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Bordifications of hyperplane arrangements
and their curve complexes

Michael W. Davis and Jingyin Huang

Abstract

The complement of an arrangement of hyperplanes in Cn has a natural bordification to a
manifold with corners formed by removing (or “blowing up”) tubular neighborhoods of the
hyperplanes and certain of their intersections. When the arrangement is the complexification of
a real simplicial arrangement, the bordification closely resembles Harvey’s bordification of moduli
space. We prove that the faces of the universal cover of the bordification are parameterized by
the simplices of a simplicial complex C, the vertices of which are the irreducible “parabolic
subgroups” of the fundamental group of the arrangement complement. So, the complex C plays
a similar role for an arrangement complement as the curve complex does for moduli space. Also,
in analogy with curve complexes and with spherical buildings, we prove that C has the homotopy
type of a wedge of spheres. Our results apply in particular to spherical Artin groups, where the
associated arrangement is a reflection arrangement of a finite Coxeter group.

Introduction

Background. A “compactification” of a possibly noncompact manifold X◦ is a compact
manifold with boundary X so that X◦ is identified with the interior of X. For example, X◦

could be a finite volume hyperbolic manifold and X the manifold with boundary obtained by
adding a flat manifold as a boundary component for each cusp. Let Y ◦ denote the universal
cover of X◦ and Y the universal cover of X, then Y is called a “bordification” of Y ◦. Put
G = π1(X◦) = π1(X). There are some classical examples of locally symmetric manifolds and
various moduli spaces each of which can be compactified to manifold with corners (in fact, the
commpactification has the extra property of being a “manifold with faces” as in Subsection 1.2).
Here are two basic examples.

(I) (The Borel–Serre compactification of an arithmetic manifold). Suppose G = GL(n,Z),
Y ◦ = O(n)\GL(n,R) and X◦ = Y ◦/G. (For X to be a manifold rather than an orbifold, we
actually should replace G by a torsion-free subgroup of finite index.) Siegel [52] described a
G-equivariant bordification of Y ◦ to a manifold with faces Y . This was then generalized to
other arithmetic groups in the foundational paper of Borel–Serre [5].

(II) (The Harvey compactification of moduli space). Suppose that Sg,n is a surface, possibly
with boundary, of genus g and with n punctures, G = Mod(g, n) the corresponding mapping
class group, Y ◦ the corresponding Teichmüller space and X◦ = Y ◦/G the corresponding moduli
space. In [34] Harvey defined a G-equivariant bordification Y of Y ◦.
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In both cases, Y is a manifold with faces. Let C be the nerve of the covering of ∂Y by the
codimension-one boundary faces of Y : the (k − 1)-simplices of C correspond to the boundary
faces of codimension k in Y .

In both cases, C admits an alternative group theoretic description. In case (I) C can be
identified with the Tits building B for GL(n,Q) (see [5, Theorem 8.4.1]), where B can be
defined from the poset of parabolic subgroups of G. In case (II), C is isomorphic to the curve
complex C(Sg,n) for the surface Sg,n [34], where C(Sg,n) can be described in terms of subgroups
of G: each vertex of C corresponds to an infinite cyclic subgroup of G generated by a Dehn
twist along a simple close curve of Sg,n. A (k − 1)-simplex in C corresponds to a family of k
commuting Dehn twists Z-subgroups.

In both cases (I) and (II), the simplicial complex C has the homotopy type of a wedge of
spheres [34, 53]. Moreover, Y as well as each of its boundary faces is contractible.

Algebraic and topological versions of curve complexes. Let A be a finite arrangement
of linear hyperplanes in Cn and let M(A) denote the complement of the union of these
hyperplanes. We assume for simplicity that A is irreducible, that is, A is not the direct sum of
two arrangements. Let X◦ be the intersection of M(A) with the unit sphere of Cn. So, M(A)
is homeomorphic to X◦ × [0,∞]. Our goal in this paper is to develop a picture for X◦ and
G = π1(X◦) similar to the compactifications of Borel–Serre and Harvey. We are particularly
interested in the case where G is a pure Artin group of spherical type and A is the associated
arrangement of reflection hyperplanes. A standard way to attach a boundary to X◦ is to remove
from Cn an algebraic regular neighborhood of the union of hyperplanes in A as in Durfee [28]
(since the union of hyperplanes is an algebraic subset of Cn). This gives a well-defined manifold
with boundary (X, ∂X). However, we want to give X the structure of a smooth manifold with
corners. (The manifold with corners structure is not canonical, as discussed below it depends
on a choice of a certain subset of the intersection poset of the arrangement, this subset is called
a “building set” in [25].) The manifold with corners structure on X induces further structure
on ∂X, namely, a decomposition of ∂X into boundary pieces (the codimension-one faces of X)
corresponding to the elements of the chosen building set.

In concrete terms, we want to accomplish the following.

(a) Define a natural bordification of X◦ to a manifold with corners X, the universal cover
of which is denoted by Y (A).

(b) Define an analog of curve complex Ctop (= Ctop(A)) as the nerve of the covering of ∂Y
by its boundary pieces.

(c) Define another analog of curve complex Calg (= Calg(A)) from an algebraic viewpoint by
looking at commutation of certain Z-subgroups of G.

(d) Prove that Ctop and Calg are isomorphic.
(e) Prove that Calg is homotopy equivalent to a wedge of spheres.

The simplicial complex Calg captures the intersection pattern of certain collection of abelian
subgroups in G. In the study of symmetric spaces, mapping class groups and right-angled
Artin groups, the analogous simplicial complex has been fundamental to understanding the
asymptotic geometry of G.

