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SINGULAR METRICS OF NONPOSITIVE CURVATURE ON 

BRANCHED COVERS OF RIEMANNIAN MANIFOLDS 


By RUTH CHARNEY and MICHAEL DAVIS 

Introduction. According to the well-known Comparison Theorems of Alex- 
androv and Topogonov, the statement that the sectional curvature of a smooth 
Riemannian manifold M is bounded above by a real number x is equivalent 
to a statement concerning small geodesic triangles in M. One such statement, 
the so-called "CAT(x)-inequality", compares distances between points in such 
a triangle with the corresponding distances in a "comparison triangle" in the 
complete, simply connected, 2-manifold of constant curvature X. The advantage 
of this characterization of bounded curvature is that it makes sense in a context 
much more general than that of Riemannian metrics; one needs only the concept 
of a "geodesic space", that is, a metric space in which any two points can be 
connected by a geodesic segment. Such a geodesic space then has "curvature 
< X" if, locally, geodesic triangles satisfy the CAT(x)-inequality. Thus begins 
one thread in the spectacular web of ideas introduced by Gromov in his 1987 
paper [GI. The goal of the present paper is to further develop this thread. 

The curvature bound of most interest to us is x = 0. The fundamental re- 
sult about complete nonpositively curved Riemannian manifolds is the Cartan- 
Hadamard Theorem. It implies, in particular, that such a manifold is aspherical. 
Nonpositive curvature also has interesting group theoretic implications for the 
fundamental group of a closed manifold, e.g., the group is combable, has solvable 
word problem, satisfies a quadratic isoperimetric inequality (cf. [AB]), and every 
solvable subgroup is virtually abelian (a theorem of Lawson-Yau and Gromoll- 
Wolf, cf. [CE]). Moreover, if the curvature upper bound x satisfies x < 0, then the 
group is hyperbolic in the sense of Gromov [GI and, as such, satisfies a wealth of 
other group theoretic properties. The more general notion of nonpositive (or neg- 
ative) curvature for a geodesic metric space (defined via the CAT(x)-inequality) 
is sufficiently strong for all of the above results to hold (see [GI, [GH] and [Br]). 

The current paper was motivated by the following question. Suppose that M 
is a smooth Riemannian manifold and that T :M -+ M is a branched covering of 
M by a manifold M. The metric on M can be pulled back, via T, to a (singular) 
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metric on M. When does this induced metric on M have curvature bounded from 
above? (Or, more generally, when does an orbifold structure on M have curvature 
bounded from above?) Gromov [GI observes that if the sectional curvature of M is 
5 x and if each component of the branch set is a totally geodesic submanifold of 
codimension two in M, then the curvature of M is 5 X. We wish to understand 
what happens when the local structure of the branch set is more complicated. 
(Some observations in this direction are made in [GI.) 

It is easy to show that two conditions are necessary for M to have curvature 
5 x: 

(1) the sectional curvature of M is 5 X, 

(2) locally, the closure of each component of each stratum of the branch 
set is a convex subset of M. 

For each x E M there is an induced finite sheeted branched covering 3, -+ S,, 
where S, denotes the unit sphere in the tangent space T,M. In view of (2), 3, 
is a piecewise spherical polyhedron. It turns out (cf., Theorem 5.3) that together 
with (1) and (2) the following condition is necessary and sufficient for M to have 
curvature bounded from above: 

(3) all triangles in 3, satisfy the CAT(1)-inequality 

Moreover, it follows from a result of Gromov (cf., Theorem 3.1) that a piecewise 
spherical polyhedron, such as sx, satisfies CAT(1) if and only if it has curvature 
5 1 (i.e., it locally satisfies CAT(1)) and every closed geodesic has length at least 
27r. Thus, the question of when a branched cover of a smooth Riemannian mani- 
fold is nonpositively curved ultimately comes down to a problem in "polyhedral 
geometry". 

In this paper we focus on the following two questions: 

(I) Which local structures admit metrics of nonpositive curvature? 

(11) What local geometric conditions on the branch set are necessary for 
condition (3) to hold? 

The answer to Question I1 is particularly interesting. The picture which 
emerges from our analysis is that the situations in which condition (3) hold 
are very rigid. For example, suppose the dimension of M is three and for some 
x E M, 3, -+ S, looks like the quotient map of a 2-sphere by a group G gener-
ated by three rotations of orders p, q, and r. (G is an index two subgroup of a 
reflection group acting on R3.) The metric d on Sx( = S2) is the standard spherical 
metric and the branch set in S, consists of three points xP,xq, and x,. In this case 
we discover the following. 
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THEOREM8.1. Let sXbe as  above. Then the CAT(1)-inequality holds in sxif 
and only if 

(i) the singularpoints xp, xq, x, lie on a great circle in Sx but are not contained 
in any semicircle, and 

(ii) d(xi,xj) > for all {i, j, k) = {p, q, r).  

In other words, near x, the branch locus in M must consist of three coplanar 
rays meeting at x (like "tinkertoys"), with angles between the rays bounded below 
by condition (ii). 

Similarly, suppose M is a 4-manifold and sx:,Sx looks like the quotient 
map of a 3-sphere by the complex reflection group G(p, q, r) generated by three 
"complex reflections" of orders p,  q, and r (as defined in Section 6). Then the 
branch set in Sx( = S3) consists of three disjoint great circles Pp, Pq, and P, and 
we find the following. 

THEOREM sxbe as  above, then the CAT(1)-inequality holds in sxifand9.1. ~ e t  
only ifPp, Pq,and P, are fibers of the Hopffibration H : s3:,s2and their images 
xP, xq, X, in s2satisfy (i) and (ii) of Theorem 8.I .  

The outline of the paper is as follows. In Chapter I (Sections 1-7) we develop 
the necessary background material on bounded curvature, polyhedra of piecewise 
constant curvature, orbifolds, etc, and then (in Section 6) we address question 
I. Chapter I ends with an application to branched covers of flat tori. Chapter I1 
(Sections 8-12) is devoted to answering Question 11. It contains, among others, the 
two results mentioned just above. The paper ends with an appendix discussing 
joins of piecewise spherical complexes. In particular, it is shown that the join 
X * Y of two such complexes X and Y satisfies CAT(1) if and only if both X and 
Y satisfy CAT(1). 

Contents 

Chapter I: Orbifolds of nonpositive curvature 

Section 1: The CATI(x)-inequality: curvature bounded from above 
Section 2: Polyhedra of piecewise constant curvature 
Section 3: The large link condition 
Section 4: Orbifolds and orbispaces 
Section 5: Branched covers of Riemannian manifolds 
Section 6: Local models: orbifold structures on Euclidean space 
Section 7: An application: orbifold structures on flat tori 

Chapter 11: Real and complex reflection groups 

Section 8: Branched covers of Sn associated to real reflection groups 
Section 9: Branched covers of S3 with covering group G(p, q, r) 
Section 10: Reduction to the Hopf case 
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Section 11: Local geodesics in s3in the Hopf case 
Section 12: Completion of the proof of Theorem 9.1 

Appendix: Orthogonal joins of piecewise spherical complexes. 

Chapter I: Orbifolds of Nonpositive Curvature. In this chapter we review 
some ideas of Gromov. Basic references are [GH] and [GI. In particular, a good 
bit of Sections 1 and 3 comes from Ballman's article in [GH, Chap. 101, much 
of Section 4 comes from Haefliger's article [GH, Chap. 111, and Section 5 uses 
the expository article of Troyanov [GH, chap. 31. 

1. The CAT(x)-Inequality: Curvature Bounded from Above. Let X be a 
metric space. A path c : [a, b] +X is locally isometric if for each t E (a, b) there 
is a subinterval J containing t such that c I J is an isometric map. A geodesicpath 
is a constant speed reparametrization of a locally isometric path. Such a geodesic 
path c : [a, b] + is minimal if c is an isometric map. A geodesic segment is 
the image of a minimal geodesic path together with an orientation. A closed 
geodesic in X is the image of an isometric map from a circle into X. A triangle 
in X consists of three points and geodesic segments connecting them. The metric 
space X is a geodesic space if any two points in X can be joined by a geodesic 
segment. 

For each real number x and integer n 2 2, let M i  denote the complete, 
simply connected, Riemannian n-manifold of constant sectional curvature X. (If 
x > 0, then M i  is a sphere of radius 1 / a ;  if x = 0, M i  is euclidean n-space; 
if x < 0, then MF, is a hyperbolic n-space.) 

Let T be a triangle in X. A comparison triangle for T in M$ is a triangle 
-
T in M; with the same edge lengths as T. It is clear that T is unique up to an 
isometry of M: and that such a T exists if 5 0, or if ?; > 0 and the perimeter 
of T is < 2 . i r l a .  (Convention: the condition "the perimeter of T is < 2.ir/f19 
is vacuous if x < 0.) There is a unique map T -+ T which takes each edge of T 
isometrically onto the corresponding edge of T.  For each x E T let 3 denote its 
image in T under this map. 

A triangle T in X of perimeter 5 2 7 r / a  satisfies the CAT(x)-inequality if 
for any vertex u E T and point p on the side opposite to u we have: 

where 3 and p are the corresponding points of a comparison triangle in M:. (Here 
d denotes distance in X, while dx is distance in M:.) If x > 0, then any triangle 
of perimeter > 2 . i r l a  is also said to satisfy the CAT(x)-inequality. A geodesic 
metric space X is said to satisfy CAT(x) if the CAT(x)-inequality holds for every 
triangle in X. The space X has curvature < X, if it satisfies CAT(x) locally. 

The question of whether or not the CAT(x)-inequality holds in a geodesic 
space X is closely connected to the question of uniqueness of geodesic segments. 
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Indeed, suppose we have two points in X of distance < i7/& and two distinct 
geodesic segments connecting them. Such a configuration is called a digon. By 
introducing a third vertex in the interior of an edge of such a digon, one obtains a 
triangle for which the CAT(x)-inequality fails. Similarly, if y is a closed geodesic 
in X of length < 2i7/fi then by picking any three points of y as vertices (so that 
the triangle inequalities hold) we again obtain a triangle for which the CAT(x)- 
inequality fails. Thus, if a geodesic space X satisfies CAT(x), then any two points 
of distance < i7/& are connected by a unique geodesic segment and there are 
no closed geodesics of length < 2.irlfi. 

For the remainder of this section we shall assume that X is a locally compact, 
complete, geodesic metric space. 

If, in addition, X has curvature 5 X, then for any p E X there is an E > 0 such 
that the &-ball centered at p is convex (cf., Ballman's article in [GH, Chap. 10, 
Remark 2, p. 1821). In particular, X is locally contractible and hence, has a 
universal cover. When x 5 0, one has the following generalization of the Cartan- 
Hadamard Theorem. 

THEOREM1.1. (Cartan-Hadamard-Alexandrov-Gromov-Ballman). IfX has cur- 
vature 5 0, then its universal cover is contractible. 

This result is stated in [G, p. 1191 where it is attributed to Cartan, Hadamard 
and Alexandrov. It is proved in [GH, Chap. 10, Theorem 4, p. 1871. 

In [GH, Chap. 10, Theorem 71 it is proved that if X has curvature 5 x and 
any two points of X of distance < i 7 / f i  are connected by a unique geodesic 
segment, then CAT(x) holds for X. Ballman's proof actually gives the following 
result. 

LEMMA1.2. (Ballman [GH, Chap. 101) Suppose that X has curvature 5 X. Let 
T be a triangle in X such that any two points of T of distance < .ir/x are connected 
by a unique geodesic. Then the CAT(x)-inequality holds for T. 

We define three numbers. The systole-of X, denoted by sys(X), is the greatest 
lower bound of the lengths-of closed geodesics in X. The injectivity radius of X, 
denoted by ir(X), is the greatest lower bound of d(p, q), where (p, q) is a pair 
of points for which the geodesic segment joining p to q is not unique. In other 
words, ir(X) is one-half the greatest lower bound of the perimeters of all digons 
in X. Finally, C,(X) is defined to be the greatest lower bound of the perimeters 
of triangles T in X such that CAT(x)-inequality fails for T. 

LEMMA1.3. Suppose that x > 0 and that X is compact of curvature 5 X. If 
CAT(x) fails for X, then sys(X) = 2(ir(X)) = Cx(X). Hence, sys(X) 2 2.irlfi if 
and only ifCAT(x) holds for X. 

Proof. The CAT*(x)-inequality for a triangle T in X asserts that for any two 
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points p and q in T, d(p, q) is 5 the distance between corresponding points in the 
comparison triangle. It is easy to see that if the CAT(x)-inequality holds locally, 
then so does the CAT*(x)-inequality. Ballman proves a "Gluing Lemma" for 
CAT*(x) ([GH, Chap. 10, Lemma 4, pp. 182-1831). Suppose that T is a triangle 
in X of perimeter < 27r/& and that we "chop" T into two new triangles T1 and 
T2 by introducing a geodesic segment connecting a vertex of T to a point on the 
opposite edge. The Gluing Lemma asserts that if both T1 and T2 have perimeter 
< 2.irlfi and satisfy the CAT*(x)-inequality then so does T. 

Let C1 denote the systole of X, let C2 be twice its injectivity radius, and let 
C3 = Cx(X). 

Claim I. Either C2 2 27r/fi or else there is a digon of minimum peri- 
meter C2. 

To see this, suppose that C2 < 2.ir/fi. Since X is compact, we can find a 
sequence of digons the edges of which converge uniformly to geodesic segments 
of length $2 between points p and q in X. A priori these two segments might 
coincide. Since the CAT*(x)-inequality holds locally, the two edges of each digon 
in our sequence cannot remain close together over their entire length; for other- 
wise, we could chop such a digon into small triangles and then use the Gluing 
Lemma to contradict the fact that the CAT(x)-inequality fails for any triangle 
obtained by introducing a third vertex on a digon of perimeter < 2.irlfi. Hence, 
our sequence of digons converges to an actual digon of minimum perimeter. 

For the remainder of the proof we suppose that the CAT(x)-inequality fails 
for some triangle in X, i.e., C3 < 27r/&. 

Since we can subdivide a digon into a triangle by introducing a third vertex 
into the interior of an edge, we have that C2 2 C3. A pair of points on a closed 
geodesic of length !are called opposite if their distance is it. Similarly, if D is 
a digon with vertices p,  q, then two points x and y on different edges of D are 
opposite if d(p,x) + d(p,y) = d(p, q). Since a closed geodesic can be subdivided 
into a digon by introducing a pair of opposite vertices, we have that C1 2 C2. 

Claim 3. C2 = C3. 

To see this, suppose that T is a triangle of perimeter < C2. Since the in- 
jectivity radius of X is $2, any two points of T are connected by a unique 
geodesic segment; hence, by Lemma 1.2, the CAT(x)-inequality holds for T. 
Thus, C3 = C2. 

Claim 4. C1 = C2. 
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Since the CAT(x)-inequality holds for all triangles of perimeter < C2, an 
easy argument shows that the CAT*(x)-inequality also holds for such triangles. 
By Claim 1, there is a digon D of minimum perimeter C2. We shall show that 
D must actually be a closed geodesic. Let x,y be two opposite points in D. If 
d(x,y) < ;c2then by introducing the geodesic segment from x to y we can chop 
D into two triangles T1 and T2 each of perimeter < C2. Since the CAT*(x)-
inequality holds for such triangles, the Gluing Lemma would imply that it holds 
for D, a contradiction. Hence, any pair of opposite points of D must be of distance 
ic2.This easily implies that D is the isometric image of a circle of length C2, 
i.e., D is a closed geodesic and C1 = C2. 

2. Polyhedra of Piecewise Constant Curvature. Recall that M i  denotes 
the simply connected, complete, Riemannian n-manifold of constant curvature X. 
A cell in M i  (= "convex polyhedral cell") is a compact, nonempty intersection 
of a finite number of half-spaces. 

Suppose that K is a polyhedron. An Mx-cell-structure on K is a cell structure 
on K together with a collection of maps vBI B is a cell in K )  where fB is 
a homeomorphism from B onto a cell in M i .  If B and C are cells in K with 
B nC $0,  then we further require that: 

(1) B nC is a common face of B and of C and 

(2) fc 0 ( f ~ ) - '  restricts to an isometry from fB(B nC) to fc(B nC). 

Suppose that K is a polyhedron with an Mx-cell structure. The intrinsic 
pseudometric on K is defined as follows: if x,y E K, then d(x,y) is the greatest 
lower bound of the length of all paths connecting x to y. ("Pseudometric" means 
that the possibility d(x,y) = 0 or oo is not ruled out.) If K is connected and locally 
finite, then d is obviously a metric. 

We assume, from now on, that K is a connected, locally finite polyhedron 
with an Mx-cell structure. The metric space K (equipped with the intrinsic metric) 
is called a polyhedron of piecewise constant curvature X. If x = 0, K is piecewise 
Euclidean; if x = 1, it is piecewise spherical. 

Remark 2.1. It makes sense to speak of an M-cell-structure, where M is 
some other Riemannian manifold for which there are notations of "half-space" 
and "convex polyhedral cell". For example, M could be the Cartesian product 
M = M i :  x . . .  XM~!. 

Piecewise spherical polyhedra play a special role in what follows, in that they 
arise naturally as "links". There are two types of "links" which we wish to define 
for a piecewise constant curvature polyhedron K: 1) the link of a point in K and 
2) the link of a cell in some Mx-cell-structure on K. 

Suppose that E is a cell in M i  and that x E E. Then Link(x, E) is defined to 
be the subset of the unit sphere in T,(Mi) consisting of all tangent vectors to unit 
speed geodesics which originate at x and go into E. Obviously, Link(x, E) is the 
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intersection of a finite number of "hyperplanes" and "half-spaces" in Sn-' (the 
unit sphere in Tx(Mi)). For example, if x is an interior point of E, then Link(x, E) 
is a round sphere of dimension one less than the dimension of E. 

Now suppose that B is a cell in K, x E B, and that fB : B -+ M i  is a 
homeomorphism onto a convex cell in Mi .  Then put 

where the union is taken over all cells B containing x and whenever C is a face of 
B, we identify Link@, C) with corresponding face of Link(x, B). Then Link(x, K) 
is a piecewise spherical polyhedron, called the link of x in K. 

Similarly, if E is a convex cell in M i  and F is a face of E and if x is a point 
in the relative interior of F, then the set of tangent vectors of unit speed geodesics 
which originate at x, go into E,  and are normal to F form a subpolyhedron of 
Link(x, E) which we denote by Link(F, E). This is a subset of s"-' of dimension 
equal to dim E -dim F - 1. It is independent of the choice of x up to an isometry 
of sn-'. Suppose that K is a polyhedron with Mx-cell-structure, that B is a cell 
of K and C a face of B, then, as before, put 

LiWC, B) = Link(f~(C),f~(B)) 
Link(C, K) = ULink(C, B), 

where the union is taken over all cells B containing C and whenever C < 
B < A, we identify Link(C, B) with the corresponding face of Link(C,A). Then 
Link(C, K) obviously has the structure of a piecewise spherical complex. 

Definition2.2. Let K be a polyhedron of piecewise constant curvature. A path 
c : [a, b] -+ K is a broken geodesic path if there exist numbers to, . . . ,tn with 
a = to < tl < . . . < tn = b so that for each i, 0 5 i < n, c I [ti, ti+l] is a geodesic 
path with image lying entirely in some closed cell of K. By a broken geodesic 
we shall mean the image of a broken geodesic path together with an orientation. 
If a broken geodesic is the image of a geodesic path (that is, a locally isometric 
path) then it is called a local geodesic. 

Suppose that xo,xl are two points in some closed cell E of K and that a is a 
geodesic segment in E from xo to xl. Then a determines a unit tangent vector in 
TxoE and hence, a point in Link(xo, K) called the outgoing tangent vector of a at 
xo and denoted by aL,,(xo). Similarly, a determines an incoming tangent vector 
a:,(xl) E Link(x1, K). 

Suppose that for 1 5 i 5 n, ai is a geodesic segment in some cell of K from 
xi-1 to xi. The ai 's  can be glued together to give a broken geodesic a from xo 
to x,. We shall use the notation a = ( a l , .  . . , an ) .  The incoming and outgoing 
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vectors of the broken geodesic a make an "angle" 19;at each point xi, defined by, 

where d denotes distance in Link(x;, K). The following lemma is not hard to 
prove. 

LEMMA2.3. ([M; Lemmas 4.1 and 4.21). With notation as above, the broken 
geodesic a = ( a l , .  . . a n )  is a local geodesic ifand only if@ 2 .ir for 1 5 i 5 n. 

Definition 2.4. Suppose that E c skis a spherical k-cell and that F C S' is a 
spherical !-cell. Identify Sk and S' with the unit spheres in subspaces of R ~ + ~ + ~  
which are orthogonal complements. Then E * F ,  the orthogonal join of E and F ,  
is the (k + e + 1)-cell in s~+'+'defined as the convex hull of E and F (i.e., E * F 
is the union of all geodesic segments in skfe+'which begin in E and end in F). 
In an obvious fashion we can extend this to define the notion of the orthogonal 
join L1 * L2 of two piecewise spherical polyhedra L1 and L2. It is a piecewise 
spherical polyhedron of dimension equal to dim Ll + dim L2 + 1. In particular if 
L1 is the round sphere Sk-', then Sk-' * L2 is called the k-fold suspension of L2. 

The relationship between the two types of links is explained in the following 
lemma (which is obvious). 

LEMMA2.5. Suppose that K is a piecewise constant curvature polyhedron, that 
B is a k-cell in K and that x is a point in the relative interior of B. Then Link(x, K) 
is isometric to sk-'* Link(B, K), the k-fold suspension of Link(B, K). 

3. The Large Link Condition. In this section we assume that K is a fi-
nite dimensional, locally finite polyhedron of piecewise constant curvature x 
(equipped with its intrinsic metric). We further assume that there is an E > 0 so 
that every closed ball in K of radius E is compact. (This follows, for example, 
if K is a finite complex or if it admits a cell structure with only finitely many 
isometry types of cells.) Ir follows from this assumption that K is a complete 
geodesic space (cf. [M, Cor. 4.71). 

The following result is essentially stated by Gromov [G, pp. 119-1201; the 
nontrivial part of the proof is given in [GH, Chap. 10, Theorem 151. 

THEOREM3.1. (Gromov) Let K be apolyhedron ofpiecewise constant curvature 
X,as above, equipped with some Mx-cell-structure. The following conditions are 
equivalent. 

(1) K has curvature I X. 

(2) For each point x in K, the piecewise spherical polyhedron Link(x, K) 
satisfies the CAT(1)-inequality. 
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(3) For each point x in K, the systole of Link(x,K) is 127r. 

(4) For each cell B in K, Link(B,K) satisfies the CAT(1)-inequality. 

(5) For each cell B in K, the systole of Link(B,K) is > 27r. 

Proof. The equivalence of statements (1) and (2) is proved in [GH, Chap. 10, 
Thm. 151 

(2) H (4) and (3) e (5). Suppose that x is a point in the relative interior of 
some k-cell B. By Lemma 2.8, Link(x,K) is isometric to the k-fold suspension 
of Link(B,K). The equivalences (2) H (4) and (3) e (5) follow from Theorems 
A9 and A10 in the Appendix. 

(4) H (5). The implication (4) + (5) is trivial. The proof that (5) + (4) is by 
induction on the dimension of Link(B, K). Suppose (5) holds. In dimension one, 
the statement that the systole of a piecewise spherical complex is 2 27r means 
precisely that it satisfies CAT(1). Let B be a cell in K and suppose by induction 
that CAT(1) holds for all cells C with dimLink(C, K) < dim Link(B,K). Put 
L = Link(B,K). If C is a cell in K with B C C, then it defines a cell a c  in L with 
Link(ac, L) = Link(C, K). Hence, (4) holds for any cell in L. Since (4) + (2) + 
(I), L has curvature < 1; since (5) holds, sys(L) 2 27r; hence, by Lemma 1.3, 
CAT(1) holds for L i.e., (5) + (4). This completes the proof. 

