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Action dimensions of some simple complexes of groups

Michael W. Davis, Giang Le and Kevin Schreve

Abstract

The action dimension of a discrete group G is the minimum dimension of a contractible manifold
that admits a proper G-action. We compute the action dimension of the direct limit of a
simple complex of groups for several classes of examples including (1) Artin groups, (2) graph
products of groups and (3) fundamental groups of aspherical complements of arrangements of
affine hyperplanes.

Introduction

Suppose G is a discrete, torsion-free group with classifying space BG. Its geometric dimension,
gdim(G), is the smallest dimension of a model for its classifying space BG by a CW complex.
This number is equal to cdG, the cohomological dimension of G (provided cdG �= 2). Its action
dimension, actdimG, is the smallest dimension of a model for BG by a manifold. In other words,
actdimG is the minimum dimension of a thickening of a model for BG by a CW complex to a
manifold, possibly with boundary. It follows that gdimG � actdimG with equality if and only
if BG is homotopy equivalent to a closed manifold. Since any CW complex can be thickened
to a manifold of twice the dimension, actdimG � 2 gdimG.

A common method of constructing groups and their classifying spaces is to use the notion
of a ‘complex of groups’ (cf. [6]). Here we will only use the easier notion of a simple complex
of groups over a poset Q. By definition, this means a functor, GQ, from Q to the category
of groups and monomorphisms. So, GQ is the following data: a collection of groups {Gσ}σ∈Q
and monomorphisms φστ : Gτ → Gσ, defined when τ < σ and satisfying φστφτμ = φσμ when
μ < τ < σ. Suppose we have models for the BGσ and realizations for the homomorphisms φστ

by maps φστ : BGτ → BGσ. One then can glue together the {BGσ}σ∈Q (or more precisely
iterated mapping cylinders of the φστ ) to form a space BGQ called the aspherical realization
of GQ. If the geometric realization of Q is simply connected, then it follows from van Kampen’s
theorem that π1(BGQ) is the direct limit, G, of the system of groups {Gσ, φστ}. The space
BGQ may or may not be aspherical. This is the ‘K(π, 1)-Question’ for GQ. When the answer
is affirmative, BGQ is a model for BG. In this case, we get an upper bound for gdimG in terms
of the geometric dimensions of the Gσ. Similarly, if each BGσ is modeled by a manifold with
boundary, Mσ, and each φστ is homotopic to an embedding fστ : Mτ → ∂Mσ, then we can glue
together suitably thickened versions of the Mσ to get a thickening of BGQ to a manifold with
boundary M . So, provided the K(π, 1)-Question for GQ has a positive answer, one gets an
upper bound for the action dimension of G in terms of the action dimensions of the {Gσ}σ∈Q.

In [4], Bestvina, Kapovich and Kleiner define a number, obdimG, called the ‘obstructor
dimension’ of G. It is a lower bound for the action dimension of G. It is based on the classical
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van Kampen obstruction, vkn(K), for embedding a finite simplicial complex K into Rn. This
obstruction is a cohomology class with Z2 coefficients in the configuration space of unordered
pairs of distinct points in K. Suppose EG denotes the universal cover of BG. The idea of [4]
is to find a complex K and a coarse embedding of Cone∞ K into EG, where Cone∞ K means
the cone of infinite radius on K. It is proved in [4] that vkn(K) is also an obstruction to a
coarse embedding of Cone∞ K into any contractible (n + 1)-manifold; hence, when vkn(K) �= 0,
actdimG � n + 2. In [4] the obstructor dimension of G is defined to be n + 2, where n is the
largest integer so that there exists a complex K with vkn(K) �= 0, together with a coarse
embedding of Cone∞ K into EG. We also shall have occasion to use a variation of this notion
due to Yoon [36], called the ‘proper obstructor dimension of G’. His idea is to consider coarse
embeddings T → EG, where T is a contractible simplicial complex, not necessarily of the form
T = Cone∞ K.

In this paper we use the following two techniques to compute the action dimension for certain
groups which are direct limits of simple complexes of groups.

(I) Gluing: Construct a thickening of BGQ by gluing together manifolds with boundary
that are models for the BGσ, hence, establishing an upper bound for actdimG. The pieces that
are to be glued together will have the form Mσ ×Dσ where Mσ ∼ BGσ and where Dσ is a ‘dual
disk’. Two such pieces will be glued together along a piece that is a common codimension-0
submanifold of both boundaries. (The details of this method are described in Section 2.)

(II) Obstructors: Lower bounds for obdimG (and hence, for actdimG) are established by
finding obstructors for G. In most of our examples the coarse obstructor will be a finite union
of contractible manifolds, containing a common basepoint, each of which is the universal cover
of some closed aspherical manifold. These contractible manifolds are called sheets. When a
sheet can be compactified to a disk, it is homeomorphic to the cone on a sphere and the coarse
obstructor has the form Cone∞ K where K is some configuration of spheres (K will often
be a ‘polyhedral join’ of spheres, cf. Definition 4.6). So, such cases reduce to calculating van
Kampen obstructions vkn(K).

A necessary condition for BGQ to be aspherical is that the geometric realization |Q| of the
poset Q is contractible (see Remark 1.7). Often this will be automatic, since if Q has a minimum
element for which the corresponding local group is the trivial group, then |Q| is a cone. If Q
has such a minimum element, then at the final stage of (I) we will need to glue a disk onto the
result of previous gluings. This will entail that each of previous manifolds Mσ has nonempty
boundary. However, if Q has no such minimum, then for any minimal element σ of Q one can
allow Mσ to be a closed manifold. We shall return to this point later in the introduction.

In most applications Q will be the poset S(L) of simplices in some simplicial complex L,
including the empty simplex (so |S(L)| will be a cone).

A prototypical example is the case where G = AL, the right-angled Artin group (or ‘RAAG’)
associated to a d-dimensional flag complex L. Then the simple complex of groups is the Artin
complex, AS(L) = {Aσ}σ∈S(L) of spherical Artin subgroups, BAL is the standard model for
its classifying space as a union of tori, and gdimAL = d + 1. It turns out that the appropriate
obstructor is the polyhedral join of 0-spheres O1L, called the octahedralization of L. The
following two results are proved in [1, Theorems 5.1 and 5.2].

(i) If Hd(L; Z2) �= 0, then vk2d(O1L) �= 0. Hence, actdimAL = obdimAL = 2d + 2.
(ii) If Hd(L; Z2) = 0 and d �= 2, then actdimAL � 2d + 1.

We discuss below three generalizations of RAAGs: (1) general Artin groups, (2) graph
products of fundamental groups of closed aspherical manifolds and (3) fundamental groups
of aspherical complements of affine hyperplane arrangements. In each case we prove results
similar to (i) and (ii) above. In all three cases the relevant obstructor will be a polyhedral
join OmL of (m− 1)-spheres. Although we conjecture that a result similar to (ii) holds in both
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cases (1) and (2), the proof of (ii) for RAAGs uses a special argument. (AL is a subgroup of the
right-angled Coxeter group corresponding to O1L; if vk2d(O1L) = 0, then O1L embeds in a flag
triangulation of S2d and hence, the Coxeter group is a subgroup of a Coxeter group that acts
cocompactly on a contractible (2d + 1)-manifold.) When the group is not a RAAG, we instead
use gluing methods to prove the analog of (ii) in the case where L embeds in a contractible
simplicial complex of the same dimension d. We abbreviate this condition by saying that L is
EDCE. (Note that if L is EDCE, then Hd(L; Z2) = 0.)

(1) General Artin groups: Suppose AL is the Artin group, where the simplicial complex L is
the nerve of the associated Coxeter system. The Artin complex AS(L) is the simple complex of
groups {Aσ}σ∈S(L) of spherical Artin subgroups. The group AL is the direct limit of the system
of groups defined by AS(L). Conjecturally, the K(π, 1)-Question has an affirmative answer for
all Artin complexes. This is known in many cases (see [7]). When the answer is affirmative,
BAS(L) is covered by the ‘Salvetti complex’ of AL and gdimAL = dimBAS(L) = d + 1. The
next result is proved in [15, 29]. We shall give the details of the arguments in Sections 2 and 4.

Theorem A (cf. [15] and Proposition 3.13). Suppose the K(π, 1)-Question has a positive
answer for AS(L).

(i) If Hd(L; Z2) �= 0, then actdimAL = obdimAL = 2d + 2 = 2 gdimAL.
(ii) If L is EDCE, then actdimAL � 2d + 1.

In [15] it is proved that the relevant obstructor for the Artin complex is a polyhedral join of
0-spheres, O1L�, where L� is a certain subdivision of L whose simplices index the ‘standard
free abelian subgroups’ of AL. As before, Cone(O1L�) coarsely embeds in EAL. The calculation
of the van Kampen obstruction in part (i) of Theorem A is then the same as its calculation for
O1L in the case of a RAAG.

(2) Graph products: Suppose {Gv}v∈V is a collection of groups indexed by the vertex set
V of a simplicial graph L1. The graph product G is the quotient of the free product of the Gv

by the relations that Gv and Gw commute whenever {v, w} is an edge of L1. Let L be the flag
complex associated to L1. For each simplex σ ∈ S(L), Gσ denotes the direct product of the Gv

over the vertex set of σ. The graph product complex GS(L) is the simple complex of groups
{Gσ}σ∈S(L) where the monomorphisms φστ are the natural inclusions. Obviously, G is the
direct limit of the Gσ. Moreover, the K(π, 1)-Question for GS(L) always has a positive answer
(see Section 1.3). One can essentially determine actdimG in terms of the actdimGv and we do
so in Sections 2 and 4. The most interesting case is when each Gv is the fundamental group of
a closed aspherical manifold Mv. A RAAG is the special case where each Mv = S1. To simplify
the statements of our results, assume each vertex manifold Mv has the same dimension m. Then
gdimG = m(d + 1). Using appropriate thickenings of the Mσ we can use gluing technique (I)
to construct a manifold M of dimension (m + 1)(d + 1) which is a model for BG. By gluing
together standard lifts of the Mσ, we get a coarsely embedded Cone∞(Om−1L) in EG. We
then get the following analog of Theorem A.

Theorem B (cf. Corollaries 3.3, 4.25 and 3.15). Suppose, as above, that G is the graph
product of fundamental groups of closed, aspherical m-manifolds Mv over a d-dimensional flag
complex L.

(i) If Hd(L; Z2) �= 0, then actdimG = obdimG = (m + 1)(d + 1).
(ii) If L is EDCE, then actdimG � (m + 1)(d + 1) − 1.

A mild generalization of this is the case where each local group Gσ is the fundamental group
of a closed aspherical manifold Mσ of dimension m(dim(σ) + 1) and where the φστ are realized
by embeddings fστ : Mτ ↪→ Mσ. In Subsection 3.1, we call such a system {Mσ}σ∈S(L) a simple
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complex of closed aspherical manifolds. When L is a flag complex, the K(π, 1)-Question for
GS(L) has a positive answer (cf. Theorem 1.20) and the conclusion of Theorem B holds without
change.

(3) Aspherical complements of hyperplane arrangements: Suppose A is an arrangement of
affine hyperplanes in Cn. Let M(A) denote the complement Cn −⋃A. The relevant poset
Q is the intersection poset of A. Its elements are the proper subspaces σ of Cn which are
intersections of hyperplanes in A, ordered by reverse inclusion. The minimal elements of Q are
a family of parallel subspaces, and the arrangement is essential if these are zero-dimensional.
For each σ ∈ Q, there is a central arrangement Aσ in the subspace normal to σ in Cn. Put
G = π1(M(A)) and Gσ = π1(M(Aσ)). This is the data for a simple complex of groups GQ. Of
course, M(A) need not be aspherical; however, if it is, then so are the M(Aσ). Let us assume
that M(A) is aspherical.

Since M(A) is a 2n-manifold, actdimG � 2n. If A is central (meaning that the hyperplanes
are linear), then M(A) deformation retracts onto the complement of the hyperplane arrange-
ment in the unit sphere S2n−1 in Cn and hence, actdimG � 2n− 1. If A is not essential, then
the parallel subspaces can be deformation retracted, and again actdimG � 2n− 1. On the
other hand, for essential aspherical arrangements we have the following theorem.

Theorem C (cf. Theorem 5.12). Let A be an essential arrangement of affine hyperplanes
in Cn. Suppose M(A) is aspherical. Let G = π1(M(A)). If A does not decompose as a product
with a factor equivalent to a nontrivial central arrangement, then actdimG = obdimG = 2n.

This theorem implies that if A decomposes as a product of irreducibles and k is the number
of factors which are irreducible central arrangements, then actdimG = 2n− k.

To understand why this is an analog of the previous theorems, two points require explanation.
First, |Q(A)| is homotopy equivalent to a wedge of (n− 1)-spheres and, when A is not central,
then there is at least one sphere in the wedge. In particular, Hn−1(|Q|; Z2) �= 0. Second, there
is a simplicial complex IQ(A), called the ‘irreducible complex’, such that IQ(A) is homotopy
equivalent to |Q(A)|, and so that the simplices of IQ(A) index the standard free abelian
subgroups in G. So, IQ(A) is the analog to L�. As before, the relevant obstructor is the
polyhedral join O1(IQ(A)).

The computations are evidence for the following conjecture connecting action dimension to
L2-cohomology.

The action dimension conjecture (Davis–Okun [18]). If the ith L2-Betti number of
G is nonzero, then actdimG � 2i.

For example, if A is an irreducible, essential, affine hyperplane arrangement in Cn such
that M(A) is aspherical, then the L2-Betti number of π1(M(A)) is zero in degrees not equal
to n and if the arrangement is irreducible and not central, then the nth L2-Betti number of
π1(M(A)) is nonzero, cf. [16].

In a forthcoming paper, we will determine the action dimensions for some more examples
of simple complexes of groups. These computations provide further evidence for the action
dimension conjecture.

This paper is organized as follows. In Section 1, we review simple complexes of groups and
explain our main examples. In Section 2, we discuss thickenings of simplicial complexes and
explain our method of gluing together manifolds. In Section 3, we perform this operation
to give upper bounds on action dimension for Artin groups, graph products and hyperplane
complements. In Section 4, we review the van Kampen obstruction, introduce our main example
of an obstructor complex and use it to give lower bounds for the action dimension of graph
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products and other simple complexes of groups. In Section 5, we again use obstructor complexes
to compute the action dimension of fundamental groups of hyperplane complements.

1. Simple complexes of groups

1.1. The basic construction

We begin by reviewing the theory of simple complexes of groups as developed in Bridson–
Haefliger [6, II.12].

Let Q be a poset. As in the introduction, a simple complex of groups GQ over Q is a collection
of groups {Gσ}σ∈Q and monomorphisms φστ : Gτ → Gσ defined whenever τ < σ. The Gσ are
the local groups. Furthermore, GQ must be a functor from Q to the category of groups and
monomorphisms in the sense that φστφτμ = φσμ whenever μ < τ < σ. Such a simple complex
of groups GQ = {Gσ, φστ} has a direct limit, denoted by limGQ.

Remark 1.1. In [6, II.12.11, p. 375] a simple complex of groups is defined to be a
contravariant functor from Q to groups rather than a covariant one (so, the order relation
on Q is reversed.) The reason for this convention in [6] is that one of the main ways simple
complexes of groups arise is when Q is the poset of cells of a cell complex |Q| on which G acts
with a strict fundamental domain (cf. Remark 1.2). When this is the case, if a is a face of a cell
c, then the group which fixes c is a subgroup of the group which fixes a, that is, if a < c, then
Gc < Ga. Our reason here for adopting the opposite convention is that in many of the examples
in which we are interested, such as Coxeter groups and Artin groups, generators of the group
correspond to vertices of some simplicial complex while the local group corresponding to a
simplex is the subgroup generated by its vertices (cf. Section 1.2).

A simple morphism ψ = (ψσ) from GQ to a group G is a function which assigns to each σ ∈ Q
a homomorphism ψσ : Gσ → G such that ψτ = ψσφστ whenever τ < σ. The simple morphism
ψ is injective on local groups if each ψσ is injective.

For each σ ∈ Q, there is a canonical homomorphism ισ : Gσ → limGQ, hence, a canonical
simple morphism ι : GQ → limGQ. The simple complex of groups GQ is developable if ι is
injective on local groups. The direct limit has the universal property that for any group H and
simple morphism ψ : GQ → H, there is a unique homomorphism ψ̂ : limGQ → H such that
ψσ = ψ̂ισ (see [6, II.12.13, p. 376]).

The order complex of a poset P is the simplicial complex whose simplices are the totally
ordered finite subsets {τ0, . . . , τk} of elements of P (where τ0 < · · · < τk). The underlying
topological space of the order complex of P is denoted by |P| and is called the geometric
realization of P. If Popp denotes the opposite poset where the order relations are reversed, then
|Popp| is isomorphic to |P|. There are two natural stratifications of |P| both indexed by P:

|P|σ := |P�σ| and |P|σ := |P�σ|. (1.1)
In the first stratification, inclusion of one stratum into another corresponds to the original
order relation on P; in the second one, the order relation is reversed. So, we should regard
{|P|σ} as being indexed by Popp. Given x ∈ |P|, let σ(x) be the index of the smallest stratum
|P|σ containing x.

Given a simple complex of groups GQ and a simple morphism ψ : GQ → G that is injective
on local groups, one can define a poset D(Q, ψ) equipped with a G-action, as well as a space
D(|Q|, ψ) also equipped with a G-action. The poset D(Q, ψ) is the disjoint union

∐
Q G/Gσ,

that is, it is the set of pairs (gGσ, σ), where σ ∈ Q and g ∈ G. (Here we are identifying ψσ(Gσ)
with Gσ.) The order relation is defined by inclusion of cosets, that is,

(gGσ, σ) < (g′Gσ′ , σ′) ⇐⇒ σ < σ′ and (g′)−1g ∈ Gσ′ .
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The space D(|Q|, ψ) is called the basic construction or the development of (|Q|, ψ). It is the
quotient of G× |Q| by the equivalence relation ∼ defined by

(g, x) ∼ (g′, x′) ⇐⇒ x = x′ and gGσ(x) = g′Gσ(x). (1.2)

One checks that D(|Q|, ψ) is the geometric realization of D(Q, ψ). Let [g, x] denote the
equivalence class of (g, x). The natural G-action on D(|Q|, ψ) is induced from the action of
G on itself by left translation; the isotropy subgroup at [g, x] is gGσ(x)g

−1, and projection
onto the second factor identifies the orbit space with |Q|. The orbit projection D(|Q|, ψ) → |Q|
has a section i : |Q| → D(|Q|, ψ) defined by i : x �→ [1, x]. Thus, i(|Q|) is a strict fundamental
domain for the G-action on D(|Q|, ψ). (To say that a closed subspace of a G-space is a strict
fundamental domain means that it intersects each orbit in exactly one point.) Note that this
implies that |Q| is a retract of D(|Q|, ψ) (the orbit projection is the retraction).

Remark 1.2. Suppose G acts on a space D with a strict fundamental domain Y so that the
stratification of Y by closures of points of the same orbit type {Y σ}σ∈Q is indexed by some
poset Qopp and so that for any point y ∈ Y σ, the isotropy subgroup Gy contains Gσ. This gives
the data for a simple complex of groups GQ over Q, where the local group Gσ is the isotropy
subgroup at a generic point of Y σ. There is a canonical simple morphism ψ = (ψσ) from GQ to
G corresponding to the inclusions Gσ ↪→ G. As before, one defines the development of Y with
respect to ψ by D(Y, ψ) = (G× Y )/ ∼, where the equivalence relation ∼ is defined as in (1.2).
Moreover, the inclusion Y ↪→ D extends to a G-equivariant homeomorphism D(Y, ψ) → D (see
[6, Proposition 12.20 (1), II.12]). In other words, D is determined by the strict fundamental
domain Y , the group G and the simple morphism from GQ to G. (In previous work of the first
author, for example, [13, § 5.1], the basic construction is denoted by U(G,Y ) rather than by
D(Y, ψ).)

Next, we recall a basic lemma, which can be found as [6, Proposition 12.20(4), II.12;
34, Theorems 6, 10, pp. 32, 39].

Lemma 1.3. Let GQ be a developable simple complex of groups over Q. Let ψ be a simple
morphism from GQ to a group G and let ψ̂ : limGQ → G be the induced homomorphism.
Suppose |Q| is simply connected. Then D(|Q|, ψ) is simply connected if and only if ψ̂ is an
isomorphism. In particular, if G = limGQ, then D(|Q|, ι) is simply connected.

