CORRECTION TO "THE COHOMOLOGY OF A COXETER GROUP WITH GROUP RING COEFFICIENTS"

MICHAEL W. DAVIS

In Remark 5.8 on pages 309-310 of [1], I wrote, "It follows easily from Theorem A that if L(W, S) is a Cohen-Macaulay complex of dimension (n - 1), then W is a virtual duality group of dimension n." In fact, as I explain below, a further hypothesis is required.

Suppose that L is an *m*-dimensional simplicial complex, that T is (the vertex set of) a simplex in L, and that |T| denotes the number of vertices in T. A neighborhood of the barycenter of T in L is homeomorphic to the cone on $S^{|T|-1}Lk(T,L)$, the (|T|-1)-fold suspension of the link of T. Let $c_T: L \to S^{|T|}Lk(T,L)$ be the map that is the identity on this neighborhood and collapses its complement to a point. Consider the following condition:

(d) for each simplex T in L, $c_T^*: H^*(S^{|T|}Lk(T,L)) \to H^*(L)$ is injective.

Not every Cohen-Macaulay complex L satisfies condition (d). For example, if L is a triangulation of an *m*-disk, then condition (d) fails when T is a vertex in its interior.

The correct statement for Remark 5.8 is that if L(=L(W,S)) is an (n-1)dimensional Cohen-Macaulay complex for which condition (d) holds, then W is a virtual duality group of dimension n. To see this, first note that $H^*(K^S) \cong$ $H^*(L)$ and that, by excision, $H^*(K^S, K^{S-T}) \cong \overline{H}^*(S^{|T|}Lk(T,L))$ for any simplex T in L (i.e., for any $T \in \mathscr{G}_{\geq \emptyset}^f$). So, condition (d) is equivalent to the condition where $H^*(K^S, K^{S-T}) \to \overline{H}^*(K^S)$ is injective. Thus, if L is Cohen-Macaulay and condition (d) holds, then $\overline{H}^*(K^{S-T})$ is concentrated in dimension (n-1) for any $T \in \mathscr{G}^f$. It then follows from Theorem A that $H_c^*(\Sigma)$ is concentrated in dimension n, and hence, W is a virtual duality group.

References

 M. W. DAVIS, The cohomology of a Coxeter group with group ring coefficients, Duke Math. J. 91 (1998), 297-314.

DEPARTMENT OF MATHEMATICS, THE OHIO STATE UNIVERSITY, 231 WEST 18TH AVENUE, COLUMBUS, OHIO 43210-1101, USA; mdavis@math.ohio-state.edu

Received 13 March 1998.