If a piecewise constant curvature polyhedron k satisfies any of the conditions 
(2) through (5) of the Theorem, we say that K has "large links". 

4. Orbifolds and Orbispaces. Suppose that l- is a discrete group acting 
properly and freely on a manifold M. The orbit space M / T  is then also a manifold 
and the natural projection is a covering map. If we drop the requirement that T 
act freely (but maintain the requirement that it act properly), then the orbit space 
naturally has the structure of an "orbifold. 

Roughly speaking, an "orbifold" is a topological space which is locally mod-
elled on quotients of Rn by finite group actions. The notion was introduced by 
Satake in [S] under the name "V-manifold". A precise definition can be found 
in [Th], where the terminology "orbifold" is introduced. A more sophisticated 
viewpoint towards the definition of "orbifold" is taken by Haefliger in [HI. Ac-
cording to Haefliger, an orbifold is a pseudo-group. (A pseudo-group of local 
homeomorphisms consists of a space X together with a collection of "local home-
omorphisms" of X, i.e., homeomorphisms between certain open subsets of X. This 
collection of homeomorphisms is required to be closed under restriction to smaller 
open subsets; moreover, compositions and inverses are in the collection whenever 
they are defined.) 

An orbifold Q consists of a space Qo (called the underlying space of Q) 
together with a pseudo-group of local homeomorphisms. The space X for the 
pseudo-group is a disjoint union of a collection of "uniformizing charts" of coor-
dinate neighborhoods in Qo. That is to say, X = U fii  where {Ui)is an open cover 
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of Qo and where each 6i is an open subset of Euclidean space stable under some -
finite group Gi of homeomorphisms and where we have projections ~i : Ui -+ Ui, 
inducing homeomorphisms 6;lG; E U;. Put T = UT; : U fii -+ Qo. The orbifold 
is then the pseudo-group of all possible local homeomorphisms of U fii which 
commute with T. In particular, if g E Gi and c C Ui, then g / : -+ g(v)is 
an element of the pseudo-group. 

If x E Ui and X E 6i is a point lying over it, then the isotropy subgroup of 
Gi at X depends only on x, up to isomorphism. It is called the local group at x 
An orbifold in which all local groups are trivial is precisely the same thing as a 
manifold. 

Suppose that H is a finite group of germs of local homeomorphisms of Rn 
(taking 0 to 0). A stratum of type H in an orbifold Q is the subset of Qo consisting 
of all points x such that the local group at x is isomorphic to H. The singular set 
of Q is the union of all strata of nontrivial type. 

If the orbifold is smooth and H is the type of a nonempty stratum, then H is 
isomorphic to a finite group of linear transformations of Rn. Hence, in this case 
it follows that the stratum of type H is a manifold. 

In [Th], Thurston demonstrates that covering space theory goes over to orb- 
ifolds. That is to say, there is an appropriate notion of an orbifold covering, the 
prototypical example of which is the projection M/T1 -+ MIT where T acts prop- 
erly on M and TI is a subgroup of T. Each orbifold Q has a universal orbifold 
cover. Its group of covering transformations is called the orbifold fundamental 
group and denoted by TP'~(Q). 

A new feature which arises at this point in the discussion in [Th] is the notion 
of a "good orbifold". The universal cover of an orbifold need not be a manifold. 
If it is, the orbifold is called good. Thus, an orbifold is good if and only if it 
arises as the orbit space of a proper group action on a manifold. Equivalently, 
an orbifold is good if the natural map from each local group into the orbifold 
fundamental group is injective [HI. A basic example of a bad orbifold is the 
"teardrop". Its underlying space is s2and there is exactly one singular point, 
the local group at which is cyclic of order n, n > 1. (The teardrop is its own 
universal cover.) 

It is suggested in [G, $4.51 that the notion of "orbifold" can be broadened to 
"orbispace". Roughly, an orbispace should be a topological space which is locally 
modelled on orbit spaces of certain finite group actions. The precise definition is 
accomplished in Haefliger's article [GH, Chap. 111 along the same lines as the 
definition for orbifold given above; basically, an orbispace is a pseudogroup. 

In order to accomplish this broadening of the definition another new concept 
is needed: the notion of "rigidity". An orbispace is rigid if in each local model 
only the identity element of the group can fix (pointwise) a nonempty open set. 
It follows from Newman's Theorem (cf. [B, p. 1571) that every orbifold is rigid. 

An orbispace is an orbihedron if each local model is a polyhedron and if 
each element of the pseudogroup is the restriction of a PL-homeomorphism. 
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The local group at a point in the underlying space of an orbispace is defined 
as before. An orbispace is nonsingular if each local group is trivial; an orbispace 
is good if it is covered by a nonsingular orbispace. 

As suggested in [G, 54.51, covering space theory goes through, at least for 
rigid orbispaces. In particular, a rigid orbispace admits a universal orbispace 
cover. 

Suppose that Q is an orbispace and that JJ6, is a disjoint collection of 
uniformizing charts occurring in the definition of the pseudogroup. (There is a 
natural notion of equivalence of pseudo-groups, which allows a change in the 
space JJ6;; equivalent pseudogroups are regarded as defining the same orbis- 
pace.) One can impose geometric conditions on an orbispace by imposing them 
on each uniformizing chart ciand requiring the pseudo-group to act by isome- 
tries. For example, we have the following: 

(1) a metric on an orbispace means that each 6i admits a metric and that 
each element of the pseudogroup is an isometry, 

(2) an orbihedron with metric is of piecewise constant curvature x if each 
6i is an open subset of a polyhedron of piecewise constant curvature X, 

(3) an orbifold admits a Riemannian metric if there is a Riemannian metric 
on each 6i (so that each element of the pseudogroup is an isometry). 

Definition 4.1. A metric on an orbispace Q has curvature 5 x if (up to an 
equivalence) each ciis a geodesic space satisfying the CAT(x)-inequality. 

The following generalization of the Cartan-Hadamard Theorem is stated in 
[G, p. 1281 and proved by Haefliger in [GH, Chap. 11, Thm. 81. 

THEOREM4.2. (Gromov) Let Q be a rigid orbispace of curvature 5 0. Then Q 
is good. (It then follows from Theorem 1.1 that the universal orbispace cover of Q 
is nonsingular and contractible.) 

Theorem 4.2 has recently been extended to nonrigid orbihedra by Spieler 
in [Sp]. 

Suppose that Q is an orbihedron of piecewise constant curvature. Let x E 6 
be a point over x. Then the link of x in Qo is naturally a piecewise spherical 
orbihedron which we denote by Link(x, Q). In fact, Link(x, Q) is the quotient space 
of the piecewise spherical polyhedron L=(x, Q) = Link(.?, 6 )  by a finite group 
G, of isometries. If Q is cellulated so that each closed stratum is a subcomplex, 
then similar remarks hold for the link of each cell. In particular, for each cell 
B, Link(B, Q) is a good piecewise spherical orbihedron finitely covered by the 
nonsingular piecewise spherical polyhedron L ~ ( B ,  Q). The proof of Theorem 3.1 
gives the following result. 
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PROPOSITION4.3. Let Q be an orbihedron of piecewise constant curvature X. 
The following conditions are equivalent. 

(1) Q has curvature 5 X. 

(2) For each point x E Q, ~ x k ( x ,  Q) satisfies the CAT(1)-inequality. 

(3) For each cell B, ~ x k ( ~ ,  Q) satisfies the CAT(1)-inequality. 

5. Branched Covers of Riemannian Manifolds. 

5.1. The Basic Example. Let rn be an integer 2 2 and let .irm : C -+ C 
be the map .irm(z) = zm. The cyclic group of rnrh roots of unity acts on C by 
multiplication and we may regard .irm as the orbit map. Identify C with R2. 
The map .irm : R2 -+ R2 is the prototypical example of an "rn-fold branched 
cover"; "the branch set" is the origin. Put some smooth Riemannian metric on 
R2 (regarded as the range of T,). Denote the corresponding distance function 
by d. Using .irm, one can pull back d to a metric 2 on R2 (regarded as the 
domain of T,). Denote R2 with the metric d by k2.The metric d is smooth 
on the complement of 0. At 0, where there is, so to speak, "a cone angle of 
2.irrnn, it is singular. The metric on k2can be understood as follows. Let R be a 
geodesic ray from the origin in R2. "Slit open" R2 along R. The resulting space 
H is homeomorphic to the half-plane. Its boundary consists of two copies of 
R Cjoined at their endpoints) which we denote by Ro and R1. To construct the 
branched cover k2one takes H x {O,l,.  . . ,rn - 1) and identifies Ro x {i) with 
R1 x {i + I), where the integers are taken modulo rn. Each copy of H in k2 is 
isometric to a slit-open version of R2. (If R2 is given the Riemannian metric of 
constant curvature X, x 5 0, then it follows from the above description that k2 
has the structure of a polyhedron of piecewise constant curvature x.) 

How does one describe the above example in the language of orbifolds? The 
underlying space of the quotient orbifold k2/Zm is naturally identified with R2. 
Thus, the underlying space of k2/& is naturally a smooth manifold and the 
orbifold metric on k2/zP(read: the metric on k2)  is induced from a smooth 
Riemannian metric on the underlying space. 

In a similar fashion it makes sense to speak of a metric orbifold Q such that 
its underlying space Qo is an n-dimensional manifold and such that the orbifold 
metric on Q is induced from a smooth Riemannian metric on Qo. The goal of 
this paper is to analyze curvature properties of such orbifolds. 

As we shall see in the next section a smooth structure on Qo does not nec- 
essarily induce a smooth orbifold structure on Q. Also, a singular stratum need 
not be a locally flat submanifold of Qo. To see this point, consider the following 
example (which is not germane to the rest of the paper). The binary icosahe- 
dral group I acts freely on s3.The orbit manifold H~ is PoincarC's homology 
3-sphere. Hence, its double suspension Z ~ H ~is an orbifold. (It is the quotient of 
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a linear I-action on s'.) On the other hand, a celebrated theorem of Cannon [Ca] 
and Edwards states that z 2 H 3  is homeomorphic to s', hence, it is possible to put 
a smooth structure and a smooth Riemannian metric on z 2 H 3 .  The singular set 
in z 2 H 3  consists of a single stratum-the suspension circle. Note that there is 
no smooth structure on z 2 H 3  in which this circle is smoothly embedded. (The 
complement of the circle in z 2 H 3  (% s 5 )  is not simply connected.) 

The following lemma shows that such a pathological behavior cannot happen 
if we require the orbifold Q to have curvature bounded from above. 

LEMMA5.2. Suppose that an orbifold Q has a metric induced from a smooth 
Riemannian metric on its underlying space Qo. The fallowing two conditions are 
necessary for the orbifold metric on Q to have curvature 5 x (for some real 
number x). 

(1) The sectional curvature of Qo is 5 X. 

(2) Locally, the closure of each path component of each stratum must be 
convex. 

Proof. (1) If Q satisfies CAT(x) locally, then each nonsingular point of Qo 
must have a neighborhood in which the sectional curvature is bounded from 
above by X. Since the set of nonsingular points is open and dense in Qo, the 
necessity of (1) follows. 

(2) Suppose that the local group at x E Qo is G. Then there is a coordinate 
neighborhood U of x uniformized by 6 such that G acts on fi with f i / ~% U and 
such that 6 satisfies CAT(x). For H a subgroup of G, let UH denote a component 
of a stratum of type H in U and UH its closure. Let yo and yl be points of & and 
y a geodesic segment connecting them. Then y is homotopic re1 endpoints to a 
path in UH.It follows that some lift ;y of y to 6 is a geodesic segment connecting 
points yo, E l  in cHlying over yo and yl. ( c H  denotes the fixed point set of H 
on 6 . )  If for some h E H ,  h? $q ,  then h? and q fit together to give a geodesic 
digon from 30to j1contradicting CAT(x). (If x > 0, assume d(yo,yl) < TI&.) 
Hence, 9 lies in c H ,  i.e., condition (2) is necessary. 

We retain the notation in the preceding proof: Q is an orbifold of curvature 
< X, x E Qo, U is a coordinate neighborhood of x, G is the local group at x, 
and 6 is a uniformization of U. Denote by T, the tangent space of Qo at x, by 
S, the unit sphere in T,, and by B,(r) the open ball of radius r about the origin 
in T,. Let exp : T, -+ Qo denote the exponential map. Choose r small enough 
so that the restriction of exp to B,(r) is a diffeomorphism onto its image and so 
that exp(B,(r)) c U. Using exp one pulls back the orbifold structure on U to an 
orbifold structure on B,(r). By Lemma 5.2, (2) each component of each stratum 
of B,(r) is a convex subset of some linear subspace of T,. Let X : [0,r) + [0, oo) 
be a diffeomorphism, linear near 0. The radial expansion x -+ A(lxl)x/lxI is a 
diffeomorphism of B,(r) with T,. Using it the orbifold structure on B,(r) induces 
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one on T,y.As before, the closure of each component of each stratum of T ,  is 
a convex subset containing 0 .  The orbifold fundamental group of T, is G. Let-
Tx + T, be the universal orbifold cover and B,(r) and 3, the corresponding 
covers of B,(r) and S,, respectively. The map exp : B,(r) -+ U is covered by a 
G-equivariant embedding e F  : g,(r) + 6. 

The Riemannian metric on Qo gives an inner product on T,. Since the singular 
set of T, is a finite union of convex polyhedral cones, it follows that g, and B,(r) 
are naturally piecewise Euclidean polyhedra. Similarly, 3, is a piecewise spherical 
polyhedron. 

Using polar coordinates one can identify T, with constant curvature space 
M;, provided x 5 0 ,  in such a fashion that distance from the origin is preserved. 
If x > 0 ,  then one can, in a similar fashion, identify B,(r) with an open ball in 
M; provided r < TI*. 

The main result of this section is the following. 

THEOREM5.3. Let Q be an orbifold with orbifold metric induced from a smooth 
Riemannian metric on its underlying space Qo. The following conditions are nec- 
essary and sufSlcient for the curvature of Q to be 5 X .  

( 1 )  The sectional curvature of Qo is 5 X .  

(2)  Locally, the closure of each path component of each stratum is convex 
in Qo. 

(3) For each x E Qo the piecewise spherical polyhedron 3, satisfies CAT(1). 

Before proving this theorem, let us recall Alexandrov's version of the CAT(x)  
inequalities in terms of "angles" (cf. [GH, Chap. 31). 

A geodesic hinge in a geodesic space X consists of two geodesic segments 
g : [0, a] -+ X and h : [0, b] +X, parametrized by arc length, with the same initial 
point x (i.e., g(0) = h(0) = x). For any (s ,  t )  E [0, a] x [0,b] we have a triangle 
A in X with vertices x,g(s)  and h(t). Let A* be a comparison triangle in M; 
and let a(s ,  t )  be the angle at the vertex of A* corresponding to x. Alexandrov's 
condition A(x)  is the following: 

A(x):  For any geodesic hinge, the function a(s ,  t )  is a monotone nondecreas- 
ing function of s and t. 

It is proved in [GH, Chap. 3, $1, Thm. 41 that the conditions A(x)  and CAT(x)  
are equivalent. 

We now return to the situation of Theorem 5.3: Q is an orbifold with under- 
lying space Qo a Riemannian manifold, U is a neighborhood of x in Qo, 6is a 
uniformization of U, i is the lift of x in 6 ,  G is the group of deck transformation 
of 6+ U, B, is a small ball about the origin in T, with exp(B,) C U and Ex is 
its inverse image in f,. Also, T, is given the metric of constant curvature x and 
Ex and T, have the induced piecewise constant curvature metrics 2. 
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Let u : [0, a] + 6 and v : [0, b] + 6 be a geodesic hinge in 6 based at i. 
This geodesic hinge has two well-defined "unit tangent vectors" u' and v' in 3.y. 
The distance 19 from u' to v' in zx is the angle at  iof the geodesic hinge. Let ut(s) 
and vt(t) denote the geodesic hinge in Tx in directions u' and v'. Recalling the 
construction in Alexandrov's condition, the geodesic hinge u(s), v(t) in 6 gives 
us a family of angles a(s,  t) for the comparison triangles in M;. Similarly, ut(s) 
and vt(t) in Txgives us a family of angles at(s, t). It is clear that as (s, t) -+ (0,O) 
both a(s, t) and at(s ,  t) approach 0. 

Proof of Necessity in Theorem 5.3. The necessity of conditions (1) and (2) 
was established in Lemma 5.2. Suppose that condition (3) fails. Then there is a 
triangle A' in 3, for which CAT(1) fails. Let A *  be the comparison triangle in 
s2.Let u', v', w' be the vertices of A' and u*, v*, w* the corresponding vertices 
of A*. The failure of CAT(1) entails the existence of a point z' on A', say on the 
segment from v' to w', such that the distance to the opposite vertex is too large, 
i.e., 

(1) d(ut, z') > d(u*, z*) 

where z* is the point on A *  corresponding to z'. Put 19' = d(ut,z') and o* = 
d(u*, z*) so that (1) becomes: 

(1)' 0' > o*. 

Denote the geodesic ray from the origin in Tx in direction u' parametrized by 
arc length by t + ut(t). Similarly, let t -+ vt(t) and t + wt(t) be geodesic rays in 
directions u' and w'. Regarding s2 as the unit sphere in the tangent space to M; 
at a point x*, we obtain, in a similar fashion, geodesic rays u*(t), v*(t), w*(t) in 
M;. Let zt(t) be the point on the segment from vt(t) to wt(t) such that 

d(v'(t),z'(t)) -- d(vt,z') 
d(vt(t), wt(t)) d(vt,w') 

Let z*(t) be the point in M; on the segment from u*(t) to w*(t) in direction z*. It 
follows from (1)' that the rays ut(t) and zt(t) make a larger angle at 0 E T, then 
the rays u*(t) and z*(t) make at x* tM;. Thus, 

and in fact 

d(~'(t),  zt(t)) lim = l + c  
t+O d(u*(t), z*(t)) 

where c is some positive constant (which could be solved for explicitly in terms 
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of the "angles" 19' and O*). Let U be a coordinate neighborhood of x, uniformized 
by 6 and let B, be a ball about the origin in T, of radius small enough so 
that exp(B,?) C U. Let u(t), v(t), w(t) be the images of ut(t), vt(t), wt(t) under 
e F  :B ,-+ 6.Let z(t) be the point on the segment from v(t) to w(t) so that 

Let i be the lift of x to 6 and let A 1 ,A2,A 3  be triangles in fi with vertex 
sets {u(t), v(t),i), {u(t),w(t),i) and {v(t),w(t),i), respectively. The comparison 
triangles for A , ,  0 2 ,  A 3  can be glued together along their corresponding sides to 
form the embedded 1-skeleton of a tetrahedron in M;'. Let li(t), D(t), and +(t) be 
the points in M: corresponding to u(t), v(t), and w(t), respectively, and 6 c M;' 
and A c fi, the corresponding triangles. Thus, 6 is a comparison triangle for A .  
Let i(t) be the point on corresponding to z(t). Up to first order, distance in U 
is the same as in T,. The same statement therefore holds for the induced metrics 
in 6and yy.Thus, up to first order, the distance from ut(t) to zt(t) depends only 
on the angle that these rays make at 0 E y,y.This angle is 0'. As t -+ 0, the angle 
between the rays u(t) and z(t) at i also goes to 0'. Hence, 

lim d(ut(t),zt(t)) 
= 1 

t-0 d(u(t),z(t)) 

In M:, the angle between the rays u*(t) and z*(t) is O*; while as t -+ 0 the angle 
between d(t) and i(t) also approaches O*. Hence, 

lim d(fi(A),i(t)) 
= 1 

t-o d(u*(t),z*(t)) 

Combining (3), (5) and (6) we get 

lim d(u(t),z(t)) = l + c  
t-o d(ii(t),i(t)) 

That is to say, for arbitrarily small values of t, the CAT(x) inequality fails for A .  
This establishes the necessity of condition (3) in Theorem 5.3. 

Our proof of sufficiency in Theorem 5.3 is a modification of the arguments 
in [GH, Chap. 3 $21. The proof is organized as a sequence of lemmas, 5.4 to 5.7, 
below. 

LEMMA5.4. Suppose that Q satisfies conditions ( I ) ,  (2) and (3)in Theorem 5.3. 
Then T, is a polyhedron ofpiecewise constant curvature x and it satisfies CAT(x). 
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Proof. This follows immediately from the basic result of Gromov, Theorem 
3.1. The point is that condition (3) is precisely the condition that Txhas "large 
links". 

LEMMA5.5. Suppose that Q satisfies conditions (1)and (2 ) in Theorem 5.3. 
Let u : [0,a]  -+ 6and v : [0,b] -+ 6be a geodesic hinge in 6based at i.Let ut(t) 
and vt(s)be the corresponding rays in c,i.e., u(t)= @jut(t)and v(s)= @j vt(s). 
Then 

(In other words, ''@ spreads geodesic hinges" .) 

Proof. Since the sectional curvature of Q0 is 5 x ,  the map exp : B, -+ U 
spreads geodesic hinges (cf. [Gv, p. 1971). The lemma follows easily from this 
and the fact that geodesic segments in 6project to piecewise geodesic segments 
in U. Cl 

Recalling the construction in Alexandrov's condition, the geodesic hinge u(s), 
v( t)  in ii gives us a family of angles n(s ,t )  for the comparison triangles in M;. 
Similarly, the geodesic hinge ut(s), vl(t) in gives a family of angles al(s ,t).  
Both geodesic hinges make the same angle, call it 8. 

LEMMA5.6. Suppose that Q satisfies conditions ( I ) , (2 )and (3)in Theorem5.3. 
Suppose further, as above, that u(s),v(t) is a geodesic hinge in 6and that ut(s),  
vt(t)is the corresponding geodesic hinge in Then 

Proof. It follows immediately from Lemma 5.5 that a(s ,t )  1 at(s ,t).  By 
Lemma 5.4, Tx satisfies CAT(x) ,so by Alexandrov's condition A(x),  al(s ,t )  is a 
nondecreasing function of s and t. Thus, al(s ,t )  2 8. 

LEMMA5.7. Let A be a triangle in 8 and A*a comparison triangle in M$. For 
i = 1,2,3, let be the interior angles at the vertices of A and 8: the corresponding 
angles of A*.Then 

oi 5 0;. 

Proof. This follows immediately from the previous lemma. 
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Proof of Suficiency in Theorem 5.3. It follows from Lemma 5.7 that any 
geodesic hinge in 6 satisfies Alexandrov's condition A(x). The argument is ex-
actly the same as the proof of ThCoremi. 9 on pages 55 and 56 of [GH; Chap 3 
521. Since A(x) and CAT(x) are equivalent, Theorem 5.3 is proved. 

6. Local Models: Orbifold Structures on Euclidean Space. In the pre-
vious section we focused on orbifolds with metric induced from a smooth Rie-
mannian metric on the underlying space and with curvature bounded from above. 
The local model for such an orbifold at a point x in its underlying space is the 
tangent space at x with its induced orbifold structure. Such a local model is an 
orbihedron V satisfying the following conditions. 

(A) The underlying space of V is identified with a real n-dimensional vector 
space Vo equipped with an inner product. 

(B) The closure of each component of each stratum of V is a convex subset 
of Vo containing the origin. 

(C) V is good. Its orbihedral fundamental group G is finite and is identified 
with the local group at the origin. 

(D) The universal cover F (which by (B) has a natural PL-structure) is PL 
homeomorphic to Rn. 

(E) The piecewise Euclidean polyhedron satisfies CAT(0). 

Remark 6.1. If S(V) denotes the restriction of V to the unit sphere in Vo and 
S(V) denotes its universal cover, then (D) and (E) are equivalent to the conditions 
that Z(V) be PL-homeomorphic to Sn-' and that :(v) satisfy CAT(1). 