Point (d) is the link between the topology of Y (A) and the simplicial complex Calg. We do
not know the extent to which points (c), (d), and (e) hold for general hyperplane arrangements;
however, they all hold for the complexifications of real simplicial arrangements as studied by
Deligne [26] and this covers the case where G is a pure Artin group of spherical type. Most of
this paper is devoted to proving (d) for such arrangements. In the remainder of the introduction
we elaborate points (a)–(e).

Let V = Cn. Suppose that Q(A) denotes the set of subspaces of V that occur as intersections
of hyperplanes in A. The set Q(A), partially ordered by inclusion, is the intersection poset
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of A. The idea for constructing the bordification of M(A) as in (a) is to remove tubular
neighborhoods of a collection of subspaces S ⊂ Q(A). (Each hyperplane of A is required to
belong to S.) Actually, rather than removing tubular neighborhoods, it is better to attach
boundary pieces to M(A) where the boundary piece corresponding to a subspace E ∈ S is the
normal sphere bundle of E restricted to arrangement complement M(AE), where AE means
the restriction of A to E. In order for this process to yield a bordification of M(A) which is
independent of various choices, it is necessary for S to be a “building set” in the sense of De
Concini–Procesi [25]. The details of this construction are carried out by Gaiffi in [32].

A subspace E is irreducible if the normal arrangement AV/E to E is irreducible, that is, if the
induced arrangement on V/E does not decompose as a nontrivial direct sum. The bordification
of M(A) with S being the set of irreducible subspaces induces a compactification X of X◦.
Motivated by the examples of locally symmetric spaces and moduli spaces, define a simplicial
complex Ctop(A) to be the nerve of the covering of ∂Y by the codimension-one faces of the
universal cover Y of X. We call this the topological curve complex of A.

There is also an algebraic version of the curve complex that can be defined in terms of
commuting families of Z-subgroups of G (= π1(M(A)). Given a subspace E ∈ Q(A) with
normal arrangement AV/E the image of π1(M(AV/E) in G is a parabolic subgroup of G of type
E (cf. Definition 1.11 in Section 1); the parabolic subgroup is irreducible if AV/E is irreducible.
Each irreducible parabolic subgroup has a well-defined central Z-subgroup corresponding to
the Hopf fiber coming from the action of C∗ on M(A). Such a Z-subgroup is analogous to the
subgroup of Mod(g, n) generated by a Dehn twist. Take these central Z-subgroups of irreducible
parabolic subgroups to be the vertices of simplicial complex; two vertices are connected by
an edge if and only if the corresponding Z-subgroups commute; the algebraic curve complex
Calg(A) is the associated flag complex. In other words, Calg(A) is the flag complex associated
to the “commutation graph” of these central Z-subgroups. (see [39] for the analogous notion
for right-angled Artin groups).

In the special case when G is a pure spherical Artin group, Calg coincides with the “complex
of irreducible parabolic subgroups” defined by Cumplido, Gebhardt, González-Menses, and
Wiest in [13].

One advantage of defining Calg in the more general setting of hyperplane complements is
that the stabilizer of a simplex of Calg is again the fundamental group of M(A′) where A′ is
an arrangement with fewer hyperplanes. When A is the complexification of a real simplicial
arrangement, the same is true for A′. This gives a convenient inductive method of studying
G. On the other hand, if one restricts to the class of pure spherical Artin groups, then it is
not clear that stabilizer of a simplex of Calg is commensurable to another pure spherical Artin
group, since the restriction of a Coxeter arrangement might not be a Coxeter arrangement.

Both Ctop and Calg admit simplicial G-actions; in both cases the quotient complex can be
characterized in terms of irreducible subspaces of A (cf. Definition 1.4). In this generality it
seems possible, albeit unlikely, that the topological and algebraic versions of curve complex
are always equal. However, we can verify this whenever A is the complexification of a central
real simplicial arrangement. In this case we also deduce that Calg is homotopy equivalent to a
wedge of spheres.

Statements of the results.

Main Theorem (Theorem 5.12 in the sequel). Suppose that A is the complexification in
Cn of real simplicial arrangement and that A has l irreducible factors, A ∼= A1 ⊕ · · · ⊕ Al. Let
X be the (2n− l)-dimensional manifold with corners discussed above and let Y be its universal
cover. The following statements are true.

(i) The algebraic and topologicial versions of the curve complex Calg and Ctop are identical
(and we denote this simplicial complex by C).
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(ii) The faces in ∂X are indexed by the set of simplices in a complex I0 which is defined in
Definition 1.4 in Section 1.1. The faces of Y are indexed by C and the group G = π1(X) acts
on C with quotient space I0.

(iii) The simplicial complex C is homotopy equivalent to a wedge of (n− l − 1)-spheres
(where dim C = n− l − 1).

(iv) Each face of X is aspherical and its fundamental group injects into G.
(v) The fundamental group of each codimension-one face of X is the normalizer of an

irreducible parabolic subgroup.
(vi) The stabilizer of each simplex of C is the fundamental group of M(A′) where A′ is also

the complexification of some real simplicial arrangement.

Let AW be the spherical Artin group associated to a finite Coxeter group W and let S
be the standard generating set of AW . A parabolic subgroup of AW is any conjugate of a
subgroup generated by a subset of S. The pure Artin group PAW is the kernel of AW → W .
Associated to the Coxeter group W there is a reflection arrangement AW of hyperplanes in
Cn so that π1(M(AW )) = PAW . The bordification of M(A) is homotopy equivalent to the
compact manifold with corners X = X(AW ) described as above. Let Y be the universal cover
of X. The group W acts freely on X and the fundamental group of X/W is AW . So AW acts
on Y by an action that permutes the boundary faces. The arrangement AW is known to be
simplicial; so, the Main Theorem can be applied. Hence, AW � Ctop(AW ) = Calg(AW ).