In regard to the above lemma, the connected components of D(|Q|, ψ) are in bijective
correspondence with the cosets of ψ̂(limGQ) in G; so, if ψ̂ is surjective, D(|Q|, ψ) is connected.
If ψ̂ is injective, then each component is simply connected.

Remark 1.4. Although we will not define the concepts of the ‘universal cover’ or the
‘fundamental group’ for a general complex of groups, we will give definitions for simple
complexes of groups which agree with the more general definitions of [6]. Put G = limGQ
and let ι : GQ → G be the canonical simple morphism. First suppose |Q| is simply connected.
Then, since D(|Q|, ι) is simply connected (by Lemma 1.3), D(|Q|, ι) is the universal cover of GQ
and π1(GQ) = G (cf. [6, III.C.3.11(1), p. 551]). If |Q| is not connected, then each component
of |Q| gives its own simple complex of groups and can be treated separately. So, suppose |Q|
is connected, but not necessarily simply connected. Put π = π1(|Q|). The poset structure on
|Q| lifts to a poset structure P on the universal cover of |Q| (so that the universal cover of
|Q| is |P|). The group of deck transformations π acts on |P| and on P. Let p : P → Q be the
projection. We have a simple complex of groups GP defined by Gσ̃ = Gσ where σ̃ ∈ P lies above
σ. Put G̃ = limGP and let ι̃ : GP → G̃ be the canonical simple morphism. By Lemma 1.3, the
basic construction D(|P|, ι̃) is simply connected. The group π acts on GP and hence, on G̃.
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So, the semidirect product G̃ � π acts on D(|P|, ι̃) with orbit space |P|/π = |Q|. Therefore,
D(|P|, ι̃) is the universal cover of GQ and π1(GQ) = G̃ � π.

Aspherical realizations. The classifying space of a discrete group H is denoted by BH.
The universal cover of BH is denoted by EH. A simple complex of groups GQ gives the data
for a poset of spaces {BGσ, φστ}, where τ < σ ∈ Q and where φστ : BGτ → BGσ is the map
induced by the monomorphism φστ : Gτ → Gσ. Using these data we can glue together the
disjoint union of spaces

∐ |Q|σ ×BGσ using iterated mapping cylinders. For each τ < σ, |Q|σ
is a subcomplex of |Q|τ and one glues the subspace |Q|σ ×BGτ of |Q|τ ×BGτ to |Q|σ ×BGσ

via the map:

I × φστ : |Q|σ ×BGτ → |Q|σ ×BGσ,

where I denotes the identity map on |Q|σ. The resulting space BGQ is the aspherical realization
of GQ. It is well defined up to homotopy equivalence. If |Q| is connected and simply connected,
then it follows from van Kampen’s theorem that π1(BGQ) = limGQ. Note that

dimBGQ = sup{(dimBGσ + dim |Q|σ) | σ ∈ Q}. (1.3)

Proposition 1.5. Suppose GQ is a simple complex of groups over Q with |Q| simply
connected. Let G = limGQ and let D = D(|Q|, ι) be the basic construction. When GQ is
developable, BGQ is homotopy equivalent to the Borel construction EG×G D.

Proof. Projection on the second factor induces a projection p : EG×G D → D/G = |Q| so
that the inverse image of the vertex σ is homotopy equivalent to BGσ. This uses the fact
that GQ → G is injective on local groups, otherwise, p−1(σ) is homotopy equivalent to BGσ,
where Gσ means the image of Gσ in G. It follows that EG×G D is an aspherical realization
of GQ. �

The K(π, 1)-Question for GQ is the following.

The K(π, 1)-Question. Is BGQ aspherical?

Corollary 1.6. Suppose GQ is a developable simple complex of groups with |Q| simply
connected. Then the K(π, 1)-Question for GQ has a positive answer if and only if D
is contractible.

Proof. By Proposition 1.5, BGQ ∼ EG×G D. Hence, BGQ is aspherical if and only if the
universal cover of EG×G D is contractible. This universal cover is EG×D, which yields the
corollary. �

Remark 1.7. Since |Q| is a retract of D, a necessary condition for D to be contractible is
that |Q| is contractible.

In the construction of BGQ we can assume that for each σ, dimBGσ = gdimGσ. There is a
simple condition which implies that the maximum value of the quantity dimBGσ + dim |Q|σ
in (1.3) occurs when σ is a maximal element of Q, that is, when |Q|σ is a point. It is

gdimGσ > gdimGτ , whenever σ > τ. (1.4)

Since a k-simplex in |Q|τ corresponds to a chain τ = τ0 < · · · < τκ, condition (1.4) implies
gdimGτk � gdimGτ + k � gdimGτ + dim |Q|τ ; so the maximum value occurs when σ is
maximal.
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Proposition 1.8. Suppose GQ is a developable simple complex of groups and that the
K(π, 1)-Question for GQ has a positive answer. Then

gdimG � dimBGQ = sup
σ∈Q

{gdimGσ + dim |Q|σ}.

If (1.4) holds, then gdimG = supσ∈Q{gdimGσ}.

Proof. Since gdimG � dimBGQ, the first formula follows from (1.3). So, if condition (1.4)
holds, gdimG � sup{gdimGσ | σ ∈ Q}. Since EG/Gσ is a model for BGσ, gdimG � gdimGσ,
so the previous inequality must be an equality. �

1.2. Examples where Q is a poset of simplices

Given a simplicial complex L, its poset of simplices (including the empty simplex) is denoted
by S(L). Its geometric realization |S(L)| is the cone on the barycentric subdivision of L. (The
vertex corresponding to the empty simplex is the cone point.) Most of this paper concerns
simple complexes of groups over posets Q of the form S(L). Given such a simple complex
of groups GS(L), we often will write G for limGS(L) and D for the basic construction
D(|S(L)|, ι). In this subsection we introduce examples of main interest of such complexes
of groups coming from Coxeter groups, Artin groups and graph products.

Example 1.9 (Coxeter groups). Suppose (W,S) is a Coxeter system (cf. [5, 13]). This
means that W is a group, that S is a distinguished set of generators and that W has a
presentation of the form

W := 〈si ∈ S|s2
i = (sisj)mij = 1〉 .

For any subset T of S, the subgroup generated by T is denoted by WT and called the special
subgroup corresponding to T . It is a standard fact that (WT , T ) also is a Coxeter system
(cf. [5, pp. 12–13]). The subset T is spherical if WT is finite, in this case WT is a spherical
special subgroup. Let S(W,S) denote the poset of spherical subsets of S. There is a simplicial
complex L (= L(W,S)), called the nerve of (W,S). Its vertex set is S and a subset T � S
spans a simplex of L if and only if T is spherical. Thus, S(L) = S(W,S), the poset of spherical
subsets. This gives a simple complex of groups over S(L), denoted by WS(L), and called the
complex of spherical Coxeter groups (or simply the Coxeter complex). The local group Wσ at
a simplex σ ∈ S(L) is the spherical subgroup generated by the vertices of σ. The direct limit
of WS(L) is the Coxeter group W .

Example 1.10 (Artin groups). Given a Coxeter system (W,S) there is an associated Artin
group A. This group has one generator xs for each s ∈ S; its relations are the braid relations:

xsxt · · ·︸ ︷︷ ︸
mst terms

= xtxs · · ·︸ ︷︷ ︸
mst terms

,

where both sides of the equation are alternating words in xs and xt, where {s, t} ranges over
the edges of the nerve L, and where mst denotes the order of st in W . The matrix (mst) is
called the Coxeter matrix. For any T � S, let AT denote the Artin group corresponding to
the Coxeter system (WT , T ). As with Coxeter groups, AT can be identified with the special
subgroup of A generated by {xt}t∈T . (When T is a spherical subset of S, this is proved in
[21, Thèoréme 4.13(iii)] and in general in [30, Theorem 4.14].) The Artin group AT is spherical
if T is a spherical subset of S. As with Coxeter groups, let S(L) be the poset of spherical subsets
of S. The spherical special subgroups of A give a simple complex of groups AS(L) called the
Artin complex. When σ is a simplex of L and T = Vertσ, we shall often write Aσ instead of
AT . It is clear that the direct limit limAS(L) is A. Since Aσ is isomorphic to a subgroup of



1274 MICHAEL W. DAVIS, GIANG LE AND KEVIN SCHREVE

A, AS(L) is developable. Note that if L′ is any subcomplex of the full simplex on S with the
same 1-skeleton as L, then limAS(L′) = A.

By Deligne’s theorem in [21], any spherical Artin group Aσ has a classifying space BAσ

which is a finite CW complex of dimension 1 greater than dimσ. (There is a specific model
for BAσ called the Salvetti complex, see [8] or Subsection 3.2). The ‘K(π, 1)-Conjecture’ for
Artin groups is the conjecture that the K(π, 1)-Question has a positive answer for any Artin
poset AS(L). By Proposition 1.6 this is equivalent to the conjecture that D(|AS(L)|, A) is
contractible. It is the most important unsolved problem concerning general Artin groups. A
detailed discussion can be found in [7], where the conjecture is proved whenever L is a flag
complex (we generalize this in Theorem 1.20).

The discussion in Example 1.10 yields the following proposition.

Proposition 1.11. Let A be an Artin group such that the nerve L of its associated Coxeter
system is d-dimensional. If the K(π, 1)-Question for the associated Artin poset has a positive
answer, then gdimA = d + 1.

Proof. Since the aspherical realization BAS(L) is formed by gluing together the BAσ ×
|S(L)|σ with σ ∈ S(L) and since dimBAσ = dimσ + 1, we have dimBAS(L) = d + 1. Since
BAS(L) is a model for BA, gdimA � d + 1. On the other hand, for any d-simplex σ ∈ S(L),
the spherical Artin group Aσ contains a free abelian subgroup of rank d + 1 (for example,
see [15]). So, cdAL � d + 1. Hence, d + 1 � gdimAL � cdAL � d + 1; so all inequalities are
equalities. �

Definition 1.12. A simplicial complex L is a flag complex if it satisfies the following: if T
is any finite set of vertices of L which are pairwise connected by edges, then T spans a simplex
of L. A simplicial graph L1 determines a flag complex L: the simplices of L are the cliques in
L1. (This is also called the ‘clique complex’ of L1.)

Definition 1.13. Suppose L1 is a simplicial graph with vertex set V and edge set E. Let
{Gv}v∈V be a collection of groups indexed by V . The graph product of the Gv, denoted by∏

L1 Gv, is the quotient of the free product of the Gv, v ∈ V , by the normal subgroup generated
by all commutators of the form, [gv, gw], where {v, w} ∈ E, gv ∈ Gv and gw ∈ Gw.

Example 1.14 (The graph product complex). Suppose
∏

L1 Gv is a graph product and that
L is the flag complex determined by L1. There is a simple complex of groups GS(L) over S(L)
called the graph product complex. It is defined by putting Gσ equal to the direct product,∏

v∈Vertσ

Gv,

for each simplex σ ∈ L and letting φστ : Gτ → Gσ be the natural inclusion whenever τ < σ. It
is immediate that

∏
L1 Gv = limGS(L).

Remark 1.15. Another approach to the graph product complex is given in [12, 14] using the
notion of a ‘polyhedral product’. Suppose L is a simplicial complex with vertex set V and that
we are given a collection of pairs of spaces (X,Y ) = {(Xv, Yv)}v∈V together with a choice of
basepoint ∗v ∈ Yv. Let

∏
v∈V Xv denote the subspace of the Cartesian product consisting of all

V -tuples (xv)v∈V such that xv = ∗v for all but finitely many v. Given a V -tuple, x = (xv), put
σ(x) = {v ∈ V | xv ∈ Xv − Yv}. The polyhedral product (X,Y )L is the subspace of

∏
v∈V Xv

consisting of all x such that σ(x) is a simplex in L. (Usually, we only shall be concerned with
the case where each Yv equals the basepoint ∗v, in which case the notation will be simplified
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to XL.) For any τ ∈ S(L), the set of all x with σ(x) � τ , can be identified with the product,
Xτ :=

∏
v∈Vert τ Xv. Thus, XL is the union of the Xτ , with τ ∈ S(L).

Next let L1 be any simplicial graph and L′ any simplicial complex with 1-skeleton equal
to L1. Let G be the graph product

∏
L1 Gv and H =

∏
v∈V Gv be the direct product. Let ι :

GS(L1) → G and ψ : GS(L1) → H be the natural simple morphisms. Consider the polyhedral
product:

Z(L′) = (ConeG,G)L
′
,

where (ConeG,G) = {(ConeGv, Gv)}v∈V . Then Z(L′) is locally isomorphic to a product of
cones on discrete sets. Moreover, Z(L′) can be identified with the development D(|S(L′)|, ψ)
and the fundamental group of Z(L′) can be identified with the kernel of the natural
epimorphism G → H. So, the H-action on Z(L′) lifts to a G-action on the universal cover
Z̃(L′) with the same strict fundamental domain |S(L′)|. It follows from Remark 1.2 that Z̃(L′)
can be identified with D(|S(L′)|, ι). When L′ is equal to the flag complex L, Z̃(L) is identified
with the standard realization of a right-angled building (cf. [14, § 2.2]). Therefore, Z̃(L) has a
CAT(0) structure and hence, is contractible. The next result follows from these observations
and Corollary 1.6.

Proposition 1.16 (cf. [14, Theorem 2.22; 17]). Suppose G =
∏

L1 Gv is the graph product
of nontrivial groups over a simplicial graph L1, and let L be the flag complex determined by
L1. Then the K(π, 1)-Question for the graph product complex GS(L) has a positive answer.

Since BG1 ×BG2 is a model for B(G1 ×G2), it is obvious that

gdim(G1 ×G2) � gdimG1 + gdimG2.

On the other hand, using torsion-free subgroups of certain RACGs, Dranishnikov [24] showed
that there are groups G1 and G2 for which the inequality is strict (cf. [13, Example 8.5.9]).
Hence, for Gσ =

∏
v∈σ Gv, we have that gdimGσ �

∑
v∈σ gdimGv and that the inequality can

be strict.
A corollary to Proposition 1.16 is the following calculation of the geometric dimension of

any graph product of groups.

Corollary 1.17. Suppose G =
∏

L1 Gv is the graph product of nontrivial groups over a
simplicial graph L1. Let L be the flag complex determined by L1. Then gdimG = sup{gdimGσ |
σ ∈ S(L)}.

1.3. Flag complexes and the K(π, 1)-Question

We will use the following result from [34].

Proposition 1.18 [34, Proposition 3, p. 6]. Let Gi be a collection of groups with common
subgroup A and let *A Gi denote the amalgamated product. Let Hi ⊂ Gi be subgroups and
suppose the intersection B = Hi ∩A is independent of i. Then the natural homomorphism
*B Hi → *A Gi is injective.

As usual, GS(L) is a simple complex of groups. For any full subcomplex L′ of L, put GL′ =
limGS(L′) and let GL′ denote the image of GL′ in GL. For any σ ∈ S(L), let Gσ denote
the image of Gσ in GL. (If GS(L) is developable, then Gσ → Gσ is an isomorphism.) The
intersection of local groups condition for simplices σ and τ of L is the following:

Gσ ∩Gτ = Gσ∩τ . (1.5)
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Figure 1. Setup for Lemma 1.19.

Lemma 1.19. Suppose GS(L) is developable and that (1.5) holds for all σ, τ ∈ S(L). If L is a
flag complex, then for any full subcomplex L′ of L, the natural map GL′ → GL is an injection.

We first prove this in a special case where L is the cone on another flag complex. We will
use the notation St(u) for the cone and Lk(u) for the base of the cone; regarding u as the
cone vertex.

Special case: We will prove the following.

(i) The natural map GLk(u) → GSt(u) is injective.
(ii) Suppose L0, L1 are full subcomplexes of Lk(u) with L0 ⊂ L1. Then GL1 ∩GL0∗u = GL0 .

Proof of the special case. The proof is by induction on the number of vertices of St(u).
When St(u) is a simplex, (i) and (Ii) follow from (1.5). If St(u) is not a simplex, then, since
Lk(u) is a flag complex, there is a vertex v in Lk(u) which is not connected by an edge to
some other vertex of Lk(u). Denote the star of v in St(u) simply by St(v). So, St(v) is a proper
subcomplex of St(u). By induction on the number of vertices in the cone, (i) holds for St(v),
that is, GLk(v) → GSt(v) is injective, where Lk(v) := Lk(v,St(v)). By induction on the number
of vertices, the natural maps,

GLk(u)−v → GSt(u)−v, GSt(v,Lk(u)) → GSt(v) and GLk(v,Lk(u)) → GLk(v)

are injective. We have decompositions as amalgamated products:

GSt(u) = GSt(u)−v ∗GLk(v) GSt(v)

GLk(u) = GLk(u,St(u)−v) ∗GLk(v,Lk(u)) GLk(u,St(v)).

By induction on the number of vertices, we have that (ii) holds in two cases: first with L1 =
Lk(u,St(u) − v) = Lk(u) − v and L0 = Lk(v,Lk(u)) and second with L1 = St(v) and L0 =
Lk(v,Lk(u)). This yields

GLk(u,St(u)−v) ∩GLk(v,Lk(u))∗u = GLk(v,Lk(u))

GSt(v) ∩GLk(v,Lk(u))∗u = GLk(v,Lk(u)).

Applying Proposition 1.18, we see that GLk(u) → GSt(u) is injective. �

Completion of the proof of Lemma 1.19. The argument is again by induction on the number
of vertices (Figure 1). Let L′ be a full subcomplex of L. If L = L′ ∗ v, we are done by the special
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case. Otherwise, there is a vertex v such that L �= St(v) and v /∈ L′. There is an amalgamated
product decomposition:

GL = GL−v ∗GLk(v) GSt(v).

By inductive hypothesis for the proper subcomplexes L− v and St(v), we have inclusions
GLk(v) → GL−v and GLk(v) → GSt(v). Since both factors inject into the amalgamated product,
GL−v → GL is an injection. Continuing by deleting one vertex at a time, we see the same holds
for GL′ . �

Proposition 1.16 has the following generalization.

Theorem 1.20 (cf. [7, Remark, p. 619]). Suppose L is a flag complex, that GS(L) is
developable and that condition (1.5) holds for all τ , σ in S(L). Then the K(π, 1)-Question for
GS(L) has a positive answer.

Proof. The proof is by induction on the number of maximal simplices in L. The base case
is when L is a single simplex σ. Then Gσ = limGS(σ) and BGS(σ) ∼ BGσ. So, the answer to
the K(π, 1)-Question for GS(σ) is positive.

Suppose L is not a simplex. Since L is a flag complex, there are distinct vertices v1, v2 in
V = VertL so that v1 and v2 are not joined by an edge of L. Let L1, L2 and L0 be the full
subcomplexes of L spanned by V − {v1}, V − {v2} and V − {v1, v2}, respectively, and let G1,
G2 and G0 be the respective direct limits. Since GL is a direct limit, it is the amalgamated
product GL = G1 ∗G0 G2. By Lemma 1.19, the natural maps from G0 → Gi and Gi → GL are
injections for i = 1, 2. A lemma of Whitehead states that if two aspherical complexes are glued
together along an aspherical subcomplex so that the fundamental group injects into either side,
then the result of the gluing is also aspherical (for example, see [13, Theorem E.1.15]). (This
is a special case of theorem that we are proving.) By inductive hypothesis, BGS(Li) ∼ BGi

and, by its definition, BGS(L) is the union of BGS(L1) and BGS(L2) along BGS(L0). Hence,
Whitehead’s lemma shows that BGS(L) ∼ BGL. �

Remark 1.21. Theorem 1.20 shows that if GS(L) is developable and (1.5) holds and L is
a flag complex, then D(|S(L)|, GL) is contractible. Moreover, D(|S(L′)|, GL′) is contractible
for any full subcomplex L′ � L. For graph product complexes, these developments are right-
angled buildings and hence, are CAT(0). This raises the question of nonpositive curvature in the
context of Theorem 1.20. This is equivalent to the question of whether the link of each simplex
in D(|S(L)|, GL) is CAT(1), (see [6]). For bounded curvature to make sense, we should first put
a piecewise spherical structure on L. Since L is already assumed to be a flag complex we might
as well assume that each simplex in L is an all right spherical simplex so that D(|S(L)|, GL)
becomes a cube complex, see [13]. The link, Lkσ, corresponding to a nonempty simplex σ
in L is the development of the simplex of groups GS(∂σ) with respect to the natural simple
morphism ψ : GS(L) → Gσ, so the question becomes whether Lkσ = D(|S(∂σ)|, ψ) is CAT(1).
By Gromov’s lemma (cf. [13, Appendix I.6, pp. 516–517]), this is equivalent to the question of
whether it is a flag complex. Note that this is implied by the condition that the development
of the simplex of groups, D(|S(∂σ)|, G∂σ), is a flag complex. (Here G∂σ = limGS(∂σ)).