Of course, these conditions are motivated by Theorem 5.3. In particular, (B) 
is implied by condition (2) in 5.3 and (E) is implied by condition (3) in 5.3. 
Condition (D) is forced on us if we are interested in orbifolds (rather than just 
orbihedra). 

The purpose of this section is to develop some examples which satisfy con-
ditions (A) through (E) above. 

Products. The Cartesian product V x V' of two orbifolds, defined in the 
obvious manner, is again an orbifold. The underlying space of V x V' is Vo x V(, 
and its orbifold fundamental group is G x G' (where G and G' denote the orbifold 
fundamental groups of V and V', respectively). 

PROPOSITION6.2. Suppose that V and V' are orbifolds satisfying conditions (A) 
through (E) above. Let the inner product on Vo x V(, be the direct product of the 
innerproducts on Vo and V(,.Then V x V' also satisfies conditions (A) through (E). 

Proof. It is obvious that V x V' satisfies (A) through (D). Since V and V' 
satisfy (E), the vector spaces Vo and Vh have inner products so that the induced 
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metrics on V and V' satisfy CAT(0). The direct product of these inner products 
induces the product metric on V x V'. To prove that V x V' satisfies (E) it suffices 
to show that V x V' satisfies CAT(0). This is immediate from the following lemma. 

LEMMA6.3. Suppose that P1 and P2 are piecewise Euclidean polyhedra of 
curvature < 0. Then P1 x P2 with the product metric is a piecewise Euclidean 
polyhedron and its curvature is 5 0. 

Proof. The link of a point (xl,x2) E P1 x P2 is the "orthogonal join" of 
L,, = Link(xl,P I )  and L,, = Link(x2,P2). By Theorem 3.1, L,, and L,, satisfy 
CAT(1); hence, by Theorem A10 in the Appendix, so does their orthogonal join. 
The product PI x P2 has a natural piecewise Euclidean structure. We have just 
proved that P1 x P2 has "large links". Hence, the result of Gromov, Theorem 3.1, 
implies that P1 x P2 has curvature < 0. 

Next we want to state a partial converse to Proposition 6.2 (namely Propo-
sition 6.5 below). To state the converse we need to introduce a new condition. 
Suppose that V satisfies conditions (A) through (E). Let S l , .  . . ,Sk denote the 
components of the codimension two strata of V and let Hi be the linear subspace 
of codimension two in Vo spanned by Si. Put H = nHi. Consider the following 
condition: 

(F) H = (0). 

If V is the product orbifold Rm x V', m > 0, where Rm has empty singular 
set, then we shall say that V has a trivial factor. If Rm is a trivial factor of V, 
then Rm C H. Hence, if V satisfies (F), then it has no trivial factor. 

Remark 6.4. Suppose that the orbifolds W, V, and V' satisfy (A) through (D) 
and that V and V' have no trivial factors. Suppose further that there is a strata-
preserving homeomorphism Vo x VA -+ Wo. Then the image of (nonsingular set 
of Vo) x 0 in Wo is a component of a stratum. By (D), its closure Vo x 0 is 
convex; hence, a linear subspace. Similarly, the image of 0 x VA is also a linear 
subspace of Wo. 

PROPOSITION6.5. Suppose V and V' are orbifolds satisfying (A) through (F). 
Let W be the product orbifold, W = V x V', equipped with an inner product ( ,) 
on Wo = Vo x VA which restricts to the given inner products on Vo and VA. Then 
W satisfies (A) through ( D )and (F). Moreover, it satisfies (E)ifand only ifVo x 0 
and 0 x VA are complementary orthogonal subspaces in Wo. 

The proof of Proposition 6.5 depends on the following lemma. 
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LEMMA6.6. Suppose Q is an orbifold with underlying space Qo = s3 ,singular 
set two disjoint great circles C1 and C2,and local groups Z/p on C1 and Z/q on 
C2. Then the universal cover Q of Q satisfies CAT(1) ifand only ifCl and C2 are 
orthogonal. 

Proof If C1 and C2 are orthogonal, then Qo is the orthogonal join of C1 and 
C2 and Q is the orthogonal join of El and e 2 ,  where e l ,e2are, respectively, the 
q-fold and p-fold covers of C1 and C2. Clearly el and Z2 satisfy CAT(l), so by 
Theorem A1,O of the Appendix, so does Q. 

Convers$ly, suppose C1 and C2 are not orthogonal. Let a be a geodesic 
segment from C1 to C2of minimal length. By minimality, a must be perpendicular 
to C1 and C2 at its endpoints, and since C1 and C2 are not orthogonal, the 
length of a is < :. Let 6 be a lift of a to Q. The fundamental group of 
Q is Z/p x Z/q = (s) x (t), hence the sequence y = (6, t6-',std,s6-') of 
geodesic segments is a closed broken geodesic in Q. (Here 6-' denotes d with 
its orientation reversed.) The length of y is four times the length of 6 ,  hence 
length (y) < 27r. We claim that y is a closed local geodesic, so the systole of Q 
is < 27r. By Lemma 1.3, this means that CAT(1) fails in Q. 

To show that y is a local geodesic, it suffices, by Lemma 2.6, to show that 
if two lifts of 6 meet at i ,  then their tangent vectors have distance 2 7r in 
L, = Link(.%,Q). Now if i lies over x E Qo, then L, is the universal cover of the 
orbifold L, = Link(x, Q). Say x E C1. Then L, has underlying space s2and two 
singular points (the two tangent vectors to C1 at x) each with local group Z/p. 
Viewing the singular points as the "north and south poles" of s 2 ,  the tangent 
vector to a appears as a point on the equator (since a is perpendicular to C1 at 
x). The universal cover L, of L, is the suspension of a circle of circumference 
27rp. (We may view L, as obtained from L, by slitting the 2-sphere along a 
geodesic between the north and south poles and gluing together p copies of this 
slit sphere.) In particular, if 61, .  . . ,GP are the lifts of a at i ,  then the tangent 
vectors to 6 ,  . . . ,bP appear as p points in equally spaced along its equator. It 
follows from Lemma A6 of the appendix that the distance between any two of 
these points in L, is 7r. 

Proof of Proposition 6.5. Clearly W satisfies (A) through (D). If Vo x 0 and 
0 x Vb are orthogonal in Wo, then ( ,) is necessarily the direct product of the given 
inner products on Vo and V;. It follows from Proposition 6.2 that W satisfies (E). 

Conversely, assume W satisfies (E). Denote a component of a codimension 
two stratum of V by Si and let Hi be the codimension two linear subspace it 
spans. Let Pi denote the orthogonal 2-plane to Hi in Vo and let P be the subspace 
of Vo spanned by the Pi. Similarly, let S,! be a component of a codimension two 
stratum of Vt and define subspaces H,!, PJ!,and Pt of Vb analogously. Consider a 
component of a stratum of W of the form Si x S,!. The link of a top dimensional 
cell in Si x S,! has the form S(Pi$P,!). Since W satisfies (E), this link must satisfy 
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CAT(1). Now the underlying space of S(Pi $ P,!) is a standard 3-sphere and its 
singular set is the union of two great circles Hin S(Pi $PI) and H,! n S(Pi $P,!). 
By Lemma 6.6, these circles are orthogonal. Since Pi = HI and P,! = (H:)', it 
follows that Pi  and P,!must be orthogonal. Hence, P is orthogonal to PI. Condition 
(F) implies that P = Vo and P' = Vh and the proposition is proved. 

Real Reflection Groups. An interesting class of groups for which con-
ditions (A) through (D) hold are the orientation-preserving subgroups of real 
reflection groups. We describe these below. 

A linear involution of Rn is a real rejection if the eigenvalue 1 has multiplicity 
n - 1. A finite subgroup 6 of GL(n, R) is a real rejection group if it is generated 
by real reflections. The subgroup G of index two in 6 defined by G = c n ~ ~ ( n ,R) 
is called the orientation-preserving subgroup of G. 

The theory of such real reflection groups G is extremely well-known, e.g., 
see [Bo]. In particular, (a) is a Coxeter group, (b) there is a " fundamental 
chamber C C Rn such that Rn/G C, (c) if 6 fixes no point of Rn other than 
the origin, then C is a simplicia1 cone (cf. [Bo, Prop. 11, p. 881). Condition (c) 
means that sn-'n C is a spherical (n - 1)-simplex An-'. 

We now suppose (c) holds. The underlying space of the orbifold Sn-'IG 
is then obviously homeomorphic to the double of An-'. We can identify the 
underlying space of sn-'/G with sn-'by identifying one copy of An-' with a 
spherical simplex (or hemisphere) an-' in sn-'and the other copy of An-' with 
the exterior, sn-'- int(an-'1. The underlying space of Rn/G is then identified 
with Rn in such a fashion that (B) holds. We therefore have the following result. 

LEMMA6.7. Suppose that G is the orientation-preserving subgroup of a real 
rejection group. Let V be the orbifold Rn/G and identiJji its underlying space Vo 
with Rn,as  above. Then V satisfies conditions (A) through (D). 

In Section 8 we shall decide when such a V satisfies the curvature condition 
(E). This will depend on the geometry of an-' in Sn-'. 

Complex Reflection Groups. A complex linear automorphism of Cn is a 
complex rejection if it has finite order and if the eigenvalue 1 has multiplicity 
n - 1. (Thus, a "complex reflection" is actually a rotation about a complex hy-
perplane.) A finite subgroup G of GL(n, C) is a complex rejection group if it is 
generated by complex reflections. 

Our basic example (Example 5.1) of Z/m acting on C is a complex reflection 
group, as is the Cartesian product of copies of the basic example. 

A well-known theorem of Chevalley [Ch] asserts that for a finite subgroup 
G of GL(n, C), the following two conditions are equivalent: 

(i) G is a complex reflection group, 

(ii) Cn/G is algebraically isomorphic to Cn. 
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Condition (ii) implies that Cn/G is actually homeomorphic to Cn. Thus, the 
orbifold of a complex reflection group G satisfies conditions (A), (C) and (D). 

The singular set of Cn/G ( % Cn) is the image of the union of the reflecting 
hyperplanes. The image of such a hyperplane is homeomorphic to Cn-' ;however, 
it need not be embedded in a locally flat fashion in the orbit space. In fact, in 
most cases it is locally knotted. For example, the dihedral group Dm of order 2m 
is a real reflection group on R2; complexifying, it becomes a complex reflection 
group on C2. If m is odd, then the intersection of the singular set in C2/Dn with 
s3 is a torus knot of type (m,2); hence, if m is odd and 2 3 the singular set is 
locally knotted. We note that for such singular sets condition (B) cannot hold. 

In addition to cyclic groups, there is one further class of irreducible complex 
reflection groups for which (B) holds. These are certain complex reflection groups 
acting on C2 which we denote by G(p,q, r). They will be discussed at the end 
of this section. 

Subspaces in General Position. Suppose we are given a collection of linear 
codimension two subspaces {HI, . . . ,He) in Rm in general position. (By this we 
mean that if we take any subset of {HI, .  . . ,He), then the orthogonal complements 
to the Hi in this subset span a subspace of greatest possible dimension in Rm.) 
Label each Hi by an integer ai, ai 2 2. This is the data for a piecewise Euclidean 
orbihedron V, with underlying space Rm, with singular set UHi and with local 
group at a generic point of Hi cyclic of order ai. 

By construction, V satisfies (A) and (B). What about (C), (D) and (E)? In the 
case 2&< m, this is answered by the following proposition. 

PROPOSI~ON6.8. With notation as  above, if 2e 5 m, then V satisfies (A) through 
(D), and its orbifold fundamental group is G = Z/al x . . . x Z/ae. Moreover, V 
satisfies (E) if and only if the two dimensional subspaces H;, . . . ,H; are mutually 
orthogonal. 

Proof. Let Pi = H' be the orthogonal complement of Hi in Rn. Let H = nHj, 
P = H' = PI + . . . + Pe.If 2t.5 rn, then the Pi's are linearly independent, hence, 
dim P = 21 and dim H = m - 2&.In this case, the orbifold structure on each Pi is 
a basic two-dimensional example (as in Example 5.1) and the orbifold structure 
on P is a product of these basic examples. Hence V = H x P = H x PI x . . , x Pe 
and the proposition follows from the discussion of products above. 

We turn now to the case 2&> m. Let G denote the orbihedral fundamental 
group of V. We need to decide when V is good, when G is finite and when the 
universal cover V is PL-homeomorphic to Rm.The group G is defined as follows. 
Let S = UHi be the singular set in Vo. Let yi be a small circle in Vo -S normal to 
Hi and let N be the normal subgroup of rl(Vo -S) generated by the (yi)". Then 
G = rl(VO-S ) / N .  Since H1(Vo -S) is free abelian on 71, . . . ,ye, it follows that 
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the abelianization of G is the product of cyclic groups Z/al x . . . x Z/ae. The 
unit sphere in Rm inherits the structure of a piecewise spherical orbihedron S(V). 
Let Sm-' denote its (Z/al x . . x Z/ae)-fold branched cover. 

Let us first consider the case rn = 21 - 1. 

LEMMA6.9. Let V be as above with rn = 2! - 1.Let S2e-2+S(V) denote the 
branched cover with Z/al x . . . x Z/ae as group of deck transformations. Then 

(i) the Euler characteristic of S2e-2is given by theformula: 

(ii) X(S2e-2)5 0(and consequently S2e-2is not a rational homology sphere) 

(iii) anyfinite sheeted orbihedral covering of S2e-2is not a rational homology 
sphere. 

Proof. It suffices to prove (i). (Indeed, it is an easy exercise to see that the 
right hand side of the formula in (i) is 5 0,provided each ai 2 2. A transfer 
argument shows that (ii) implies (iii).) 

To prove (i), let xj denote the Euler characteristic of S2jp2,j 1 2, where the 
branch set corresponds to the intersection of H I , .  . . ,Hj with ~ ~ j - ~ .Put X I  = 2al. 
Consider the Z/aj+l -action on S2j.The orbit space s;' is a (Z/al x . . . x Z/aj)-
fold branched cover of S2j, thought of as the unit sphere in the product orbifold. 
Thus, S ~ Jis homeomorphic to S2J.The image of the fixed set of Z/aj+l in S ~ Jis-s ~ J - ~ .Therefore, 

Assume by induction that the formula in (i) holds for != j. Substituting this into 
the above formula for xj+l,we get that it also holds for != j + 1; hence, the 
result. 

Part (ii) of the above lemma shows that if rn = 21 - 1 ,  then the orbihedron V 
is not an orbifold. More generally, part (iii) implies that the same is true whenever 
2! > rn and rn is odd. For in this case, setting !' = y,Sm-' is a finite sheeted 
covering of the (Z/al x . . . x Z/ap)-covering of S(V). 

Thus, when 2! > rn, to find V satisfying (A) through (E), we must assume 
that the dimension rn of V is even, say rn = 2n. In this case, the arrangement of 
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the codimension two linear subspaces H I ,  . . . , H e  in Rm is topologically equiv- 
alent to an arrangement of linear hyperplanes in general position in Cn. Such 
configurations are studied in the next subsection. 

Actions on Brieskorn Complete Intersections. We are now interested in 
the following situation. The underlying space of V is identified with Cn. The 
singular set is the union of n + k complex linear hyperplanes HI ,  . . . ,Ht?+k in 
general position in Cn. The hyperplane Hi is labeled by an integer ai, ai > 2. Such 
an arrangement of hyperplanes can be obtained by intersecting the coordinate 
hyperplanes in Cn+k with a generic n-dimensional complex linear subspace. 

Given an (n+ k)-tuple of integers a = (al ,  . . . ,an+k), aj 2 2, let Ga denote the 
product of cyclic groups, G, = z / a l  x . . . x Z/an+k, and let n, : Cn+k+ en+k 
be the map (zl , .  . . ,zn+k)-+ ((zl),l, . . . ,(~,+~)'n+k).Then 7ra is the orbit map for 
the natural product G,-action on Cnfk. AS usual, we denote the domain of raby 
@+k and we continue to denote the range by Pk. 

Let (wl, . . . wn+k) be linear coordinates in C'I'~ so that wi = (zi)'i. Consider a 
generic n-dimensional linear subspace Vo of P"n defined by k linear equations, 
Li(w) = 0, i = 1,. . . ,k, where 

and where (aq) is a k x (n + k) matrix of rank k. Let fi(z) = Li(ra(z)), i.e., 

The inverse image of Vo in @k is the Brieskorn complete intersection 

The orbifold V associated to the Ga-action on Yn(a, k) is of the form described 
above. For k = 1 the varieties Ytl(a, k) were studied by Brieskom [Bri], Milnor 
[Mi] and others; for k > 1 there are analogous results due to Hamm [Hm]. 

Put C2"-'(a, k) = Yn(a, k) ns ~ ~ + ~ ~ - ~ ,  de notes the unit sphere where s ~ ~ + ~ ~ - ~  
in @ + k .  Then C2"-'(a, k) and Yn(a,k) are G,-stable subsets of efk.Moreover, 
(i) ~ 2 t 1 -1(a, k) is a smooth (n -2)-connected closed manifold of dimension 2n - 1, 

(ii) the spherical structure on the unit sphere in Vo pulls back to give ~ ~ ~ - ' ( a ,  k) 
the structure of a piecewise spherical polyhedron, (iii) the variety Yn(a, k) is 
homeomorphic to the cone on ~ ~ ~ - ' ( a ,  k) x [O, oo]/ N ,k), i.e., Yn(a, k) 2 ~ ~ ~ - ' ( a ,  
where (x, 0) N (y, 0) for all x,y E C2"-'(a, k), and (iv) Yn(u, k) is naturally a 
piecewise Euclidean polyhedron. 
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It follows from (i) that ~ ~ ~ - ' ( a ,k) is simply connected provided n > 2. Thus, 
if n > 2, then the orbihedral fundamental group of V is the product of cyclic 
groups G,, the universal cover of S(V) is ~ ~ ~ - ' ( a ,k), and the universal cover of 
V is Yn(a,k). In this case, therefore, V satisfies (A), (B), and (C). As for (D), 
conditions on a = (al ,  . . . ,an+k)such that Yn(a,k) is PL-homeomorphic to Rn are 
given by Hamm in [Hm]. On the other hand, by the lemma which follows, V 
never satisfies (E). 

LEMMA6.10. Ifn > 2, the manifold Yn(.a,k) can never satisfy CAT(0). 

Proof. If Yn(a,k) satisfies CAT(O), then the link of each stratum must satisfy 
CAT(1). If n > 2, then for any i $j $t, codimR(HinHjnHe)> codimR(HinHj) = 
4. It follows that Hi fl Hj contains a stratum (of real codimension 4) which does 
not intersect any other He. The link L of this stratum is S(H' $H:)( s3) with 
singular set two great circles Hi n L and Hj fl L. By Lemma 6.6 these circles 
are orthogonal and hence HIis orthogonal to H:. But this must hold for every 
i,j, which is impossible (for dimension reasons) since there are more than n of 
the Hi's. 

Now suppose n = 2. The underlying space of S(V) is s3.Let sr : s3+S2 be 
the Hopf map. This gives S(V) the structure of a "Seifert fibered orbifold" (i.e., 
the singular set is a union of fibers in some Siefert fiber space structure). There 
are k + 2 singular fibers labeled a , ,  . . . ak+2. This induces an orbifold structure on 
s2with k + 2  branch points, and z3(a,k) +s2is a Siefert fiber space in the usual 
sense. The map sr induces a short exact sequence 

where C is the center of sryb(s(v)). It follows that if sryb(s(v)) is a finite group, 
then so is T ~ " ~ ( s ~ ) .As is well-known, the group sryb(s2)is finite if and only if 
k = 1 and the triple of integers (al ,a;!, as) satisfies the inequality: a;'+ay1+a;' > 
1. It turns out that this condition is also sufficient for the group T~"~(s(v))to 
be finite. Moreover, it is well-known that in this case the universal cover of 
z3(a,k) (and hence of S(V)) is s3and that the group sryb(s(v)) can be realized 
as a finite subgroup of GL(2, C)generated by three complex reflections of order 
a l ,  a2 and as. We denote this complex reflection group by G(al,a2, as). The actual 
instances of (al,a2, as) satisfying the inequality are: (m, 2,2), (3,3,2), (4,3,2) and 
(5,3,2); the corresponding group G(al,az, as) has order 4m2, 144, 576, and 3600, 
respectively. (See [C; p. 931.) 

We have therefore shown that when n = 2, the orbifold V satisfies conditions 
(A) through (D) if and only if k = 1 and (al,a2, as) satisfies the above inequality. 
Much of Chapter I1 of this paper is devoted to deciding when V satisfies (E) (see 
Theorem 9.1). 
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To summarize, if V is an orbifold associated to a collection of codimension 
two subspaces H I , .  . . ,He in general position in Rm,and V satisfies (A) through 

5 rn and rYb(v) = Z/al x . . . x Z/ae, or rn = 4, != 3, and 
T~" '~(v)  +a;' > 1. Conversely, if V is one of these = G(al,a2, as) with a;' +a;' 
types, then V always satisfies (A) through (D) and the geometry of the singular 
set determines when it satisfies (E). 

Conjecture. Suppose that V is an orbifold satisfying conditions (A) through 
(E). Then we conjecture that V is equivalent to an orthogonal product of irre- 
ducible linear orbifolds of the following four types. 

(1) Vo g R', the singular set is empty and G is the trivial group. 

(2) Vo E C, the singular set is the origin, and the group G is cyclic of 
order m. 

(3) Vo g C2, the singular set consists of three lines through the origin, and 
the group G is the complex reflection group G(al, a2, as) cGL(2,C). 

(4) Vo g Rn, the singular set is isomorphic to the cone on the (n - 3)-
skeleton of an (n - 1)-simplex, and the group G is the orientation-preserving 
subgroup of a real reflection group. 

We have already observed that orbifolds of types (1)-(4) satisfy conditions 
(A) through (D) and that types (1) and (2) satisfy (E). In Chapter I1 we will 
determine when orbifolds of types (3) and (4) satisfy (E). 

7. An Application: Orbifold Structures on Flat Tori. In this section we 
apply the results of the previous section to analyze orbifold structures on flat 
tori. Let Q be an orbifold whose underlying space is an n-dimensional flat torus 
Tn, and suppose that the singular set C c Tn is a union C = S1 U . . . U Sk of 
flat codimension 2 subtori of Tn. If x E S;, n . . . nSit is a singular point, and 
T,( Rn) is the tangent space to Tn at x, then the tangent space TxSij to Sij at 
x is a linear subspace of codimension 2 in T,. Let Nij denote the linear 2-plane 
orthogonal to T,Sij. We say that S l ,  . . . ,Sk are in general position if whenever 
x E Sil n . . n Sit, the subspaces Nil, . . . ,Nit are linearly independent in T, 
(or equivalently, if 21 5 n and TxSil,. . . ,T,St are in general position in the 
sense of section 6). We say that S1, ... . ,Sk intersect orthogonally if whenever 
x E Sil n . . . n Sit, the subspaces Ni l , .  . . ,Nit are mutually orthogonal. 

The tangent space T, inherits the structure of an orbifold with singular set 
T,Sil U . . . U T,Sie (where Sil ,. . . ,Sit are all the singular subtori containing x). 
In particular, if x is a generic point in Si, then T, splits (as an orbifold) into an 
orthogonal product T, = T,Si x Ni of a trivial orbifold, T,Si, and a 2-dimensional 
orbifold on Ni of the type of our basic example 5.1. In particular, the local group 
G, is a cyclic group G, G Z/ai. More generally, if S l ,  . . . ,Sk are in general 
position, then it follows from Proposition 6.8 that the local group at a generic 
point in Si, n . . . nSit is the product of cyclic groups G, G Z/ail x . . . x Z/aie, 
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that the tangent orbifold T, satisfies (A) through (D) and that T, satisfies (E) if 
and only if Ni,, . . . ,Nit are mutually orthogonal. As an immediate corollary we 
obtain the following theorem. 