In [13] a similar simplicial complex C(AW ) is defined for the full Artin group AW rather than
just for the pure Artin group PAW . As before, C(AW ) is defined using centers of irreducible
parabolic subgroups of AW . Since irreducible parabolic subgroups of AW correspond to
parabolic subgroups arising from irreducible subspaces in Q(AW ), there is an AW -equivariant
isomorphism from between Calg(AW ) and C(AW ). So, we have the following corollary of the
Main Theorem.

Corollary. Suppose that the spherical Artin group AW has l irreducible factors. Then
the complex C(AW ) of [13] is homotopy equivalent to a wedge of (n− l − 1)-spheres.

This paper differs from [13] in that the curve complex is not only defined algebraically as
the complex of irreducible parabolics, but it also has a topological interpretation as the nerve
of the cover of the boundary of its bordification. This provides the extra information in the
above corollary.

Remarks on the braid arrangement An−1. Let M0,n+1 be the moduli space of complex
structures on S0,n+1, the (n + 1)-punctured 2-sphere. Let An−1 be the arrangement of type
An−1 in Cn−1 (this is the braid arrangement for the braid group on n strands). The following
statements are true.

• Start with the Harvey compactification X ′ of M0,n+1 and take its universal cover Y ′.
Then the nerve of the covering of ∂Y ′ by its codimension-one faces is isomorphic to the curve
complex of S0,n+1, see [34].
• Let X be the bordification of M(An−1) discussed above (see Definition 1.15 for more

details). The natural action of C∗ = C − {0} on M(An−1) extends to C∗ � X. Then X ′ and
X/C∗ are diffeomorphic as smooth manifolds with corners, see [38] and also [31, Section 4].
• The algebraic curve complex for the arrangement M(An−1) is canonically isomorphic to

the curve complex of S0,n+1.

So, Harvey’s result can be reinterpreted as saying that the topological curve complex for An−1

as defined above is isomorphic to its algebraic curve complex.
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Discussion of the proof. We begin with the isomorphism between Calg and Ctop. The starting
point (step 0) is to reduce this isomorphism problem to a collection of purely group theoretic
properties of G = π1(X).

Start with an arbitrary central arrangement A of hyperplanes in V = Cn and let G =
π1(M(A)). Given an irreducible subspace E, let AE and AV/E denote, respectively, the
restriction of the arrangement to E and its normal arrangement. There are natural homo-
morphisms f1 : π1(M(AE)) → G, f2 : π1(M(AV/E)) → G and f3 : π1(M(AE ×AV/E)) → G
where f3 = f1 × f2. Here f1 induced by pushing off M(AE) from E into V so that it sits
inside M(A), and f2 is obtained by considering arrangement in a normal disk at a point
in E. The image of f2 is an irreducible parabolic subgroup and the central Z-subgroup of
Im f2 corresponds to the Hopf fiber in M(AV/E). In Section 1.4 we define the following four
properties.

(a) Property A asserts f1 is injective. (Since there is a retraction M(A) → M(AV/E), f2 is
always injective.)

(b) Property B concerns intersections of images of the homomorphisms f3 arising for
different irreducible subspaces.

(c) Property C states that Im f3 is the normalizer of the central Z-subgroup in Im f2.
(d) Property D characterizes when two central Z-subgroups commute.

In Proposition 1.27 we show that when these properties hold, there is a canonical isomorphism
between Calg and Ctop. This works for any central arrangement A.

The proof of the Main Theorem uses several facts special to real simplicial arrangements.
First, since the arrangements AE and AV/E also are complexifications of real simplicial
arrangements, it follows from Deligne [26] that each of the arrangement complements M(A),
M(AE), and M(AV/E) is aspherical. Second, Salvetti [49] defined a finite CW complex that
is homotopy equivalent to M(A) (this only requires that A is real). Finally, in his proof of
asphericity in [26], Deligne used ideas of Garside concerning the word problem in the associated
“Deligne groupoid.”

The first step of the proof of the theorem is to reduce Properties A–D to properties concerning
subcomplexes of Salvetti complexes and their Deligne groupoids. (For this step to work we need
A to be a real arrangement; however, it need not to be simplicial.) It is obvious that Im f2 can
be represented as the fundamental group of a subcomplex of the Salvetti complex; however,
this is less clear for Im f1. We find a certain subset of the Salvetti complex whose fundamental
group corresponds to Im f1 (this subset is very close to being a subcomplex). This reduces the
verification Properties A–D to computations in the one skeleton of the Salvetti complex, which
is the underlying graph for the Deligne groupoid.

The second step of the proof is to prove versions of Properties A–D for the Deligne groupoid.
(For this step to work we need A to be a simplicial arrangement so that Garside theory
is available.) A simple reduction shows that we only need to prove Properties A, C, and
D. For spherical Artin groups, Properties C and D were proved previously in [13, 46]. Our
proof of Properties C and D is along the same line as in [13, 46]; however, our treatment
is more geometric and works for any simplicial arrangement. We also prove Property A for
simplicial arrangements.

We speculate that these properties hold outside the realm of simplicial arrangements. For
example, there are partial results on Properties A and C for supersolvable arrangements [48].