Similar considerations led Charney and the first author to conjecture in [7] that the
development of any Artin complex in Example 1.10 can be given CAT(0) structure. This
would imply the K(π, 1)-Conjecture for all Artin groups. The piecewise spherical structure on
L should be the natural one in which σ is isometric to a fundamental spherical simplex in
the round sphere on which Wσ acts as reflection group; in other words, the spherical simplex
which makes the spherical realization of the Coxeter complex for Wσ into a round sphere. In
the Artin complex, Lkσ is the Deligne complex for Aσ. So, the conjecture of [7] is that the
natural piecewise spherical metric on the Deligne complex for Aσ is CAT(1).
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1.4. Q is the poset of nonempty simplices in L

Suppose L is a full subcomplex of another simplicial complex L̄. Then every simplex σ̄ ∈ S(L̄)
can be decomposed as a join σ̄ = σ ∗ τ , where σ = σ̄ ∩ L and τ is a simplex whose vertices
lie in L̄− L. Suppose GS(L) and GS(L̄) are simple complexes of groups such that GS(L) is
the restriction of GS(L̄) to S(L). Then GS(L̄) is a trivial extension of GS(L) if Gσ̄ = Gσ,
whenever σ̄ = σ ∗ τ decomposes as a join as above.

When L is a subcomplex of L̄, we can replace L̄ by a subdivision relative to L so that L
becomes a full subcomplex of L̄. If L is a flag complex, then the subdivision L̄ can be assumed
to be flag. So, any simple complex of groups GS(L) over S(L) has a trivial extension to a
simple complex of groups over S(L̄) as above. The following lemma is clear.

Lemma 1.22. Suppose GS(L̄) is a trivial extension of GS(L). Then

(i) limGS(L̄) = limGS(L);
(ii) GS(L̄) is developable if and only if GS(L) is developable;
(iii) BGS(L̄) is homotopy equivalent to BGS(L).

For a given simplicial complex L, let So(L) denote its poset of nonempty simplices, that
is, So(L) = S(L)>∅. The geometric realization of So(L) is the barycentric subdivision of L.
Let GS(L) be a simple complex of groups over S(L) and let GSo(L) denote its restriction to
So(L). For example, So(ConeL) can be identified with S(L) and any simple complex of groups
GS(L) can be identified with a simple complex of groups over So(ConeL). Since we shall
always assume that the local group G∅ attached to the empty simplex is the trivial group, then
simple complexes of groups GSo(L) and GS(L) have the same direct limit, which we denote
by G. The next lemma is immediate.

Lemma 1.23. The complex of groups GSo(L) is developable if and only if GS(L)
is developable.

Lemma 1.24. Suppose L is connected. Then the following statements are equivalent.

(i) L is contractible.
(ii) The inclusion D(|So(L)|, G) ↪→ D(|S(L)|, G) of developments is a G-equivariant homo-

topy equivalence.
(iii) The inclusion BGSo(L) ↪→ BGS(L) of aspherical realizations is a homotopy equiva-

lence.
(iv) The K(π, 1)-Questions for GSo(L) and for GS(L) have the same answers.

Proof. By Remark 1.4, the following three conditions are equivalent.

• L is simply connected.
• D(|So(L)|, G) is simply connected.
• π1(BGSo(L)) = G.

To simplify notation, put D = D(|S(L)|, G) and Do = D(|So(L)|, G). Let C = |S(L)| − |So(L)|
be the open dual cone of the vertex in |S(L)| corresponding to ∅. The inverse image of C in
D(|S(L)|, G) consists of G copies of C. Hence,

H∗(D,Do) ∼=
⊕
G

H∗(ConeL,L), and

H∗(EGS(L), EGSo(L)) ∼=
⊕
G

H∗(ConeL,L).
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The equivalence of conditions (i)–(iii) follows. The equivalence of condition (iv) follows from
Corollary 1.6. �

We will use the above lemma in the following way. Given GS(L), first embed L as a
full subcomplex of a contractible simplicial complex Lc and then take a trivial extension of
GS(L) to GS(Lc). By Lemmas 1.22 and 1.24, there are homotopy equivalences BGS(L) ∼
BGS(Lc) ∼ BGSo(Lc), that is, BGSo(Lc) is another model for BGS(L). If dimLc = dimL,
then dim(|So(Lc)|) = dim(|S(L)|) − 1 and we will sometimes be able to use this to reduce
upper bounds on the action dimension or the geometric dimension by 1.

Definition 1.25. A d-dimensional simplicial complex L is equidimensionally, contractibly
embeddable (abbreviated EDCE) if it can be embedded in a contractible complex Lc of the
same dimension d.

Remark 1.26. For d �= 2 the condition that L be EDCE is equivalent to the following two
conditions:

Hd−1(L; Z) is free abelian and Hd(L; Z) = 0.

By the universal coefficient theorem, the above conditions are equivalent to the condition that
Hd(L; Z) = 0. Indeed, when these conditions hold, one can use standard methods to attach
cells of dimension at most d to kill all the homology of L. When d = 2, we will only end up
with an Lc which is acyclic. A conjecture of Kervaire asserts that one cannot kill a nontrivial
group by adding the same number of generators and relations. So, in the many situations where
Kervaire’s conjecture is known to hold, it is not possible to obtain a contractible complex by
adding 1- and 2-cells to an acyclic complex.

2. Gluing

Suppose we are given a collection of manifolds with boundary {Mτ}τ∈Q indexed by a poset
Q. Further suppose that whenever τ < σ, we have an embedding iτσ : Mτ ↪→ ∂Mσ with trivial
normal bundle. This means, in particular, that whenever σ is not a minimal element of the
poset, ∂Mσ must be nonempty. The poset of manifolds {Mτ}τ∈Q is n-dimensional if for each
maximal σ, dimMσ = n. Henceforth, we assume this. Let c(τ) = n− dimMτ and let Dτ be
a disk of dimension c(τ). The basic idea in this section is that we can glue together the
Mτ ×Dτ along codimension-0 submanifolds of their boundaries to obtain M , an n-manifold
with boundary. Let Gτ := π1(Mτ ). We assume each inclusion Mτ ↪→ Mσ is π1-injective, and
that GQ = {Gτ}τ∈Q is a simple complex of groups. If |Q| is simply connected, then π1(M) =
limGQ is the direct limit of the π1(Mτ ). So, if each Mτ is aspherical, M will be a model for
BGQ. In practice Q will be S(L) or So(L) for some L.

The main work in Subsection 2.1 is to describe the ‘dual disk’ Dμ, for each μ ∈ S(L) and a
decomposition of its boundary sphere into pieces Tμ(τ). For τ > μ, Mμ ×Dμ will be glued onto
Mτ ×Dτ along Mμ × Tμ(τ). The dual disk is a thickening of the dual cone, Cone(Lμ), where
Lμ means the normal link of μ ∈ L (that is, Lμ is the geometric realization of S(L)>μ). If Dμ

is a k-disk, then it should be attached to other pieces along a submanifold Tμ of codimension
0 in ∂Dμ (= Sk−1). The manifold Tμ is a thickening of Lμ in Sk−1 (Tμ is the ‘thick link’). The
thick link Tμ is further decomposed into pieces Tμ(τ) on which the piece corresponding to τ is
to be attached.

Here is a picture to keep in mind. Suppose L is a simplicial graph, so that L embeds in
S3. The dual disk D∅ is D4 and T∅ is a thickening of L in S3 to a 3-manifold with boundary.
For each vertex μ, T∅(μ) is a 3-ball neighborhood of μ and for each edge τ , T∅(τ) is a tubular
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Figure 2. A thickening of a graph in S3, and some of the associated dual disks.

neighborhood of the edge as a solid cylinder (see Figure 2). The dual disk to a vertex μ is a
2-disk. If the degree of μ is p, then Lμ consists of p points and Tμ is a thickening to p intervals
in S1. The dual cell to an edge (that is, to a maximal simplex) is a 0-disk.

The simplicial complex |S(L)| is equal to ConeL′, where L′ means the barycentric subdivision
of L. So, a k-simplex in ConeL′ is a chain {τ0, . . . , τk} of length k + 1 in S(L). We denote
the geometric realization of this simplex by [τ0, . . . , τk]. (We will always write such chains in
increasing order, that is, τ0 < · · · < τk.) A chain of length 1, {τ}, is either the cone point [∅]
or it corresponds to a vertex [τ ] of L′ (thought of as the barycenter of τ). Thus, [τ0, . . . , τk] is
the k-simplex in ConeL′ spanned by the vertices [τ0], . . . , [τk]. Given a simplex α = [τ0, . . . τk]
in ConeL′, its minimum vertex is defined by minα = τ0.

To understand the decompositions of dual disks, one first needs to understand the
stratification of |S(L)| into ‘dual cones’. In this section we shall often use the notation K
(or K∅) instead of |S(L)|. Similarly, Kσ is |S(L)|�σ and called the dual cone of σ. (Here we
are reversing the use of superscripts and subscripts from notation in (1.1).) We will use ∂Kσ

or L′
σ for |S(L)|>σ, the barycentric subdivision of the link of σ. Thus, a simplex α = [τ0, . . . τk]

of K lies in Kσ (respectively, ∂Kσ) if and only if minα � σ (respectively, minα < σ).

2.1. Thick links

Suppose L is a finite simplicial complex of dimension d. We recall a method for thickening L
to a manifold with boundary T . First, piecewise linearly embed L into a sphere Sn−1, where
n � 2d + 2. Thus, L is a full subcomplex of some PL triangulation S of Sn−1. Denote the
barycentric subdivisions of L and S by L′ and S′, respectively. Let T denote the first derived
neighborhood of L in S. In other words, T is the union of simplices in S′ which have nonempty
intersection with L′.

If ρ0 < · · · < ρk is a chain of simplices in S(S), then [ρ0, . . . , ρk] denotes the simplex in S′

spanned by their barycenters.
For each vertex ν in L, let T (ν) denote the closed star of [ν] in S′, that is,

T (ν) =
⋃

{γ ∈ S′ | ν � min γ}.
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Then T (ν) is an (n− 1)-disk. Moreover, T =
⋃
T (ν), where the union is over all vertices ν ∈ L.

If τ is a simplex of L, then let T (τ) denote the normal star of τ in S, that is,

T (τ) =
⋃

{γ ∈ S′ | τ � min γ} = [τ ] ∗ Lk(τ, S)′.

So, T (τ) is the cone on Lk(τ, S)′. Since Lk(τ, S) is a sphere of dimension n− k − 2, where
k = dim τ , we see that T (τ) is PL homeomorphic to a (n− k − 1)-disk. Moreover, if Vert τ =
{ν0, . . . , νk}, then T (τ) = T (ν0) ∩ · · · ∩ T (νk). So, T is an (n− 1)-manifold with boundary
embedded in Sn−1 = ∂Dn

Next we want to apply this construction to links in L. For each simplex μ ∈ S(L), let Lμ =
Lk(μ,L). We want to thicken Lμ in a sphere Sμ := Sc(μ)−1 of an appropriate dimension c(μ) − 1
to obtain a manifold with boundary Tμ called a thick link, embedded in a disk Dμ = Dc(μ),
called the dual disk. Similarly, whenever μ < τ , we will have Tμ(τ), the normal star of τ in
Sμ. Thus, Tμ(τ) is a thickening of ∂Kμ(τ). In particular, when μ is the empty simplex we will
have T∅ = T , D∅ = Dn and T∅(τ) = T (τ).To specify the dimensions of the dual disks suppose
we are given a function c : S(L) → N so that

for any maximal simplex σ of L, c(σ) = 0, (2.1)

if τ < σ, then c(τ) − c(σ) � 2 codim(τ, σ), (2.2)

where codim(τ, σ) means dimσ − dim τ .
Put n = c(∅). (If we are using So(L) instead of S(L), then we do not require the second

condition for τ = ∅.) Thus, the dual disk Dμ will be a thickening of the dual cone Kμ and the
thick link Tμ will be a thickening of ∂Kμ (= L′

μ).
The link L′

μ naturally is a subcomplex of L′
∅ and, in fact, whenever μ < τ , L′

τ is a subcomplex
of L′

μ. Similarly, if S′
μ means the barycentric subdivision of Sc(μ)−1, then we want to arrange

that S′
τ is a subcomplex of S′

μ. This amounts to requiring that S′
τ is PL embedded in

Lk(τ, Sc(μ)−1)′ ⊂ S′
μ. For example, if μ = ∅ and L∅ is a graph with a vertex τ , then dimL′

∅ = 1
and dimL′

τ = 0. We can thicken L′
∅ in S3 = S∅, while L′

τ should be thickened in S′
τ = S1 (see

Figure 2).
Next we want to explain how dual disks can be regarded as manifolds with corners. Recall

that an n-manifold with boundary, P , is a smooth manifold with corners if it is locally
differentiably modeled on the simplicial cone, [0,∞)n. This can be extended to a definition
for topological manifolds by requiring that the overlap maps preserve the stratification of
[0,∞)n by intersections with coordinate subspaces. The stratification of [0,∞)n by its faces
then induces a stratification of P . A codimension-1 stratum of P is called a facet.

Lemma 2.1. For each μ ∈ S(L), the dual disk Dμ is a c(μ)-manifold with corners. The facets
are {Tμ(τ)} where μ is a codimension-1 face of τ (that is, where [τ ] is a vertex of L′

μ) together

with ∂Dμ − Tμ.

The facet ∂Dμ − Tμ is called a boundary piece; the other facets are ordinary facets.

Proof. If μ is a codimension-1 face of τ , then Tμ(τ) ⊂ ∂Dμ is a disk of codimension 1 in Dμ.
In general, if μ is a codimension-k face of a simplex σ in L and {[τ0], . . . , [τk]} are the vertices
of σ in L′

μ, then Tμ(σ) = Tμ(τ0) ∩ · · · ∩ Tμ(τ0) is a disk of codimension k in Dμ. Hence, the
Tμ(τ) intersect in the same fashion as the facets of the simplicial cone [0,∞)c(μ). �

2.2. Gluing complexes of manifolds with boundary

A complex of manifolds with boundary over S(L) is a collection of manifolds with bound-
ary, {Mτ}τ∈S(L), together with embeddings iστ : Mτ ↪→ ∂Mσ defined whenever τ < σ. In
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Figure 3. Neighborhoods in the barycentric subdivision of L, the link of ∅ in S(L).

particular, we must have that ∂Mσ is nonempty whenever σ > ∅; however, the minimum
manifold M∅ can have empty boundary, and we usually assume this. In other words, the
manifolds are indexed by the vertices of Cone(L′) (the cone on the barycentric subdivision of
L), while the embeddings iστ are indexed by the edges of Cone(L′). In addition, we require that
there are certain (k − 1)-parameter families of isotopies between the iστ which are indexed by
the k-simplices of Cone(L′). We eventually will want to require that the codimension of Mτ in
Mσ is c(τ) − c(σ) where c : S(L) → N is a function as in Subsection 2.1, and that the image of
Mτ in ∂Mσ has trivial normal bundle. Before giving the precise requirements let us mention
that we also will be using the notion of a complex of manifolds over S0(L), where the empty
simplex is not needed and where Cone(L′) is replaced by L′.

We want to describe how to glue together the Mτ ×Dτ , where Dτ is the dual disk defined
in Subsection 2.1. It is easier to first describe how to glue together the Mτ ×Kτ where Kτ is
the dual cone of τ (that is, Kτ = [τ ] ∗ L′

τ is a subcomplex of the |S(L)| = [∅] ∗ L′). The gluing
is accomplished using various embeddings (Figure 3):

hα∗μ : Mμ × α ↪→ ∂Mminα × α,

where α is a simplex in L′ and μ ∈ S(L) is a proper face of minα. The embedding hα∗μ will be
used to glue Mμ × (α ∗ [μ]) onto Mminα ×Kminα. For the gluing to be well defined the hα∗μ
must satisfy certain compatibility relations which we will now describe.

First suppose α is a vertex of L′, that is, α = [τ ], where τ is a simplex of L. Then h[τ ]∗[μ] :=
iτμ × I[τ ] : Mμ × [τ ] → ∂Mτ × [τ ]. Essentially, h[τ ]∗[μ] is iτμ. Next, suppose α = [τ, σ] is an edge
in L′ so that h[τ,σ]∗[μ] : Mμ × [τ, σ] → Mτ × [τ, σ] is an isotopy. The restriction of this isotopy
to Mμ × [τ ] is h[τ ]∗[μ] : Mμ × [τ ] → Mτ × [τ ]. Its restriction to the other end when precomposed
with h[σ]∗[τ ] should equal h[σ]∗[μ], that is,

(h[σ]∗[τ ])(h[τ,σ]∗[μ]|Mμ×[σ]) = h[σ]∗[μ]. (2.3)

In other words, the composition of the two gluing maps defined on the left-hand side of (2.3)
is equal to the gluing map on the right-hand side.

Given a k-simplex α = [τ0, . . . , τk] in L′, let αi = [τ0, . . . , τ̂i, . . . , τk] denote the face opposite
[τi]. Then hα∗[μ] : Mμ × α → ∂Mτ0 × α is a k-parameter isotopy. For i �= 0, we require:

hα∗[μ]|Mμ×αi
= hαi∗[μ], (2.4)

while for i = 0,

(hα0∗[τ0])(hα∗[μ]|Mμ×α0) = hα0∗[μ] (2.5)
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Figure 4. The first stages of our gluing procedure before thickening.

There is one further condition which our isotopies should satisfy. If τ = minα and if μ and
μ′ are two faces of τ and ρ = μ ∩ μ′, then we require that

Im(hα∗[μ]) ∩ Im(hα∗[μ′]) = Im(hα∗[ρ]) (2.6)

In other words, on the complement of Im(hα∗[ρ]), the embeddings hα∗[μ] : Mμ → Mτ and
hα∗[μ′] : Mμ′ → Mτ must have disjoint images.

Next we describe how to glue together {Mτ ×Kτ}τ∈S(L) to obtain a space X together with
a projection map p : X → K (Figure 4). Start with the disjoint union

∐
Mτ ×Kτ . We will

construct X(0) ⊂ · · · ⊂ X(k) ⊂ · · · ⊂ X(d + 1) = X so that X(k) will be the inverse image of
the k-skeleton of K in X. The space X(0) is defined to be the disjoint union

∐
Mσ × [σ].

Next, given an edge [τ, σ] in [∅] ∗ L′, we glue Mτ × [τ, σ] to Mσ × [σ] via h[σ]∗[τ ] : Mτ × [σ] →
∂Mσ × [σ]. (Recall that h[σ]∗[τ ] = iστ .) After doing this gluing for each edge [τ, σ], we obtain
X(1). Note that if τ is a (d− 1)-simplex of L, then the link, L′

τ , is the disjoint union of the
vertices [σ] where τ < σ and Kτ = [τ ] ∗∐ [σ] =

⋃
[τ, σ]; hence, after building X(1) we will

have glued Mτ ×Kτ onto X(0). Next, consider a 2-simplex [μ, τ, σ]. Glue Mμ × [μ, τ, σ] onto
Mτ × [τ, σ] using h[τ,σ]∗[μ] : Mμ × [τ, σ] → ∂Mτ × [τ, σ]. By (2.3) this is compatible with the
previously defined gluing map Mμ × [σ] → ∂Mσ × [σ]. Hence, the union of the two gluing maps
gives a well-defined map Mμ × [τ, σ] → (∂Mτ × [τ, σ]) ∪ (∂Mσ × [σ]) which we can use to glue
Mμ × [μ, τ, σ] onto X(1).