THEOREM7.1. Assume Sl ,  . . . ,Skare in general position. Then Q has nonposi-
tive curvature if and only ifS1,. . . ,Sk intersect orthogonally. 

Proof. By Theorem 5.3, Q has curvature < 0 if and only if, for all x E Qo, 
the universal cover of the unit sphere in the tangent orbifold satisfies CAT(1). 
But this is equivalent to condition (E) for T,. 

Remark 7.2. It is possible that Q could have curvature < 0 even if S1, . . . ,Sk 
are not in general position. For example, let n = 4. Suppose that the singular set 
of Q is S1 U S2 U S3 where any two Si, Sj (and hence all three) intersect in the 
single point xo, and suppose that the local group at xo is the complex reflection 
group G(p,q,r) defined in Section 6. As above, Q has nonpositive curvature if 
and only if Sxosatisfies CAT(1) (where Sx0is the orbifold universal cover of the 
unit sphere S,, c T,,). The manifold Sxois a branched cover of s3with covering 
group G(p, q, r). It will be shown in Theorem 9.1 that such a branched cover can 
(under appropriate hypotheses) satisfy CAT(1). 

It follows from Theorems 7.1 and 4.1 that if S1, .. . ,Sk intersect orthogonally, 
then Q is a good, aspherical orbifold. That is, its universal cover is a contractible 
manifold. On the other hand, "good and "aspherical" are topological conditions 
which may hold even if Q does not have nonpositive curvature. In fact, we 
will show that general position for S1, .. . ,Sk is sufficient to guarantee Q good 
and a slightly stronger condition, "complete general position", suffices to give 
Q aspherical. The technique is to embed Q in an orbifold Q' with underlying 
space Tn+mand singular set a union of codimension two subtori intersecting 
orthogonally. For this, we use the following orthogonalization procedure. 

LEMMA7.3. Let {vl, . . . ,uk) be afinite set of vectors in Rn.Then 3rn 2 0 and 
vectors {wl, . . . ,wk) E such that 

(i) wl, . . .,wk are mutually orthogonal, 

(ii) rn(wi) = vi where r, : Rn+m-+ Rn is projection on the first n factors, 
and 

(iii) if vq, . . . ,vk are rational (i.e. lie in Q") then so are wl, . . . ,wk 

Proof. The proof proceeds by induction on k. For k = 1, take rn = 0, wl = vl. 
Now consider a set {vl, . . . ,vk+l) and assume we have found an orthogonal set 
{wl, . . . ,wk) in with rn(wi)= vi. Let f l ,  . . . ,fk denote the last k standard 



SINGULAR METRICS OF NONPOSITIVE CURVATURE 957 

k 
basis vectors in R ~ + ~ + ~ .Set wi = wi+fi, i = 1, . . . ,k and wh+l = uk+l-x ( ~ ~ + ~ . w ~ ) f i .  

i=1 
Then {wi, . . . ,w;+~) satisfies the requirements of the lemma. 

We return to the case of an orbifold structure Q on Tn with singular set 
C = S1 U . . . U Sk. Let p : Rn -+ Rn/Zn = Tn be the projection. Then for each 
Si, there is a unique linear codimension two subspace Pi in Rn, defined over Q, 
such that Si is the image of a Zn-translate of Pi. We say Si and Sj are parallel 
if Pi = Pj. Reordering if necessary, assume that P I , . . . ,Pe are the distinct Pi's 
(i.e. {S1,. . . ,Se) is a maximal nonparallel subset of {Sl, .  . . ,Sk)). We say that 
S1,. . . ,Sk are in complete generalposition if 2 t  5 n and P1, . . . ,Pe are in general 
position. 

Example 7.4. To see that complete general position is stronger that general 
position, consider the following planes in R4 

Let S1,S2,S3 C T~ be the images of P1,P2and P3+(;, 0,0,O), respectively. Then 
S1,S2,S3 are in general position, but not complete general position. 

THEOREM7.5. Let Q be an orbifold with underlying space Tn and singular set 
C = S1U . . . U Sk,a union offlat codimension 2 subtori. IfS1, . . . ,Skare in general 
position, then Q is good. If Sl ,  . . . ,Sk are in complete general position, then Q is 
also aspherical. 

Proof. Let P I , . . . ,Pebe as above, that is, a collection of distinct codimension 
2 subspaces of Rn such that each Si is the image of a translate of some Pj under 
the projection j : Rn + Tn. Set Ni = P: and choose a basis {Uil,ui2) for Ni. 
Apply Lemma 7.3 to the set {ull, u12, . . . ,uel, u12) to get a mutually orthogonal 
set {wll,wl2, . . . ,wel, we2), of vectors in Rnfmsuch that .irn(wi) = uij. Let NI be 
the subspace generated by wil, wi2 and let P: be the orthogonal complement of 
Nil in Rn+m.By definition, P i ,  . . . , P i  intersect orthogonally. Moreover, viewing 
Rn as the first n factors in Rnfmand Rm as the last m factors, we have 

We now put an orbifold structure on Tn x Rm as follows. Let j7 = p x id : 
IW" x IW'" -Tn x Rm.For each Sj, write Sj =p(Pij+xj) and set Sj =p(PL +xj). Let 
Q1 be the orbifold structure on Tn x Rm with singular set 2' = S; U . . . U Sh and 
local group on Si = local group on Si = Z/ai. Restricting Q' to Tn x {0), we get 
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our original orbifold Q. Now by Theorem 7.1, Q' is a good, aspherical orbifold, 
that is, its universal cover is a contractible manifold. Restricting this cover to Q, 
we see that Q is also covered by a manifold, hence, Q is good. 

Now suppose that S1, .. . ,Sk are in complete general position, or in other 
words 2&5 n and P I ,  . . . ,Peare in general position. In particular, P = Plfl. . .nPe 
has dimension n - 2&.Let pL denote the orthogonal complement of P in 
and define V = P' fl P: n .  . . n Pi. We claim that (i) projection on Rm induces an 
isomorphism cp : V +Rm,and (ii) P: = Pi$V. To see (i), recall that Pi flRn = Pi, 
h e n c e ( P i n . . . n P ~ ) n R n= P 1 n . . . n P i = P ,  s o V n R n  =pLnp={O).Thus 
cp : V +Rm is an injection. On the other hand, codim P' = dim P = n - 2&and 
codirn(Pi f l .  . . f l  Pi)  = dim(Ni + . . .+Ni) = 2&,so c'odim V 5 n and dim V 2 m. 
Combining these observations, we see that dim V = m and cp is an isomorphism. 
This proves (i). It follows that Rnfm= Rn$V and hence Pi = (RnnPi)$V = Pi$V. 
This proves (ii). 

We now show that Q' is isomorphic as an orbifold to Q x Rn where Rn is 
viewed as an orbifold with all local groups trivial. Define a linear automorphism 

Clearly 4 commutes with the Zn-action on Rn and hence, descends to homeo-
morphism 

Now 4(P; $ Rm) = Pi $ V = Pi, so $(s; x Rm) = Si. Thus, 4 induces a strata-
preserving homeomorphism from the singular set C x Rm of Q x Rm to the 
singular set C' of Q'. Moreover, by definition, the local groups agree under this 
homeomorphism, hence 4 determines an isomorphism of orbifolds Q x Rm Q'. 
Now Q' (and hence Q x Rm)has a contractible universal cover. But the universal 
cover of Q x Rm is Q x Rm where Q is the universal cover of Q. It follows that 
Q is contractible. 

Remark 7.6. The referee has pointed out the following remarks concerning 
Theorem 7.5. 

If S1, .. . ,Sk are in general position, then Q actually has a finite covering 
which is a manifold. To see this, first consider the case where all the S;'s are 
parallel. In this case, Q is the product of an (n - 2)-torus and an orbifold 0 with 
underlying space T ~ .The latter admits a hyperbolic structure and hence has a 
finite manifold cover determined by a homomorphism of r y b ( 0 )  into a finite 
group. 

For the general case, we can consider the collection of those Si's, say S1,. . . , 
S, which are parallel to a fixed plane Pj. Pulling the orbifold structure on Q 
back to the finite cover described above, gives a finite orbifold cover Qj + Q 
which is nonsingular over S1, .. . ,S,.. This cover is determined by a homomor-
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phism hj : .irYb(Q) + Gj into a finite group Gj which is injective on the local 
groups for S1, .  . . ,S,.. Doing this for each of the planes P I , .  . . ,Pe, we obtain a 
homomorphism 

which is injective on all the local groups of Q (since all local groups are direct 
products of the local groups for the Si's). This homomorphism determines a finite 
cover of Q which is a manifold. 

In particular, in dimension n = 3, the circles Si are in general position if and 
only if they are mutually disjoint and in complete general position if and only if 
they are disjoint and parallel. In the latter case, Q is the product of a circle and a 
2-dimensional hyperbolic orbifold. In the former case, Q can be fibered over the 
circle with each fiber an orbifold on T ~ .The finite manifold cover of Q is then a 
surface bundle over S' and, as such, is aspherical. Thus in dimension 3, general 
position suffices to imply asphericity. 

Finally, we close this section with an example which demonstrates that in 
dimensions n > 3, general position alone is not sufficient to guarantee Q aspher-
ical. 

-
Example 7.7. Let a l , .  . . ,a, be integers > 2. Let cp : Cn + Cn denote the 

branched cover of Cn defined by (zl, . . . ,z,) H (zq', . . . ,z:") with metric on 
pulled back from the standard (flat) metric on Cn. The branch locus of this 

covering is the union of the coordinate hyperplanes in Cn and the covering trans- 
formation group is Z/al x . . . x Zla,. Let wl, . . . ,w, be a system of coordinates 
in Cn such that zyi = wi. Let V be the complex hyperplane in Cn defined by 
wl + . . . + w, = & and consider the branched cover 

The branch set in V consists of n linear subspaces, Pi = {(wl, . . . ,w,) E V I wi = 
0), i = 1 , . . . ,n, of (real) codimension 2. It is easy to see that P I , .  . . ,Pn are in 
general position, but not complete general position. Let A c V be the geodesic 
(n - 1)-simplex in Cn with vertices el = ( & , 0 , .. 0 e = ( 0 , .  .0 . . , en  = 

. . ,0,  h),and let 2 = cp-'(~) C V. By [Mi], we know that A is a deformation 
retract of V and is homotopy equivalent to a nontrivial wedge of (n - 1)-spheres. 
(The number of spheres is nYz1(ai - I).) In particular, 2 gives rise to nontrivial 
elements in T,-1 (V). 

To see that the same phenomenon occurs in branched covers of tori, choose 
an isometry of V with R2n-2. Then the translation action of Z2n-2 on R2n-2 gives 

0 
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rise to a Z2n-2-action on V so that v / Z ~ ~ - ~  is a flat torus. Let Q be the orbifold 
structure on v / Z ~ ~ - ~  whose singular set C is the image of the planes P I ,  . . . ,P,, 
and whose local group at a (generic) point x E Pi is Z/ai. Pulling Q back to V 
gives an orbifold structure Qv on V whose singular set is the union of all the 
~ 2 n - 2-translates of P I , .  . . ,P,. Now if Q is the universal cover of Q, then Q is a 
manifold (by Theorem 7.5) and there is a factorization of the covering map 

Since A has diameter 4and is bounded by P I ,  . . ,P,, it does not intersect any 
nontrivial translate of P I , .  . . ,P,. It follows that the inverse image of A 
in Q is a disjoint union of copies of g.Since generates nontrivial elements in 
sr,-l(V), its lifts to Q must generate nontrivial elements in T,-,(Q). We conclude 
that for n > 2, Q is not aspherical. In particular, this means that there is no 
Riemannian metric on the underlying torus v / Z ~ ~ - ~  SO that the induced metric 
on Q is nonpositively curved. Odd dimensional examples are obtained by crossing 
Q with S' . 

Chapter 11: Real and Complex Reflection Groups. From Chapter I, we 
know that if Q is an orbifold of nonpositive curvature, then the local models 
for Q must be orbifolds V satisfying conditions (A) through (E) of Section 6. 
As discussed in Section 6, primary examples of V satisfying (A) through (D) 
are provided by certain real and complex reflection groups acting on Rn. In this 
chapter we determine when these examples satisfy (E). 

Assume conditions (A) through (D). Let G be the orbifold fundamental group 
of V and let S(V) be the restriction of V to the unit sphere in Vo ( r Rn). Then 
the universal cover S(V) of S(V) is a branched cover of sn-' with covering 
group G. Condition (E) is equivalent to the condition that S(V) satisfy CAT(1). 
Our goal in this chapter is to analyze branched covers of spheres with covering 
group an orientation-preserving subgroup of a real reflection group or a complex 
reflection group of the form G ( p ,q, r). In particular, we want to determine when 
the piecewise spherical polyhedron S(V) satisfies CAT(1). By Lemma 1.3, this is 
the case if and only if S(V) has curvature 5 1 and systole 2 27r. (By Theorem 
3.1, S(V) has curvature 5 1 if and only if the link of every point in S(V) satisfies 
CAT(1). In most of our examples, the curvature condition will be obvious; the 
main work will involve the systole condition.) 

8. Branched Covers of Sn Associated to Real Reflection Groups. Let G 
be the orientation-preserving subgroup of a real reflection group of rank n + 1. 
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Then, as discussed in Section 6, the action of G on the n-sphere gives rise to a 
branched cover 

where Sn is given the standard spherical metric d and Sn has the piecewise 
spherical metric obtained by pulling back the metric on Sn. 

If n = 1, G is a cyclic group, G = ZIP, and S1 is a circle of circumference 
27rp. Clearly this satisfies CAT(1). So the first interesting case is the case n = 2. 
The finite real reflection groups (or Coxeter groups) of rank 3 are the triangle 
groups 

with ;+++: > I .  The orientation-preserving subgroup G c T(p, q, r) is generated 
by the three rotations, gl = sls2, g2 g3= ~ 1 . ~ 3 ,  = $2~3, of orders p,q,  and r. For 
such G, the branch locus in s2consists of three points xp,xq,x, with local groups 
(gl )  = Z/p, (g2) = Z/q, and (g3) = Z/r, respectively. 

THEOREM8.1. Let G be the orientation-preserving subgroup of T(p, q, r) and 
let {xp,xq,x,.} C B be the branch set of S2 -+ S 2 / ~  Then S2satisfies CAT(1) = s2. 
ifand only if 

(i) d(xp, x,) + d(xq, xr) + d(xp, xr) = 2 ~ ,and 

(ii) d(xi, xj) 2 :for all {i, j, k) = {p, q, r}. 

Remark8.2. Condition (i) is equivalent to the conditions that xp,xq,x,- all lie 
on some great circle in s2and that they do not all lie on any half of that circle. 

Proof of Theorem 8.1. We first observe that S2 always has curvature < 1. 
This is true by Theorem 3.1 since for any point i E 32, the link of i in S2 is 
just a circle of circumference 27rs, where s is the order of the local group at i. 
In particular, these links all satisfy CAT(1). It remains to prove that the systole 
of S2is > 27r if and only if condition (i) and (ii) of Theorem 8.1 hold. 

Let A denote the geodesic triangle in s2joining xp, xp, and xr. Then A divides 
s2into two (closed) regions which we will refer to as "the black and the white 
regions" of s2.One of these regions, say the black one, is a spherical triangle with 
all angles < 7r. The white region may then be regarded as a spherical triangle 
with all angles 2 7r. The inverse images of these triangles under the projection 
S2 -+ s2triangulate S2 into 21G/ regions, half of the regions isometric to the 
black triangle and half to the white one. The vertices of this triangulation are the 
inverse images of the singular points xp, xq, xP 
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We first verify that conditions (i) and (ii) of the theorem are necessary to 
have sys(S2) > 27r. Note that at a vertex % over xp, we have p white triangles 
and p black triangles meeting alternately: 

# 

In particular, if yl is the geodesic segment from ,tq to i,,and y2 the geodesic 
segment from ipto Z,.,then the angle between them is > 7r. Hence, by Lemma 2.3, 
y = (yl ,  y2) is a local geodesic at i,,. By the same argument, the boundary of any 
white region is a closed local geodesic in 3'. But the length of this boundary is 
the perimeter, &A), of the triangle A in s 2 ,  namely 

This shows that condition (i) is necessary. For condition (ii), we note that the 
simplicial link of the vertex ipin S2 consists of 2p segments each connecting 
some iqto some i,.. (By simplicial link we mean the boundary of the region in 
Figure 1.) In particular, each segment has length d(xq,x,.). Observing the angles 
at each vertex, it is clear that this link is a closed local geodesic in S2. Thus, 
for S2 to be large we must have 2p . d(xq,x,.) > 27r. This proves the necessity of 
condition (ii). 

Now assume conditions (i) and (ii) hold and suppose y is a closed local 
geodesic in S2.We first reduce to the case where y lies in the 1-skeleton of the 
triangulation of S2 by black and white regions. As remarked above, condition (i) 
implies that A is a great circle in s2and hence, each region of S2 is isometric to 
a hemisphere of s 2 .  Thus, if y enters the interior of any region, then y contains 
a segment yl of length 7r lying entirely in that region. In this case, the projection 
of y to s2is a closed broken geodesic which contains a pair of antipodal points. 
Clearly, any such closed broken geodesic has length > 27r, hence, y has length 
> 27r. 

Thus, we may assume that y = (yl ,  72,. . . ,yn) is an edge path in the triangu- 
lation of S2.Let {i,j ,  k )  = (p,q, r}. Say a vertex is of type i if it lies over xi and 
say an edge is of type i if its endpoints are of types j and k. Note that any edge of 
type i has length d(xj,xk). If y contains edges of all three types, then condition (i) 
implies that length y > 27r. If y contains exactly two types of edges, then both 
types of edge must occur at least twice (since y is closed), so again condition (i) 
(and Remark 8.2) implies that length y 2 27r. Finally, it is easy to see that the 
shortest closed edge paths containing only type i edges are the simplicial links of 
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type i vertices. These contain exactly 2i edges of type i, so condition (ii) implies 
length y > 2 ~ .  

Next we consider the case of an orientation preserving subgroup G of a real 
reflection group of rank n + 1 2 3. Our results here will depend on a general 
theorem on piecewise spherical complexes (Theorem 8.4 below) which is a slight 
generalization of a result of Gromov ([G, Lemma 4.2.Cl). 

We preface this theorem with some remarks about "proper" and "almost 
proper" spherical triangulations. By a convex n-simplex in Sn we mean a (nonde-
generate) topological n-simplex a C Sn such that every codimension 1 face T of 
a lies on a geodesic (n - 1)-sphere SF-' in Sn and the interior of a is a single 
component of 

If the spheres SF-' are all distinct, we say that a is strictly convex. For example, 
a 1-simplex is convex if and only if it has length 5 sr, and it is strictly convex 
if and only if it has length < sr. 

Generally, when considering piecewise spherical complexes, we require our 
simplices to be strictly convex. This is no real restriction as long as we can pass 
to subdivisions. However, in the discussion that follows, the size of a simplex 
is crucial, so subdivision is not always an option. We must, therefore, allow for 
geodesic simplices which are convex, but not strictly convex. 

Definition 8.3. Let L be a geodesic metric space. A triangulation 7 of L is 
an almost proper (resp. proper) spherical triangulation if every n-simplex of 7 
is isometric to a convex (resp. strictly convex) n-simplex in Sn. 

We assume all of our simplicia1complexes arefinite dimensional. Recall that a 
flag complex is a simplicial complex 7 such that if {Q, . . . ,uk)  is a set of vertices 
in 7 which are pairwise joined by edges, then {m, . . . ,uk)  span a k-simplex in 7.  

THEOREM8.4. Let L be a-piecewise spherical polyhedron and let 7 be a trian-
gulation of L. Assume 

(CI) 7 is a$ag complex, 

(C2) 7 is an almost proper spherical triangulation 

(C3) i f q ,  72 are disjointfaces of a simplex a in 7,then d ( q ,  r2) 2 ;. 
Then L satisfies CAT(1). 

Remark. If we assume that 7 is proper, then (C3) is equivalent to the con-
dition that the length of every 1-simplex in 7 is > $ (cf. Lemma 8.12 below). 

Before proving this theorem we will need the following lemmas. 
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LEMMA8.5. Let L, I be as above. If 7 satisfies ( C l ) ,  (C2),  and (C3),then so 
does the induced triangulation on L, = Link(a, I )  for every simplex a of I .  

Proof. Clearly (C1) and (C2) are inherited by links. It remains to consider 
(C3). We proceed by induction on the dimension of L. If dimL = 1, then links 
are discrete so there is nothing to prove. Suppose dimL = k > 1. Consider first 
the case when a = u, a vertex of L. Let 

B(u) = {x E L / d(x,u) 5 $1  
st(u) = union of simplices cont'aining u 

Then (C3) implies that B(u) c st(u), hence we may identify L,, the link of u in 
L, with the set 

In particular, a simplex 7Ji of L, is of the form 

where p is a simplex of L containing z!. Two faces 71,72 of p are disjoint 
if they correspond to faces r 1 , q  of p whose intersection is precisely u. Let 
xl E 7 1  ,x2 E 72. We must show d(xl,x2) 2 5.Consider the spherical triangle 

where yl ,y2 are determined by extending the geodesic segments to the bound-
ary of st(u). Thus, yi lies in the face rilof ri opposite 21. Since 71 n r 2  = {u), 
71 n 71 = 71 n 72 = 0.Thus, condition (C3) on L implies that d(y1,x2) 2 
and d(yz,xl) 2 $. Now yl $yz so at most one of 4'lry2 is antipodal to u. Say 
d(u, yl) < n,so d(x-1, yl) < 5.Then the spherical triangle A(xl ,y1 ,x2) is a right 

;. 2of length ylxz,and hypotenuse, ;<of length xlyl,triangle with one leg, 
;. 2By an easy exercise in spherical geometry, it follows that d(xl,x2) This 

completes the case when a is a vertex. 
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If dima > 0, choose a vertex v of a. Let a = Link(v, a )  C L,. Then 
Link(a, L) = Link@, L,). But we have already shown that the (k - 1)-dimensional 
complex L, satisfies (C3). Hence, by induction, the same holds for Link@, L,). 

LEMMA8.6. If L, 7 satisfy ( C l ) ,  (C2),  and (C3), then so does the induced 
triangulation on CL. 

Proof. It is clear that (Cl) and (C2) hold in CL.To see that (C3) holds in 
EL,note that every simplex of CL lies in the (upper or lower) cone on L, so it 
suffices to show that cone(L) = L * m satisfies (C3). For a k-simplex a in L, let 6 
denote the corresponding (k + 1)-simplex, B = a * m, in the cone. We must show 
that ds(rl,  F2) 2 5 whenever T I , T ~are disjoint faces of a. Let x E 71,y E F2. If 
y = Q, then d(x,y) = ;by definition. If y + m, let z E 72 be the projection of y 
to L and consider the spherical right triangle A(x,y, z) C 6. 

tb 

By condition (C3) on L, d(x,z) 2 ;and clearly d(y,z) < :. It follows that 
d(x,y) 2 5. 

The next lemma is a variation on Lemma 9.8 of [MI. The proof is essentially 
the same. 

LEMMA8.7. Suppose L, 7 satisfy (C2) and (C3).Let v be a vertex of L and 
let y be a local geodesic segment in st(v) which intersects d(st(v)) precisely in its 
endpoints. Then y has length 2 T .  