To prove part (iii) of the Main Theorem we need to show that Ctop (or Calg) is a wedge of
spheres. For a general A it follows from previous work on the cohomology of M(A) in [20,
54] that Ctop has the same homology as a wedge of spheres. So, in order to show that Calg

is homotopy equivalent to a wedge of spheres, it suffices to show that Calg (or Ctop) is simply
connected whenever its dimension is > 1. That Ctop is simply connected is a consequence
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of standard result on arrangement complements, see Remark 1.28 below. We also give an
independent elementary proof that Calg is simply connected in Subsection 4.2.

Structure of the paper. In Section 1 we discuss hyperplane arrangements and their
compactifications, and we explain Properties A–D. Section 2 gives background on zonotopes,
Salvetti complexes, and Deligne groupoids. Section 3 concerns Garside-theoretic computations
in Deligne groupoids, and completes the argument in the second step of the proof of the Main
Theorem. Section 4 concerns the proof that Calg is simply connected when its dimension is > 1.
This is needed in the proof that it is homotopy equivalent to a wedge of spheres. In Section 5
the first step of the proof is finished and the results are tied together.

Our thanks go to the referee for several helpful comments.

1. Bordifications of complements of hyperplane arrangements

1.1. Hyperplane arrangements

A hyperplane arrangement in a complex vector space V is a collection A of linear hyperplanes
in V . The set of linear subspaces that can be obtained as intersections of elements of A is called
the intersection poset; it is denoted by Q̂(A) or simply by Q̂. The partial order is inclusion.
The ambient space V (corresponding to the empty intersection) is the maximum element of Q̂.
The set of proper subspaces in Q̂ is denoted by Q (or Q(A)). The arrangement A is essential
if the zero subspace 0 lies in Q(A), that is, if 0 is the intersection of all hyperplanes in A. If
A is essential, then put Q0 := Q− 0.

The normal arrangement to a subspace E ∈ Q(A) is the hyperplane arrangement AV/E in
V/E defined by

AV/E := {H/E | H ∈ A and E � H}. (1.1)

There is also an arrangement AE , called the restriction of A to E, defined by

AE := {H ∩ E | H ∈ A and E � H}. (1.2)

If E′ < E is another subspace in Q(A), then the image of AE′
in AE′/E is a subnormal

arrangement to E, that is, It is the arrangement in E′/E defined by

AE′/E = {H/E | H ∈ AE′
and E � H}. (1.3)

The complement in V of the union of hyperplanes in A is denoted by M(A). Notice that if
SV is the sphere of directions in V , then we have a homeomorphism

M(A) ∼= (SV ∩M(A)) × (0,∞). (1.4)

Remark 1.1. In later sections we will consider arrangements which are obtained by
complexifying an arrangement of real hyperplanes in a real vector space (a “real arrangement”).
For example, any finite Coxeter group has a representation as a linear reflection group on Rn.
The resulting hyperplane arrangement in Cn is called a reflection arrangement.

Irreducible subspaces. Suppose that A′ and A′′ are arrangements in vector spaces V ′ and
V ′′. Their direct sum A′ ⊕A′′ is the arrangement in V ′ ⊕ V ′′ consisting of hyperplanes which
are the form of a sum of a hyperplane in one summand with the other summand, that is,
A′ ⊕A′′ := {H ′ ⊕ V ′′, V ′ ⊕H ′′ | H ′ ∈ A′, H ′′ ∈ A′′}. An arrangement is irreducible if it cannot
be decomposed as a nontrivial direct sum. Any arrangement A in V can be decomposed into its
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irreducible factors A1, . . . ,Ak, where Ai is irreducible in Vi. That is to say, A ∼= A1 ⊕ · · · ⊕ Ak

and V ∼= V1 ⊕ · · · ⊕ Vk. It follows from (1.4) that

M(A) ∼=
(

k∏
i=1

SVi ∩M(Ai)

)
× (0,∞)k. (1.5)

A subspace E ∈ Q(A) is reducible if its normal arrangement in V/E splits as a nontrivial
direct sum. In other words, E is reducible if there are subspaces E′, E′′ in Q(A) such that E =
E′ ∩ E′′ and AV/E

∼= AV/E′ ⊕AV/E′′ . A subspace E ∈ Q(A) is irreducible if it is not reducible.
For example, any hyperplane H ∈ A is an irreducible subspace. Any subspace E ∈ Q has a
decomposition into irreducibles. This means that there are irreducible subspaces E1, . . . , Ek

such that

E = E1 ∩ · · · ∩ Ek and AV/E
∼=

k⊕
i=1

AV/Ei
.

Up to order, the summands are uniquely determined.

Remark 1.2. Suppose A ∼= A1 ⊕ · · · ⊕ Ak with V ∼= V1 ⊕ · · · ⊕ Vl is the decomposition of
A into irreducibles. Let Ei be the subspace of the direct sum with i-component equal to the
zero vector and with j-component, j 	= i, equal to the subspace Vj . Then Ei is irreducible;
moreover, it is a minimal irreducible with respect to the partial order on Q(A).

Definition of the complex of irreducibles. We shall define a simplicial complex I (= I(A))
that encodes the intersection pattern of the irreducible subspaces. Its vertex set I(0) (= I(0)(A))
is the set of irreducible subspaces E ∈ Q. So, I(0) is a subposet of Q. A set of two vertices
{E,E′} determines a 1-simplex α in I in exactly two cases: either E and E′ are comparable
(which means that E < E′ or E′ < E), or the normal arrangement to E ∩ E′ is reducible. This
describes a simplicial graph I1 that is the 1-skeleton of the complex which we wish to define.
The complex of irreducibles I is the flag complex associated to the graph I1. One can directly
describe the simplices of I as being the “nested subsets” of I(0) defined below.