Continue by induction. Suppose X(k) has been defined over the k-skeleton of K. For each
k-simplex α in L′ and μ ∈ S(L) with μ < minα, we have hα∗μ : Mμ × α → ∂Mminα × α. By
(2.4) and (2.5), this is compatible with previously defined gluing maps hβ∗[μ], where β is a face
of α. So, for α = [τ0, . . . , τk], we get a well-defined map from Mμ × α onto the image of

(∂Mτ0 × [τ0, . . . , τk]) ∪ (∂Mτ1 × [τ1, . . . , τk]) ∪ · · · ∪ (∂Mτk × [τk])

in X(k).
We can summarize the above as follows. The union of the hα∗[μ], with minα = τ , define an

embedding:

Hτμ : Mμ × ∂Kμ(τ) → ∂Mτ ×Kτ . (2.7)
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(Recall ∂Kμ(τ) = Kτ .) Formulas (2.3), (2.4) and (2.5) imply that whenever μ < τ < σ:

(Hστ |∂Mτ×∂Kτ (σ))(Hτμ|∂Kμ(σ)) = Hσμ. (2.8)

Hence, if X>μ = p−1(∂Kμ), then the union of the Hτμ fit together to give a well-defined map
Hμ : Mμ × ∂Kμ → X>μ, that specifies the gluing of Mμ × ∂Kμ onto X>μ. By (2.6) Hμ is an
embedding.

Remark 2.2. If each Mτ is aspherical, then X is a model for the aspherical realization
BGS(L).

Next we want to replace dual cones by dual disks. We suppose that

(a) M∅ is a point;
(b) for all maximal simplices σ in L, the manifolds Mσ all have the same dimension n;
(c) for each τ < σ, dimMσ − dimMτ � 2 codim(τ, σ).

The conditions in (c) are called the codimension at least 2 conditions. The dimensions of the
Mτ give us the data for a function c : S(L) → N as in Subsection 2.1, defined by

c(τ) = n− dimMτ .

As in Subsection 2.1, we can use the function c to define the thick link Tμ for each μ ∈ S(L).
Whenever μ is a codimension-1 face of τ , Tμ(τ) is a regular neighborhood of [τ ] in S′

μ. Moreover,
Tμ(τ) is homeomorphic to E ×Dτ where E is a disk of dimension equal to the codimension
of Mμ in ∂Mτ . Since the normal bundle of Mμ in ∂Mτ is trivial, Mμ × E can be embedded as
a codimension-0 submanifold of ∂Mτ and hence, the embedding Hτμ defined by (2.7) extends
to an embedding:

Jτμ : Mμ × Tμ(τ) ↪→ ∂Mτ ×Dτ . (2.9)

When codim(μ, τ) > 1, Tμ(τ) remains a thickening of ∂Kμ(τ) (as well as a thickening of Dτ ) and
the embedding Hτμ again extends to an embedding Jτμ : Mμ × Tμ(τ) → ∂Mτ ×Dτ . Moreover,
the Jτμ satisfy the analogous formulas to (2.8).

Finally, we build an n-manifold with boundary M in exactly the same fashion we constructed
the space X above, namely,

M :=

⎛⎝ ∐
τ∈S(L)

Mτ ×Dτ

⎞⎠ / ∼, (2.10)

where the equivalence relation ∼ is defined as before except that we use as gluing maps the
Jτμ rather than the Hτμ.

At this point we should explain why M is a n-manifold with boundary. Since Dμ is a
c(μ)-manifold with corners (cf. Lemma 2.1) and Mμ is a (n− c(μ))-manifold with boundary,
Mμ ×Dμ is a n-manifold with corners. Each facet is either the product of Mμ with a facet
of Dμ or it has the form ∂Mμ ×Dμ. If μ < τ is a codimension-1 face, then Mμ ×Dμ is glued
onto Mτ ×Dτ by the embedding Jτμ : Mμ × Tμ(τ) → ∂Mτ ×Dτ from a facet of Mμ ×Dμ to
a facet of Mτ ×Dτ . Similarly, if {[τ0], . . . , [τk]} is the vertex set of σ in L′

μ, then Mμ ×Dμ is
glued onto Mσ ×Dσ via a map from the stratum Mμ × Tμ(σ) to an intersection of strata in
∂Mσ → Dσ.

Let {Mτ}τ∈S(L) be a complex of manifolds with boundary over S(L). Let Gτ = π1(Mτ ).
As usual suppose the induced homomorphisms φστ = (iστ )∗ : Gτ → Gσ are injective and the
system GS(L) = {Gτ}τ∈S(L) is a simple complex of groups. Let G = limGS(L) be the direct
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limit. Also suppose

• GS(L) is developable, and
• each Mτ is homotopy equivalent to BGτ .

The next theorem follows immediately from the definition of action dimension.

Theorem 2.3. Suppose {Mτ}τ∈S(L) is a complex of manifolds with boundary over S(L)
satisfying the above conditions and let M be the manifold with boundary defined by (2.10).
Then M is a thickening of BGS(L). If the K(π, 1)-Question for GS(L) has a positive answer,
then M ∼ BG, so

actdimG � dimM.

There were a number of conditions we needed to check in order to glue together the {Mτ ×
Kτ} to get a spine X for our manifold M . For the reader’s convenience we list them here.

• For each τ < σ, there is an embedding iτσ : Mτ ↪→ ∂Mσ with trivial normal bundle.
• In order to glue together the Mτ ×Kτ there must exist certain families of isotopies hα∗μ :

Mμ × α ↪→ ∂Mminα × α, that satisfy the compatibility conditions (2.3)–(2.6). These isotopies
then glue together to define an embedding Hτμ : Mμ × ∂Kμ(τ) ↪→ ∂Mτ ×Kτ .

Also, in order to glue together the {Mτ ×Dτ} to get M we needed the following further
conditions.

• M∅ must be a point; for all maximal simplices σ, the manifolds Mσ have the same
dimension, n; whenever τ < σ, dimMσ − dimMτ � 2 codim(τ, σ).
• The Hτμ can be thickened to embeddings Jτμ : Mμ × Tμ(τ) ↪→ ∂Mτ ×Dτ , that can be

used to glue together the {Mτ ×Dτ} to get M as in (2.10).

2.3. Complexes of manifolds with boundary over So(L)

We turn to the case where the manifolds Mv associated to the vertices v of L are allowed
to have empty boundary. When this happens our algorithm does not tell us how to glue on
the final disk M∅ ×D∅. (If ∂Mv = ∅, there is no place to embed M∅ × T∅.) One can still try
to accomplish the gluings without the final disk. For each higher-dimensional simplex τ , we
still require ∂Mτ to be nonempty. By excluding the empty simplex, we consider a complex
of manifolds with boundary over So(L) where the embeddings iστ and gluing maps Hτμ, Jτμ
satisfy the same conditions as in the previous subsection. We can glue the pieces together as
before; however, the resulting manifold will usually not be a model for BG.

So, let us consider a complex of manifolds with boundary {Mo
τ }τ∈So(L), where ∂Mo

v is allowed
to be empty for v ∈ VertL, but ∂Mo

τ �= ∅ if dim τ > 0. The other conditions in the previous
section are satisfied mutatis mutandis. The complex is n-dimensional if dimMo

σ = n for each
maximal simplex σ. As in (2.10), we can glue together the {Mo

τ ×Dτ}τ∈So(L) to obtain an
n-manifold with boundary Mo. As before, Mo will a model for BGSo(L); however, as explained
in Subsection 1.4, BGSo(L) will not be homotopy equivalent to BG unless L is contractible (see
Lemma 1.24). When L is EDCE (see Definition 1.25), we can use the methods of Subsection 1.4
to conclude that actdimG � n.

Given the n-dimensional system {Mo
τ }τ∈So(L) over So(L), there is an easy way to extend it

to an (n + 1)-dimensional system over S(L): simply take the product of each manifold Mo
τ with

the unit interval. In other words, put Mτ = Mo
τ × [0, 1]. So, the vertex manifold Mo

v is replaced
by the manifold with boundary Mv = Mo

v × [0, 1]. Let M∅ be a point and iτ∅ : M∅ → ∂Mτ an
appropriate embedding.
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Since π1(Mo
τ ) = π1(Mτ ), the systems of fundamental groups {π1(Mτ )} and {π1(Mo

τ )}
define the same simple complex of groups GS(L) over S(L) given by Gτ = π1(Mτ ). Let
G = limGS(L). Let Mo and M denote, respectively, the results of gluing together the systems
{Mo

τ }τ∈So(L) and {Mτ}τ∈S(L). We assume each Mτ is connected, so that π1(M) = G. If L
is simply connected, then π1(Mo) is also equal to G. (In general, π1(Mo) is the semidirect
product described in Remark 1.4.)

From Lemma 1.24 we get the following.

Lemma 2.4. The inclusion Mo ↪→ M is a homotopy equivalence if and only if L
is contractible.

Suppose L is a full subcomplex of another simplicial complex L̄. In Subsection 1.4 we
defined the notion of a trivial extension of a simple complex of groups over S(L) to one
over S(L̄). Similarly, we can define the notion of a trivial extension of a complex of manifolds
with boundary over S(L). Let {Mτ}τ∈S(L) be such a system. For simplicity, suppose that the
dimension of Mτ depends only on the dimension of the simplex τ , that is, dimMτ = n(k) for
each k-simplex τ . Recall any simplex σ̄ can be decomposed as a join σ̄ = σ ∗ τ , where σ ∈ S(L)
and where vertices of τ lie in L̄− L. A complex of manifolds with boundary {Nσ̄}σ̄∈S(L̄) is
called a trivial extension of {Mσ}σ∈S(L) if Nσ̄ = Mσ ×Dn(k), whenever σ̄ = σ ∗ τ is as above
and Dn(k) (= Nτ ) is the disk. A trivial extension of a complex over So(L) is defined similarly.

The next lemma follows immediately from Lemma 1.22.

Lemma 2.5. Suppose {Mσ}σ∈S(L) is a complex of manifolds and {Nσ̄}σ̄∈S(L̄) is a trivial

extension of it over L̄. Let M and N be the result of gluing these systems together. Then M
is homotopy equivalent to N .

Proposition 2.6. Suppose L is a full subcomplex of a contractible complex Lc of the
same dimension as L. Let {Mo

τ }τ∈So(L) be an n-dimensional complex of manifolds with
boundary over So(L) and {No

τ }τ∈So(Lc) a trivial extension of it to Lc. Let No be the result
of gluing together {No

τ } and let M and N be the result of gluing the corresponding (n + 1)-
dimensional complexes over S(L) and S(Lc), respectively. Then M is homotopy equivalent
to No.

Proof. By Lemma 2.5, M is homotopy equivalent to N and by Lemma 2.4, N is homotopy
equivalent to No. �

For the next theorem we suppose that {Mo
σ} is a n-dimensional complex of manifolds with

boundary over So(L) where the vertex manifolds Mo
v are allowed to have empty boundary.

Further suppose that the conditions for Theorem 2.3 are satisfied, that is, each Mo
σ is aspherical,

the associated simple complex of groups GS(L) is developable and BGS(L) ∼ BG for G =
limGS(L) (so that the K(π, 1)-Question has a positive answer).

Theorem 2.7. Let {Mo
σ}σ∈So(L) be an n-dimensional complex of aspherical manifolds with

boundary. Then, with hypotheses as above:

(i) actdimG � n + 1;
(ii) if L is EDCE, then actdimG � n.

Proof. Statement (i) follows from Theorem 2.3 applied to the system {Mσ}, where Mσ =
Mo

σ × [0, 1]. When L is EDCE, L embeds in a contractible complex Lc of the same dimension; so,
by Proposition 2.6, M is homotopy equivalent to the n-manifold No. Hence, actdimG � n. �
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Remark 2.8. Most of the constructions in Subsections 2.2 and 2.3 work if one replaces
the poset of simplices S(L) by an arbitrary poset Q. Specifically, suppose Q is a poset with a
minimum element m and that Qo = Q− {m}. As before, one can define the notion of a posets
of manifolds with boundary over Q and Qo, respectively, and prove versions of Theorems 2.3
and 2.7.

3. Examples

3.1. Simple complexes of closed aspherical manifolds

We begin by discussing graph products. Notation is continued from Definition 1.13 and
Example 1.14: L1 is a simplicial graph with vertex set V , L is the associated flag complex,
{Gv}v∈V is a collection of groups of type F , G =

∏
L1 Gv denotes their graph product and,

for each σ ∈ S(L), Gσ =
∏

v∈Vertσ Gv is the direct product. As in Example 1.14, this defines
a simple complex of groups, GS(L) = {Gσ}σ∈S(L). By Proposition 1.16, the K(π, 1)-Question
has a positive answer for GS(L). For each v ∈ V , let Mv be a model for BGv by a manifold of
minimum dimension mv = actdimGv. Put Mσ =

∏
v∈Vertσ Mv.

Suppose each Mv has nonempty boundary and has dimension at least 2. Let mσ = dimMσ =∑
v∈Vertσ dimMv and put

n = sup{mσ | σ ∈ S(L)} (3.1)

By taking products with disks of suitable dimensions, we can assume that for each maximal
simplex σ of L, dimMσ = n. It is straightforward to give {Mσ}σ∈S(L) the structure of an n-
dimensional complex of manifolds with boundary satisfying the conditions in Subsection 2.2.
Here are the details. Choose basepoints xv ∈ ∂Mv. Whenever μ is a face of a simplex τ ∈ S(L),
put V (τμ) = Vert τ − Vertμ and xτμ = (xv)v∈V (τμ) be a basepoint in

∏
v∈V (τμ) ∂Mv. This

gives an inclusion

iτμ : Mμ ↪→ Mμ × xτμ ⊂ ∂Mτ

with trivial normal bundle. For a k-simplex α = [τ0, τ1, . . . , τk] ∈ L′, define

h[α∗τ0] : Mμ × α → ∂Mτ0 × α

by h[α∗τ0](z, x) = (iτμ(z), x). The h[α∗τ0](z, x) obviously satisfy the conditions in Subsection 2.2;
so, {M ′

σ}σ∈S(L) is a complex of manifolds with boundary. Using Theorem 2.3, we get an
n-dimensional manifold M which is a model for BG. This gives the following.

Proposition 3.1 (cf. Theorem 2.3, Proposition 1.16 and Corollary 1.17). Suppose each
Gv is the fundamental group of an aspherical manifold Mv with nonempty boundary. Let
G =

∏
L1 Gv be the graph product. Then

actdimG � sup{mσ | σ ∈ S(L)},
where mσ = dimMσ.

We turn to the case where each Mv is a closed aspherical manifold not equal to a point.
(For example, when G is a RAAG each Mv is a circle.) As before, we can convert this case
into the first case by the simple expedient of taking the product of each Mv with [0,1]. Then
M ′

v = Mv × [0, 1] is a manifold with boundary with dimM ′
v = mv + 1. Proposition 3.1 then

has the following corollary.
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Corollary 3.2. Suppose each Gv is the fundamental group of a closed aspherical manifold
Mv. Let G =

∏
L1 Gv be the graph product. Then

actdimG � sup{m′
σ | σ ∈ S(L)},

where M ′
σ = Mσ × [0, 1]Vert σ and m′

σ = dimM ′
σ = dimMσ + dimσ + 1.

The argument in Proposition 3.1 and Corollary 3.2 is easily modified to give a sharp upper
bound for actdimG in the case when some Mv have empty boundary and some do not.

When each Mv is closed and of the same dimension m, then Corollary 3.2 has the following
corollary.

Corollary 3.3. Suppose each Gv is the fundamental group of a closed aspherical
m-manifold Mv, that the flag complex L has dimension d and that G =

∏
L1 Gv is the graph

product. Then

actdimG � (m + 1)(d + 1)

Proof. If σ is a d-simplex, then dimM ′
σ = (m + 1)(d + 1). �

The arguments above for the graph product complex of fundamental groups of closed
aspherical m-manifolds can be generalized to a simple complex of fundamental groups of closed
aspherical manifolds as defined below.

Definition 3.4. A simple complex of closed manifolds over S(L) is a collection of connected,
closed manifolds {Mσ}σ∈S(L) and for each τ < σ a π1-injective embedding iστ : Mτ ↪→ Mσ as
a submanifold. There are a few more requirements:

• M∅ is a point;
• if Gσ = π1(Mσ) and φστ : Gτ → Gσ is the homomorphism defined by iστ , then the system

{Gσ, φστ} is a simple complex of groups GS(L);
• if τ1, . . . , τk are faces of σ, then the Mτi intersect transversely in Mσ;
• if τ is a face of σ, then Mτ has trivial normal bundle in Mσ.

For Gσ = π1(Mσ), let GS(L) = {Gσ}σ∈S(L) be the associated simple complex of groups. If each
Mσ is a model for BGσ, then {Mσ}σ∈S(L) is a simple complex of closed aspherical manifolds.

Definition 3.5. The system {Mσ, iστ} satisfies codimension-m conditions if Mτ has
codimension m in Mσ whenever τ is a codimension-1 face of σ. (This implies that for any
face τ of σ, codim(Mτ ,Mσ) = m codim(τ, σ).)

Note that since dimM∅ = 0, the codimension-m conditions imply that dimMσ =
m(dimσ + 1).

For the graph product complex, if each vertex manifold Mv is a closed aspherical m-manifold,
then {Mσ}σ∈S(L) is a simple complex of closed aspherical manifolds satisfying the codimension-
m conditions.

In the more general case of a complex of closed manifolds, follow the same procedure as for
graph products and replace each manifold Mσ by the manifold with boundary M ′

σ = Mσ ×
[0, 1]Vert σ. Then {M ′

σ}σ∈S(L) is a complex of manifolds with boundary as in Subsection 2.2.
Theorem 2.3 allows us glue together the {M ′

σ} to get a manifold M ′.
Suppose GS(L) is developable, that the intersection of local groups condition holds (this is

condition (1.5)) and that L is a flag complex (so that the K(π, 1)-Question for GS(L) has a
positive answer). Then we get an upper bound for the action dimension as follows.
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Theorem 3.6. Suppose that {Mσ}σ∈S(L) is a simple complex of closed aspherical manifolds
over S(L) satisfying the codimension-m conditions. Let G = limGS(L) be the direct limit
of the π1(Mσ). Also suppose as above that L is a d-dimensional flag complex and that the
K(π, 1)-Question has a positive answer for GS(L). Then

actdim(G) � (m + 1)(d + 1).

In Section 4, we will prove that if Hd(L : Z2) �= 0, then actdim(G) = (m + 1)(d + 1).

Intersecting submanifolds. One way to get examples of simple complexes of closed manifolds
is to start with an ambient manifold M together with a collection of connected, smooth
submanifolds (for example, hypersurfaces), {M(i)}i∈I , so that the M(i) intersect transversely
and so that for each subset J of I, the intersection M(J) =

⋂
i∈J M(i) is nonempty. In order

to make the indexing compatible with previous notation we must replace subsets of I by their
complements. So, we will write v(i) for I − {i} and V for {v(i)}i∈I , the set of complements
of singletons. A subset J ⊂ I corresponds to the complementary subset σ(J) := {v(i)}i∈I−J

of V . For example, in the case of the graph product complex, all manifolds are subspaces of
the manifold M =

∏
v∈V Mv, while M(i) =

∏
j∈I−{i} Mv(j). The case of a RAAG is a further

specialization: M is the T I , the torus on I, the T (i) are coordinate subtori of codimension 1,
the Tv(i) are coordinate circles and the Tσ are coordinate subtori.

To simplify the discussion, suppose that I = {1, . . . , p}, that dimM = mp and that each
M(i) has the same codimension m in M . Since the intersections are transverse and nonempty,
the intersection M(I) of all the M(i) is a nonempty finite set of points. Choose one, x0, as the
basepoint. For each σ = σ(J) ⊂ V , let Mσ be the component of M(J) containing x0. Thus,
dimMσ = m(dimσ + 1).

If M is locally CAT(0) and each M(i) is totally geodesic, then each Mσ is aspherical with
fundamental group Gσ := π1(Mσ). By uniqueness of geodesics, for each τ < σ the inclusion
Mτ → Mσ is π1-injective. For the same reason, the intersection of local subgroups condition
(1.5) holds. Thus, for any simplicial complex L, GS(L) is a simple complex of groups and when
L is a flag complex, the K(π, 1)-Question has a positive answer.