Proof. We proceed by induction on dim L. If dim L = 1, then L is made up 
of edges of length 2 5.In this case the lemma is clear. Let dimL = n > 1, 
and let v be a vertex of L. Let y be.as in the lemma and write y = (y l , .  . . ,7,) 
where yi is a segment of y contained in a single simplex ai of st(v). If y passes 
through v, then by condition (C3), y has length > sr.  So we may assume that y 
does not pass through v. Consider the collection of rays in st(v) emanating from 
v and passing through a point of y. The union of these rays forms a piecewise 
spherical 2-complex with 2-simplices ri = U (rays from v to yi). We can map 
each r i  isometrically onto a 2-simplex in s2 ,f : ri + S2 with f (v) at the north 
pole and the common face of ri and ri+l (containing the endpoint of yi) mapping 
to a common face off (ri) and f (ri+1).Let X = Uf (ri) c S2. The image of y in X 
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is locally geodesic in X and hence also in s2 (since f (y) intersects dX only at its 
endpoints). That is, f (y) is a segment of a great circle in s2. 

f(v )  

Let xo, . . . ,xr denote the endpoints of 71,. . . ,y,.. Let yo,. . . ,yr be the radial 
projections of xo, . . . ,xr to d(st(u)). To show that the length of f(y) (and hence 
the length of y) is at least n,it suffices to show that the interior angle of X at 
f(yi) is > i7, for i =  1, .  . . , r  - 1. 

For this, consider Li = Link(yi, L). Let a = Link(y;, Ti) and p = Link(y;, r;+l). 
Then ( a ,  P) is a local geodesic in Li and the interior angle of X atf (y;) is precisely 
the length of this geodesic. Now let pi be the support of y; (i.e. pi is the unique 
simplex of L containing y; in its interior), and let k = dim pi. Then 

Li = Link(y;,L) = zkLink(pi,L;) 

so the natural triangulation on Link(pi,L) induces a triangulation on Li. By Lem-
mas 8.5 and 8.6, this triangulation satisfies (C2) and (C3). The simplex u * p; 
spanned by u and pi represents a vertex 3 in Link(p;,L) and hence also in Li. (Note 
that 3 is not, in general, the tangent vector to the geodesic from y; to u, but rather 
the orthogonal projection of this vector onto (tangent space to pi)L = Link(pi,L).) 
The geodesic ( a ,P) lies in the star of 3in Li and has endpoints in d(st(3)). There-
fore, our induction hypothesis applies to ( a ,  P )  c st(@ c Li to give that length 
(a ,  PI 2 7r. 

Proof of Theorem 8.4. The proof is by induction on dimL. If dimL = 1, then 
L is a graph whose edges have length 2 ;. The assumption that L is a flag 
complex means that this graph contains no cycles with less than 4 edges. Thus, 
L satisfies CAT(1). 

Suppose dim L = n > 1. For a vertex u in L write 

st(u) = Ua = star of u 
U E U  

ost(u) = U interior (a)  = open star of u, 
U E U  
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The collection of open stars, {ost(u)), ,,,*,,, forms an open cover of L and 
ost(u) n ost(w) # 0 if and only if w E st(u). Let y be a closed geodesic in L and 
let u be a vertex such that y nost(u) $0.Then by Lemma 8.7, ost(u) contains (the 
interior of) a segment of y of length 2 7r. If y does not lie entirely in st(u), then 
it must intersect ost(w) for some vertex w 6st(u). Again by Lemma 8.7, ost(w) 
contains (the interior of) a segment of y of length 2 n. But ost(u) nost(w) = 0 
(since w 6st(u)), hence y has length 2 27r. 

It remains to consider the case where y lies entirely in st(u). By condition 
(C3), we can identify 

This identification extends to a natural map f : st(u) +CL, which, restricted to 
any simplex of st(u), is an isometry. (Thoughf is not, in general, an isometry on 
the whole space st(u).) By Lemma 8.5, L, satisfies the hypotheses of the theorem, 
so by induction, it satisfies CAT(1). By Theorem A.10 of the appendix, CL, also 
satisfies CAT(1). The image of y under f is a broken geodesic in EL, with break 
points occurring only in f(dst(u)). In particular, if y C ost(u), f(y) is a closed 
local geodesic in CL, and so has length 2 27r. If y intersects dst(u), then by 
Lemma 8.7, ost(u) contains a segment of y of length n,so f(ost(u)) contains a 
local geodesic segment off (y) of length 7r. But since CL, satisfies CAT(l), any 
local geodesic of length 7r is an actual geodesic. In other words, f(y) contains 
a pair of points x,y of distance 7r in ZL,. It follows that f(y), and hence y, has 
length 2 27r. 

We now return to the case of a branched cover 

in which G is the orientation-preserving subgroup of a real reflection group of 
rank n + 1. The singular set 2 C S"/G is homeomorphic to the (n - 2)-skeleton 
of an n-simplex. 

THEOREM8.8. Let n 2 2 and suppose that S" satisfies CAT(1). Then C lies on a 
great (n- 1)-sphereSi-' c Sn ,and the triangulation of Sn whose (n-2)-skeleton 
is C and (n - 1)-skeleton is s;-' is an almostproper spherical triangulation. 

Proof. As demonstrated in Section 5, CAT(1) for S" implies that the faces of 
C are locally geodesic, or in other words, each k-simplex a of C lies on a great 
k-sphere in Sn. We first show, by induction on n, that C itself lies on a great 
(n - 1)-sphere. For n = 2, this follows from Theorem 8.1. 

Suppose n > 2. Let u be a vertex of C and Zi E S" a point over u. Then 
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CAT(1) for S" implies CAT(1) for Z, = ~ i n k ( 5 , P ) .But L,  is again a branched 
cover of the form 

where G, is the orientation-preserving subgroup of a rank n reflection group. By 
induction, therefore, the singular set C ,  C L,/G, = sn-' lies on a great (n - 2)-
sphere. It follows that the star of u in C lies on a great (n - 1)-sphere of Sn. But 
every vertex of C is contained in st(u). Hence C lies entirely in this (n -1)-sphere. 

Now let s;-' denote the (n - 1)-sphere spanned by C. Then C determines 
a triangulation 7-of Sn as follows. The n-simplices A1,A2 of 7- are the-two 
hemispheres of Sn determined by s;-'. The (n - 1)-simplices are the closures 
of the connected components of S;-'\C. The (n - 2)-skeleton of 3 is C. We 
claim that 7=is almost proper. Again we proceed by induction on n. For n = 2, 
C consists of three points xp,x,,x, lying on a great circle of S2. By Theorem 8.1 
and Remark 8.2, xp,xq,x, divide this circle into three segments of length 5 n.It 
follows that 7/is almost proper. 

Now suppose n > 2. Let a be a k-simplex of I-.We know that the codimen-
sion 1 faces TO,.. . ,r k  of a lie on great (k - 1)-spheres. If k > 2, the convexity 
of a will follow if we show that the dihedral angles between the ri's are 5 n. 
For this, note that if Ti and Tj meet along the codimension 2 face T = ri n q, 
then the angle between ri and q is the length of the edge determined by a in 
Link(r, Sn) .  By induction, the induced triangulation on this link is almost proper 
so every edge has length 5 n. We conclude that a is convex provided dim a 2 2. 
It remains to show that every 1-simplex in 7 has length 5 n. Suppose e is a 
1-simplex of length > T .  Since n 2 3, e is contained in some 3-simplex a in I=. 
If T is a 2-dimensional face of a,  then, by the discussion above, T is convex. But 
if e lies in T, this is possible if and only if T is a hemisphere with all vertices 
lying on the great circle containing e. It follows that allfour vertices of a lie on 
this great circle. Indeed, they lie on a segment of this great circle of length < n. 
But this is absurd for a nondegenerate 3-simplex. We conclude that the edges of 
7-must have length 5 n. 

We are now ready to establish sufficient conditions for CAT(1) to hold in S". 

THEOREM8.9. Let G be the orientation-preserving subgroup of a real rejection 
group W of rank n + 1.Assume that the singular set C c Sn = S"/G lies on a great 
(n - 1)-sphere and that thefaces of C are totally geodesic. Let 7-be the associated 
triangulation of Sn. IfE satisfies (C2) and (C3), then CAT(1) holds in S". 

Proof. If 7- satisfies (C2) and (C3), then the same holds for the induced 
triangulation % of p.Combinatorially, % is the Coxeter complex associated to 
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W and, as such, is well-known to be a flag complex (see eg. [Bro]; p. 29). It 
follows from Theorem 8.4 that 9 satisfies CAT(1). 

Remark 8.10. For G as above, there always exist triangulations 7=satisfying 
(C2) and (C3). For example, take the radial projection of a regular n-simplex 
in Rn with center of mass at the origin, and let Z C sn-'be the image of the 
(n - 2)-skeleton. Then 7=satisfies (C2) and (C3). 

We have seen (Theorem 8.4) that condition (C3) is not a necessary condition 
for CAT(1) to hold in [Tn, at least in the case n = 2. However, there is one 
situation, namely the case of an abelian reflection group, in which the hypotheses 
of Theorem 8.9 are necessary and sufficient. 

THEOREM8.11. Let n > 2. Suppose G, is the orientation-preserving subgroup 

of 

Then [Tn satisfies CAT(1) ifand only i fZ  and the associated triangulation satisfy 
the hypotheses of Theorem 8.9. 

LEMMA8.12. Let L be apiecewise sphericalpolyhedronand 7an almostproper 
triangulation of L. For any simplex a in 7and any point x E a ,  there exists a vertex 
u E CT such that d(x, u) 5 ;. 

Proof. The proof is by induction on the dimension of a. If dim a = 1, then 
a is convex if and only if it has length I T .  In this case, the lemma is clear. 
Suppose dim CT = n > 2. Identify a with an intersection of half-spaces in Sn.Let 
x E into. Let y be the point on ~ C Tnearest to x. Clearly, d(x,y) 5 ;. Let T be 
the support of y, i.e., r is the smallest simplex containing y. Then the geodesic 
from x to y is necessarily perpendicular to r (since y is the closest point to x on 
~ c T ) .By induction, there is a vertex u E r such that d(u,y) I ;. The geodesic 
triangle with vertices x,y, u is a spherical triangle with a right angle at y. Both 
legs of this triangle have length I ;. It follows that the hypotenuse has length 

7 lI 7 .  

LEMMA8.13. Let L, 7 be as  in Lemma 8.12. Then condition (C3) is equiva-
lent to: 

(c3)' every 1-simplex in L and every 1-simplex in L,, CT E 7,has length > ;. 

Proof. By definition, (C3) implies that edges in L have length > ;. By 
Lemma 8.5, (C3) for L implies (C3) for Lo, so the same holds in L,. This shows 
that (C3) implies (C3)'. 
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Conversely, assume condition (C3)'. Suppose T and TOP are opposite faces of 
a simplex a E 7.We will show by induction on dima that d(r ,  TOP) > ;, If a 
is an edge, then T and TOP are the vertices of a and d(r ,  TOP) = length of a 2 ; 
by (C3)'. Suppose dim a > 1. Let y be a geodesic in a connecting T and TOP of 
minimal length. If y lies in the boundary of a ,  then by the inductive hypothesis 
it has length !(y) > ;. So we may assume that the endpoints x E r ,  y E TOP of 
y lie in the interiors of T and TOP.  It follows from the minimality of the length 
of y that y intersects T and TOP orthogonally. Now either T or TOP has dimension 
> 0, say dim7 > 0. By Lemma 8.12, we can choose a vertex w E T with 
d(x, w) 5 ;. Consider the right spherical triangle spanned by x,y, w with right 
angle at x. The segment from y to w lies in the boundary of a ,  so by induction, 
d(y, w) 2 ;. Now if d(x, w) < ;, an easy exercise in spherical geometry shows 
that t(y) = d(x,y) 2 ;. If, on the other hand, d(x, w) = ;, then d(y, w) = ;and 
the angle at y is also a right angle. In this case, y can be viewed as a geodesic 
segment in L, = Link(w,L) connecting opposite faces of a, = Link(w, a). By 
induction, (C3) holds in a,, so !(y) > ;. 

Remark 8.14. If an n-simplex a is strictly convex, then it is contained in 
some open hemisphere of Sn.Thus, if we assume 7 is proper, in Lemma 8.12 we 
can replace all the inequalities by strict inequalities, and in Lemma 8.13 we can 
assume d(x, w) < ;. The proof of Lemma 8.13 then shows that if 7 is proper, 
then (C3) is equivalent to the condition that every 1-simplex in L has length 
2 ;. 

Proof of Theorem 8.11. In light of Theorems 8.8 and 8.9, it remains only to 
show that if 3 satisfies CAT(l), then '& satisfies condition (C3). We proceed 
by induction on n. Let En be the singular set in Sn and write I, for I=,.The 
theorem assumes n 2 2 since for n = 1, El = 0,so '& is not well-defined. It will 
be convenient, however, to begin our induction with n = 1 since this case occurs 
as the link of a codimension 2 simplex for larger n. The fact that En lies on a 
great (n - 1)-sphere in Sn means that the dihedral angle between codimension 1 
faces in I, is always T .  Hence, if a is of codimension 2 in I,,then the induced 
triangulation on L, = Link(a,L) ( 2 s') consists of two edges of length T .  We 
therefore define the triangulation 7 of S' to consist of two edges of length T 

meeting at a pair of antipodal points. Clearly this satisfies (C2) and (C3). 
Now suppose n 2 2 and that p satisfies CAT(1). In light of Lemma 8.13, 

it suffices to show that all edges in I, have length 2 ;. (By induction, the 
same holds for links in Sn since the induced triangulation on the link L, of a 
codimension k simplex a is precisely .) Let A1,A2 denote the two n-simplices 
of I,.Recall that dAl = dA2 is a great (n - 1)-sphere. Let e be an edge of Ai and 
a be the codimension 2 face opposite e. The branching order at a is 2. Hence, if 
6 is a lift of a to p, then the star of 6 ,  st(6), consists of two copies of A1 and 
two copies of A2. 
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The four lifts of e in st(6) form a closed broken geodesic y = (El,E2,63, Z4). We 
claim that y is a local geodesic in Sn. To see this, let O be the shared vertex of an 
adjacent pair (Zi,Ej). We must show that the angle between Ei, E j  at b is 2 n,or 
in other words, that the tangent vectors xi,xj to Ei, Ej at 5 are at distance 2 n in 
Z,= Link(t;, 3).Now q and xj are vertices in the induced triangulation z-1on-
L, Sn-'. Moreover, xi and xj do not lie in a common simplex of Tn-l (since 
Zi, Ej do not lie in a common simplex of in). By induction, and hence z - 1 ,  
satisfies (C3). Clearly (C3) implies that two vertices not contained in a common 
simplex are of distance 2 n.This shows that y is a local geodesic at each vertex 
6.Since CAT(1) holds in p,the systole of [Tn is 2 2n.Hence !(y) = 4.t(e) 2 2n, 
so t(e) 2 ;. 

We end this section with a conjecture for the general case of an orientation-
preserving subgroup G of a real reflection group. Recall that if G has rank n + 1, 
then the triangulation Tc of Sn consists of exactly two n-simplices A1,A2 with 
their boundaries identified. Thus, if a is a codimension 2 simplex in 6,then 
there is a unique edge e, in 'Tz lying opposite a in both A1 and A2. Consider the 
property: 

(C4) If a is a codimension 2 simplex in I=,and p is the branching order at 
a ,  then t(e,) 2 ;. In addition, the same holds for the induced triangulation 'T=, 
of Link(r, Sn) for all simplices T E Tz. 

An easy exercise shows that (C4) is equivalent to 

(C4)' If a is a codimension 2 simplex in Tc, and p is the branching order at 
a ,  then !(e,) 2 and for any T C CT,the dihedral angle at T in T * e, is 1 E .

P 

Conjecture. Let G be the orientation-preserving subgroup of a real reflection 
group of rank n + 1. Then Sn satisfies CAT(1) if and only if C lies on a great 
(n -1)-sphere, the faces of X are totally geodesic, and the associated triangulation 
'Tc satisfies (C2) and (C4) (or equivalently (C4)'). 

Note that this conjecture is supported by Theorems 8.1 and 8.11. 
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9. Branched covers of s3with covering group G ( p ,q, r). It is conjectured 
in Section 6 that the only irreducible complex reflection groups which can occur 
as local groups in an orbifold of nonpositive curvature are the cyclic groups and 
the groups G(p, q, r) generated by three complex reflections in C2 of orders p,  q, 
and r with + + > 1 The action of G = G(p,q, r) on C2 gives rise to a 

branched cover n : S3 + S 3 / ~= s3(where the base, s3 ,  is given the standard 
spherical metric and the covering, S3, is assigned the pullback metric). The branch 
locus of such a cover consists of three disjoint great circles Pp, P,, P r  The local 
group at x E P,, m = p,q,  or r ,  is Z/m. The remainder of the paper is devoted 
to determining which geometric configurations of these 3 great circles give rise 
to a metric on z3satisfying CAT(1). 

It will be convenient in the discussion which follows to identify s3with the 
set of unit quaternions and s2with the set of totally imaginary unit quaternions 
(i.e., those v E s3such that v2 = -1). Note the every unit quaternion w E s3 
can be written in the form w = eve where v E s2is totally imaginary. In this 
terminology, the Hopf map H : s3+s2is given by ~ ( e ' ~ )  = the point = ezeievO 
on s2obtained by rotating i about L) through an angle of 20. The map H is a 
fibration whose fibers are the circles eiew, 0 5 0 < 2n, for some w E s3. 

Now let P I ,  P2, Pg be disjoint great circles in s3.Say P I ,  P2, Pg are Hopf if 
there exists an isometry cp of s3(possibly reversing orientation) such that cp(P1), 
p(P2), p(P3) are fibers of the Hopf map. 

We now state the main theorem of this chapter. Note its similarity with 
Theorem 8.1. 

THEOREM9.1. Let S3be a branched cover of s3with covering group G(p, q, r) 
and branch locus three disjoint great circles Pp, P,, Pr of orders p,  q, and r respec- 
tively. Then 3' satisfies CAT(1) if and only ifPp, P,, Pr  are Hopf and (up to isometry) 
their images xp, x,, xr under the Hopf map satisb the following two conditions: 

(i) d ( x P , x , ) + d ( x p , x r ) + d ( x , , x r ) = 2 ; . r  

(ii) d(xi,xj) 2 where {i, j, k) = {p,q, r) .  

Before embarking on the proof of Theorem 9.1, we offer the following ex- 
ample as an application. 

Example 9.2.Let F be a nonpositively curved Riemann surface. Let M = F x F 
with the product Riemannian metric. Then M is a smooth 4-manifold of nonposi- 
tive curvature. We can construct a variety of interesting orbifold structures of non- 
positive curvature on M. The singular sets of these orbifolds are unions of totally 
geodesic codimension 2 submanifolds, for example, submanifolds of the form 

(i) x x F or F x x, x E F, 

(ii) yl x m,71,72 closed geodesics in F, 

(iii) the graph of an isometry p : F + F 
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The singular submanifolds must intersect in codimension 4 subspaces (i.e. a dis- 
crete set of points) and the local group at such a point should be of the form 
Gz = Z/p x Z/q (if exactly two singular submanifolds meet at z) or G, = G(p, q, r) 
(if three singular submanifolds meet at z). Using Theorem 9.1 and the results of 
Chapter 1, one can then determine exactly which such orbifold structures have 
nonpositive curvature. 

To illustrate, let us consider a particular example. Choose a set of distinct 
points X I , .  . . ,x, in F and let A = {(x,x) E F x F )  denote the diagonal in M. 
Consider an orbifold structure Q on M with singular set consisting of A, xi x F, 
and F x xi, 1 < i < n. Let (p, q, r) be a 3-tuple of integers 2 2 with I+ '+ > 1,

P 4 
and suppose the local groups G, of Q are as follows. 

(i) For z in the codimension 2 strata 

where x +xl ,. . . ,x,. 

(ii) For z in the codimension 4 strata 

Let T, denote the tangent space to M at z, viewed as an orbifold, and let S, denote 
the unit sphere in T,. For z in a codimension 2 stratum, T, is the orthogonal 
product of a 2-dimensional trivial orbifold and a 2-dimensional cyclic orbifold 
(as in Example 5.1). For z = (x;,xj), i + j, T, is the orthogonal product of two 
2-dimensional cyclic orbifolds. In both cases, it follows from Proposition 6.2 that 
T, satisfies CAT(O), or eqyivalently, 3, satisfies CAT(1). Finally, for z = (xi, xi), 
the singular set of T, consists of three 2-planes, the tangent planes to xi x F, 
F x xi, and A. Thus, S, is a 3-sphere. with singular set three disjoint great circles 
and covering group G(p, q, r). Since xi x F and F x xk are orthogonal, we can 
choose an orthonormal basis UI, %, q ,  u4 for Tz such that the tangent spaces to 
xi x F, F x xi, and A are (ul ,a), ( q ,  u4), and (ul  + q,Q + u4), respectively. 
Identifying ul, Q, q ,  u4 with the basis 1, i,j, k for the quarternions, we see that 
the three singular circles in S ,  are Pp = eiO,Pq = eiBj, and 
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Thus P,, P,, P, are Hopf with H(P,) = i, H(P,) = -i, H(P,.) = k. Clearly these 
satisfy conditions (i) and (ii) of Theorem 9.1, hence 5, satisfies CAT(1). It follows 
from Theorem 5.3 that Q has curvature < 0, and hence, Q is a contractible 
manifold. 

Constructions such as the above can be used to provide examples of branched 
covers M of Riemannian 4-manifolds M such that M has nonpositive curvature 
but is not a locally symmetric space (because the ratio of the Euler character- 
istic to the signature of M will generally not be that of a locally symmetric 
4-manifold). Examples of smooth nonpositively curved manifolds which are not 
locally symmetric are due to Gromov and Thurston [G-TI. 

Local Geodesics in S3. We now begin the proof of Theorem 9.1. Let S3 
be as in Theorem 9.1. Suppose .? is a singular point in S3. Then ink(.?, S3) is 
a branched cover of s2with covering group Zlm, m = p,q ,  or r ,  and branch 
locus a pair of antipodal points. Or in other words, Link(.?, S3) is the suspension 
of a circle of length 27rm. By Theorem A10 of the appendix, this link satisfies 
CAT(l), and hence, by Theorem 3.1, g3 has curvature 5 1. 

To prove Theorem 9.1, therefore, it suffices to show that sys(g3) 2 27r if and 
only if P,, P,, P,. are Hopf and satisfy conditions (i) and (ii) of the theorem. The 
condition sys(g3) 2 27r means that every closed local geodesic in S3 has length 
> 27r. We begin with a general discussion of local geodesics in S3.Let y be a 
local geodesic (or a closed geodesic) in S3 and let a = 7r o y be its projection 
to s3.Then a is a broken geodesic. Moreover, since the restriction of n to the 
nonsingular part of S3is a local isometry, the "breaks" in a can occur only on the 
singular set. Therefore, we may assume that a is a union of geodesic segments in 
S3 , a = ( a l ,  a2 , .  . . ,ak) ,  where a; is a geodesic segment connecting two singular 
points xi-1 to xi, and a; contains no singular points in its interior. Likewise, we 
decompose y into geodesic segments, and y = (yl,m,. . . ,yk), such that a; is the 
image of y;. We denote the length of a geodesic segment a; by &ai). The length 
of the broken geodesic a is then 

Similarly for y. 
It is possible that some a; begins and ends on the same singular circle. But in 

this case, a; has length 7r and its endpoints, xi-l,x;, are antipodal. If a is closed, 
this implies that a has length 2 27r because any geodesic or broken geodesic 
from x; to xi-1 will also have length 2 7r. Since we will be concerned only with 
the existence of closed geodesics of length < 27r, we may assume that no a; 
begins and ends on the same singular circle. 
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ASSUMPTION9.3. Throughout this chapter we will assume that all broken 
geodesics a in s3are of the form cr = ( a l ,az,  . . . ,a,) where each ai satisfies 

(i) a;contains no singular points in its interior, and 

(ii) the endpoints of a; lie on distinct singular circles. 

By "geodesic segment", we will always mean a geodesic segment which satisfies 
(i) and (ii). 