Definition 1.3 (cf. [25], as well as, [29], [23, p. 1308]). A subset α of I(0) is nested if for
any subset {Ei} of α consisting of pairwise incomparable elements, the intersection F =

⋂
Ei

is reducible and AV/F
∼= ⊕k

i=1 AV/Ei
. A subset α of I(0) is the vertex set of a simplex in I if

and only if it is nested. (We shall often confuse a simplex with its vertex set.) Call a simplex
β ∈ I purely incomparable if its vertex set consists entirely of incomparable elements.

Definition 1.4. If A is irreducible (that is, if 0 is an irreducible subspace in Q), then let
I0(A) denote the full subcomplex of I(A) spanned by I(0) − {0}. In general, if A = A1 ⊕ · · · ⊕
Al is the decomposition of A into irreducible factors, then I0(A) is defined to be the join:

I0(A) = I0(A1) ∗ · · · ∗ I0(Al).

Since I(Ai) is equal to the cone, I0(Ai) ∗ 0i, where 0i denotes the cone point, we see that
I(A) = I0(A) ∗ Δl−1, where Δl−1 is the (l − 1)-simplex on {01, . . . ,0l}. The reason that we
are interested in I0(A) is that its simplices index the boundary faces of the compact manifold
with corners X (cf. Definition 1.24 below.)

Remark 1.5. Feichtner and Müller prove in [29] that I(A) has a subdivision isomorphic
to |Q(A)| (where |Q(A)| denotes the geometric realization of the order complex of Q(A)). So,
when A is irreducible, I0(A) is homeomorphic to |Q0(A)|. A classical result of Folkman [30]
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asserts that |Q0(A)| is a wedge of spheres of dimension n− 2, where n = dimV . Hence, when
A is irreducible I0(A) is a wedge of spheres of the same dimension. When A has l irreducible
factors, it then follows from Definition 1.4 that dim I0(A) = n− l − 1 and that I0(A) is a
wedge of (n− l − 1)-spheres.

Definition 1.6. Using the poset structure of I(0) the vertices of a simplex α of I can be
organized into a forest as follows. The minimal elements of Vertα are said to be at level 0.
Suppose, by induction, that the notion of level i vertex has been defined and that E ∈ Vertα
is at level i. The minimal elements of (Vertα)>E are at level i + 1. Let {E0, . . . , Ek} be this
set of minimal vertices. Connect each of the Ei by a directed edge from E. The directed edges
then define a forest on Vertα.

Lemma 1.7. Suppose that A is an essential, central hyperplane arrangement with irreducible
decomposition A = A1 ⊕ · · · ⊕ Ak. Put G = π1(M(A)) and let Z(G) be its center.

(1) The center Z(G) contains a free abelian subgroup of rank k.
(2) If M(A) is aspherical, then Z(G) ∼= Zk.

Question 1.8. Is it always true that Z(G) ∼= Zk?

Sketch of proof of Lemma 1.7. The fundamental group of the complement of any central
arrangement has a Z in its center coming from the Hopf fiber. Hence, if A has k irreducible
factors, then Zk ⊂ Z(G).

Next suppose that M(A) is aspherical and that A is irreducible. Let PA be the associated
projective arrangement and M(PA) its complement in projective space. Since M(A) ∼= C∗ ×
M(PA), we see that M(P(A) is also aspherical. Also, if Z is a proper subgroup of Z(G), then
the center C of π1(M(PA)) is nontrivial. Since M(PA) is aspherical, this implies that its Euler
characteristic is 0. (If a group of type F has a nontrivial normal abelian subgroup, then its Euler
characteristic is 0.) A theorem of Crapo (cf. [11]) asserts that if A′ if is an arrangement of affine
hyperplanes and if the complement M(A′) has Euler characteristic 0, then A′ decomposes as
A′′ ×A1, where A1 is a nontrivial central arrangement (cf. [23, Section 5.3]). Since M(PA)
is homeomorphic to the complement of the affine arrangement A′ obtained by regarding one
of the hyperplanes of PA as being a hyperplane at ∞, Crapo’s theorem implies that A′ splits
off another central arrangement A1. But this contradicts the assumption that A is irreducible.
Hence, the Euler characteristic of M(A′) must be 0; so, C must be trivial. The case when A is
irreducible immediately implies (2) in the general case when A has more than one irreducible
factors. �

Definition of parabolic subgroups and the algebraic curve complex. Let E ∈ Q(A) be a
subspace. Let D be a small disk about E/E in V/E. Then D ∩M(AV/E) is homeomorphic to
M(AV/E). Since D can regarded as a normal disk to E at a point in M(EA), we see that when
D is sufficiently small, D ∩M(AV/E) is a subset of M(A). Composing the inclusion with the
inverse of a homeomorphism D ∩M(AV/E) ∼= M(AV/E), we get i : M(AV/E) → M(A). The
set of hyperplanes AV/E can be identified with the set AE := {H ∈ A | E � H} and M(AE)
is homeomorphic to E ×M(AV/E). Since AE ⊂ A, we have an inclusion M(A) ↪→ M(AE).
The composition of this inclusion with the natural projection M(AE) → M(AV/E) gives the
retraction r : M(A) → M(AV/E). The following is clear.