Example 3.7 (Complexes of hyperbolic manifolds). First we use the above technique to
construct a system of closed hyperbolic manifolds satisfying the codimension-1 conditions.
Suppose K = Q(

√
d) is a totally real quadratic extension of Q and A is the ring of algebraic

integers in K. Choose ε ∈ A so that ε > 0 and ε < 0. Define a quadratic form ϕ : Ap+1 ×
Ap+1 → A by

ϕ(ei, ej) =

{
δij , if (i, j) �= (0, 0),
−ε, if (i, j) = (0, 0),

where {ei}0�i�p is the standard basis. Let O(ϕ) ⊂ GLp+1(A) be the subgroup which preserves
the quadratic form ϕ. The signature of ϕ on Ap+1 ⊗A R ∼= Rp+1 is (p, 1); so, over R, the group
of isometries of ϕ is identified with O(p, 1) and O(ϕ) is a uniform lattice in O(p, 1). Let Γ be a
normal torsion-free subgroup of O(ϕ) (for example, for almost any prime ideal, we could take Γ
to be the corresponding congruence subgroup of O(ϕ)). Then Mp = Hp/Γ is a closed hyperbolic
manifold. The image of (

√
ε, 0, . . . , 0) in Mp is the basepoint. For 1 � i � p, let ri ∈ O(ϕ) be

the reflection which sends ei to −ei. There is an induced involution of ri on Mp. Its fixed
point set is a totally geodesic submanifold of codimension 1 and the component containing the
basepoint is the manifold M(i). If we require Γ to be a subgroup of SO(ϕ), then M(i) will be
orientable and have trivial normal bundle in M . For any flag complex L with vertex set in V
we then get a simple complex of closed hyperbolic manifolds {Mσ}σ∈S(L). This system behaves
similar to a complex of coordinate tori in T p. It is easy to modify the construction to get a
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subsystem of {Mσ} satisfying the codimension-m conditions. Let p = pm. Group the first m
commuting involutions together to get an involution s1 = r1r2 . . . rm. Continue in this fashion,
defining sj = rm(j−1)+1 · · · rmj . The fixed set of sj on M is a hyperbolic submanifold M(j) of
codimension m. If L is a flag complex with p vertices we can use the intersections of the M(j)
as above to get a system of hyperbolic manifolds satisfying codimension-m conditions.

As in the case of a RAAG, we have that
⋃
Mσ is a model for BGS(L). The union is a

piecewise hyperbolic space. Since L is a flag complex, it is all right, piecewise spherical metric
is CAT(1). Since all intersections in M were orthogonal, the relevant links of the Mσ in the union
are full subcomplexes of L. It follows that

⋃
Mσ is a CAT(−1) space. Hence, G = limGS(L)

is word hyperbolic.

3.2. Models for spherical Artin groups

Suppose L is a nerve of a Coxeter system (W,S) and let AS(L) be the associated Artin complex
as in Example 1.10. For any simplex σ of L, there is a corresponding spherical Coxeter group
Wσ and a spherical Artin group Aσ. In this subsection we construct a model for BAσ by a
manifold with boundary. The group Wσ is an orthogonal linear reflection group on Rd(σ)+1,
where d(σ) = dimσ. By complexification, Wσ acts on Cd(σ)+1. If Aσ denotes the arrangement
of reflecting hyperplanes in Cd(σ)+1, then by Deligne’s theorem in [21], the arrangement
complement M(Aσ) is a manifold model for the classifying space of the pure Artin group
PAσ (where PAσ denotes the kernel of Aσ → Wσ). Hence, M(Aσ)/Wσ is a manifold model
for BAσ. Similarly, if S(Aσ) := S2d(σ)+1 ∩M(Aσ), where S2d(σ)+1 denotes the unit sphere in
Cd(σ)+1, then S(Aσ)/Wσ is a model for BAσ by a manifold of dimension 2d(σ) + 1. Our actual
approach will be to define a certain Wσ-invariant bordification of S(Aσ) (which we will denote
by the same symbol) and then use Nσ := S(Aσ)/Wσ.

Hyperplane arrangements. A hyperplane arrangement A is a finite collection of affine
hyperplanes in Cn. The arrangement is central if

⋂
H∈A H is nonempty. Its rank, rk(A) is

the maximum codimension of any nonempty intersection of hyperplanes in A. An arrangement
is essential if its rank is n. A subspace of A is either the ambient space Cn or a nonempty
intersection of hyperplanes. The set of subspaces of A, partially ordered by reverse inclusion,
is denoted by Q(A) and is called the intersection poset. So, if F,E ∈ Q(A), then F < E ⇐⇒
F ⊃ E.

Suppose A′ and A′′ are arrangements in Cn′
and Cn′′

, respectively. Define A′ ×A′′ to be
the arrangement in Cn′ × Cn′′

consisting of all hyperplanes of the form H ′ × Cn′′
or Cn′ ×H ′′

for H ′ ∈ A, H ′′ ∈ A′′. An arrangement A is reducible if it is isomorphic to one which admits a
nontrivial product decomposition as above. Otherwise, it is irreducible. Note that the product
of two central arrangements is central.

The codimension c(E) of a subspace E in Q(A) is the complex dimension of a complementary
subspace E⊥ ⊂ Cn. Given E ∈ Q(A) its normal arrangement AE is defined by

AE := {H | H ∈ A and H � E}.
(Often we will identify AE with the essential, central arrangement in E⊥ obtained by
intersecting the hyperplanes with the orthogonal complement E⊥ of E in Cn.) There is also
an arrangement AE in E, called the restriction of A to E, defined by

AE := {H ∩ E | H ∩ E is a hyperplane in E}.

Arrangement complements and their bordifications. The arrangement complement is

M(A) := Cn −
⋃

A.

Suppose A is an essential, central arrangement in Cn with {0} the maximum element of Q(A).
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Put

S(A) := S2n−1 ∩M(A) and D(A) := D2n ∩M(A),

where S2n−1 and D2n denote the unit sphere and disk in Cn. Next we want to attach boundaries
to each of these manifolds to obtain a manifold with corners. The idea is to remove a tubular
neighborhood of each E ∈ Q(A), starting with the E of smallest dimension. There is a canonical
way to do this which we describe below.

Suppose V → E is a vector bundle over a manifold E. If s : E → V denotes the 0-section,
define the associated sphere bundle S(V ) and cylinder bundle C(V ) by

S(V ) := (V − s(E))/R+, and C(V ) := (V − s(E)) ×R+ [0,∞),

where R+ is the group of positive real numbers. So, if V → E has fiber Rm, then the fiber
of C(V ) → E is the cylinder Sm−1 × [0,∞). Note that C(V ) is a manifold with boundary
with interior V − s(E). Next, suppose that X is a manifold, that E ⊂ X is a submanifold and
that VE is the normal bundle. Let f : VE → X be a tubular neighborhood. Define X � E :=
C(V ) ∪X − E where C(V ) is glued onto X − E via the restriction of the tubular map to the
open subset VE − s(E). The manifold with boundary X � E is called the blowup of X along
E; it is formed from X − E by adding the sphere bundle S(VE) as boundary.

Next we define a bordification of M(A), called the blowup of Cn along A. Start with Cn

and then blowup the subspaces E of minimum dimension to obtain a manifold with boundary.
Each element of F ∈ Q(A)<E is also blown up to a submanifold with boundary. We continue
by blowing up subspaces of increasing dimension to obtain a manifold with corners, which
we continue to denote by M(A). (A similar procedure is described in [11, Chapter IV].)
Bordifications of S(A) and D(A) are defined in the same fashion. The boundary of M(A)
is a union of manifolds with boundary, ∂EM(A), indexed by the proper subspaces E ∈ Q(A),
where ∂EM(A) means the part of the boundary which results from blowing up E, that is,

∂EM(A) = S(AE) × Ê, (3.2)

where S(AE) is the blowup of the normal arrangement in the unit sphere of E⊥ and Ê =
M(AE) is the blowup of E along AE . (Note that the right-hand side of (3.2) is a product since
the normal bundle of E in Cn is trivial.) Thus, S(AE) is a submanifold of ∂M(A) and for each
F < E, S(AF ) ∩ E is also a submanifold of ∂F (Ê).

If the central arrangement A decomposes as A = A1 × · · · × Ak, then there is an obvious
homotopy equivalence S(A) ∼ S(A1) × · · · × S(Ak).

Reflection arrangements. Now suppose (Wσ, Sσ) is a spherical Coxeter system, where
Sσ = Vert(σ). Let AR

σ be the associated real hyperplane arrangement in Rd(σ)+1 and Aσ its
complexification. The intersection posets Q(AR

σ) and Q(A) are canonically identified. As usual,
S(σ) denotes the face poset of σ. Since σ is the dual of the fundamental simplex for Wσ on
Sd(σ)+1, each face τ � σ is dual to a face which corresponds to a subspace ER(τ) ⊆ Rd(σ)+1 or
equally well to E(τ) ⊆ Cd(σ)+1. This gives an order-preserving injection τ �→ E(τ) from S(σ)
to Q(Aσ). The subspace E(τ) is the subspace of Cd(σ)+1 fixed by Wτ ; hence, Wτ acts as a
reflection group on the normal space E(τ)⊥. By Deligne’s theorem, S(Aσ)/Wσ is a model for
BAσ by a manifold with boundary of dimension 2d(σ) + 1. Hence, actdimAσ � 2d(σ) + 1.
When (Wσ, Sσ) is reducible this estimate can be improved. So, suppose its irreducible
components are (Wi, Si) = (Wσi

, Sσi
), where 1 � i � k. Put Ai = Aσi

and ni = dimσi + 1.
Then W = W1 × · · · ×Wk and S(A1)/W1 × · · · × S(Ak)/Wk is a manifold model for BAσ.
This gives the following.
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Proposition 3.8. Suppose the decomposition of a spherical Coxeter group Wσ into
irreducibles is given by Wσ = W1 × · · · ×Wk. Then the spherical Artin group Aσ has action
dimension at most 2n− k (=

∑
2d(σi) + 1).

The Artin complex. Consider an Artin complex AS(L) for which the K(π, 1)-Question
has a positive answer. Suppose the dimension of L is d. As explained in Example 1.10, since
the Salvetti complex for A is of dimension d + 1, gdimA = d + 1. So, on general principles,
actdimA � 2d + 2. As we explained below, one can use the gluing technique of Subsection 2.2
to obtain the same estimate. To this end define a complex of aspherical manifolds with boundary
{Mσ}σ∈S(L) by putting

Mσ := M(Aσ)/Wσ. (3.3)

It is a manifold with boundary of dimension 2d(σ) + 2 and a model for BAσ. Next we need to
define embeddings iστ : Mτ ↪→ ∂Mσ, whenever τ < σ. For a fixed σ, Aσ is an arrangement in
Cd(σ)+1. If τ < σ, then E(τ) is a subspace of Aσ and its normal arrangement AE(τ) (∼= Aτ ) is an
arrangement in E(τ)⊥. Choose a basepoint x ∈ Ê(σ) and identify S(AE(τ)) with S(AE(τ)) ×
x ⊂ ∂E(τ)S(Aσ). (S(AE(τ)) is the fiber of the sphere bundle of the normal bundle of S(Ê(τ)) in
S(Aσ).) Hence, we get an embedding S(AE(τ)) ↪→ ∂S(Aσ). Since M(Aτ ) = S(AE(τ)) × [0,∞)
and M(Aσ) = S(Aσ) × [0,∞) by taking the product with the identity map on [0,∞), we get
the embedding M(Aτ ) ↪→ ∂M(Aσ). Taking quotients by Wσ and Wτ (= the stabilizer of E(τ)
in Wσ), this induces an embedding iστ : Mτ ↪→ ∂Mσ. Here a small remark is needed: if Wτ and
Wτ ′ are conjugate subgroups of Wσ, then, as defined, Mτ and Mτ ′ are the same submanifold
of ∂Mσ; however, if τ �= τ ′, we want their images to be disjoint. This is easily arranged by
picking a different point x′ ∈ Ê(τ ′) for τ ′, so that Mτ and M ′

τ will be parallel submanifolds in
∂Mσ. It is then straightforward to define the dual disk Dτ to Mτ and isotopies as in (2.9) so
that {Mτ}τ∈S(L) becomes a complex of manifolds with boundary. Applying Theorem 2.3 we
get a manifold with boundary M of dimension 2d + 2 which is a model for BA. This gives an
alternate proof for the following.

Proposition 3.9. Suppose the K(π, 1)-Question has a positive answer for AS(L). Let
A = limAS(L) and d = dimL. Then actdimA � 2d + 2.

Permutohedra. When L is EDCE and the manifolds over the vertices of L are closed, it
is necessary to use a trick with permutohedra in order to apply the method of Subsection 2.3
to get sharp upper bounds for the action dimensions. This trick is already needed in the
case of Artin groups, indeed for RAAGs. In the case of a RAAG, AL, our complex of
groups is given by the fundamental groups of a complex of tori {Mτ}τ∈S(L), where Mτ =
(S1)Vert τ . In Corollary 3.3 we produced a manifold model for AL of dimension 2d + 2 (where
d = dimL) using as a complex of manifolds with boundary M ′

τ := Mτ × IVert τ . When L is
EDCE the dimension can be decreased by 1 using the complex of manifolds with boundary,
Nτ = Mτ × P (τ) where P (τ) is a certain d(τ)-dimensional polytope called a ‘permutohedron’.
We shall see in Subsection 3.3 that the same trick works for any complex of closed aspherical
manifolds.

Definition 3.10. Suppose σ is a d-simplex. The permutohedron on σ, denoted by P (σ), is
the d-dimensional convex simple polytope obtained by truncating the proper nonempty faces
of σ. The facets of P (σ) are indexed by the elements of the interval (∅, σ) in S(σ). (A facet is
a face of codimension 1). Denote the facet corresponding to τ by ∂τP (σ). Alternatively, P (σ)
can be defined by blowing up the proper faces of σ by a procedure similar to that described in
the paragraph on bordifications in Subsection 3.2.
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Whenever τ < σ, there is a natural inclusion iστ : P (τ) → ∂τP (σ). Permutohedra arise
naturally in blowups of hyperplane complements.

Example 3.11. Suppose A denotes the coordinate hyperplane arrangement in Cd+1, defined
by zi = 0, 0 � i � d. Let Δ be the spherical d-simplex defined by Δ = [0,∞)d+1 ∩ Sd and
define p : S2d+1 → Δ by (z0, . . . , zk) �→ (|z1|2, . . . , |zk|2). As in Subsection 3.2, let S(A) denote
the blowup of the coordinate hyperplane arrangement in the unit sphere of Cd+1. The map
p induces a map p̂ : S(A) → P (Δ) which is the projection map of a trivial bundle with fiber
T d+1. Hence, the coordinate hyperplane complement S(A) is diffeomorphic as a manifold with
corners to T d+1 × P (Δ).

Example 3.12. More generally, suppose A is a central hyperplane arrangement in Cn

and that A = A0 × · · · × Ak is its decomposition into irreducible components. Since M(A) ∼=
M(A0) × · · · ×M(Ak), we see that S(A) is homotopy equivalent to S(A0) × · · · × S(Ak).
In fact, using a permutahedron we get a corresponding diffeomorphism of manifolds with
corners,

S(A)
∼=−→ [S(A0) × · · · × S(Ak)] × P (Δ), (3.4)

where P (Δ) is a permutohedron of dimension k. If Ai is an arrangement in Cn(i), then Cn =
Cn(0) × · · · × Cn(k). A vector in Cn is given by (z(0), . . . , z(k)), where z(i) ∈ Cn(i). Define
p : S2n−1 → Δ by (z(0), . . . , z(k)) �→ (|z(0)|2, . . . , |z(k)|2). There is an induced map on blowups,
p̂ : S(A) → P (Δ). Using p̂ and the various projections we get (3.4). For example, suppose Wσ is
a spherical Coxeter group and that Wσ = W0 × · · · ×Wk is its decomposition into irreducibles.
As in the paragraph above on reflection arrangements, let Ai be the reflection arrangement
corresponding to Wi and Aσ the arrangement for W . As in (3.3), put Mσ = S(Aσ)/Wσ and
Mi = S(Ai)/Wi. By (3.4) we have a diffeomorphism of manifolds with corners:

Mσ

∼=−→ [M0 × · · · ×Mk] × P (Δ).

3.3. L is EDCE

When L is EDCE (cf. Definition 1.25) we can decrease by 1 our estimates of upper bounds for
the action dimension in Propositions 3.1 and 3.9, Theorem 3.6 and Corollaries 3.2 and 3.3. In
each case we apply Theorem 2.7 of Subsection 2.3. We assume throughout this subsection that
dimL = d.

We first consider the Artin group case. When L is EDCE we can improve the upper bound
in Proposition 3.9 to get the following result, first proved in [29].

Proposition 3.13. Suppose the K(π, 1)-Question has a positive answer for AS(L). If L is
EDCE, then actdimA � 2d + 1 (= 2 gdimA− 1).

Sketch of Proof. To prove this we essentially use the same complex of manifolds with
boundary as in the paragraph on the Artin complex in Subsection 3.2, except that M(Aσ)/Wσ

is replaced by S(Aσ)/Wσ. So, we start with the complex of aspherical manifolds {Mo
σ}σ∈So(L),

where Mo
σ = S(Aσ)/Wσ. By taking products with other disks, we can arrange that for all

maximal simplices σ, each Mo
σ has dimension 2d + 1. Next embed L in a contractible simplicial

complex Lc of the same dimension d. As in Proposition 2.6, there is a trivial extension of this
to a complex of manifolds with boundary over So(Lc). Finally, apply Theorem 2.7 to get the
result. �

Essentially the same argument gives the following improvement of Theorem 3.6.
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Theorem 3.14. Suppose that {Mσ}σ∈S(L) is a simple complex of closed aspherical manifolds
over S(L) satisfying the codimension-m conditions. Let G = limGS(L) be the direct limit of
the π1(Mσ). Also suppose as before that L is a d-dimensional flag complex and that the
K(π, 1)-Question for GS(L) has a positive answer. If L is EDCE, then

actdim(G) � (m + 1)(d + 1) − 1.

Sketch of Proof. For each σ ∈ So(L), let No
σ = Mσ × P (σ), where P (σ) is a permutohedron

(cf. Definition 3.10). By taking products with other disks we can arrange that for all
maximal simplices σ the dimensions of the No

σ are equal. Then the complex of manifolds
with boundary {No

τ }τ∈So(L) is a complex of manifolds with boundary satisfying the conditions
in Subsection 2.3. The proof is finished exactly as in the proof of the previous proposition:
embed L in a contractible simplicial complex Lc of the same dimension d; there is a trivial
extension of {No

σ} to a complex of manifolds with boundary over So(Lc); then use Theorem 2.7
to complete the proof. �

For the graph product complex of fundamental groups, Theorem 3.14 has the following
corollary (cf. Corollary 3.3), which gives part (ii) of Theorem B in the introduction.

Corollary 3.15. Suppose L is a flag complex, that for each v ∈ VertL, Gv is the
fundamental group of a closed aspherical m-manifold Mv and that G =

∏
L1 Gv is the graph

product. If L is EDCE, then

actdimG � (m + 1)(d + 1) − 1.

The case of a RAAG is where m = 1. Then, it is proved in [1] that for d �= 2, the EDCE
condition, can be replaced with the weaker condition that Hd(L; Z2) = 0.

Remark 3.16. On the other hand, Corollaries 3.3 and 3.15 have advantages over the results
of [1]. For example, suppose dimL = d and that G is the graph product over L1 of free abelian
groups of rank m. Then gdimG = m(d + 1). The group G also is the RAAG associated to the
simplicial complex L̄, which is the polyhedral join over L of (m− 1)-simplices. (The notion
of a ‘polyhedral join’ is defined in Definition 4.6.) So, dim L̄ = m(d + 1) − 1. Corollary 3.3
yields, actdimG � (m + 1)(d + 1), while [1] only gives, actdimG � 2 dim L̄ + 2 = 2m(d + 1).
(When L is EDCE both estimates can be improved by 1: Corollary 3.15 gives actdimG �
(m + 1)(d + 1) − 1 while [1] gives actdimG � 2m(d + 1) − 1).

4. Obstructors

The ordered 2-point configuration space C̃(X) of a space X is the space of ordered pairs of
distinct points in X, that is,

C̃(X) = (X ×X) −D,

where D denotes the diagonal (in many situations it will be better to remove a neighborhood of
the diagonal). The 2-point configuration space C(X) is the space of unordered pairs of distinct
points:

C(X) := C̃(X)/Z2,

where Z2 acts by switching the factors. The double cover C̃(X) → C(X) is classified by a map
c : C(X) → RP∞ = BZ2. Let w1 denote the nontrivial element of H1(RP∞; Z2), so that (w1)n

is the nontrivial element of Hn(RP∞; Z2).