If y is a local geodesic in S3, then by Lemma 2.3, for any point f on y, 
the incoming and outgoing vectors of y at f are at distance 2 n in the link 
Z, = Link(i,S3). Since the isotropy group of f is Zln ,  L ,  is the suspension of 
a circle E of length 2nn and Z / n  acts on L, so that L,r/(Z/n) is the standard 
2-sphere. Let d denote the distance function in i,.It follows from Lemmas A3 
and A7 of the appendix, that for any points 5, G E L,d(5, $1 < n,and d(5, G) = n 
i f  and only if 5, I.i/ are the "poles", iz,of the suspension, or if they lie on opposite 
"circles of latitude" (i.e. equidistant from the equator) and their projections on the 
equator E have distance 2 T .  z 

- z 

In particular, suppose v, w are non-antipodal points lying on opposite circles of 
latitude in the standard 2-sphere L,/(z/~).  Given a lift 5 E 2,of v, there is a 
unique lift Go E L of w sych that d(5,Go) < n .  Any other lift 6,of w is a 
translate of Go under Z / n  and d(5,tiil) = n .  If v and w are antipodal, then any 
lifts 5, G satisfy d(5, $) = x. 

The next two lemmas follow immediately from the preceding discussion. 

LEMMA9.4. Suppose that a = ( a l ,  . . . ,a k )  is a broken geodesic in s3which 
is the projection of a local geodesic in S3.Then a satisfies the following "angle 
condition". 

(Ang) For i = 1 ,  . . . ,k - 1 ,  the incoming vector of a,at x, and the outgoing vector of 
a,+latx, make the same angle with the singular circle containing~~.  (Moreover, 
i f  a is closed then the same statement is true for ak and a,.) 
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Suppose that a = ( a l ,  . . . ,a k )  is a broken geodesic in s3satisfying the 
angle condition (Ang). The angle between a;and a;+l,denoted d(a; ,  a;+l), is by 
definition the distance between the incoming vector of a; at x; and the outgoing 
vector of a i+l  at xi (where distance is measured in ~ i n k ( x ~ , ~ ~ )( E s2)), i.e., 

Let a1 be a geodesic segment in s3meeting the singular circles only at its 
endpoints xo E Pi and xl E Pj. Let ko be a point in S3 lying over xo and let n; 
denote the order of the isotropy group at 20. Then there are precisely ni different 
lifts of ail beginning at 20. 

LEMMA9.5. Suppose that a = ( a l ,a2)  is a broken geodesic in s3satisfying 
condition (Ang)at xl and that d ( a l ,  a2 )  < T .  Let 61 be a lift of al to a geodesic 
segment in S3from 20 to kl. Then there is a unique lift 6 2  of a2such that the initial 
point of 6 2  is k1 and such that the angle between 61 and 6 2  is < n.Thus, i f P  is 
any other lift of a2beginning at kl ,  then (&l,P )  is a local geodesic in g3. 

10. Reduction to the Hopf Case. In this section we show that if sys(S3) 1 
2n then the singular circles in s3must be Hopf. It will be convenient from now 
on to denote the singular circles by P I ,P2,P3 (instead of Pp,Pq,Pr) and set n; = 
branching order of Pi. 

LEMMA10.1. Let P I ,P2,Pg be disjoint great circles in s3and let x E PI.Then 
there exists a unique great circle C in s3passing through x and intersecting P2 
and Pg . 

Proof. Consider the great 2-sphere S containing x and P2. P3 must intersect 
this 2-sphere in a pair of antipodal points {y, -y). Let C be the circle in S through 
x and y. 

LEMMA10.2. Let P I ,P2,Pg be disjoint great circles in s3.Then the following 
are equivalent. 

(1) Every circle intersecting P I ,P2,and P3 intersects all three orthogonally. 

(2) P I ,P2,Pg are Hopf and their images in S2 lie on a great circle. 

Proof. First assume P I ,P2,Pg are Hopf. Let C be a circle intersecting P I ,P2, 
and Pg. It's projection under the Hopf map H is a circle H(C) in s2containing 
the points H(P1), H(P2), and H(P3). It is easy to verify that C intersects Pi 
orthogonally if and only if H(C) is a great circle. 

Conversely, assume every circle intersecting P I ,P2, and Pg does so orthogo-



SINGULAR METRICS OF NONPOSITIVE CURVATURE 977 

nally. One can show that every circle C in S3can be written in the form C = euea= 
ae(""")', 0 5 0 < 2n, for some a E S3 = {unit quaternions}, u E s2= {purely 
imaginary unit quaternions), and that two such circles C = euOaand C1= eutOa' 
intersect orthogonally if and only if dS2(u,ul) = dS2(aua,a'v'a1) = ;. Moreover, 
circles C and C' are identical if and only if (u,aua) = &(ul,a'v'a') in s2x s2; 
they are of distance ;if and only if (u,ava) = f ( u l ,-a'u1a') in s2x s2.  

Up to an isometry of s3we may assume that P1 = eiOand that one of 
the common orthogonal circles is C1 = do.Let P2 = ewOa.Choose another 
common orthogonal circle C2 = eUec.Since Lemma 10.1 implies that there is 
a one-parameter family of such C2, we may assume that d(C1,C2) < $. Since 
PI and P2 intersect both C1 and C2 orthogonally, (i,w) and ( j ,  u) are a pair of 
orthogonal subspaces of R3 ( = {imaginary quaternions)). (Here (. . .) denotes 
"the subspace spanned by . . .".) Similarly, (i,awa) and ( j ,cuc) are orthogonal. 
Since d(C1,C2) < $ either j j f v  or j j fcvc .  Suppose j j f u.Then ( j ,  v) 
is 2-dimensional, so (i,w) must be 1-dimensional. Thus, w = f i  and P2= eiea. 
The same argument shows that P3 is of the form P3 = eiOb.Hence, in this case, 
P I ,P2,P3 are Hopf and their images lie in H(C1)= H(dO),a great circle in S2. 
Similarly, if j + f Fvc, then awa = f i, so P2 = aeiOand by the same argument, 
P3 = beie. Applying quaternionic conjugation s H F (an isometry of s3),  we get 

- - -

P1 = eie, = eie,, P3 = eiOb.Thus, P I ,P2,P3 are Hopf and their images are 
contained in the great circle H ( C ~ ) .The lemma is proved. 

LEMMA10.3. Suppose P I ,P2,P3are disjoint great circles in s3which do not 
satisb ( I )  and (2) of Lemma 10.2. Then (renumbering the Pi's ifnecessary) there 
exists a broken geodesic a = ( a l ,az, a s )  in s3of length < Twhich goesfrom P1to 
P2 to P3 to PI.Moreover, if a is the shortest such broken geodesic, then a satisfies 
the angle condition (Ang) and intersects P1orthogonally at both ends. 

Proof. Let C be a circle which intersects P I ,  P2 and P3, and suppose the 
angle at C n P1 is not ;. Consider a semicircle of C beginning and ending at 
P I .  We can view this semi2rcle as a piecewise geodesic a = ( a l ,az,  a s )  where 
a1 is the segment from P1 to P2, a 2  the segment from P2 to P3, and a 3  the 
segment from P3 to P I .  Let xl E P2 be the endpoint of al. Since a1 meets P1 
non-orthogonally, a1 is not the shortest segment from x2 to P I .  Replacing a1 by 
a; = orthogonal from x2 to P I ,  we obtain a piecewise geodesic a' = (a;, az, a s )  
of length &a') < &a)  = T.This proves the first statement of the lemma. 

Now suppose a = ( a l ,a2, a 3 )  is the shortest piecewise geodesic form P1 to 
P2 to P3 to P I .  We have already observed that a must be perpendicular to P1 at 
both ends. It remains only to show that a satisfies the angle condition. It suffices 
to prove the following statement: if xl,x2 are fixed points in s3and P is a circle 
in s3not containing xl or xz, then the shortest piecewise geodesic ,O = (Dl,,02) 
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from xl to x:! passing through P satisfies the angle condition. To see this, let cp 
be an orthogonal rotation about P such that cp(P2) lies in the great 2-sphere S 
determined by P and P1 in the opposite hemisphere from PI. 

This rotation does not change the angle between P and P2, so (Dl,P2)satisfies the 
angle condition if and only if (PI,cp(P2)) does. Now if (Pl,cp(P2)) fails to satisfy 
the angle condition, then the local geodesic y = (71,y2) from xl to cp(x2) in S 
is strictly shorter than (Pl,cp(P2)). Hence, the piecewise geodesic (yl,cp-' (y2)) 
from xl to x:! is strictly shorter than P. 

The next proposition is the main result of this section. To prove the propo-
sition, we will need a few facts about the group G = G(p, q,r).  This group is 
generated by three elements gl ,  g2, g3 of orders p,  q, and r ,  respectively, whose- -
product z = glg2g3 generates the center of G. If P I ,p2,p3 are singular circles 
such that some convex fundamental domain for G intersects all three circles, then 
we can choose gl ,g2, g3 so that gi fixes Pi. Moreover, since each singular circle 
is the fixed point set of some subgroup of G, and z = glg2g3 is central, it follows 
that z stabilizes every singular circle. 

PROPOSITION10.4. Let P1 ,P2,P3 be the branch circles of S3 -+s3.~fsYs(LT3)2 
27r, then P l  ,P2,P3satisfy (1)and (2) of Lemma 10.2. 

Proof. Suppose P1,P2,P3 do not satisfy (1) of Lemma 10.2. Let a = ( a l ,a2, 
a 3 )  be the minimal piecewise geodesic described in Lemma 10.3. Let 

where hi is ai traced in reverse. Then ah is a closed, broken geodesic satisfying 
the angle condition with length a5 < 27r. We will show that a5 can be lifted to 
a closed local geodesic in S3, so S3does not satisfy CAT(1). In fact, it suffices to 
show that a can be lifted to a local geodesic y which begins and ends at the same 
singular circle PI.For in this case, choosing a nontrivial element g in G(p, q, r) 
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which fixes P1 pointwise, y .gy is a closed, local geodesic lift of aZ .  (Here, we 
are using the fact that y must be perpendicular to p1 at its endpoints.) 

To show that such a lift y exists, let {x1,x2,x3,x4) be the endpoints of the 
ai 's and consider the tetrahedron R = convex hull of {xl, x2, x3, x4). Assume for 
the moment that R is nondegenerate, that is, {xl ,x2, x3, x4) is not contained in 
a 2-sphere. We claim that R contains no singular points in its interior. Clearly 
int(R) contains no points of P1 since one edge of R is a segment of PI.Suppose 
int(R) contains a point r E P2.The geodesic from x2 to r is a segment of P2, SO 

P2also intersects the face a of R opposite x2 in a point ro. Drop a perpendicular 
from ro to P1 and let y E P1 be its endpoint. Consider the piecewise geodesic 
P = (PI, 02, a s )  where Dl is the geodesic segment from y to ro and P2the segment 
from ro to x3. Note that 0 lies entirely in the face a. 

We have 

But this contradicts the minimality of the length of a ,  so we conclude that int(R) 
contains no points of P2, and by an analogous argument, it contains no points 
of P3. We can therefore lift R to a region iT in lT3 isometric to R. Three of the 
edges of R correspond to a lift 6 = (61, 62, 63) of a beginning and ending in the 
same singular circle and having angles 5 T.Let P1 and P:! be the singular 
circles containing the endpoints of 6 2 .  Choose a set of generators gl ,  g2, g3 of 
G(p, q,r) such that gi fixes Pi pointwise and z = glg2g3 is central. Consider the 
lift y = (61, g2&2,g2g3&3) of a. By Lemma 9.5, y is a local geodesic. Moreover, 
if 6 begins at R E B1 and ends at j E P I ,  then y begins at R and ends at 
g2g3@)= g2g3gl@)= z@). But the center of G(p,q, r) stabilizes each singular 
circle. Hence z@) E p 1. 

It remains to consider the case where R is degenerate. That is, where {xl,x2, 
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x3,x4)all lie on some 2-sphere in s3.In this case we have two possible config-
urations: 

Let D denote the shaded region in either of the diagrams above. Clearly, the 
minimality of the length of a implies that D contains no singular points in its 
interior. Hence, as above, we can lift D to an isometric region Z)in S3 and proceed 
as in the nondegenerate case. 

ASSUMPTION10.5. From now on we assume that the singular circles P I ,P2,P3 
arefibers of the Hopf map and that their images in s2lie on a common great circle. 

Under this assumption, we can use the Hopf map to give a more precise 
description of the action of G = G(p,q,r )  on S3. AS remarked above, G is 
generated by three elements g l ,  g2,g3 of orders p, q, r whose product z = glg2g3 
generates the center Z of G. The quotient G = G / Z  is naturally isomorphic 
to the orientation-preserving subgroup of T(p ,q , r )  discussed in Section 8. If 
( p ,q,r )  = (m,2,2),  let s = m; otherwise let s be the least common multiple of 
{p,q ,r) .  Then /ZI = Icl = 2s, hence the order of G is 4s2 (see [C; p. 931). 

Now let H : s3 -+s2be the Hopf map and let xi = H(Pi).If we take S2 to 
be the branch cover of s2with branch locus xl,x2,x3 and covering group G (as 
in Section 8),  we get a commutative diagram 

The map fi is also a fibration whose fibers F are circles. The center Z of G acts 
as a group of translations on F and T ( F )  = F / Z  is a Hopf circle in s3.Thus 
metrically, F is a circle of length 4 s ~ ,and the generator z of Z acts on F as a 
translation by 27~.The action of Z on S3 extends to a free, fiberwise action of 
the full circle group s1 = {eie)  with eie acting on each fiber as translation by 
2sO. We remark that via this action, an orientation on s1gives rise to compatible 
orientations on all the fibers of H. 
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As shown in the proof of Theorem 8.1, T' induces a triangulation of 3' 
by "black and white" triangles corresponding to the decomposition of S' into 
two regions bounded by the geodesics connecting .Y~,.Y',,Y~. In terms of this 
triangulation, generators of G are given by rotations g l ,  g2,Q3 about the vertices 
t)l,Q, zs of any (black or white) triangle as indicated below. 

The product QlQ2Q3 is the identity in G. The generators gl ,g?, 93 of G can then be 
taken as the corresponding rotations about the fibers F , , ,  F L 2 ,  F L 3over tll, z ~ ,t ~ .  

Since the stabilizer of ti is the cyclic group generated by Q,, and the kernel Z of 
G -+ acts freely on F , ; ,  it follows that the stabilizer of a point s in F L i is the 
cyclic group generated by g,. 

11. Local Geodesics in S3 in the Hopf Case. We remain under Assumption 
10.5: the singular circles P1 ,  P2 ,P3  are Hopf and their images in S' lie on a 
common great circle. In this section we discuss the relationship between geodesics 

-7
in S3 and geodesics in 3' via the "Hopf map" H : S3 i S', and we prove the 
"only if" part of Theorem 9.1. Our first goal is to show that any local geodesic 
~2 in 3' lifts to a local geodesic 6 in S3 of half the length of a. 

By Lemmas 10.1 and 10.2, for any point s E P1 ,  there is a unique great 
circle C through s which intersects P I ,  P2,  P3 orthogonally. We call this circle 
the conlnzorz orthogonal circle through s.We say a geodesic segment P from P, 
to P, is a sta~zclard orthogonal segment in s3if /3 is a segment of some common 
orthogonal circle. Likewise any lift of /3 to S3will be called a standard orthogonal 
segment in S3. (We remark that if d(P,, PI) = $, then every geodesic segment 
between them intersects P, and PI orthogonally. On the other hand, for a given 
point .Y E P,,  there is a unique stanclard orthogonal segment from s to P,.) If /3 is 
a standard orthogonal segment from P, to P, then its projection under the Hopf 
map is the unique geodesic segment from H(P,) to H(P,) and 

Now recall the commutative diagram (10.6). We want to compare lifts of 
/3 to S3 and lifts of H(P) to 3'. Let .Y E P, be the initial point of p and fix a 
point 4 E S3 over s.If rz is the branching order of P,, then there are n distinct 
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-
lifts 31, . . . ,/3, of ,O to S3 with initial point 2. These lifts end in distinct singular 
circles, pj, gpb. L., g n p l hwhere g is a generator of G, " Z/n. It follows that 
the segments H(Pl), . . . ,H(&) are distinct lifts of H(P) with initial point H(R). 
Since the branching order of H(x) is also n, we see that H gives a one-to-one 
correspondence between lifts of P beginning at R and lifts of H(P) beginning at 
~ ( i ) .It follows that any broken geodesic 6 in S2 beginning at H(R) lifts to a 
unique broken geodesic ,8 in S3 beginning at R such that each segment of ,8 is a 
standard orthogonal segment. 

It remains to show that if 6 is a local geodesic, then so is its lift ,8. Let 
,8 = (01, 02, . . . ,Pk) and 6 = ( a l ,  a2 , .  . . ,ak)  where a k  = ~ ( p ; ) .Then the angle 
between pi and at Ri (= endpoint of Pi) is, by definition, the distance between 
their tangent vectors in Link(Ri,S3). Now Link(&,S3)is isometric to the suspen-
sion of Link(H(Ri),S2). Since Pi and Pi+lare standard orthogonal segments, their 
tangent vectors appear on the equator of Link(R;, 33). Thus, by Proposition A7 of 
the appendix, the angle between Pi and Pi+lis the minimum of 7r and the angle 
between ai and a i+l  in S2.It follows that ,8 is a local geodesic if and only if 6 
is. To summarize, we have proved the following. 

LEMMA11.1. Given a singular point R in S3 and a broken geodesic 6 in S2 
beginning at  H(R), there exists a unique broken geodesic ,8 in S3 beginning at  R 
such that H(D) = 6 and such that ,8 is made up of standard orthogonal segments. 
The length of ,8 is half that of 6 ,  and ,8 is a local geodesic ifand only if6 is. 

We are now in a position to prove the "only if" part of Theorem 9.1, which 
we state as the following. 

PROPOSITION11.2. If sys(X3) 2 27r, then the singular circles P I ,P2,P3 are 
(up to isometry of s3) Hopf circles and their images vi = H(P;) in s2satisfy (i) 
d(vl, w)+d(w, y)+d(vl, y )  = 27r, and (ii) d(vi, 9)> $for all {i,j , k) = {I ,  2,3), 
where nk =branching order of Pk. 

Proof. From Proposition 10.4, we know that sys(S3) 2 27r implies that 
P I ,P2,P3 are Hopf and that vl, Q, y lie on a great circle in s2.By Theorem 
8.1, we know that conditions (i) and (ii) hold if and only if sys(S2) > 27r, where 
g2 is the branched cover of S2 with branch points q ,Q, y of order nl, n2, n3. 
Thus, it suffices to show that sys(S2) < 27r implies sys(S3) < 27r. 

So suppose 6 is a closed local geodesic in S2 of length < 27r. Then by 
Lemma 11.1, 6 lifts to a local geodesic ,8 in S3 of length < 7r. While ,8 is not 
necessarily closed, it must begin and end at the same singular circle P (since 
6 = ~ ( p )is closed). Let g E G(p, q , r )  be a nontrivial element which fixes P 
pointwise. Then ,8 .zis a closed local geodesic in S3 of length 2 . 1(,8)< 2,. 
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Edgepaths. Recall from the proof of Theorem 8.1 that the covering T' : 
S2 -+ s2gives rise to a triangulation of S2 whose vertices are the singular points 
of S2.The 1-skeleton of this triangulation maps via T'onto the geodesic triangle 
A connecting the singular points xl ,x2,x3 of s2.Under our current assumptions, 
A is a great circle in s2. 

Let r denote the 1-skeleton of this triangulation of S2.For a singular circle 
F in S3, let 9 = s(8)denote the corresponding vertex in T. An edgepath 
cp in r is a broken geodesic in S2. It will be convenient to describe such an 
edgepath as a sequence of vertices p = (Q, ul,. . . ,u,). To a broken geodesic -
y = ( y l , . .  ,7,) in s3 ,  we associate the edgepath p, = ( q 0 ,  q , ,  . . . ,qn)where 

Pi is the singular circle at which Ti ends and yi+l begins. Conversely, given 
an edgepath p = (Q, ul, . . . ,u,) and a point i o  in the singular circle over Q, 
Lemma 11.1 implies that there is a unique broken geodesic y, in S3beginning at 
i o  such that fi(yp) = p and -i, is made up of standard orthogonal segments. We 
call y, the orthogonal (broken) geodesic associated to p at i o .  Since A is a great 
circle, the angle between any two edges at a vertex in r is at least T.Thus, the 
edgepath p is a local geodesic in S2 if and only if p has no "backtracks", i.e., no 
subsequences . . . ui-1, vi, ui+l . . . with ui-1 = ui+l. It follows from Lemma 11.1 
that y, is a local geodesic if and only if p has no backtracks. 

Now choose an orientation on S2. This restricts to an orientation on each 
triangle in the triangulation of S2. By a fundamental cycle in l- we will mean 
an edgepath a = (Q, ul, Q, Q) corresponding to the boundary of a positively 
oriented triangle. q 

Recall that the circle group s1acts as a group of translations on each fiber 
of the Hopf map, H : S3 -+ S2, with eie acting as translation by 2s0. Denote this 
action by x Hx + 2s0. 

LEMMA11.3.Let a be a furidamental cycle and let y, be the orthogonal geodesic 
associated to a at i o .  Then y, ends at i o  :O T. The sign, f,is independent of a; it 
depends only on the orientation of 32. 

Proof. Since the actions of G on S3 and on 32are orientation-preserving, 
and since any pair of adjacent triangles in S2 is a fundamental domain for the 
action of c,it suffices to show that there exists a pair a l , a2  of adjacent funda- 
mental cycles such that if yo,, yo,both start at 20, then they both end at io(or+T 
both end at ;Fo - T). Or equivalently, if 8 2  denotes a 2  with orientation reversed, 
we must show that y,, ends at i o  + T and y~~ ends at io- T (or vice versa). 



984 RUTH CHARNEY AND MICHAEL DAVIS 

Recall the commutative diagram 10.6. 

Let xo E s3be a singular point, say xo E P I .  Let C be the common orthogonal 
circle through xo. Consider the great 2-sphere S(C,P I )  in s3spanned by P1 and 
C. Note that the other singular circles P2 and P3 intersect S(C,P I )  in pairs of 
antipodal points f x 2 ,fx3 lying on C. Choose a hepisphere of S(C,P I )  bounded 
by P I .Then C cuts this hemisphere into two equal digons Dl and D2 with vertices 

- xo 
These digons contain no singular points in their interior so they can be lifted to 
isometric digons ~1 and ~2 in ^S3 with one vertex at fo. 

Let a be the edge of Dl and D2 lying in C (oriented from xo to -xo). 
Then a contains the singular points x;? and x3 so the lifts 61, 6 2  of a in Dl ,& 
are broken geodesics beginning at 50.We may, in fact, assume that the first 
segments of h l  and 152 agree. (If not, replace D2 by g .b2 for an appropriate 
g in the isotropy group of fo.) The projections H(D~) ,H(&) of Dl ,& to S2, 
are then a pair of adjacent triangles (since H(D1),H(D2) are two hemispheres of 
s2 )with orientations agreeing along the common edge. The boundaries of H ( D ~ )  
and f i ( ~ 2 )form, respectively, a fundamental cycle 01 and the reverse a2of a 
fundamental cycle 02. Moreover, h1 = y,, and h 2  = y ~ ,with initial point fo .  
Now the inverse image of P1in 51u ~2 is a segment of length 27r in the singular 
circle P1containing io.In particular, its endpoints are f o  +7r and i0-7r. It follows 
that the endpoints of 61( = y,,) and h2( = yz,) are fo  + 7r and fo - 7r (or vice 
versa). 

In light of the preceding lemma, we may fix an orientation of S2 SO that for 
every fundamental cycle a ,  y, ends at i o  + 7r (where fo = initial point of 7,). 

Now suppose p is an arbitrary edgepath in beginning and ending at u= LF. 