Lemma 1.9. The composition M(AV/E) i→ M(A) → M(AE) → M(AV/E) is homotopic
to the identity map. Thus i : M(AV/E) → M(A) is π1-injective.
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Corollary 1.10. If M(A) is aspherical, then so is M(AV/E) for any E ∈ Q.

Definition 1.11. Let i : M(AV/E) → M(A) be the inclusion map defined above.
Take a base point x ∈ M(A) and x′ ∈ M(AV/E). Let γ be a path from x → i(x′). A
parabolic subgroup of G = π1(M(A), x) of type E is a subgroup that is conjugate to
γ(i∗(π1(M(AV/E)), x′))γ−1. The parabolic subgroup is irreducible (respectively, proper) if the
subspace E is irreducible (respectively, if E 	= {0}).

Example 1.12. If A is a finite reflection arrangement, then G is the corresponding pure
spherical Artin group. If E is the fixed subspace of a subset of the Artin generators, then,
up to conjugation, the parabolic subgroup PE associated with E coincides the usual notion
of a parabolic subgroup of G, that is, the intersection with G and the subgroup of the Artin
group generated by this subset of the generators (cf. [13]). The parabolic subgroup PE is
irreducible if the normal representation AV/E is irreducible or equivalently, if the Coxeter
group corresponding to E has a connected Coxeter diagram (cf. [19]).

Let Par(G) denote the set of parabolic subgroups of G and let IPar(G) be the subset of
irreducible parabolics. For any irreducible parabolic subgroup P of type E, define its central
Z-subgroup to be

ZP := Ker[π1(M(AV/E)) → π1(M(PAV/E))].

In other words, ZP is the subgroup of π1(M(AV/E)) corresponding to the Hopf fiber. By
Lemma 1.7, if M(A) is aspherical, then ZP is equal to the center of P .

Let H1 = H1(M(A),Z). Then H1 has a basis of form {eH}H∈A where eH is the 1-cycle
corresponding to a positively oriented loop around a hyperplane H. If ZP is the central Z
subgroup of an irreducible parabolic subgroup P of type E, then its image in H1 can be written
as an integral combination of basis elements:

∑
nHeH . In fact, nH is either 1 or 0 depending on

whether or not the hyperplane H contains E. Putting suppZP = {H ∈ A | nH 	= 0} we see that
suppZP depends only on the conjugacy class of ZP (or of P ). Moreover, since suppZP = AE ,
the conjugacy class of ZP determines the subspace E. So, we have established the following
lemma.

Lemma 1.13. Suppose that Z and Z ′ are the central Z subgroups of irreducible parabolic
subgroups P and P ′. If Z and Z ′ are conjugate in G, then typeP = typeP ′. In particular,
each central Z-subgroup has a well-defined type.

Definition 1.14. We define a simplicial complex Calg, called the algebraic curve complex,
as follows. First suppose that the arrangement A is irreducible. The vertex set of Calg is in
one-to-one correspondence with central Z-subgroup of irreducible proper parabolic subgroups
of G. Two vertices v′ and v are connected by an edge if the corresponding Z-subgroups generate
a subgroup isomorphic to Z ⊕ Z. This defines the algebraic curve graph. The algebraic curve
complex will be the completion of this graph to a flag complex. The algebraic curve complex for
a reducible arrangement is the join of the algebraic curve complex of its irreducible components.

It follows from Lemma 1.13 that each vertex of Calg has a well-defined type, which is an
element in I(0).

Now we describe certain collection of edges in Calg. Take irreducible subspaces E and E′. If
E < E′, then for appropriate choices of base points and paths connecting them, we can find
parabolic subgroups P and P ′ of type E and E′, respectively, such that P ′ < P . This implies
that the infinite cyclic subgroups ZP and ZP ′ commute (since ZP commutes with everything in
P ) and that they generate a free abelian subgroup of rank 2 (since they do so in H1). If E ∩ E′ is
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reducible, that is, AV/E ⊕A′
V/E is a decomposition of AV/(E∩E′), then for appropriate choices

of base points we find parabolic subgroups P and P ′ such that ZP and ZP ′ commute. However,
in general, it is not clear whether all edges of Calg arise in these two situations.

1.2. Blowing up subspaces

Definition of a manifold with faces. A topological n-manifold with boundary is a smooth
manifold with corners if it is locally differentiably modeled on open sets in [0,∞)n. Suppose that
X is an n-manifold with corners. If a point x ∈ X has local coordinates (x1, . . . , xn) ∈ [0,∞)n,
then denote by c(x) the number of indices i such that xi = 0. (This number is independent
of the choice of local coordinates.) A “stratum” of X of codimension k means a connected
component of {x ∈ X | c(x) = k}. So, a codimension-zero stratum of X is a component of the
interior X − ∂X and ∂X is the union of the strata of X of codimension � 1. A point x ∈ X lies
in the closures of at most c(x) strata of codimension one. Call X a manifold with faces if each
point x ∈ X is in the closure of exactly c(x) codimension-one strata. When this is the case,
the closure of a codimension-k stratum is a face of X of codimension k. A face of X is itself
a manifold with faces. A covering space of a manifold with faces is naturally a manifold with
faces. A prototypical example of an n-manifold with faces is a n-dimensional simple convex
polytope P where a “face” of P has its usual meaning.

A closed subset Y ⊂ X is a submanifold with faces if the induced smooth structure on Y
is that of a manifold with corners (say, of dimension m) and if for any codimension-k face F
of X, Y intersects F transversely in a disjoint union of codimension-k faces of Y . It follows
that Y is itself an m-dimensional manifold with faces. In particular, taking k = 0 we see that
Y − ∂Y is an m-dimensional submanifold of X − ∂X.