ACTION DIMENSIONS OF SOME SIMPLE COMPLEXES OF GROUPS 1295

Definition 4.1. The Z2-valued van Kampen obstruction for X in dimension n, vkn(X) ∈
Hn(C(X); Z2), is defined by vkn(X) = c∗(w1)n.

If vkn(X) �= 0, then we say X is an n-obstructor.

Remark. One can also define a Z-valued van Kampen obstruction by replacing w1 by the
nontrivial element of H1(RP∞; Z−) where Z− means twisted integer coefficients (cf. [1]). We
will not use this refinement in this paper.

Definition 4.2. A map f : X → Y between metric spaces is a coarse embedding if there
exist two nondecreasing functions ρ+, ρ− : R+ → R+ such that limt→∞ ρ−(t) = ∞ and

ρ−(d(x, y)) � d(f(x), f(y)) � ρ+(d(x, y)).

Given a finite simplicial complex K, let

Cone∞ K := K × [0,∞)/K × {0}
denote the cone of infinite radius on K. Equip Cone∞ K with a proper metric so that for
each pair of disjoint simplices σ and τ , the distance between σ × [t,∞) and τ × [t,∞) goes to
infinity as t → ∞.

Suppose, for simplicity, that the group G is of type F . The method of [4] consists of the
following two steps.

(1) Find a coarse embedding Cone∞ K → EG for a suitable complex K.
(2) Compute the van Kampen obstruction of K in degree n. By [4, Linking Lemma, p. 223],

this is an obstruction to coarsely embedding Cone∞ K into a contractible (n + 1)-manifold that
is uniformly contractible around the image of Cone∞ K (see [4, p. 226] for precise definitions).
In particular this obstructs proper actions of G on contractible (n + 1)-manifolds.

This program leads to the following definition in [4].

Definition 4.3. The obstructor dimension of G, denoted by obdimG, is the maximum
number n + 2 such that there exists a complex K with nonzero van Kampen obstruction in
degree n and a coarse embedding of Cone∞(K) → EG.

Remarks 4.4. (i) Since Bestvina–Kapovich–Kleiner [4] want to define obstructors for a
general group G, instead of using (1) they consider proper, expanding, Lipschitz maps from
the 0-skeleton of Cone∞ K to G. When G acts cocompactly on EG this amounts to finding a
coarse embedding Cone∞(K) → EG.

(ii) For a finite complex K, the cohomology class vkn(K) is the classical obstruction for
finding a PL embedding of K into Rn. Indeed, if K embeds in Rn, then C(K) embeds in
C(Rn) ∼ RPn−1, that is, C(K) classifies into RPn−1 and hence, vkn(K) = c∗(w1)n = 0. In
the converse direction, suppose F : K → Rn is a PL map in general position and that Σ is a
mod two n-cycle in C(K). Then the result of evaluating the cohomology class on the cycle,
〈vkn(K),Σ〉, counts the self-intersections of F which lie in Σ. (This is explained in [4, § 2.1].)
In Subsection 4.4 we will use this method of calculating self-intersections of general position
maps to prove certain van Kampen obstructions are nonzero.

(iii) If G is a word hyperbolic group or if EG is a CAT(0)-space, then EG has a Z-set
compactification EG. Put ∂G := EG− EG. If a finite simplicial complex K is a subspace of
∂G, we get a coarse embedding Cone∞ K → EG by choosing a basepoint in EG and coning
off K.
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The coarse van Kampen obstruction. A generalization of (1) is used by Yoon in [36].
He considers instead coarse embeddings f : T → EG for some contractible CW complex T
with a proper metric into EG. We are assuming BG is a finite complex and that EG
has a length metric induced from a length metric on BG. As in [4], Yoon considers the
van Kampen obstruction for embedding T in a contractible (n + 1)-manifold. The 2-point
configuration space of a contractible (n + 1)-manifold W is homotopy equivalent to RPn. If
T embeds in W , then C̃(T ) ⊂ C̃(W ) and hence, c : C(T ) → RP∞ factors through RPn. So,
if vkn+1(T ) �= 0, then T does not embed in a contractible (n + 1)-manifold. The following
lemma of [4, Lemma 8] is important, at least psychologically, to understanding the case
T = Cone∞ K.

Lemma 4.5 (The Cone Lemma of [4]). If K is an n-obstructor, then ConeK is a (n +
1)-obstructor, that is, vkn+1(ConeK) = vkn(K).

One actually needs to show the stronger result that T does not coarsely embed in
any contractible (n + 1)-manifold. For T = Cone∞ K this is proved in [4] using the Link-
ing Lemma. In the case of a more general contractible complex T , Yoon considers the
‘deleted configuration spaces’ C̃r(T ) := [(T × T ) −Nr(D)], where Nr(D) means a Z2-stable
r-neighborhood of the diagonal. One then needs to show that the van Kampen obstruction
remains nonzero on the quotients, Cr(T ) := C̃r(T )/Z2. So, we define the coarse van Kampen
obstruction to be the image of vkn+1(T ) in limr→∞ Hn+1(Cr(T ); Z2). We define the proper
obstructor dimension of G, denoted by pobdim(G), to be the maximal n + 1 such that
there is a coarse embedding of a contractible complex T into EG such that the coarse
van Kampen obstruction of T in dimension n is nonzero. Yoon shows that pobdim(G) �
actdim(G).

4.1. Configurations of subgroups and sheets

Definition 4.6. Suppose {Xv}v∈V is a collection of spaces indexed by the vertex set V
of a simplicial complex L. For σ ∈ So(L), let X(σ) denote the join *v∈Vertσ Xv. Define the
polyhedral join over L of the {Xv}v∈V by

*L Xv :=
⋃

σ∈So(L)

X(σ). (4.1)

As in Subsection 1.1, suppose that GQ = {Gσ}σ∈Q is a developable complex of groups with
|Q| simply connected, that BGQ is its aspherical realization and that G = π1(BGQ) = limGQ.
Put

G :=
⋃
σ∈Q

Gσ (4.2)

and call it a configuration of standard subgroups. Suppose each finite subset {σ1, . . . σk} has
a greatest lower bound,

⋂
σi. With the word metrics, each inclusion Gσ ↪→ G is a coarse

embedding. Furthermore, given any two subgroups H1 and H2 of G, the coarse intersection of
H1 and H2 in G is coarsely equivalent to their actual intersection H1 ∩H2 (see [32] for precise
definitions of the coarse intersection). Since

⋂
Gσi

= G⋂
σi

, this implies the inclusion of the
configuration G into G is also a coarse embedding.

Let EGQ denote the universal cover of BGQ. For each σ, choose a basepoint b′σ ∈ BGσ and
a path connecting it to the basepoint b′ ∈ BGQ (BGσ is a subcomplex of BGQ). Choose a lift
of b′ to a basepoint b ∈ EGQ. The path from b′ to b′σ lifts to a path from b to a point bσ. Let



ACTION DIMENSIONS OF SOME SIMPLE COMPLEXES OF GROUPS 1297

EGσ denote the component of the inverse image of BGσ in EGQ containing the basepoint bσ
(so, EGσ is a copy of the universal cover of BGσ). Put

EG :=
⋃
σ∈Q

EGσ (4.3)

and call it a standard configuration of sheets in EGQ. Identify the Gσ-orbit of bσ with the
group Gσ. If each Gσ is type F , then EG is quasi-isometric to the union of orbits Gb. Hence,
EG ↪→ EGQ also is a coarse embedding when each Gσ is type F .

Example 4.7 (RAAGs). As in Example 1.10, suppose AL is the RAAG associated to a
flag complex L and that AS(L) is the Artin complex. For each σ ∈ S(L), let Rσ denote the
Euclidean space with basis Vertσ, let Zσ ⊂ Rσ be the integer lattice and let T σ = Rσ/Zσ be
the torus. The local group Aσ is Zσ. The spaces BAσ and EAσ are identified with T σ and Rσ,
respectively. Let d(σ) = dimσ. The octahedron on σ, denoted by Oσ, is the (d(σ) + 1)-fold join
of S0 s, where the copies of S0 are indexed by Vertσ. So, each standard sheet Rσ is identified
with Cone∞ Oσ and the configuration of standard sheets EG is identified with Cone∞ OL,
where, as in Definition 4.6, OL denotes the polyhedral join of 0-spheres, that is,

OL := *L S0 =
⋃

σ∈So(L)

Oσ. (4.4)

Sometimes we shall consider finer configurations of subgroups. Suppose each local group Gσ

contains a simple complex of groups Q�(σ), where the poset Q�(σ) has geometric realization
homeomorphic to that of Q�σ. Moreover, the union of these posets will be the poset of simplices
in a simplicial complex Q� with the same geometric realization as Q. For each α ∈ Q�(σ), the
corresponding local group Hα is a subgroup of Gσ. Then H(σ) :=

⋃
Hα is a configuration of

subgroups in Gσ and EH(σ) :=
⋃
EHα is a configuration of sheets in EGσ. Taking the union

over all σ ∈ Q, we get a configuration of subgroups H :=
⋃H(σ) ⊂ G and a configuration of

sheets EH :=
⋃
EH(σ) ⊂ EG. The archetype is the case of a general Artin group A considered

in [15]. This is explained in the next example.

Example 4.8 (The configuration of standard free abelian subgroups in an Artin group). As
in Example 1.10, let AS(L) denote the Artin complex associated to a Coxeter system (W,S)
with nerve L. Let AL be the associated Artin group. For each σ ∈ S(L), Wσ is the corresponding
spherical Coxeter group and Dσ is its Coxeter diagram. As explained in [15], there is a
subdivision σ� of σ whose vertices correspond to the connected subdiagrams of Dσ. In other
words the vertices of σ� are the irreducible special subgroups of Wσ. Corresponding to each
vertex we have the infinite cyclic group generated by the element Δ2

σ in the pure spherical Artin
group PAσ. So, the group corresponding to a vertex s of L is the square of the corresponding
Artin generator xs. The simplices of σ� index the standard free abelian subgroups of Aσ. These
subdivisions of simplices fit together to give a subdivision L� of L. For example, the edge {s, t}
of L is subdivided into two edges exactly when 3 � mst < ∞. This leads to the configuration
of standard free abelian subgroups in AL and a configuration of standard flats in AS(L):⋃

α∈S(L�)

Zα ⊂ AL and
⋃

α∈S(L�)

Rα ⊂ EAS(L).

Moreover, the configuration of standard flats is isometric to Cone∞ OL�, where, as in (4.4),
OL�, is a polyhedral join of 0-spheres. So, when the K(π, 1)-Question for AS(L) has a positive
answer, Cone∞ OL� is coarsely embedded in EAL.
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It follows from [15] that the inclusion of standard infinite subgroups corresponding to the
vertices of L� defines a homomorphism Φ : AL� → AL from the RAAG AL� to the Artin
group AL. This leads us to the following.

Conjecture 4.9. The homomorphism Φ : AL� → AL is injective.

Conjecture 4.9 is related to a conjecture of Tits which was proved by proved by Crisp and
Paris in [10]. Let Γ denote the subgraph of L1 consisting of the edges labeled 2. Let AΓ be
the RAAG defined by Γ. There is a homomorphism AΓ → AL which sends each generator for
AΓ to the square of the corresponding generator for AL. Since the flag complex determined
by Γ is a full subcomplex of L�, the Tits conjecture amounts to the conjecture that the
homomorphism Φ in Conjecture 4.9 is injective. Conjecture 4.9 is still open even for spherical
Artin groups. For example, if A is the braid group B4, the Tits conjecture states that there is
an injective homomorphism from Z2 ∗ Z into B4, whereas our conjecture predicts an injective
homomorphism from the RAAG, ACone(C5) to B4, where C5 is a five-cycle.

There are similar configurations of abelian subgroups for affine hyperplane complements
(cf. Section 5). The configurations of free abelian and nilpotent groups in [3] as well as the
configurations of free abelian subgroups generated by Dehn twists and ‘Mess subgroups’ in the
mapping class group in [23] follow similar lines.

4.2. The complex OmL

Given a d-dimensional flag complex L, let OmL denote the polyhedral join of (m− 1)-spheres,
as in Definition 4.6, that is,

OmL := *L Sm−1 :=
⋃

σ∈So(L)

Omσ,

where Omσ denotes the (d(σ) + 1)-fold join of (m− 1)-spheres, Sv, indexed by Vertσ
(eventually each of these (m− 1)-spheres will be given a simplicial structure). Thus, Omσ is
a sphere of dimension m(d(σ) + 1) − 1. So, the dimension of OmL is m(d + 1) − 1. We denote
this dimension by δm(L) (or simply by δ):

δ = δm(L) := dimOmL = m(d + 1) − 1 (4.5)

Let OL = O1L. In [1] the van Kampen obstruction of OL was computed in many cases.

Theorem 4.10 [1]. Let L be any d-dimensional flag complex. If Hd(L; Z2) �= 0, then
vk2d(OL) �= 0. Therefore, actdimAL = 2gdimAL = 2d + 2.

The idea for the proof of this in [1] was to construct a specific 2d-cycle Ω in the 2-point
configuration space C(OL) so that vk2d(OL) evaluates nontrivially on Ω. In the following
subsections, we will generalize this to OmL.

The main result in this section is the following.

Theorem 4.11. Suppose L is a d-dimensional flag complex and that δ = dimOmL = m(d +
1) − 1. If Hd(L; Z2) �= 0, then OmL is a (δ + d)-obstructor.

The proof of Theorem 4.11 will occupy Subsection 4.5. A similar result holds for polyhedral
joins of spheres over L when the spheres are allowed be of different dimensions, and the proof
is essentially the same as the proof of Theorem 4.11. Note that δ + d = m(d + 1) − 1 + d =
(m + 1)(d + 1) − 2.
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Before proving Theorem 4.11, we note in the following proposition that the vanishing of
the van Kampen obstruction of OmL in degrees higher than δ + d follows from the gluing
constructions as in Corollaries 3.3 and 3.15.

Proposition 4.12. Suppose L is a d-dimensional flag complex and that δ = dimOmL.

(i) vkδ+d+1(OmL) = 0.
(ii) If L is EDCE, then vkδ+d(OmL) = 0.

Proof. For each v ∈ VertL, choose a closed, nonpositively curved m-manifold Mv. Put
Gv = π1(Mv) and let

∏
L Gv be the graph product of the {Gv}. As before, BGS(L)

is the polyhedral product of the Mv. Then Cone∞ OmL can be identified with the
configuration of standard sheets in EG. By Proposition 3.1, BG thickens to a man-
ifold of dimension (m + 1)(d + 1) = δ + d + 2. So, Cone∞ OmL coarsely embeds into a
contractible (δ + d + 2)-manifold and hence, vkn(OmL) = 0 for n � δ + d + 1, giving state-
ment (i). Similarly, if L is EDCE, then BG thickens to a (δ + d + 1)-manifold, so that
vkδ+d(OmL) = 0. �

Remark 4.13. One can give a different argument for Proposition 4.12(i) by showing directly
that OmL has an embedding of codimension (d + 1) in Euclidean space and hence, that
vkδ+d+1(OmL) = 0.

4.3. Sheets of contractible manifolds

As in Definitions 3.4 and 3.5, suppose {Mσ}σ∈S(L) is a simple complex of closed aspherical
manifolds over S(L) satisfying the codimension-m conditions. Let GS(L) be the associated
simple complex of groups. Put G = limGS(L). Assume the K(π, 1)-Question has a positive
answer for GS(L).

Each Mσ is a subspace of BG (= BGS(L)). Let M̃σ be the copy of its universal cover
containing a given basepoint b ∈ EG. Let EG =

⋃
M̃σ be the union of sheets. If each M̃σ is

CAT(0) and if its visual boundary, ∂∞M̃σ, is homeomorphic to the sphere Omσ, then M̃σ is
homeomorphic to Cone∞(Omσ) = Rm(d(σ)+1). Hence, EG is homeomorphic to Cone∞(OmL).
This uses the assumption that the M̃τ intersect transversely; so that for τ < σ, the visual
sphere of M̃τ is identified with the standard subsphere Omτ ⊂ Omσ. By Theorem 4.11, if
Hd(L; Z2) �= 0, then vkδ+d(OmL) �= 0 and hence, obdimG � δ + d + 2.

Our goal in this subsection is to show how to generalize this without the assumption that
M̃σ has a Z-set compactification with boundary a sphere. In particular, we do not need to
assume that M̃σ is simply connected at infinity. So, assuming Theorem 4.11 (which will be
proved in the next subsection), we here prove the following.

Theorem 4.14. Suppose that {Mσ}σ∈S(L) is a simple complex of closed aspherical manifolds
over S(L), where L is a d-dimensional flag complex. Take hypotheses and notation as above. If
Hd(L; Z2) �= 0, then the coarse van Kampen obstruction of EG in degree δ + d + 1 is nonzero.
So, pobdimG � δ + d + 2. Hence, actdimG = δ + d + 2.

This theorem applies, for example, when G is the graph product of fundamental groups of
closed aspherical manifolds.

To simplify notation write Eσ instead of M̃σ and Cσ instead of Cone(Omσ). Also, write
E for EG =

⋃
Eσ and C for

⋃
Cσ. We can identify Cσ with an open neighborhood of the

basepoint in Eσ. Thus, C is an open neighborhood of the basepoint b in E and C × C is an
open neighborhood of (b, b) in E × E. The inclusion C × C ↪→ E × E takes the diagonal to the
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diagonal so we have a Z2-equivariant inclusion C̃(C) ↪→ C̃(E) inducing an inclusion of 2-point
configuration spaces, i : C(C) ↪→ C(E).

Lemma 4.15. The inclusions C̃(C) ↪→ C̃(E) and i : C(C) ↪→ C(E) are both homotopy equiv-
alences.

We will assume that each Eσ comes with a proper Gσ-invariant metric so that the inclusions
Eτ ↪→ Eσ are isometries. Extend these metrics to a metric on E by taking the induced path
metric. This implies that if x and y are points in E such that x ∈ Eσ, y ∈ Eτ , then there is
a point z ∈ Eσ∩τ with d(x, z) + d(y, z) = d(x, y). As in [36], let Nr be an r-neighborhood of
the diagonal D in E × E. Write C̃r(E) for (E × E) −Nr and Cr(E) for its quotient by the free
Z2-action.

Lemma 4.16. The inclusions Cr(E) ↪→ C(E) induce an isomorphism on cohomology:

H∗(C(E))
∼=−→ lim

r→∞H∗(Cr(E)),

where lim means direct limit.

Lemmas 4.15 and 4.16 have similar proofs.
Note that E =

⋃
Eσ is a poset of contractible manifolds over S(L). In particular, that Eσ ∩

Eτ = Eσ∩τ . Similarly, E × E =
⋃

(σ,τ) Eσ × Eτ is a poset of contractible manifolds over S(L) ×
S(L). The diagonal D(E) intersects the terms in this decomposition as follows: (Eσ × Eτ ) ∩
D(E) = Dσ∩τ , where Dσ∩τ denotes the diagonal in Eσ∩τ × Eσ∩τ . It is a properly embedded,
contractible submanifold with trivial normal bundle in the contractible manifold Eσ∩τ × Eσ∩τ .
Thus,

C̃(E) := (E × E) −D(E) =
⋃

(σ,τ)

(Eσ × Eτ ) −Dσ∩τ .

The manifold (Eσ × Eτ ) −Dσ∩τ is homotopy equivalent to a normal sphere Sc(σ,τ)−1, where
c(σ, τ) is the codimension of Dσ∩τ in Eσ × Eτ . The normal vector space of Dσ∩τ in Eσ × Eτ

decomposes as V a + V b + V d, where V a is the normal space of Eσ∩τ in Eσ, V b is the normal
space of Eσ∩τ in Eτ and V d is the normal space of Dσ∩τ in Eσ∩τ . Thus, Sc(σ,τ)−1 has a join
decomposition as Sa−1 ∗ Sb−1 ∗ Sd−1. The involution (switching factors) maps V a and V b into
different factors and acts by the antipodal map on V d. It follows that the image of the normal
sphere to Dσ∩τ in (Eσ × Eτ ) in the 2-point configuration space C(E) is homotopy equivalent
to Sa−1 ∗ Sb−1 ∗ RP d−1, that is, to a suspension of projective space.