Then there is a unique translation t of P such that if y, begins at f E P,  then it 
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ends at i? + t. Since the fundamental group n l ( r ,u) is generated by loops of the 
form p = p l a p ~ 'where a is a fundamental cycle, it follows from Lemma 11.3 
that t is always a multiple of n-. Let T be the group of translations of generated 
by +n. Since T is abelian (in fact T is cyclic of order 4s), the homomorphism 
r l ( T ,v) T ,  defined by ( p l o p ; ' )  t-+ +n-, factors through a homomorphism --t 

r : H1(T)--t T, defined by CEiai t-+ +(CE,)?T,where Oi is a fundamental cycle. 
Thus, for any closed edgepath a ,  y, is closed if and only if it is homologous to 
C E ~ ~ ~with CEi = 0 mod 4s. We summarize these remarks in the following lemma. 

LEMMA11.4. Let p be a closed edgepath in and let yp be the orthogoizal 
broken geodesic associated to p at 3. Then 

(i)  yp is a local geodesic if and only if p has no backrracks, and 

(ii) yp ends at i? + ~ ( p ) .In particular, yp is closed if and only if, in H1(T) ,  
p CE~O;where the ai's are fundamental cycles and CEi 5 0 mod 4s. 

Shifts. The previous lemma gives criteria for determining when a broken 
geodesic in S%onsisting of standard orthogonal segments is closed. In this sub- 
section we give similar criteria for an arbitrary broken geodesic in S3. We first 
consider geodesic segments in the standard sphere s3.  

Let a be a geodesic segment in s3from XI  E P1 to x2 E P 2 .  Let /3 be the 
standard orthogonal segment from xl to P2 ,  and let y be the endpoint of ,f3. 

Note that x2 cannot be antipodal toy since this would imply that a and P constitute 
half of the common orthogonal circle through X I .  But in that case, either a or P 
would contain a point of Pg in its interior, contradicting Assumption 9.3. Thus, 
there is a unique directed segment S of P2 from y to x2 of length t ( S )  < n-. 
We define the shift of a ,  denhed s(a),to be C(6)or -C(6) according to whether 
the direction of 6 agrees or disagrees with the orientation of P2 .  Note that, by 
definition, 0 5 /s (a) /< n-, and that s(a)  = 0 if and only if a is a standard 
orthogonal segment. If y is a geodesic segment in S3, we define the shift of y,  
s(y),to be the shift of a where a = n-(y)is the image of y in s3.For a broken 
geodesic a = (a l ,. . . ,a,) in s3,the total shift of a is 

and likewise for a broken geodesic y = ( y l ,. . . ,y,) in S3 
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Suppose y is a geodesic segment in S3 from i t  E F1 to i 2  i-2 E 2  and let 
a = n(y) be its image in s3.Note that the triangle T = A(x1,x2,y) in the figure 
above contains no singular points in its interior (since the only geodesic through xl 
intersecting all three singular circles is the common orthogonal circle containing 
0).Hence T lifts to an isometric triangle ?- = A(i l , i2 , j )  in S3 with edges y and 
/? where /? is the standard orthogonal segment form i 1  to F2.The endpoints i2 
of y and j of 0 clearly satisfy i 2  = j + s(y). 

More generally, let y = (yl, . . . ,yn) be a broken geodesic in Z 3 ,  p the corre- 
sponding edgepath, and yp the orthogonal broken geodesic associated to p (with 
initial point of yp = initial point of y). Then y and yp end in the same singular cir- 
cle and, arguing as in the previous paragraph, endpoint (y) = endpoint(yp)+s(y). 
In particular, in light of Lemma 11.4, if p is closed we obtain the following. 

LEMMA11.5. Let y = (yl,. . . ,7,) be a broken geodesic in S3 beginning a t i  and 
suppose the edgepath p determined by y is closed. Then y ends at  i+ r(p) + s(y). 
In particular, y is closed ifand only ifr(p) + s(y) = 0 mod 47~s. 

We close this section with some useful terminology. As usual, P I ,  P2,P3 
denote the singular circles in s3. 

Definition 11.6. Let {i,j,k) = {1,2,3). 

(1) A geodesic segment a in s3 is of type i if it connects Pj  and P k .  

(2) A singular circle P in S3 is of type i if its projection to s3 is Pi. 

(3) A geodesic segment y in S3 is of type i if its projection to s3 is of 
type i. 

Remark 11.7. In the proof of Theorem 8.1 we defined the "type" of a vertex 
or edge in T. The definitions above are such that P (resp. y) in S3 is of type 
i if and only if the corresponding vertex (resp. edge) in r is of type i. Note 
also that Assumption 9.3 guarantees that the type of every geodesic segment is 
well-defined. 

- Definition 11.8. Let y = (71, . . . ,7,) be a closed broken geodesic in s3 or 
s3.We say y is even (resp. odd) if y contains an even (resp. odd) number of 
segments of each type. Likewise, a closed edgepath p in r is even (resp. odd) if 
it has an even (resp. odd) number of edges of each type. It is easy to see that 
any closed y or p is necessarily either even or odd. The following lemma follows 
immediately from the discussion above. 
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LEMMA11.9. Let y = (yl, . . . ,7,) be a closed broken geodesic in S3and let p 
be the corresponding edgepath. Then the following are equivalent. 

( i )  y is even (resp. odd) 

(ii) p -- C€iaiwith C E ~- 0 (resp. C E ~E 1 )  mod 2. 

(iii) s(y) = n7r with n = 0 (resp. n r 1 )  mod 2. 

12. Completion of the proof of Theorem 9.1. To complete the proof of 
Theorem 9.1, it remains to show that under conditions (i) and (ii) of the theorem, -
s3has systole 2 27r. For convenience, let Qi be the length of an edge of type i 
in S2. We assume these satisfy conditions (i) and (ii) of Theorem 9.1, namely 

(i) Ql +Q2 +Q3 = 27r 

(ii) Qi 2 where ni = branching order of Pi. 

Note that since each edge has length at most 7r, (i) implies that ti+ Qj 2 7r for 
any two edge types i and j. 

Assuming these conditions, we must show that if y = (yl, . . . ,7,) is a closed 
local geodesic in S3, then its length is > 27r. We divide the proof into two cases, 
the orthogonal and non-orthogonal cases (Propositions 12.1 and 12.12). Here we 
say y is orthogonal if every segment yi of y is perpendicular to the singular 
circles at its endpoints. Otherwise, we say y is non-orthogonal. 

The Orthogonal Case. 

PROPOSITION12.1. Under conditions ( i )  and (ii) of Theorem 9.1, if y is an 
orthogonal closed local geodesic in Z3, then Q(y)> 27r. 

Proofi Let y = (71, . . . ,7,) be as in the proposition. We first assume that no 
In this case, y is made up of standard 

orthogonal segments and hence the shift of y is zero. Moreover, if p is the closed 
edgepath determined by y then y = y,,. It follows from Lemma 11.4 that p 
satisfies: 

(a) p has no backtracks, and 

(b) in H1(T), p -- C ~ i a i  with C E ~  0 mod 2s. 

Since the length of p (viewed as a local geodesic in S2) is  twice that of y, it 
suffices to show that any edgepath in T satisfying (a) and (b) has length > 47r. 

Case I .  p contains all 3 types of edges. Since the shift of y is 0,  y is even. 
Thus, each type of edge occurs at least twice in p, so by (i), Q(p) 2 47r. 

;. pair of singular circles has distance 
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Case 2. p contains only one type of edge, say type 1. Let T1 denote the 
subgraph of T consisting of edges of type 1. Then H1(T1)is generated by cycles 

2n I 
of the form c = C ai where 01, . . . , 0 2 ~ ,are all the fundamental cycles beginning 

i= 1 
at a vertex v of type 1. 

Now p c Tl ,  so p -- Z&jcjin H1(T1) c H1(T). Clearly the shortest such p 
satisfying (a) and (b) are the edgepaths p = c1C; where cl ,c2 share an edge or 
a vertex. In this case, p consists of 4nl edges of type 1, so Q(p)2 4nl . $ = 47r. 

Case 3. p contains exactly 2 types of edges, say types 1 and 2. Let 
denote the subgraph of T consisting of edges of types 1 and 2. Then H1(T1,2)is 
generated by cycles of the form c = a1 + 0 2  where a l ,  a 2  share a common edge 
of type 3. 

Since p C p -- Djcj  in H1(T). Again, it is clear that the shortest such 
p satisfying (a) and (b) is one of the form p = c1c;l where cl,  c2 share an 
edge or a vertex. These edgepaths have 4 edges each of types 1 and 2 hence 
Q(p)= 4(Q1+ Q2)2 47r. 

Finally, we need to consider what happens if some pair of singular circles has 
distance ;, say d(P1,P2) = ;. This situation differs from the above in that y can 
have nonzero shift on segments of type 3. On the other hand, since d(Pi,Pj) = kQk, 
condition (i) implies 

Thus, if y has length < 27r, then y can have at most 2 segments of type 3. (If 
y has exactly 3 segments of type 3, then it must also have at least one of types 
1 and 2 in order to be closed.) Since each segment has shift of absolute value 
< 7r, the total shift of y satisfies 0 5 ls(y)l < 27r. If y is even, it follows,that 
s(y) = 0. In this case, all the arguments in the first part of the proof still hold. 
The only remaining case is that in which y is odd and Is(y)l = 7r. But if y is odd 
and Q(y)< 27r, it contains exactly one segment of type 3, so ls(y)l < 7r. This is 
a contradiction, so no such y exists. 
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The Non-Orthogonal Case. It remains to analyze the non-orthogonal 
closed geodesics in S3. For this we must understand non-orthogonal broken 
geodesics in s3.We begin by investigating the link of a singular point x in 
s3from a slightly different viewpoint, that of the "visual sphere" at x. The points 
in Link(x, s3)  correspond to geodesic rays out of x and we can ask what we "see" 
as we look along each of these rays. 

Let V denote the imaginary quaternions spanned by i,j, and k, that is, V = 
1Wi$ IWJ'$Rk. Then s3may be identified with the group of unit quaternions, S3 = 
{eve I u E V, llull = I) ,  and the Hopf circles in s3are the subsets 

for a E s3.Every geodesic ray out of a E s3is of the form 

for some u E V, Ilull = 1. For such an a,,  the corresponding point in Link(a,s3) 
is the unit tangent vector to a, at a ,  namely a: = u .a. Multiplying on the right 
by a-', we may therefore identify Link(a,s3) with {u E V / llull = I),  where 
the ray a, corresponds to the point u in the link. In particular, the ray along the 
positively (resp. negatively) oriented direction of Pa corresponds to i (resp. -i) 
in the link. We view these as the "north and south poles" of Link(a, s3). The 
"equator" of the link then corresponds to rays a, with uI.i and hence a, _L Pa. 

From the "visual sphere" viewpoint, we can label points in Link(a,s3) ac- 
cording to where the rays a, lead. For example, suppose that Pb = {eiOb) is 
another Hopf circle. We can identify on Link(a,s3) which rays lead to Pb. 

LEMMA12.2. The rays from a to Pbform a great circle E in ~ i n k ( a , ~ ~ )  such 
that the distance d from i to E is equal to d(Pa, Pb). In particular, E is the equator 
of link(a, s3)  ifand only ifPbis orthogonal to Pa. 

-i 

Proof. Up to isometry of s3 ,  we may assume that a = 1, Pa = {eiO). Let 
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H : s3-+ s2be the Hopf map. Identifying s2with the unit sphere in V, H 
is defined by ~ ( e " ' )  = e-UeieUe. In other words, ~ ( e ~ ' )  is the point obtained 
by rotating i about u through an angle of 20. Let xa = i = H(P,), xb = H(Pb). 
Consider the ray a(t) = eUt, t > 0, from a. Projecting to s 2 ,  H(a(t)) is a circle 
(not necessarily a great circle) in s2centered at u and passing through x,. 

Xa 

The ray a(t) intersects Pb if and only if H(a(t)) passes through xh, that is, if and 
only if v lies on the circle E of points equidistant from x, and xb. Since the point 
in ~ i n k ( a ,  s3 )  corresponding to a(t) = eU' is a'(0) = v, we see that the collection of 
rays from a to Pbcorrespond to the circle E in s2= ~ i n k ( a , ~ ~ ) .Finally, we note 
that the distance d from the north pole to E satisfies d = ;d(x,,xb) = d(P,, Pb).O 

;. <assume Pa,Pb are not orthogonal, i.e. d(Pa,Pb) Now Let ,8 be the 
unique orthogonal geodesic from a to Pb of length e(P) = d(Pa,Pb). Then ,8 
corresponds to a point in Link(a,s3) where the circle E (see the proof above) 
meets the equator. 

;. <Assume d(PaPb) 12.3.LEMMA Then the orientation of Pbis such that it 
points "upward from ,8 when viewed in Link(a, s3): 

T 
1 pa 

L 

Proof. As before, we may assume a = 1. From the proof of the previous 

lemma, we see that the angle of E from vertical varies with d(H(Pa), H(Pb)) = 
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2d(Pa,Pb) = 2 . .Q(P).Now the oriented direction of the Hopf circles varies con-
tinuously. Since the direction of Pa points northward from a, for very small P, 
the direction of Pbmust point nearly northward. By continuity, as t(P) increases, 
it will continue to point into the northern hemisphere until the circle E reaches 
the equator, i.e., until t(P) = ;. 

We are now ready to proceed with the analysis of non-orthogonal broken 
geodesics in s3 .We first show that if a = ( a l ,  . . . ,a,) satisfies the angle condition, 
(Ang), then the angles between ai and the singular circles at its endpoints are the 
same for all i. More precisely, we prove the following result. 

LEMMA12.4. A geodesic segment a in s3meets any two Hopf circles at  the 
same angle. 

Proof. Let A be the great circle in s3containing a. Let P1 and P2 be Hopf 
circles intersecting A at xl and x2, respectively. Identifying s3with the unit 
quaternions as in Section 9, we have P1 = eiexl and P2 = eiex2,A = xleve for 
some totally imaginary unit quaternion v (cf. proof of Lemma 10.2). In particular, 
x2 = xlevp and multiplication by evP is an isometry of s3which preserves A and 
takes P1 to P2. 

It follows from Lemma 12.4 that if a = ( a l , .  . . ,a,) is a broken geodesic 
satisfying the angle condition (Ang), and if some segment aii is orthogonal to 
the singular circles at its endpoints, then the same holds for every segment of a. 
In particular, in considering non-orthogonal broken geodesics, we may assume 
that d(Pi,Pj) < ;, since if d(Pi,Pj) = ;, then any segment between Pi and Pj is 
orthogonal. 

LEMMA12.5. Suppose that a = (a l ,  a2)  is non-orthogonal and satisfies the 
angle condition (Ang) at  the endpoint xl of a l .  Then the shifts of a1 and a 2  have 
the same sign. 

Proof. Say the shift of a1 is positive. Then the incoming vector of a1 at xl is 
in the southern hemisphere of Link(xl, s3)  and hence, by the angle condition, the 
outgoing vector of a 2  is in the northern hemisphere of Link(xl ,s3). Say a 2  begins 
in P1and ends in P2and let ,f3 be the standard orthogonal segment from xl E P1 

to P2. ~ i n k ( x 1 , ~ ~ )viewed as the "visual sphere" at xl, appears as follows. 
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rays to P2 

By Lemma 12.3, we know that the orientation of P2 points upward from /? in 
this visual sphere, hence the shift of a2 is positive. 

In the next lemma we collect some facts about right spherical triangles. 
Consider the right spherical triangle 

8 

with side lengths f ,  g, and s as indicated. Clearly, for fixed 8 and s, there is a 
unique such triangle up to isometry. Thus, fixing 8, we may view f ,  g, and w as 
functions of s, 0 < s < T .  Write f =fQ(s),g = go(s),and w = we(s). 

LEMMA12.6. Assume 0 < 8 < ;. Therz 

(ii  f e ( ~ - s ) = ~ - f O ( s )  

(iii fe and go are strictly iizcreasingfor 0 < s < 5-

(iii) For 0 < s < T, fe is concave downwvzrd; in particular, fe (i)> ge(sj .  

(iv) fo(s) > sfor 0 < s < 5 

fe(s) < sfor ;< s < 71 
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Proof. Consider a wedge of s2of angle 8. Cutting the wedge with a geodesic 
segment orthogonal to the right edge gives rise to two right triangles, each having 
an angle 8: 

This proves assertion (i) of the lemma. 

Now a straightforward exercise in spherical geometry gives the following 
formulas for fe and go on the interval (0, ;): 

fe(s) = arctan(a . tan s), a = sec 0 > 0 

ge(s) = arctan(b . sins), b = tan 6' > 0. 

Direct computation shows that gk > 0, fh > 0, and f/ < 0 on (0 ,;). Assertions 
(ii), (iii), and (iv) follow. 

Let cr = ( a l ,  a?)be a broken geodesic in s3satisfying the angle condition. 
Then a is called a bounce o f ~ p ek if a1 and a?are both of type k. If in addition, 
the angle between crl  and a2 is < T,then a is a propel- bounce. Note that if 
a is a bounce with / ( a l ,  a2)= T,then the endpoints of cv are antipodal points 
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on some singular circle Pi. Thus, any closed broken geodesic containing such a 
bounce has length 2 27r. For our purposes, therefore, we can and will assume 
that all bounces are proper. 

LEMMA12.7. Let a = (al ,. . . ,a,) be a broken geodesic in s3satisfying the 
angle condition. If a ; ,oqi are of the same type, then either -&ai)= &aj)and s (a; )= 
~ ( a j )or &a;)= 7r - --(aj)and s (a; )  = 7r - s (a j ) .If ( a ; ,a;+l)is a bounce, then 
l(a;)= l(a;+l)and s (a; )= ~ ( a ; + ~ ) .  

Proof. By Lemma 12.5, we know that the signs of s (a; )  and s (a j )  are the 
same. Let s; = Is(a;)1 , sj = I s ( q )1 .  Consider the right-spherical triangle 

where Pi is a standard orthogonal segment. With notation as in Lemma 12.6, 
&a;)=fe(s;),&Pi) = ge(s;),and w; = w*(s;).Similarly for aj. But if a;and aj are 
of the same type, say type 3, then &Pi) = e(Pj)= d(P1 ,P2). Thus, ge(s;)= ge(sj) 
and it follows from Lemma 12.6 that either 

This proves the first statement of the lemma. Now if ( a ; ,a;+l)is a bounce, then 
the angle between a; and a;+l at x; is w; + w;+l, so if the bounce is proper 
W ;  $T -w;+l.We conclude that w; = w;+l,so the two triangles are congruent. 

If a = ( a l , .. . ,a,) is a broken geodesic, we will call a segment a; a short 
edge if &a;)< and a long edge if &a;)2 ;. 

LEMMA12.8. Let a be a non-orthogonal geodesic segment. If a is short, then 
0 < Is(a)1 < & a ) ,and if a is long, then &a)< Is(a)1 < &a)+ ;. 

Proof. Let s = Is(a)l. This lemma follows immediately from Lemma 12.6, 
since &a)=fe(s). 

Let t i ,  i = 1,2,3,  be as at the beginning of this section. Then, in particular, 
t i  = 2d(Pj,Px),so any segment in s3of type i has length 2 2. Assume, as before, 
that e l ,  l 2 ,  t3satisfy l l  + t2+ t3= 27r and l;2 t. 
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LEMMA 12.9. Suppose a = ( a l ,  . . . ,a,) is a non-orthogonal closed broken 
geodesic in s3satisfying the angle condition (Ang). Zfl(a) < 27r, then a satisfies 
the following. 

( i )  All three types of edges occur among the ai and two types occur only 
once. 

(ii) The total shift of a is f7r 

Remark 12.10. If a is closed, we may choose any singular point on a! as our 
starting point. For a satisfying (i) of the lemma, we may choose the starting point 
such that the types of a1 and a2, say types 1 and 2, occur only once, while all 
the remaining ai's are of type 3. 

Proof of Lemma 12.9. Suppose a is as in the lemma and that &a)  < 27r. We 
divide the argument into 3 cases. 

Case I .  a has only one type of edge. In this case, a has an even number of 
edges and every consecutive pair of edges forms a bounce. Since &a)  < 27r, 
these bounces may be assumed to be proper. Thus, all the edges of a have the 
same length. If the edges are all short, then by Lemma 12.8, the shift of a satisfies 

If the edges are long, then there are at most 2 edges (since 4 long edges would 
give t (a)  2 27r), so again 

On the other hand, by Lemma 11.9, if a! is even then s (a )  E 0 mod 27r. Thus, 
this case cannot occur. 

Case 2. a has two types of edges, say types 1 and 2. After possibly choosing 
a new starting point, a! consists of a sequence of (proper) bounces of types 1 and 
2. In particular, a is even so Is(a)l E 0 mod 27r. If all the edges of a are short, 
then, as in case 1, 

gives a contradiction. 
Hence there must be exactly one bounce, say of type 1, whose edges are long. 

(If two of the bounces are long, then there are 4 long edges, hence &a) 2 27r.) 
Moreover, we claim that all the other bounces are of type 2. For if (ai ,  ai+1) 
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and (aj ,aj+1)are respectively a short and a long bounce of type 1, then by 
Lemma 12.7 

So the total length of these four edges is 27r. Thus, we may assume that a = 

( a l ,a2 , .  . .a2n+2) where ( a l ,a2)is a long bounce of type 1 and (a3,a4, .  . . ,a2,+2) 

is a series of n short bounces of type 2. Then for i 2 3, &ai)= t(a3)and 
s ( Q ~ )= SO~ ( ( 2 3 ) ~  

In fact, since 0 < 2n ls(a3) 1 < 4 a 3 ,. . . ,a2,+2) < 7r,  and Is(al)1 < 7r, we have 

Now compare the triangles 

;, 5d l ,  d2 agree by the angle condition. Moreover, since 0The angles marked 
;. <0we have Letting febe as in Lemma 12.6, it follows from that lemma that 

Hence, 

e(a)= 2e(a1)+ 2n e(a3)> 2 ~ .  

We conclude that this case cannot occur. 
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Case 3. a has three types of edges. Since the length of an edge of type i is 
> 2 and Ql + Q2 + Q3 = 27r, a cannot contain two (or more) edges of each type. 
Thus a must be odd and contain at most one edge of some type, say type 3. 
Moreover, el + Q2 2 7r, hence if edge types 1 and 2 occur three or more times, 
we have 

We conclude (since a is odd) that either type 1 or 2, say type 2, occurs only 
once. This proves assertion (i) of the Lemma. 

It remains to prove that Is(a)l = 7i. Since 7r is odd, s(a)  - 7r mod 27r, so 
we need only show that /s(a)l < 37r. Choosing a new starting point if necessary, 
we may assume a = ( a l ,a2, . . . ,a,) where a l ,  a 2  are of types 2 and 3 and the 
remaining ai 's are of type 1. In particular, a j ,  aq, . . . ,a, have the same length 
and shift. Now if these edges are short, then by Lemma 12.8 

On the other hand, if a3 , .  . . , a ,  are long, then there is only one such edge (i.e., 
n = 3) since 3 or more such edges would make &a)  > 27r. But in this case, since 
the shift of any one edge has absolute value less than 7r, we again have 

This proves assertion (ii). 

Now suppose y = (yl, . . . ,y,) is a closed broken geodesic in S3 of length 
< 27i. Then its image a = ~ ( y )in s3must be as in Lemma 12.9. To complete 
the proof of Theorem 9.1, we will show that any such y contains a pair (yi, yi+l) 
such that the angle between them, d(-ji,yi+l), is less than T.In other words, y 
cannot be a local geodesic. 

We need one final lemma. Recall that if a = ( a l ,  a2 )  is a non-orthogonal 
broken geodesic in s3 satisfying the angle condition, and yl is a lift of a1 to S3, 
then by Lemma 9.5 there is a unique lift 7 2  of a 2  such that 6 (y l ,  72) < 7r. 

