remark 6.3. Hypotheses (ii) and (iii) arc satisfied if X is a finite asphcrical
complex and 0" rl (X) - r is the identity (so that , is the universal covering
space).

TI-IEOREM 6.4. Under Hypotheses 6.2 the following statements are true.
(i) is acyclic.

(ii) G is virtually torsion-free.
(iii) If r’ is a torsion-free subgroup offinite index in G, then F is of type FL

(and then, a fortiori, of type FP).
(iv) IfX is aspherical and (" rl (X) -- r is the identity and r" is as above, then

Br" is homotopy equivalent to a finite complex.

Proof (i) That is acyclic follows from [D1] or [D2]. (Strictly speaking,
Theorem 10 in [D1] is stated only for finitely generated Coxctcr groups; how-
ever, as pointed out in [DL], the same argument works for (I, ), when is
infinite).

(ii) Since S is finite, W has a faithful representation into GL(m; lR) (where
m card(S)). By Selberg’s Lemma, this implies that W is_virtually torsion-free.
Let F’ be a torsion-free subgroup of finite index in W, let 1" be its inverse image
in IYV, and F its inverse image in G. The natural surjection IYg -, W is injective
when restricted to any finite subgroup, so " is torsion-free. Since r acts freely on
the finite-dimensional acyclic complex ,, it is torsion-free. It follows easily that
F r’ > zr is also torsion-free.

(iii) C,(fl) provides the desired free resolution of Z over zr’.
(iv) If x is aspherical and rl(X)= r, then is contractible (by [D1]) and

BF /F, which is a finite complex.

The proofs of Theorem 4.2 and Corollary 4.4 go through to give the following.

THEOgEM 6.5. Under Hypotheses 6.2,
(i) H() @wg,H(f(,f(r(w));

(ii) for any suboroup F offinite index in G,/-/*(F; F) =/-/(n).
Remark 6.6. We call the above construction the "reflection group trick." It

has been used in the following context. Start with a finite asphcrical complex Y
with fundamental group zr. Then thicken Y to a compact manifold with bound-
ary X (e.g., embed Y in Euclidean space and let X be its regular neighborhood).
Take (" rx (X) r to be the identity. Let L be a (sufficiently fine) triangulation
of X, and let (W, S) bc a Coxcter system with associated simplicial complex
L. Finally, let F’ be a torsion-free subgroup of finite index in W. Then fl/F’ is
a closed manifold. It is asphcrical since its universal cover fl is contractible
(by Theorem 6.4(i)). The natural retraction fl X descends to a retraction
fl/F’ - X. Thus, F r(/F’) retracts onto r. This reflection group trick was
introduced by Thurston in the context of hyperbolic 3-manifolds. In the above
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generality it was explained in Remark 15.9 of [D1]. It can be-used to constuct
examples of closed aspherical manifolds with fundamental groups having vari-
ous interesting properties. The idea is to start with a group n such that (a) Br is
homotopy equivalent to a finite complex Y and (b) n has some property which
also holds for any group which retracts onto it. The reflection group trick then
yields f/F’, the fundamental group of which retracts onto rr. For example, this
idea is used in [Me] to show that the fundamental group of an aspherical mani-
fold need not be residually finite. A slight variation of this construction gives the
following.

Example 6.7. In [BB] Bestvina and Brady construct an example of a finite 2-
complex Y, a group r and an epimorphism o’nl() r such that (i) the asso-
ciated covering space Y is acyclic and (ii) the group rr cannot be finitely pre-
sented. Such a group was the first example of a group of type FP which is not
finitely presented. As in the previous remark, thicken to a compact n-manifold
with boundary X (we can take X to be 4-dimensional) and apply the reflection
group trick. Let F F > rr be a torsion-free subgroup of finite index in G as in
the proof of Theorem 6.4(ii). Since f is an acyclic manifold,

i=nHic(6)= 0; ivan,

so F is a Poincar6 duality group of dimension n. Since rr is a retract of F, and n
cannot be finitely presented, neither can F (see Lemma 1.3 in [W]). This example
proves Theorem C.

We turn now to the question of finding necessary and sufficient conditions for
G to be a virtual Poincar6 duality group.

Definition 6.8. Suppose that A is a finite CW complex, that B is a sub-
complex, that rr is a group, and that (" n (A) r is an epimorphism. Then any
Zn-module gives a local coefficient system on A. We say that (A, B) is a Poin-
car. pair over n (of dimension n) if there is a class # Hn(A,B; D) (where D
denotes a local coefficient system on A defined via some homomorphism
wl n (A) { +_ 1 }) such that

cl Hi(A; M) -, Hn-i(A, B; D (R) M)

is an isomorphism for all and for any Zr-module M. If rr rq (A) and is the
identity, then (A, B) is simply a Poincar. pair.

For example, a compact manifold with boundary is a Poincar6 pair.

LEMMA 6.9. Suppose that (A,B) is a pair of finite CW complexes, that
(a’r(A) r is an epimorphism, that . is the covering space of_ A defined by ,
and that is the inverse image ofB in ,. Suppose further that A is acyclic. Then
the following two statements are equivalent.
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(i) (A, B) is a Poincar pair over x ofdimension n.

f; i=n
(ii) H(A,B) O; # n.

The proof in the absolute case (where B ) can be found on pages 220-221
of [Br], and, in fact, the argument given there proves the lemma above.

THEOREM 6.10. Assume that Hypotheses 6.2 hold and that the group is non-
trivial. Then G is a virtual Poincar. duality group ofdimension n ifand only if

(a) L is an (n- 1)-dimensional homology manifold, and
(b) (X, L) is an n-dimensional Poincar pair over .
Proofi If conditions (a) and (b) hold, then it is easy to see that t) is a Poincar6

space, as is ta/F for any torsion-free subgroup F of finite index in W, and hence,
that G is a virtual Poincar6 duality group. (This was previously observed in
[DH].) Conversely, suppose that G is a virtual Poincar6 duality group. Then
Hic() 0 for n and H() Z. As in the proof of Theorem 5.5, Theorem
6.5 implies that there is a subset of g such that f is a singleton. Since
generates a finite subgroup so does its image T in W. Suppose T :# 5. Then W
splits as a nontrivial direct product and L L0 L where L is a simplex. Since
this implies that L is simply connected, and since r is nontrivial, L has many
components, each of which would contribute to H’(f), con_tradicting_ t_he
assumption that it is 7z. Therefore, T and are empty, and Hcn() H’(X, L).
So, Lemma 6.9 implies that (X, L) is an n-dimensional Poincar6 pair. Moreover,
the argument of Lemma 5.1 shows that L (and hence L) is an (n- 1)-dimen-
sional homology manifold. [

Suppose we want to use the reflection group trick to construct an example of a
finitely presented Poincar6 duality group that is not the fundamental group of a
closed aspherical manifold. If we require that nl(X) r, so that X is aspherical,
then Theorem 6.10 states that (X, L) must be a Poincar6 pair and that L must be
a homology manifold. So, essentially,L is a manifold. But the problem of finding
such a pair (X, L) that is not homotopy equivalent rel L to a compact manifold
with boundary is just the relative version of the original problem.
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