Let V(X) denote the set of codimension-one faces of X. Consider the nerve N (= N (X))
of the cover of ∂X by the codimension-one faces of X. It is a simplicial complex with vertex
set V(X) where a (k − 1)-simplex α of N corresponds to a collection of k codimension-one
faces with nonempty intersection. Any such intersection is a disjoint union of codimension-k
faces. There is a related cell complex Δ(X) which differs from N in that it can have “multiple
simplices.” For example, if X has two codimension-one faces ∂0X and ∂1X and ∂0X ∩ ∂1X 	= ∅,
then N (X) consists of a single edge connecting 0 to 1; however, in Δ(X) there is an edge for
each component of the intersection. In general, the poset of faces in ∂X is anti-isomorphic to
the poset of cells in a cell complex Δ(X). The vertex set of Δ(X) is V(X) and each codimension
k face determines a (k − 1)-simplex in Δ(X). So, there is a natural map Δ(X) → N (X) whose
restriction to each simplex is a homeomorphism. However, since multiple simplices can have
the same vertex set, we see that Δ(X) is only a Δ-complex in the sense of [35].

Say that X has the connected intersection property if each intersection of codimension-one
faces is either empty or contains a single face. When this holds, the natural map Δ(X) → N (X)
is an isomorphism and so, Δ(X) is a simplicial complex. Note, however, that it might happen
that X has the connected intersection property, while a covering space Y does not. This is the
issue we shall be concerned with in Subsection 1.4.

Blowing up subspaces and submanifolds. In this paragraph we explain a method for
canonically “removing an open tubular neighborhood” of a submanifold Y in a manifold
M without mentioning the phrase “ε neighborhood.” The resulting manifold with boundary
M � Y is a bordification of M − Y called the blowup of M along Y . We consider some simple
examples of this process. First consider the case where M is a vector space V and Y is the zero
subspace 0. The sphere in V can be defined as the quotient space SV := (V − 0)/R+, where
the positive real numbers R+ act on V − 0 via scalar multiplication. Define the blowup V � 0
by

(V � 0) := (V − 0) ×R+ [0,∞) ∼= SV × [0,∞).
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Note that ∂(V � 0) = SV × 0. A slight generalization is the case where M = V and Y = E is
a linear subspace of V . Then V − E = E × (V/E − 0) and

(V � E) := E × {(V/E − 0) ×R+ [0,∞)} = E × S(V/E) × [0,∞). (1.6)

There is another approach to the definition of the blowup V � E, which we shall generalize in
the next subsection. Define a map ρ : V − E → V × S(V/E) as follows. The first component of
ρ is the inclusion V − E ↪→ V . Its second component is the composition of projections V − E →
(V/E) − (E/E) → S(V/E). One sees that the closure of the image of ρ can be identified with
the blowup, that is,

V � E ∼= Im ρ. (1.7)

Essentially, the blowup V � E is the only case with which we need be concerned; however, there
are some slightly more general situations. If N is a vector bundle over a smooth manifold Y ,
then its sphere bundle SN is defined by SN = (N − Y )/R+, where R+ acts on the complement
of the 0-section N − Y via fiberwise scalar multiplication. The cylinder bundle CN is then
defined by

CN := (N − Y ) ×R+ [0,∞) = SN × [0,∞).

Thus, N � Y := CN is a bordification of N − Y . In general, suppose that Y is a smooth
submanifold of a manifold M and that N is its normal bundle. Our discussion follows [37] or
[15]. By a tubular map we mean a diffeomorphism T : N → M onto an open neighborhood of
Y such that (1) the restriction of T to the 0-section is the inclusion and (2) at any y ∈ Y , under
the natural identification TyN = TyM , the differential of T is the identity map. A tubular map
T induces a function T ′ : CN → (M − Y ) 
 SN and there is a unique structure of a smooth
manifold with boundary on (M − Y ) 
 SN which agrees with the original structure on M − Y
so that T ′ takes CN onto a collared neighborhood of SN . We denote this manifold with
boundary, M � Y , and call it the blowup of M along Y . It is diffeomorphic to a complement
of an open tubular neighborhood of Y in M . Note that ∂(M � Y ) = SN .

Finally, suppose that Y is a submanifold with faces of a manifold with faces X. Then the
previous paragraph goes through mutatis mutandis. First, there is a normal vector bundle N
over Y such that for any face F of X, the restriction N |Y ∩F is the normal bundle of Y ∩ F in F .
As before, we get a new manifold with faces X � Y that has acquired a new codimension-one
face, namely, SN . Moreover, each face F of X with F ∩ Y 	= ∅ has a bordification F � (Y ∩ F )
that also has acquired a new codimension-one face, namely, SN |Y ∩F . Thus, F � (Y ∩ F ) is
a submanifold with faces of X � Y . This generality will allow us, in the next subsection, to
iterate the blowing up procedure to certain sequences of submanifolds.

1.3. Attaching a boundary to the complement of a hyperplane arrangement

Our goal in this subsection is to construct a bordification of M(A), where, as usual, M(A) is
the complement of an arrangement A of linear hyperplanes in a complex vector space V . The
idea is to blow up the subspaces belonging to some subset S of Q(A). In order for the result
to be a manifold with faces, this subset S must be a “building set” as defined in [25], [21],
or [29]. One of the main requirements for a subset to be a building set is that it contains all
the irreducible elements in Q(A). One possible choice is to take the building set to be all of
Q(A). Another possible choice is to take the building set to be I(0)(A), the set of irreducibles
in Q(A). This second choice is the one we make throughout this paper.