The previous paragraph goes through, mutatis mutandis, for the union of cones C =
⋃
Cσ,

as well as, for its ordered 2-point configuration space, C̃(C).

Proof of Lemma 4.15. Both C̃(C) and C̃(E) are posets of spaces over (S(L) × S(L))>(∅,∅).
The geometric realization of this poset is the join, L ∗ L. The relative homology groups of
(C̃(E), C̃(C)) can be computed from a spectral sequence for the poset of spaces, for example,
see [19]. Its E1-page is

E1
pq = Cp(L ∗ L;Hq((Eσ × Eτ ) −D, (Cσ × Cτ ) −D)).

(The coefficients in this spectral sequence are not locally constant). Since Cσ × Cτ −D ↪→
Eσ × Eτ −D is a homotopy equivalence, Hq(Eσ × Eτ −D,Cσ × Cτ −D) = 0 for all q. Hence,
H∗(C̃(E), C̃(C)) vanishes in all degrees. When L is connected, L ∗ L is simply connected; so, by
van Kampen’s theorem, C̃(C) and C̃(E) are simply connected. Hence, by Whitehead’s lemma,
C̃(C) ↪→ C̃(E) is a homotopy equivalence. A more careful analysis yields the same statement
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even when L is not connected. We shall not give the argument since all we need is that the
map induces an isomorphism on homology. Since C̃(C) ↪→ C̃(E) is Z2-equivariant it induces a
homotopy equivalence C(C) → C(E). �

To prove Lemma 4.16, first note that C̃r(E) also has a decomposition as a poset of contractible
manifolds:

C̃r(E) =
⋃

(σ,τ)

(Eσ × Eτ ) −Nr(Dσ∩τ ),

where Nr(Dσ∩τ ) means the r-neighborhood of Dσ∩τ in Eσ × Eτ . By coarse Alexander
duality (for example, see [36]), (Eσ × Eτ ) −Nr(Dσ∩τ ) has the same pro-homology type as
(Eσ × Eτ ) −Dσ∩τ (which is homotopy equivalent to Sc(σ,τ)−1); so, the inclusions induce an
isomorphisms:

H∗(Sc(σ,τ)−1) = H∗((Eσ × Eτ ) −Dσ∩τ ) → lim
r→∞H∗((Eσ × Eτ ) −Nr(Dσ∩τ )). (4.6)

Proof of Lemma 4.16. The cohomology spectral sequences for the poset of spaces give
spectral sequences with E1-pages:

Epq
1 = Cp(L ∗ L;Hq((Eσ × Eτ ) −Dσ∩τ ))

Epq
1 (r) = Cp(L ∗ L;Hq((Eσ × Eτ ) −Nr(Dσ∩τ ))).

By (4.6), the inclusions induce an isomorphism, Epq
1 → limEpq

1 (r) and hence, by the comparison
theorem for spectral sequences, an isomorphism,

H∗(C̃(E))
∼=−→ lim

r→∞H∗(C̃r(E)).

There is a similar isomorphism for H∗(Cr(E)). �

Proof of Theorem 4.14. By Theorem 4.11, vkδ+d(OmL) �= 0. By Lemma 4.5, this implies
vkδ+d+1(Cone(OmL)) �= 0. By Lemma 4.15, its image vkδ+d+1(E) ∈ Hδ+d+1(C(E)) also is not
zero. Finally, by Lemma 4.16, the coarse van Kampen obstruction (that is, the image of this
class in limHδ+d+1(Cr(E))) is not equal to 0. Therefore, pobdimG � δ + d + 2. Since, by
Proposition 3.1, actdimG � δ + d + 2, the last sentence of the theorem follows. �

4.4. The van Kampen obstruction and general position

For a finite simplicial complex K there is an equivalent definition of the van Kampen
obstruction in terms of a general position map of K into Euclidean space which we now
describe. First, replace C(K) by the simplicial 2-point configuration space of K:

C(K) = [(K ×K) −D]/Z2, (4.7)

where D = {(σ, τ) ∈ K ×K | σ ∩ τ �= ∅} is a simplicial thickening of the diagonal. Since the
2-point configuration space and the simplicial 2-point configuration space are homotopy
equivalent, we can denote both C(K) without risking confusion.

Definition 4.17. Let K be a k-dimensional simplicial complex, and let f : K → Rn be a
general position map. This means, in particular, that if σ and τ are two disjoint simplices of
K with dimσ + dim τ = n, then the images of σ and τ intersect in a finite number of points.
The van Kampen obstruction vkn(K) ∈ Hn(C(K); Z2) is the cohomology class of the cocycle
νκ (= νκn(K)) defined by

〈νκ, {σ, τ}〉 = |f(σ) ∩ f(τ)| mod 2,
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where {σ, τ} means an unordered pair of disjoint simplices in K (we are using |X| to denote
the cardinality of a finite set X).

Generalizing [31, Appendix D], we give the following description of a cocycle representing
vkn(K). Given any total ordering of the vertices of K, there is a general position map f
from K to Rn defined by sending the ith vertex in K to λ(i), where λ(t) = (t, t2, . . . , tn) ∈ Rn

is the moment curve, and extending linearly. Suppose σ, τ ∈ K with dimσ + dim τ = n. The
convex hull of the union of vertices of f(σ) and f(τ) is the cyclic polytope C(n + 2, n). If σ
and τ intersect, then neither of them can be contained in faces of C(n + 2, n). The faces of
C(n + 2, n) are completely determined by Gale’s evenness condition, which in this case says
that a set T of n vertices of C(n + 2, 2) spans a face if and only if the two missing elements in
Vert(C(n + 2, n)) − T are separated by an even number of elements of T .

Two simplices σ and τ with dim(σ) + dim(τ) = n are said to be meshed if the order on their
vertices is either

v0 < w0 < v1 < w1 < · · · < vn/2 < wn/2 or

v0 < w0 < v1 < w1 < · · · < w(n−1)/2 < v(n+1)/2.

Lemma 4.18. Two simplices σ and τ with dim(σ) + dim(τ) = n intersect under the map f
if and only if they are meshed.

Proof. If σ and τ are not meshed, there are two vertices vi and vi+1 of σ with no vertex of
τ between them. In C(n + 2, n) the union of the vertices of f(τ) and all other vertices of f(σ)
except vi and vi+1 spans a face by the evenness condition. Therefore, f(τ) is contained in a
face of the cyclic polytope and so cannot intersect f(σ).

If σ and τ are meshed, then the evenness condition implies that f(σ) and f(τ) are not proper
faces of C(n + 2, n).

Suppose that f(σ) and f(τ) do not intersect. Let H be a hyperplane separating f(σ) and
f(τ), so that H partitions the vertices of C(n + 2, n) into Vert f(σ) and Vert f(τ). If f(σ) (or
f(τ)) is in the interior of C(n + 2, n), then another vertex of C(n + 2, n) is on the same side
of H; hence, f(σ) ⊂ ∂C(n + 2, n), a contradiction. �

Note that if the difference between the dimensions of σ and τ is greater than one, then f(σ)
and f(τ) are disjoint.

4.5. Proof of Theorem 4.11

We recall the construction in [1]. Suppose that L is a d-dimensional complex with Hd(L; Z2) �=
0, and suppose C is a d-cycle in L with coefficients in Z2. Identify C with its support. Choose
a d-simplex Δ ∈ C with vertices v0, . . . , vd. Let v±i denote the two vertices in OC lying above
vi. Let DC(Δ) be the full subcomplex of OL containing C− and the vertices v+

0 , . . . , v+
d of

Δ+. We say DC(Δ) is C doubled over the simplex Δ. Suppose α, β are disjoint d-simplices in
DC(Δ). Define a chain Ω ∈ C2d(C(DC(Δ)); Z2) by declaring the 2d-cell {α, β} of C(DC(Δ)) to
be in Ω if and only if

• α ∩ β = ∅, and
• Vert Δ ⊂ p(Vertα) ∪ p(Vertβ). (Here p : VertOL → VertL is the natural projection.)

It is proved in [1] that Ω is a cycle and that νκ2d(DC(Δ)) evaluates nontrivially on Ω.
Next, we define a subcomplex DC

m(Δ) of OmL. We assume that each sphere in OmL is
triangulated as the boundary of an m-simplex. Let DC

m(Δ) be the full subcomplex of OmL
containing Vert(C) × {1} ⋃

Vert(Δ) × {2, 3, . . .m}. So, DC
m(Δ) is constructed by replacing
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each vertex v ∈ Δ with the boundary of a m-simplex. As before, let δ = δm(L) denote the
dimension of OmL.

Surprisingly, the above definition of Ω works in the case of OmL. Define a chain Ωm in
Cd+δ(C(DC

m(Δ)); Z2) to be the union of all cells {σ, τ} such that

• σ ∩ τ = ∅;
• Vert Δ ⊂ p(Vertσ) ∪ p(Vert τ).

It will be shown in Theorem 4.22 that Ωm is a cycle. We first need a few lemmas which
restrict the possible (d + δ)-cells in C(DC

m(Δ)).

Definition 4.19. For any w ∈ Vert Δ and σ, τ ∈ OmL, let Mστ
w be the collection of missing

vertices in p−1(w), that is, Mστ
w is the set of vertices in p−1(w) that are not contained in σ ∪ τ .

Note that if p(σ) misses a vertex w in Vert Δ, then |Mστ
w | � 1 for any τ , since the preimage

p−1(w) does not span a simplex in Om(L).

Lemma 4.20. If {σ, τ} ∈ Ωm, then for any w ∈ VertΔ, |Mστ
w | � 1.

Proof. The cardinality of Vert(σ ∪ τ) is the same as that of Vert p−1(Δ). Assume Vert(p(σ) ∪
p(τ)) includes l vertices not contained in Δ, so that Vert(σ ∪ τ) contains d + δ − l vertices in
p−1(Δ). If Vertσ contains a vertex outside Δ, then p(σ) misses a vertex w of Δ, which implies
that |Mστ

w | � 1. Furthermore, if v and v′ are distinct vertices in L− Δ which are contained in
Vertσ ∪ τ , then there are distinct vertices w and w′ so that |Mστ

w | and |Mστ
w′ | are both at least

1. Otherwise, σ and τ would both miss a vertex w ∈ Δ and {σ, τ} would not be contained in
Ωm. Similarly, if there are l vertices which are not contained in Δ, then there are l vertices
w1, . . . , wl of Δ with |Mστ

wi
| � 1. Therefore, if |Mστ

w | > 1 for any w, the number of total missing
vertices in p−1(Δ) is greater than l, a contradiction. �

Lemma 4.21. If {σ, τ} ∈ Ωm then p(σ) and p(τ) are in L(d).

Proof. Assume Vert(p(σ) ∪ p(τ)) includes l vertices not contained in Δ, so that p(σ) ∪ p(τ)
contains d + l + 1 vertices. The proof of Lemma 4.20 implies there are l vertices w1, . . . , wl of Δ
such that |Mστ

wi
| = 1. For the other d + 1 − l vertices of Vert Δ, |Mστ

w | = 0. Neither Vertσ nor
Vert τ can contain Vert p−1(w), so each such w is contained in p(σ) and p(τ). Thus, p(σ) ∩ p(τ)
contains at least d + 1 − l vertices. Since |Vert p(σ)| and |Vert p(τ)| is bounded above by d + 1,
the equality

|Vert p(σ) ∪ Vert p(τ)| = |Vert(p(σ) ∪ p(τ))| + |Vert(p(σ) ∩ p(τ))|
implies that |Vert p(σ)| and |Vert p(τ)| both equal d + 1. �

The next two theorems are our computation of the van Kampen obstruction of OmL.

Theorem 4.22. Let L be a d-dimensional flag complex with Hd(L; Z2) �= 0. Let C be a
d-dimensional cycle contained in L, and Δ ⊂ C a d-simplex. Then Ωm ∈ Cd+δ(C(DC

m(Δ)); Z2)
is a (d + δ)-cycle.

Proof. We assume that m > 1, since the m = 1 case was proved in [1] (this slightly
simplifies the argument). Let {σ, α} be a (d + δ − 1)-cell in C(DC

m(Δ)). We claim the sum
of the cardinality of the sets

V1 := {v ∈ VertDC
m(Δ)|{σ ∗ v, α} ∈ Ωm}

V2 := {v ∈ VertDC
m(Δ)|{σ, α ∗ v} ∈ Ωm}

is even. Note that some vertices of DC
m(Δ) may be contained in both V1 and V2.
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First, suppose p(σ) and p(α) are in C(d). In this case, if v ∈ Vi, then p(v) ∈ Δ. By
Lemma 4.21, we can assume |Mσα

w | = 0, 1 or 2 for all w ∈ Δ; otherwise, V1 and V2 would
be empty.

If Vertσ ∩ Vert p−1(w) �= ∅ and Vertα ∩ Vert p−1(w) �= ∅, then each vertex of Mσα
w is in

V1 and V2, hence w contributes an even number to the sum of |V1| and|V2|. If Vertσ ∩
Vert p−1(w) = ∅ and Vertα ∩ Vert p−1(w) = ∅, then V1 and V2 are empty.

Next, suppose that Vertσ ∩ Vert p−1(w) �= ∅ and Vertα ∩ Vert p−1(w) = ∅, so that Mσα
w

makes no contribution to V2. If |Mσα
w | = 1, then the missing vertex is not in V1 since p−1(w)

does not span a simplex in OmL. If |Mσα
w | = 2, then each vertex in Mσα

w is contained in
V1, so again Mσα

w contributes an even number to |V1|. The same argument works if Vertσ ∩
Vert p−1(w) = ∅ and Vertα ∩ Vert p−1(w) �= ∅.

Now, assume p(σ) is a d-simplex of L and p(α) is a (d− 1)-simplex of L. In this case, V1 is
empty by Lemma 4.21. Again, we consider the sets Mσα

w for w ∈ VertΔ.
Note that |Mσα

w | = 2 for at most one w ∈ Vert Δ by Lemma 4.20, and if |Mσα
w | = 2 for

some w ∈ Δ, then V2 is contained in p−1(w). In this case, there are 0 or 2 vertices in V2,
depending on whether w is in the link of α. Suppose |Mσα

w | �= 2 for all w ∈ Δ. Since C is a
cycle and p(α) is (d− 1)-dimensional, the link LkC(p(α)) is an even number of vertices. For
each w ∈ LkC(p(α)) ∩ Δ, by assumption there is precisely one vertex in V2 which is in Mασ

w

(if there were zero vertices, then σ would contain all of p−1(w)).
Now, we claim that all the vertices in LkC(p(α)) − Δ are in V2. Such a vertex v is not in V2

if and only if it is contained in σ. Since p(σ) ∪ p(α) contains Δ, if v were in σ this would imply
that Δ ∪ v is a simplex in L, which contradicts L being d-dimensional and flag. Therefore, each
vertex in LkC(p(α)) − Δ is in V2, and since |Mασ

w | = 1 for all w ∈ LkC(p(α)) ∩ Δ, the total
cardinality of the set V2 is even (and equal to the cardinality of LkC(p(α))). �

Theorem 4.23. Let C be the support of a cycle in Hd(L; Z2), let DC
m(Δ) be C doubled

over a d-simplex Δ ⊂ C and let Ωm ∈ Zd+δ(C(OmL); Z2) be as above. Then νκd+δ evaluates
nontrivially on Ωm.

Proof. Order the vertices of Δ so that v0 < · · · < vd+1 and then order the other vertices of
L so that each vertex of Δ is < each vertex of L− Δ. Extend this to an ordering on the vertex
set of OmL, by

v1
0 < v2

0 < · · · < vm0 < v1
1 < v2

1 < · · · < vm1 < · · · < v1
d+1 < · · · < vmd+1.

We have the following decomposition of the obstruction cocycle νκd+δ evaluated on Ωm:∑
{σ,τ}∈Ωm

νκd+δ({σ, τ}) =
∑

{a,b}∈M
Vert Δ⊂a∪b

∑
{σ,τ}∈Ωm

p(σ)=a
p(τ)=b

νκd+δ({σ, τ}).

If a = b = Δ, then there is exactly one meshed pair because the union of vertices of σ and τ is
precisely the set of vertices of OmΔ, and for each m-simplex in Dm(Δ) there is a unique pair
of meshed faces. Now, suppose a �= Δ. Let b such that Vert Δ ⊂ a ∪ b, and let σ ∈ p−1(a). If
p(τ) = b, then {σ, τ} ∈ Ωm if and only if σ ∩ τ = ∅. For all w ∈ Δ − p(σ), if τ contains more
than two vertices of p−1(w), then σ and τ do not mesh by our choice of ordering. On the other
hand, the vertices of σ ∪ τ can omit at most 1 vertex of p−1(w) by Lemma 4.20; hence, no
meshing can occur. Therefore, the only contribution comes from the unique meshed pair with
a = b = Δ, and hence, νκd+δ evaluates nontrivially on Ωm. �

Putting this all together, we get the following.



ACTION DIMENSIONS OF SOME SIMPLE COMPLEXES OF GROUPS 1305

Figure 5. D2(Δ) when L is a 1-cycle and each sphere is one-dimensional.

Theorem 4.24. Let L be a d-dimensional flag complex and let OmL be a polyhedral join
over L of (m− 1)-spheres. Let δ = dimOmL. If Hd(L; Z2) �= 0, then vkd+δ(OmL) �= 0.

Theorems 4.24 and 3.6 have the following corollary.

Corollary 4.25. Suppose L is a d-dimensional flag complex, and G =
∏

L1 Gv is a graph
product over L, where each Gv is the fundamental group of a closed aspherical m-manifold. If
Hd(L; Z2) �= 0, then

obdimG = actdimG = (m + 1)(d + 1) = gdimG + (d + 1).

Combining this corollary with Theorem 3.14 gives Theorem B in the introduction.

Remark. It may be confusing why we chose to replace each vertex in OmL with the
boundary of an m-simplex. In fact, at first it seemed more natural to us to replace each vertex
with an (m− 1)-octahedron, as this would give OmL a simple flag triangulation. However, we
could not find a way to extend the definition of [1] to this case. We will illustrate this with a
simple example (see Figure 5).

Suppose L is a 1-cycle, and replace two of the vertices with cellulated S1’s. We need to
construct a 4-cycle β ∈ C4(C(Dm(Δ)); Z2). For this to be the case, then for any 3-cell σ in
C(D2(Δ)), the collection of 1-cells {τ |{σ, τ} ∈ β} must form a 1-cycle. If we triangulate the
S1’s as the boundary of a 2-simplex, then for each such σ there is a natural 1-cycle containing
all the vertices not contained in σ. On the other hand, if we replace each vertex with a 1-
octahedron, then we have to make a choice of 1-cycle to pair with σ. We could not find a way
to do this consistently.

Remark 4.26 (Homology below the top dimension). In Section 5, we will need a slight
generalization of the previous arguments, where we consider complexes with homology below
the top dimension.

Suppose L is a d-dimensional flag complex, and let C be the support of a cycle in Hk(L; Z2)
for k < d. If C is a full subcomplex, then the arguments in Theorems 4.22 and 4.23 generalize
to show that vkk+δ(OmL) �= 0.

If C is not full, then Ωm may not be a cycle if we choose Δ incorrectly. However, the argument
generalizes if the following ∗-condition is satisfied, see [1]:

For all σ, τ ∈ C with Δ0 ⊂ σ ∪ τ we have σ ∩ τ ⊂ Δ. (∗)
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We do not know an example of a d-dimensional complex L and a class φ ∈ Hk(L; Z2) such
that the ∗-condition fails for the support of every representative C for φ.

One instance where the ∗-condition is automatically satisfied is if the cycle is in the
top dimension.

Theorem 4.27. If L is a d-dimensional flag complex and Hd(L; Z2) �= 0, then
vkd+δ(OmL) �= 0.

5. Obstructors for hyperplane complements

In Subsection 4.1 we defined various configurations of standard subgroups for simple complexes
of groups. In this section, we will show that for any finite arrangement A of affine hyperplanes
in Cn there is a configuration of abelian subgroups in the fundamental group of the
complement π1(M(A)), indexed by the simplices in a certain simplicial complex, which is
homeomorphic to the geometric realization |Q(A)| of the intersection poset. If A satisfies certain
conditions, this simplicial complex will satisfy the ∗-condition in Remark 4.26. When these
conditions hold, the obstructor dimension method will imply that if A is irreducible, essential
and not central, then actdim(π1(M(A))) � 2n. In particular, when M(A) is aspherical,
actdim(π1(M(A))) = 2n.