LEMMA 12.11. Let a = ( a l ,  az )  be a non-orthogonal broken geodesic in s3 
satisfying the angle condition, and assume type a1 $type az.Let y = (yl, 72) be a 
lift of a to a broken geodesic in S3and let p be the edgepath in r corresponding to 
y. Suppose a has negative (resp. positive) shift. Then 6(y l ,  72) < 7r ifand only if 
p corresponds to two positively (resp. negatively) oriented edges of a fundamental 
cycle in r. 
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Proof. Replacing ct. by the reverse path B = (B2,Bl) if necessary, we may 
assume that the shift of a is negative. Let x be the common endpoint of a1 and 
a 2  and let p = ( p l ,  P2, P3)be half of the common, orthogonal circle through x as 
indicated below. 

Viewing Link(x,~" as the visual sphere at x (cf. Lemmas 12.2 and 12.3), we 
have 

Since /3g is a continuation of the geodesic p2, the endpoints of P2 and pg appear 
as the same point in this link. The great circle through the north pole and PI 
splits the link into two hemispheres, H I  and H2. 
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The assumption that the shift of a is negative means that a1 and a?:must both 
appear as points in H I .  

Now consider a lift = (71, 72) of a with ,t = endpoint of yl = initial point 
of 72. Let r = branching order of P2. Then the link of 4 in S3 is made up of 
2r segments isometric, alternately, to H1 and H2. The lifts 31,7?: of a l ,  a?:must 
appear in segments of type H1. Clearly, then, d ( y l ,y2) < n if and only if yl and 
7 2  appear in the same segment of type H I .  The fact that they appear in the same 
segment means that the edge path p corresponding to y consists of two edges of 
an (oriented) triangle a in T. 

We claim that this triangle a is positively oriented. To see this, let L? = 
(&, 3?:,33) be the lift of 3 through iwith edgepath a.  By Lemma 11.3, if 3 
begins at p, then it ends at j + i7 or j - n according to whether the triangle a is 
positively or negatively oriented. Now the segment of Link(12,S3) containing y 
and 3 is isometric to its projection H I  in Link(s,,S3). 

In particular, the endpoint 9 k n of d3 is a point on PI which, viewed from ,f2 
appears the same as the endpoint of 132. Noting the orientation of F l ,  this point 
clearly must be .jj + i ~ .We conclude that a is a fundamental cycle. 

PROPOSITION12.12. Assunzing conditions (ij and (ii)of Theorem 9.1, if? is a 
closed, rzorz-ortlzogonallocal geodesic in S3,then t(y) 2 2n. 

Pro05 Let 7 = (71,. . . ,y,,) be as above and suppose l(y) < 2 7 ~ .Applying 
Lemma 12.9 (and Remark 12.10) to the projection of y in s3,we may assume 
that 71,% are of types 1 and 2 while 73, . . . ,y, are of type 3, and that s(y) = +T. 

We will assume s(y) = -n; the argument for s(y) = T is completely analogous. 
Let p be the closed edgepath in l- determined by y, and let P be the singu-

lar circle at which y begins. Recall from the subsection of Section 11, headed 
"Edgepaths," the function 

T : H1(T) + translations of 

which takes each fundamental cycle to translation by T .  By Lemma 11.5, y is 
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closed if and only if ~ ( p )+ s(y) = 0 mod 4rs ,  or in other words, ~ ( p )= n r  with 
n = 1 mod 4s. Now the first two edges el,  e2 of p are of types 1 and 2. Let u be 
the vertex (necessarily of type 3) between them. Then el and e2 are (oriented) 
edges of some fundamental cycles a ,  a' containing u.Let d = ~ f = ,ai be the sum 
of the fundamental cycles a = al ,a2 ,  . . . ,a k  = a' between a and a' at the vertex 
u as indicated below, 

Note that 1 < k < 2r, where r = branching order of Pg.In the homology group 
H1(T) ,p - d is homologous to a cycle containing only edges of type 3. Hence, 

where ci is the sum of all the fundamental cycles about some vertex Ui of type 
3. In particular, ci is the sum of 2r fundamental cycles. 

It follows that ~ ( p )= n r  with 

But as noted above, we must have n = 1 mod 4s. In particular (since r divides 
s), we have k = 1 mod 2r. But 1 < k < 2r so k = 1. We conclude that d is a 
single fundamental cycle containing el and e2 as oriented edges. But the corre-
sponding edges (71, y2) of y have negative shift. It follows from Lemma 12.11 
that < r. This contradicts the assumption that y is a local geodesic, 
and hence completes the proof of the proposition. 

Together, Propositions 11.2, 12.1 and 12.12 constitute a proof of Theorem 9.1. 

Appendix: Orthogonal Joins of Piecewise Spherical Complexes. Sup-
pose X and Y are finite polyhedra of piecewise constant curvature 1 (cf. Sec-
tion 2). For convenience, we assume the cellulation on X and Y is simplicia1 and 
that no simplex contains two points of distance r.We will define a geodesic met-
ric space X * Y, called the orthogonal join of X and Y and prove (Theorem A10) 
that X * Y satisfies C'AT(1) if and only if X and Y each satisfy CAT(1). 
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To define the orthogonal join, first consider two standard spheres Sn and Sm 
of radius 1. These can be isometrically embedded orthogonally in the standard 
sphere F m + ' .  Given any simplices a' C Sn, rj C Sm, the convex hull ai * rj 
of oiand TJ in Sn+"+' is an (i +j + 1)-simplex. Now if X and Y are as above, 
then we can put a metric d on their simplicia1 join X * Y by assigning the metric 
described above to a * T for each a C X, T C Y, and letting d be the induced 
geodesic metric. (That is d(x,y) is the length of the shortest path from x to y.) 
We call X * Y, together with this metric d, the orthogonal join of X and Y. We 
also define the suspension and the cone of X to be the orthogonal joins 

G. Moussong [MI has shown that Ex satisfies CAT(1) if and only if X satisfies 
CAT(1). Our main theorem (Theorem A10) is a generalization of Moussong's 
result, but our proof is independent. 

Topologically, X * Y may be viewed as the quotient space 

where (a, b, 0) (a, b', 0) andN ;) (a, b, N (a', b, ?). Using this description, 
we denote points in X * Y as equivalence classes [a, b, t]. There are obvious 
embeddings 

By abuse of notation, we will often denote [a, b,O] by a and [a, b, ;] by b. The 
reader is cautioned, however, that the embeddings above are not, in general, 
isometric. (Though, as we will see shortly, they are distance preserving for pairs 
of points of distance at most .rr in X or Y.) We will denote the metric on X * Y 
by d, and the metrics on X and Y by dx and d y respectively. 

For points a = [a, b, 01 and b = [a, b, $1, the segment 

lies entirely in one simplex of X * Y and has length $. We call it the longitude 
from a to b. 

LEMMAAl .  ~ ~ , b  =is a geodesic segment from a to b, that is, d(a, b) ;. 


Proof. Let y be a geodesic segment from a to b. It suffices to show that 
e(y) 2 $ . Write 7 = ( r l ,  72, . . .yr) where each yi lies in a single simplex ai of 
X * Y. In ai we have 
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Elementary spherical geometry shows that l ( y i )2 \ti+l- ti\, SO t ( y )= Ct(yi)2 
Cltz-l - tii 2 ;. 

As an immediate consequence of Lemma A l ,  we note that two points in X * Y 
can have distance at most T .  The next lemma gives necessary conditions for two 
points to have distance exactly T in X * Y. Later (Lemma A6),  we will show that 
these conditions are also sufficient. 

LEMMAA2. L e t x =  [ a l , b l , t l ] , y= [a2,b2,t2].Then d(x,y) 5 T .  I fd(x ,y)  = T 

then one of thefollowing holds: 

(i) tl = t2=Oanddx(a l ,a2)2 T 

(ii) tl = t2 = ;anddy(b l rb2)> T 

(iii) t l = t 2 + 0 , ; , d x ( a l , a 2 ) 1 ~ , a n d d r ( b l , b 2 ) > ~ .  

Proof. We first show that d(x,y)  = T implies tl = ta. Say tl < t2. Then tl + 
(5- t2)  < t .Consider the longitudes connecting b l ,a l ,b2, and a2 as indicated: 

The path from x to y along these longitudes has length tl + + ($ - t2) < T .  

Hence d(x,y)  < T .  Assume now that d(,u,y) = T .  
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If tl = t2 = 0, then x,y E i(X) so dx(al,a2) 1 d(x,y) = T .  Similarly, if 
tl = t2 = ;, then dr(bl, b2) > d(x,y) = T ,  so (i) and (ii) follow. 

Suppose tl = t2 $0,  2 ,  and say dx(al,a2) < T .  Let y be a geodesic in X 
from a1 to a2 and let m be its midpoint. The segment yl of y from a1 to rn has 
length less than and yl * bl cX * Y is isometric to a spherical right triangle. 

bl 

Let a1 be the geodesic segment in yl * bl from x to rn and consider the right 
spherical triangle with vertices a1,x,m. Since the legs of this triangle both have 
length < ;, the same is true of the hypotenuse, that is, ((al)  < ;. By the same 
argument, there is a segment a 2  joining m to y with ((a2) < ;. Thus ( a l ,a2 )  is 
a path from x to y of length < T ,  so d(x,y) < T .  

Next note that there is a retraction 

given by [a,b, t] H a. The following proposition will be fundamental to the 
analysis of geodesics in X * Y. 

PROPOSITIONA3. Let y be a local geodesic in X * Y which contains no points 
of j(Y) in its interior, int y. Let 7denote the closure of r(int 7).Then 7is either a 
single point or a local geodesic in X. 

Pro05 We begin by analyzing the link of a point x = [a,b, t], t $ 0, 2 ,  in 
Z = X * Y. Recall that ya,b denotes the.longitude form a to b. Clearly any simplex 
a = a1 * 02 in Z containing a and b must contain ya,b. Moreover, 

It follows that 
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and hence 
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Link(x,Z) 2 C(Link(a,X) * Link(b, Y)) 

2 (Link(a,X)) * (CLink(b, Y)) 

From this analysis we see that if y is a ray beginning at x and v E Link(x,Z) is its 
tangent vector at x, then the projection 7 of y to X is constant (in a neighborhood 
of x) if and only if v E CLink(b, Y). Whereas if v $! C Link(b, Y), then the tangent 
to 7 at a is the projection of v on Link(a,X). 

Now let y be as in the proposition. Write y = (y12y2,.. . ,%) where each yi is 
contained in a simplex of Z. Clearly the projection of each yi is either constant or 
geodesic in X. Suppose some yi projects to a single point a EX. Let x = [a,b, t] 
be the endpoint of yi (= starting point of yi+1).Then the tangent to Ti at x is a 
point v E ELink(b, Y) C Link(x,Z). Since y is a local geodesic, the tangent to 
yi+l at x is a point w E Link(x,Z) of distance 2 n from v. By Lemma A2, this 
implies that w also lies in C Link(b, Y), and hence yi+l also projects to a constant 
in X. Similarly, replacing x by the starting point of yi, we can show that yi-1 
must project to a constant. We conclude that if some yi projects to a E X, then 
so does all of y, i.e. y C a * Y. 

Now suppose that no segment of y projects to a constant. Let x, v, and w be 
as above; that is, x is the endpoint of Ti, and v, w are the tangents to yi and yi+l 
in Link(x,Z). Identifying 

Link(x,Z) = (Link(a,X)) * (ELink(b,Y)), 

we can write v = [a ,P, TI, w = [a', P', T'] with cr, a' E Link(a,X), P, P' E 

ELink(b,Y), T,T' E [0, ;I. Since yi, yi+l do not project to constants, T,T' $ 5, 
and the projections Ti, have tangents a ,  a' at a. Now y is a local geodesic, so 
the distance from v to w in Link(x,Z) is at least n. By Lemma A2, this implies that 
the distance from a to a' in Link(a,X) is at least n. This is precisely the condition 
we need to have (Ti, be a local geodesic in X. Repeating this argument for 
each pair of adjacent segments, we conclude that 7 = (TI,T2,. . . ,7,)is a local 
geodesic in X. 

LEMMAA4. Let y be a local geodesic in the cone on X, CX, which begins and 
ends in i(X) C CX. If&?) < n,  then y lies entirely in i(X). 

Proof. Since t(y) < n ,  y cannot pass through the cone point. Let 7 be the 
projection of y onto X, so y c C(7). We can "develop" y and 7 onto the upper 
hemisphere S: of a standard 2-sphere as follows. View S: as the cone on a circle 
S' of length 2n. Divide y into segments y = (71, . . . ,7,) such that the projection 
Ti of each segment lies in a single simplex of X. Map these onto consecutive -
geodesic segments P = (PI,.. . ,P,) of S1 of length &pi) = &Ti). Then C(Ti) 
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maps isometrically onto C(Pi)cS: in the obvious manner. Under this isometry, 
y, corresponds to a geodesic segment pi in c(Pi).Clearly ,O = ( P I , .. . ,p,) is a 
local geodesic in S: of length e ( P )  = l ( y )  < n-. Since /3 begins and ends on the 
equator of s:, it must lie entirely in the equator. That is, P = p and hence, y = 7. 

LEMMAA5. Let y ,  7be as in Proposition A3. I f @ )  _> n-, then l ( y )  _> n-. 

Proof. It suffices to show that if l(7)= n- then l ( y )  > n-. As in the previous 
lemma, 7 can be developed onto a geodesic segment of length n- in S1, so that 
y corresponds to a local geodesic /3 in P * Y of length e (P)  = t ( y ) .  But since 
l ( D )  = T, may be viewed as the cone on its endpoints. Thus, 

The endpoints of P are the same as the endpoints of P, hence, they lie in d p  * Y ,  
whereas the interior of ,!3 clearly does not lie in Bp* Y .  It follows from Lemma A5 
that l ( p )  2 T,so l ( y )  > n-. 

LEMMAA6. The converse of Lemma A2 holds. That is, d(x,y) = n- if and only 
if one of the conditions ( i ) ,(ii)or (iii)holds. 

Proof. (i) Let al ,  a2 E i (X)be such that dx(al ,a2)2 n- and let y be a geodesic 
in X * Y connecting them. Then either y contains a point in j (Y) in which case 
l ( y )  > n- (Lemma Al)  or its projection 7 is a geodesic from a1 to a2 in X so 
l(7)> T,and by Lemma A5, l ( y )  > T. 

(ii) This is similar to (i). 
(iii) Let x = [al ,bl , t l ,  y = [a2,b2,tl with dx(al ,a2)2 n- and dy(bl ,b2)> n-, 

and let y be a geodesic in X * Y from x to y. If y contains no points of j(Y), 
then it projects onto a geodesic 7 in X connecting a1 and a2. Hence t(7)2 T,so 
t ( y )  2 T.Similarly, if y contains no points of i (X)  then l ( y )  > n-. On the other 
hand, if y intersects both i (X) and j(Y), say at points a E i (X)and b E j(Y), then 

PROPOSITIONA7. V a l ,a2 E X with dx(al,a2) < T,then any geodesic y inX * Y 
from i (a l )to i(a2)lies entirely in i(X).In particular, the embedding i : X -+ X * Y 
takes local geodesics to local geodesics and preserves distancesfor pairs of points 
of distance 5 T. 

Proof. Let a l ,  a2 E X. We have already seen that dx(al ,a2) = n- implies 
d(a l ,a2) = n- (where, as usual, we abuse notation by letting al ,  a2 denote both 
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the points in X and their images in X * Y). Suppose dx(al,a2) < n and let y be a 
geodesic in X * Y connecting a1 and a2. Then !(y) = d(a1, a2) I dx(a1, a2) < n, 
hence y contains no points of j(Y). If y i(X), we may assume without loss of 
generality that y intersects i(X) only at its endpoints a1 and a2. (If not, replace a2 
by the first intersection point of (int y) and i(X).) Then y can be projected onto 
both X and Y. 

Denote these projections by yx, ;-Jy, respectively. Now subdivide into seg-
ments y = (y l , .  . . ,7,) such that each y; is contained in a single simplex of 
X * Y. Let Tx,i, %,i denote the projections of yi onto X and Y, respectively. Then, 

-
arguing as in the proof of Lemma A4, Tx = . . . ,y ~ , ~ )can be developed 

-

onto a local geodesic segment px = (px,l , .. . ,Px,,,) of S' with &&.i)- = !(7x,i). 
Likewise, yy can be developed onto a segment Py = (Py,l, .. . ,Py,n)of S1 with 
!(Py,i) = !(%,;>.For each i,j,yx,i * Tyj is contained in a single simplex of 
X * Y hence, it is isometric to px,i* FyjC S' * S1 = S3. Now by Lemma A5, 
!(y) < n implies t(Px) = i(yx) < n and &(By)= i (yy) < n.Hence, the union 
uij& * Pyj= px * py is a spherical tetrahedron A3 in S3 containing no pair of 
antipodal points. The isometries Pxii* pyj Tx,i * yYjgive rise to a projection 
D : A3 + yx * TY c X * Y. The path y is the image under D of a unique path 
P = (Dl,. . . ,Pn) with pi c px,i* Py,i. Since y is geodesic in X * Y, its lift P 
must be geodesic in A3 (a shorter path in A3 would project to a shorter path in 
X * Y). Now by construction, px is a geodesic in (in fact it is one edge of 
the tetrahedron) with the same endpoints as P. But geodesics in A3 are unique, 
hence, p = Px. It follows that y = ';Jx C i(X). 

LEMMAA8. (i) Let y be a local geodesic in X * Y. If y contains a longitude, 
then y is made up entirely of longitudes. 
(ii) Ifa E i(X) and b E j(Y), then the only local geodesic of length < nfrom a to 
b is the longitude y,,b. 

Proof. (i) Let y = (71, 72,. . . ,yn) where each yi is contained in a simplex of 
X * Y. Suppose some yi is a longitude from a E i(X) to b E j(Y). Now 

where the image of X in this link corresponds to the longitudes from b to i(X). 
In particular, a E X corresponds to yi. Since y is a local geodesic, Ti and ?;.+I 

must represent points of distance > n in Link(b,X * Y); hence they must both 
lie in X (Lemma A2). Thus yi+l is also a longitude. A similar argument using 
Link(a,X * Y) shows that yi-1 is also a longitude. We conclude inductively that 
all the segments yl, . . . ,yn are longitudes. 

(ii) Let a E i(X), b E j(Y) and let 7 be a geodesic of length < n connecting 
a to b. Assume for the moment that y contains no points of i(X) or j(Y) in its 
interior. Then y projects to geodesic segments yx and yy in X and Y. As in the 
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- -

proof of Lemma A7, we can develop yx and yy onto segments Px, PYof S' SO 

that A3 = Dx *Dy is a spherical tetrahedron containing no pair of antipodal points, 
and such that the projection D : A3 i yx * yy restricts to an isometry on each 
simplex. Then y lifts to a geodesic P in A3 which begins at the initial point a of -
pXand ends at the endpoint b of By. But there is a unique such geodesic in A3, 
namely the longitude from a to b. It follows that y = D(P) is the longitude from 
a to b. 

More generally, if y is any geodesic from a to b of length < 7r, then y 
contains a segment y1 connecting a' E i(X) and b' E j(Y) with no points of i(X) 
or j(Y) in its interior. By the discussion above, y1 must be a longitude, hence, by 
part (i), y is made up entirely of longitudes. Since l(y) < 7r, and each longitude 
has length 5,we conclude that y is a single longitude. 

We are now ready to prove our main theorems. Recall that the systole of X, 
sys(X), is the greatest lower bound of the lengths of closed geodesics in X. 

THEOREMA9. Suppose X and Y arefinite piecewise spherical polyhedra. Then 
sys(X * Y) 2 27r ifand only ifsys(X) 2 27r and sys(Y) > 27r. 

Proof. It follows immediately from Proposition A7 that if X or Y have systole 
< 27r, then X * Y has systole < 27r. Assume now that sys(X) > 27r and sys(Y) 2 
27r, and let y be a closed local geodesic in X * Y. 

Case I. y f l j(Y) = 8. In this case, we can project y onto X. The projection 
-
yx is either a closed local geodesic in X or a single point yx = a E X. In the 
former case, l(%) 2 27r (since sys(X) 2 27r), so by Lemma A5, l(y) > 27r. In 
the latter case, y c a * Y + C(Y). Any ray out of the cone point a is a longitude 
and hence intersects j(Y). This contradicts our assumption that y nj(Y) = 8, so 
we may assume that y does not contain a. But then we also have a projection yy 
of y onto j(Y). This projection cannot be a single point (since that would mean 
that y was a longitude), hence, yy is a closed local geodesic in Y. It follows that 
l(yy) > 27r, so by Lemma'A5, t(y) 2 27r. 

Case 2. y n i(X) = 8. Same as case 1. 

Case3. y containspoints ofboth i(X) andj(Y). Write y = (yl, 72, . . . ,7,) where 
each yj connects a point in i(X) to a point in j(Y). Note that r is necessarily even 
since y is closed. If some yj is a longitude, then by Lemma A8 (i), all the yj's 
are longitudes and hence have length f.If r = 2, then y = (ya,b,y;;). But clearly 
this is not a local geodesic at the endpoints a ,  b of ya,b. Hence, we must have 
r > 4, so l(y) 2 27r. If no yj is a longitude, then by' Lemma A8 (ii), l(yi) 2 7r 

for all i, so l(y) > rn- 2 27r. 
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Finally, to prove our last theorem, we review some facts from Chapter 1. 
Recall that a geodesic metric space Z has curvature 5 1 if Z satisfies CAT(1) 
locally. Suppose Z is a finite piecewise spherical polyhedron. Then by Lemma 1.3, 
X satisfies CAT(1) globally if and only if Z has curvature I1 and systole 2 27r. 
On the other hand, by Theorem 3.1, parts (1) and (2), Z has curvature 5 1 if and 
only if the link of every point in Z satisfies CAT(1). (While the proof of some 
parts of Theorem 3.1 use properties of suspensions, parts (1) and (2) use only an 
independent result of Ballman [GH, Chap 101.) Thus Z satisfies CAT(1) if and 
only if sys(Z) > 27r and Link(x,Z) satisfies CAT(1) for all x E Z. 

THEOREMA10. Assume X and Y are nonemp~,jrzite,piecewise spherical poly-
hedra. Then thefollowing are equivalent. 

(i) X * Y has curvature 5 1. 

(ii) X * Y satisjes CAT(1). 

(iii) X and Y both satisfy CAT(1). 

Pro05 ii) + i). Since curvature I1 means, by definition, that CAT(1) holds 
locally, this implication is obvious. 

i) + iii). First consider the special case X = SO, X * Y = CY. Let xo be a 
cone point of CY. Then Link(xo,CY) = Y. By the discussion above, therefore, 
curvature 5 1 for CY implies CAT(1) for Y. For general X, let x be a point in a 
maximal simplex a of X and let n = dim a. Then Link(x,X) = Link(x, a )  = Sn-l, 
so Link(,lc, X * Y) = Link(x, X) * Y = CnY. If X * Y has curvature I1, then C"Y 
satisfies CAT(l), hence Y satisfies CAT(1). 

iii) + ii). Assume X and Y both satisfy CAT(1). Then X and Y have systole 
2 27r, hence, by Theorem A9, the same holds for X * Y. Thus, it suffices to show 
that the link of every point in X * Y satisfies CAT(1). For this, we proceed by 
induction on the dimension of X * Y. If dim(X * Y) = 1, then links of points in 
X * Y are dimension 0 and satisfy CAT(1) vacuously. Suppose dim(X * Y) = n. 
Let z = [a, b, t] be a point in X * Y. Then Link(z,X * Y) is one of the following: 

(1) C(Link(a,X) * Link(b, Y)), if t $0, 

(3) X * Link(b, Y), if t = ;. 

Now X and Y satisfy CAT(1) by assumption and hence, so do Link(a,X) and 
Link(b, Y) for all a E X, b E Y. By induction, we conclude that the same holds 
for Link(z,X * Y). 
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