5.1. Free abelian subgroups

Many of the terms which we use in this subsection were defined earlier in Subsection 3.2.
Recall that the intersection poset Q(A) is ordered by reverse inclusion. Given G ∈ Q(A), let
AG := {H ∈ A | H � G} be the induced central subarrangement of hyperplanes containing G.
We will use these central subarrangements to construct free abelian subgroups of π1(M(A)).
The same construction of these free abelian groups is given in [22].

Lemma 5.1. For any H � G ∈ Q(A), π1(M(AH)) injects into π1(M(AG)).

Proof. There is a natural inclusion j : M(AG) → M(AH). We define a map f : M(AH) →
M(AG) by first choosing a point x in H and a small ball Bx that only intersects hyperplanes
in M(AH). We can deformation retract M(AH) to Bx and then compose with the inclusion
Bx → M(AG). Clearly, j ◦ f is homotopic to the identity, and therefore f∗ : π1(M(AH)) →
π1(M(AG)) is injective. �

Lemma 5.2. For any central arrangement A, π1(M(A)) has an infinite center.

Proof. There is a projectivization map p : Cn − {0} → CPn−1 with fiber C∗. The restriction
to M(A) is a trivial bundle [33, Proposition 5.1]. Then γ = i(π1(C∗)) ⊂ M(A) is in the center
of π1(M(A)). �

Of course, if the central arrangement A is reducible, then the center of π1(M(A)) has rank
greater than one (take central elements from each factor). If A is irreducible, central and M(A)
is aspherical, it turns out that the center is infinite cyclic, generated by an element γ.

Next, suppose G ∈ Q(A) is such that AG is irreducible. By the previous lemma and the
paragraph following its proof, there is an element γG of infinite order in the center of
π1(M(AG)). Furthermore, if G1 < G2 < · · · < Gn is a chain in Q(A) with each AGi

irreducible,
then since

π1(M(AG1)) ⊂ π1(M(AG2)) ⊂ · · · ⊂ π1(M(AGn
)),
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Figure 6. A real line arrangement and an associated configuration
of abelian groups for its complexification.

we obtain a free abelian group of rank n generated by γG1 , γG2 , . . . , γGn
(its rank is n by

Theorem 5.6). On the other hand, suppose AG decomposes as a product of irreducibles:

AG
∼= AG1 × · · · × AGk

.

Then

M(AG) ∼= M(AG1) ×M(AG2) × · · · ×M(AGk
)

and we obtain further free abelian groups as products of the free abelian subgroups in the
fundamental groups of the factors.

A configuration of free abelian subgroups in a group π has the same meaning as in [15]. There
is a simplicial complex K and for each simplex σ ∈ S(K) we are given a free abelian subgroup
Zσ of rank dimσ + 1 so that Zσ is generated by the rank one subgroups corresponding to the
vertices of σ. Equivalently, Zσ ∩ Zτ = Zσ∩τ for any two simplices σ, τ in K.

In the case at hand, the simplicial complex will be IQ(A), the ‘complex of irreducibles’. Its
vertex set is {G ∈ Q(A) | AG is irreducible} (later to be denoted by V IQ(A)). The 1-skeleton
of IQ(A) is described as follows. Two elements G and H of Q(A) are comparable if H < G
or G < H. Distinct vertices vG and vH of IQ are connected by an edge if and only if (1)
G and H are comparable or (2) AG∩H = AG ×AH (see Figure 6). In fact, the free abelian
subgroups will correspond to cliques of this graph, in other words, to simplices in FIQ(A), the
‘flag completion’ of IQ(A).

To properly describe the simplicial complex IQ(A) and the corresponding configuration of
abelian groups, we need the notion, introduced by De Concini and Procesi [20], of a building
set for Q(A).

5.2. Building sets

Given a collection of subspaces G in Q(A) and an element X ∈ Q(A), let G�X denote the set
of elements in G that contain X. Let maxG�X be the set of maximal elements of G�X .

Definition 5.3. A collection G of subspaces in Q(A) is a building set if for any X ∈ Q(A)
such that maxG�X = {G1, G2, . . . Gk}, we have

AX
∼= AG1 ×AG2 × · · · × AGk

.

There are two canonical choices for a building set. Note that Q(A) is itself a building set,
since maxQ(A)�X = X. Also, note that the poset

V IQ(A) = {G ∈ Q(A) | AG is irreducible}
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is a building set. The set V IQ(A) is called the set of irreducibles in Q(A); eventually, V IQ(A)
will be the vertex set of a simplicial complex IQ(A) called the irreducible complex. In the case
of V IQ(A), if we decompose AX into irreducible components

AX
∼= AG1 ×AG2 × · · · × AGk

,

then maxV IQ(A)�X = {G1, G2, . . . , Gk}. In fact, by considering X ∈ Q(A) such that AX is
irreducible, it is obvious that every building set must contain V IQ(A).

Any building set determines a collection of ‘nested subsets’. These subsets will be the
simplices of a simplicial complex on which our configuration of abelian groups will be based.

Definition 5.4. Let G be a building set for an affine arrangement A. A subset α ⊂ G is
G-nested if for any subset {Xi} of α consisting of pairwise incomparable elements Xi ∈ α, the
intersection ∩Xi is nonempty and does not belong to G.

Note that if X1 > X2 > · · · > Xn is any chain in G, then {X1, . . . , Xn} is a G-nested subset.
It is also obvious from the definition that the nested subsets form a simplicial complex, that
is, if β ⊂ α and α is G-nested, then β is G-nested. For example, if the building set is Q(A),
then the nested set complex is the barycentric subdivision |Q(A)|, as the nested subsets are
precisely chains in Q(A). Let IQ(A) denote the simplicial realization of the V IQ(A)-nested
subsets.

Lemma 5.5. Let α be a clique in IQ(A) (that is, a simplex of FIQ(A)). For each vertex of α
corresponding to G ∈ V IQ(A), let γG denote the central element in π1(M(AG)) corresponding
to the fiber of the Hopf fibration as defined in Lemma 5.1. Then the subgroup generated by
{γG}G∈Vertα is free abelian. Its rank is Card(Vertα).

Proof. We claim if G and H are connected by an edge in V IQ(A), then γG and γH commute.
Two elements G and H of V IQ(A) are comparable if G < H or H < G. A two element subset
{G,H} with two elements is nested if and only if H and G are comparable or if G ∩H �= ∅ and
G ∩H /∈ V IQ(A). In the first case, γG and γH commute by Lemma 5.1. For the second case,
we have that AG∩H is reducible, hence AG∩H = AG1 ×AG2 × · · · × AGk

. If AG and AH are
contained in a single AGi

, this would imply that Gi ∈ G ∩H, which is a contradiction. This
implies γG and γH commute. Since each 〈γG〉 ∼= Z we are done. �

Theorem 5.6 [22, Corollary 4.5]. For each G ∈ V IQ(A), the image γG of γG in
H1(M(A); Z) satisfies the relation

γG =
∑
H∈A
H�G

γH .

Furthermore, for any simplex α of IQ(A), {γG | G ∈ Vertα} is linearly independent.

Corollary 5.7. For any simplex α ∈ FIQ(A), the free abelian subgroup constructed in
Lemma 5.5 is free abelian of rank dimα + 1.

In general, the simplicial complex IQ(A) formed from the V IQ(A)-nested subsets is not a
flag complex. For example, if A is the complexification of the real arrangement which consists
of n general position lines in R2, then IQ(A) for the complexification is the 1-skeleton of an
n-simplex. Our configuration of abelian groups will always be based on the flag completion
of IQ(A), where the flag completion is the unique flag complex with the same 1-skeleton as
IQ(A).
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Theorem 5.8. Let A be an affine arrangement, and let FIQ(A) be the flag completion of
IQ(A). Then π1(M(A)) admits a configuration of free abelian groups based on FIQ(A).

Proof. Assume that σ and τ are two simplices in FIQ(A), and Zσ and Zτ the corresponding
free abelian subgroups we constructed in Lemma 5.5. We have seen above that the subgroups
Zσ and Zτ have ranks equal to dimσ + 1 and dim τ + 1, respectively. We must show that these
subgroups intersect in the subgroup corresponding to Zσ∩τ . Since each of these subgroups
maps isomorphically onto its image in H1(M(A); Z), it suffices to prove that the images of
the subgroups intersect correctly. However, this follows immediately from Theorem 5.6: it is
obvious that Zσ∩τ ⊂ Zσ ∩ Zτ and since the γG are linearly independent, Zσ ∩ Zτ ⊂ Zσ∩τ . �

Remark 5.9. Note that the simplicial complex we construct does not capture all of
the commutation relations between the standard abelian subgroups. For example, for the
arrangement depicted in Figure 6, the elements γD and γA∩B∩C commute, since γD commutes
with γA, γB and γC . In this configuration of abelian groups it is only important that
Zσ ∩ Zτ = Zσ∩τ .

5.3. The homotopy type of Q and IQ(A)

Suppose A is a finite arrangement of affine hyperplanes in Cn of rank l. By a theorem of Folkman
[27], |Q(A)|, the geometric realization of the intersection poset, is homotopy equivalent to
a wedge of spheres, each of dimension (l − 1). The number of spheres in this wedge is an
integer, βA. Alternatively, βA = |χ(M(A))|, where χ(M(A)) is the Euler characteristic of the
complement (see [33]). So, if

pA(t) =
∑
i

bi(M(A))ti

is the Poincaré polynomial of M(A), then χ(M(A)) = pA(−1).
If A is central, then |Q(A)| is a cone and hence, βA = 0 and pA(t) has (1 + t) as a factor.

Conversely, by a theorem of Crapo [9], if βA = 0, then A decomposes as A ∼= A′ ×A1 where
A1 is a nontrivial central arrangement. It follows that pA(t) has (1 + t)k as a factor if and only
if A can be decomposed as A′ ×A1 × · · · × Ak, where Ai are nontrivial central arrangements.

If A is a central arrangement, there is an affine arrangement d(A) ⊂ Cn−1, called the
‘deconing’ of A, which is obtained by projectivizing A and then removing any projectivized
hyperplane. The realization of the intersection poset |Q(A)| is isomorphic to the cone on
|Q(d(A))|; so, the Poincaré polynomials satisfy pA(t) = (1 + t)pd(A)(t). If A is essential, central
and irreducible, then by Crapo’s theorem, this implies that d(A) is essential and has no central
factor. These facts are summarized in the following theorem.

Theorem 5.10. Suppose A is an essential arrangement in Cn. Then A decomposes as
A′ ×A1 × · · · × Ak, where the Ai are nontrivial, irreducible central arrangements and A′ has no
central factors. Putting A′′ = A′ × d(A1) × · · · × d(Ak), we get an affine arrangement in Cn−k.
Then the intersection poset Q(A′′) decomposes as a join, Q(A′) ∗ Q(d(A1)) ∗ · · · ∗ Q(d(Ak)),
which is homotopy equivalent to a wedge of spheres of dimension n− k − 1. This gives the
following.

(i) If A has no central factors, then Q(A) is homotopy equivalent to a nontrivial wedge of
(n− 1)-spheres.

(ii) If A is central and irreducible, then Q(d(A)) is a nontrivial wedge of (n− 2)-spheres.

In [26] Feichtner and Müller show that if G and G′ are two building sets for a hyperplane
arrangement, the simplicial complexes corresponding to the nested subsets are homeomorphic



1310 MICHAEL W. DAVIS, GIANG LE AND KEVIN SCHREVE

via a series of stellar subdivisions [26]. So, a subdivision of IQ(A) is homeomorphic to
the order complex of Q(A). Hence, Theorem 5.10 applies equally well after replacing
|Q(A′′)| by the simplicial complex IQ(A′′). In particular, if A has no central factors, then
Hrk(A)−1(IQ(A); Z2) �= 0.

When A is as in Theorem 5.10, M(A) splits as the product of a k-torus and M(A′′). If M(A)
is aspherical, then IQ(A′′) has a join decomposition. The idea in the next subsection is to use
our calculation of obstructor dimension in Theorem 4.11 (or actually Theorem 4.10) to show
that O(IQ(A′′)) is a 2(n− k − 1)-obstructor.

5.4. Obstructor dimensions of arrangement complements

Suppose that A is an essential arrangement in Cn without central factors. In 5.2 we constructed
a simplicial complex IQ(A) with Hn−1(IQ(A); Z) �= 0. For the configuration of free abelian
groups with which we are concerned, the relevant complex is the flag completion FIQ(A)
rather than IQ(A). Since the dimension of |Q(A)| is always rk(A) − 1, it is a flag simplicial
complex with nontrivial top-dimensional homology if A is essential and has no central factors.
So, we can apply Theorem 4.10 provided FIQ(A) has dimension at most (n− 1). In the next
lemma we show that this holds whenever M(A) is aspherical.

Lemma 5.11. Let A be a complex hyperplane arrangement such that M(A) is aspherical.
Then dim(FIQ(A)) � n− 1.

Proof. It is a standard fact that M(A) is homotopy equivalent to an n-dimensional complex.
If M(A) is aspherical, then gdim(π1(M(A))) � n. So, the rank of any free abelian subgroup of
π1(M(A)) is � n, which implies dim(FIQ(A)) � n− 1. �

This along with Theorems 4.10, 5.10 and 5.8 immediately implies Theorem C from the
introduction, restated below.

Theorem 5.12. If M(A) is an essential, aspherical arrangement with no central fac-
tors, then actdim(π1(M(A))) = 2n. In particular, M(A) is not homotopy equivalent to a
(2n− 1)-manifold.

A similar argument shows a general result for central arrangements.

Theorem 5.13. Let A be an aspherical, irreducible, essential, central arrangement in Cn.
Then actdim(π1(M(A))) = 2n− 1.

Proof. If A is essential and irreducible, then Theorem 5.17 implies that if d(A) is the decon-
ing of A, then obdim(π1(M(d(A))) = 2n− 2. Then since M(A) ∼= M(d(A)) × S1, we have
π1(M(A)) = Z × π1(M(d(A))) and hence, obdim(π1(M(d(A)))) = actdim(π1(M(d(A)))) =
2n− 1. �

The product formula for obstructor dimension gives, as a corollary to this theorem, the
following calculation of the obstructor dimensions of aspherical hyperplane arrangements.

Corollary 5.14. Let A be an affine aspherical arrangement in Cn and suppose that

A ∼= A′ ×A1 ×A2 × · · · × Ak,
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where each Ai is irreducible and central, and A′ has no central factor. Then

obdim(π1(M(A))) = actdim(π1(M(A))) = 2n− k.

Using Theorem 5.12, this gives the following computation of the action dimension of any
spherical Artin group (cf. Proposition 3.8).

Corollary 5.15 (Le [29]). Suppose Aσ is an irreducible spherical Artin group of rank
d + 1. Then obdimAσ = actdimAσ = 2d + 1. Therefore, the action dimension of a spherical
Artin group is the sum of the action dimensions of its irreducible factors.

When M(A) is not aspherical, FIQ(A) could have much larger dimension than IQ(A). For
example, we can take any arrangement and add new hyperplanes in general position. Then
IQ(A) for the new arrangement will have arbitrarily high-dimensional flag completion, as the
new hyperplanes themselves induce the 1-skeleton of a n-simplex in IQ(A). We now give a
condition on our arrangement that guarantees that FIQ(A) contains a simplex which satisfies
the ∗-condition from Subsection 4.26.

Definition 5.16. Let A be a complex hyperplane arrangement. A complete chain of
irreducibles is a chain of subspaces G0 > G1 > · · · > Gn such that each AGi

is irreducible.

We claim that the simplex σ := [G0, G1, . . . Gn] in FIQ(A) satisfies the ∗-condition. Note
that if a simplex does not satisfy the ∗-condition, then there is a vertex in FIQ(A) that is
connected to each of the vertices of that simplex by an edge. So, suppose to the contrary
that H is a subspace which is connected to each Gi by an edge in FIQ(A). Now, since H is
connected to Gn in FIQ(A) and Gn is zero-dimensional, it must contain Gn. Let Gi be the
maximal subspace in the chain that is not contained in H. Since H and Gi are connected by
an edge in IQ(A), we must have AH∩Gi

∼= AH ×AGi
. Since H contains Gi+1 we must have

H ∩Gi = Gi+1. Therefore, the splitting AH∩Gi
∼= AH ×AGi

would contradict Gi ∈ V IQ(A).
Therefore, we have constructed a d-dimensional flag complex FIQ(A) such that

Hn−1(FIQ(A); Z2) �= 0. Since (FIQ(A), σ) satisfies the ∗-condition, we can apply [1] to the
complex O(FIQ(A)) to get the following.

Theorem 5.17. Let A be an arrangement in Cn that is essential and not central. If A
contains a complete chain of irreducibles, then

actdim(π1(M(A))) � obdim(π1(M(A))) � 2n.

If A is an inessential arrangement, then we can still compute lower bounds for the action
dimension. This is because M(A) splits as Ck ×A′, where A′ is an essential arrangement in
Cn−k, and if A is not central then A′ is not central. Conversely, our results say nothing about
general position hyperplane arrangements, though this is not very interesting in this context.
Hattori showed in [28] that the complement of a general position arrangement has free abelian
fundamental group and that the arrangement is homotopy equivalent to a certain skeleton of
a k-torus.

Example 5.18. We now describe another type of arrangement whose complement is always
aspherical. First, an arrangement A is said to be strictly linearly fibered over AG if G is a line
and the restriction of the projection πG : Cn → Cn/G to M(A) is a fiber bundle projection. A
fiber-type arrangement is defined inductively: A ⊂ Cn is fiber-type if there is a line G such that
A is strictly linearly fibered over G and the induced arrangement π(A) ⊂ Cn−1 is fiber-type.
For example, the braid arrangement is fiber-type. The action dimension of these examples was
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already known by the work of Falk and Randell in [25] and results in [4]. Indeed, Falk and
Randell showed that the fundamental group of the complement of a fiber-type arrangement is
an iterated semidirect product of free groups, so the computation of action dimension followed
from [4, Corollary 27].

Example 5.19. A complex reflection is a periodic affine automorphism of Cn whose fixed
point set a complex hyperplane. A complex reflection group is a finite group acting on
Cn by complex reflections. For example, every finite Coxeter group is a complex reflection
group by complexification of the action on Rn. These groups were completely classified by
Shepard and Todd [35] who showed that they fit into several infinite families depending on
3 parameters as well as 34 exceptional cases. The complement of the fixed hyperplanes is a
central arrangement, and the fundamental groups of such hyperplane complements can be
thought of as generalizations of spherical Artin groups. It is known that all such hyperplane
complements are aspherical (the remaining exceptional cases were resolved in [2]). Therefore,
if the arrangement for a finite reflection group is essential and irreducible, then the action
dimension of π1(M(A)) is precisely 2n− 1.

6. Questions

Here are four questions that came up during our work. When the d-dimensional flag complex
L is EDCE and G is the fundamental group for graph product complex of closed aspherical
m-manifolds (or more generally, the group associated to a complex of closed aspherical
manifolds), we showed that actdimG � (m + 1)(d + 1) − 1. On the other hand, in order to
show that the corresponding van Kampen obstruction is 0, we only need the weaker assumption
Hd(L; Z2) = 0.

Question 6.1. Is our upper bound for actdimG still valid when the hypothesis that L is
EDCE is replaced by the hypothesis Hd(L; Z2) = 0?

Question 6.2. If OL piecewise linearly embeds in a sphere of codimension k, does OmL
piecewise linearly embed in a sphere of codimension k? Together with the main theorem of [1]
this would imply that if L is a flag complex with Hn(L; Z2) = 0, then embdim(OmL) < d + δ.
(Here embdim(OmL) means the minimum dimension of a sphere into which there is a PL
embedding of OmL.)

Question 6.3. Let KL be a polyhedral join of simplicial complexes Ks over L. Is there a
formula for the van Kampen obstruction of KL in terms of the van Kampen obstructions of
the Ks and the homology of L?

Question 6.4. Suppose that A is an essential, noncentral arrangement which admits a
complete chain of irreducibles (see Definition 5.16). Is it possible for M(A) to be homotopy
equivalent to a (2n− 1)-manifold?

Acknowledgements. We thank the referee for valuable comments and suggestions.
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