Method 1: The closure of an embedding. This method is the easiest to define. Its
disadvantage is that it is not so clear that it actually results in a smooth manifold with corners.



12 MICHAEL W. DAVIS AND JINGYIN HUANG

The simplest definition of the blowup is similar to one in [25, p. 461], see also [32]. Let S be
a collection of linear subspaces of V . Consider the embedding

ρ : V −
( ⋃

E∈S
E

)
→ V ×

∏
E∈S

S(V/E),

where the first component of ρ is the inclusion and the component in S(V/E) is the
natural projection (which is defined since V − E ⊂ V − (

⋃
E∈S E)). Note that if S contains

all hyperplanes H ∈ A, Then the domain of ρ is M(A). In a similar fashion, one can define

ρS : SV −
( ⋃

E∈S
SE

)
→ SV ×

∏
E∈S

S(V/E).

Definition 1.15. As in (1.7), define V � S (respectively, SV � S) to be the closure of the
image of ρ (respectively, ρS). If S = I(0), we write simply V� (respectively, SV�) instead of
V � S (respectively, SV � S).

Remark 1.16. In [25] De Concini and Procesi use complex projective spaces P(V/E) rather
than spheres S(V/E) so that M(A) is partially compactified by adding a divisor with normal
crossings to M(A) rather than a boundary.

Now we introduce the notion of building set, cf. [32, Definition 2.1], which goes back to [25].
Let Q(S) be the collection of subspaces of V formed by intersection of elements of S. In this
paper we will be only interested in the case when Q(S) = Q(A) (that is, S is a subset of Q(A)
which contains all the hyperplanes in A). For subspaces F, F ′ ∈ Q(A), put

SF := {E ∈ S | F � E},
SF := {F ∩B | B ∈ S − SF },
SF
F ′ := {B ∩ F | B ∈ SF ′ − (SF ′ ∩ SF )}.

Choose an inner product on V . Then for any F ∈ Q(A) we can identify with its orthogonal
complement F⊥ with V/F . The set S is a building set if for any E ∈ Q(A), we have a
decomposition

E = E1 ∩ · · · ∩ Ek and AV/E
∼=

k⊕
i=1

AV/Ei
.

where E1, . . . , Ek are the minimal elements of SF (with respect to the partial order on Q(A)).
It follows that any building set S must contain the set of irreducibles I(0). It also follows that
I(0) is a building set.

The following lemma is an immediate consequence of the definition.

Lemma 1.17. Suppose that S is a building set. For each E ∈ Q(A), both SE and SE⊥
E are

buildings sets (with respect to Q(AE) and Q(AV/E), respectively).

Theorem 1.18 (Gaiffi [32, Theorem 4.5]). Suppose that S is a building set. Then V � S
(respectively, SV � S) are smooth manifolds with faces. In particular, when S = I(0), this
applies to V� and SV�.
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By Theorem 1.18 and Lemma 1.17, the blowups S(V/E) � SE⊥
E , (SE) � SE , and E � SE

are smooth manifolds with faces. Before describing the faces of SV� in detail, we consider an
example which might clarify the picture.

Example 1.19 (Line arrangements in CP 2). Suppose that A is an irreducible arrangement
in a 3-dimensional vector space V and that we plan to blow up SV along the building set
of irreducibles to get a 5-manifold with corners SV�. Projectivizing A we get a projective
arrangement PA of lines in the 2-dimensional projective space PV . Take the corresponding
blowup of PV to get a 4-manifold with corners Z = PV�. Since SV� = S1 × Z, it suffices to
decribe Z. There are two types of irreducible subspace in Q(PA): (a) lines (that is, projective
hyperplanes in PA and (b) intersection points where at least 3 lines intersect. (A double point
corresponds to a reducible subspace.) In either case, the corresponding codimension-one face
of Z is the product of S1 and a surface with boundary of genus 0 (that is, a 2-sphere with
holes). These are glued together along the codimension-two faces (= boundary tori). Hence,
∂Z is a graph manifold. The JSJ-decomposition of ∂Z corresponds to the decomposition of
∂Z into its codimension-one faces. Hence, ∂(SV�) is the product of S1 with a 3-dimensional
graph manifold.

Next we describe the strata of V � S for a building set S. Its codimension-zero stratum
is M(A). Each element E ∈ S gives rise to a codimension-one stratum of V � S as follows.
Let p : V � S → V (respectively, pS : SV� → SV ) be the projection to the first factor in the
definition of ρ (respectively, ρS). Define

∂E(V � S) := p−1(E −
⋃

F∈SE

F ) ,

and

∂E(SV � S) := p−1
S (SE −

⋃
F∈SE

SF ) .

Proposition 1.20 (Gaiffi [32, Theorem 5.1]). For any E in the building set S there are

diffeomorphisms, ∂E(V � S) ∼= (S(V/E) � SE⊥
E ) × (E � SE) and ∂E(SV � S) ∼= (S(V/E) �

SE⊥
E ) × (SE � SE).

The diffeomorphism arises as follows. Let K1 be the interior of E � SE and K2 be the interior
of S(V/E) � SE⊥

E . By considering small line segments emanating from K1, orthogonal to E
and going in the direction of K2, we clearly see a copy of K2 ×K1 in V�. The closure of this
set gives ∂EV � S.

From now on we will only be interested in the case where S = I(0), the collection of irreducible
elements in Q(A). For any F ∈ Q(A), define F� to be F � SF and S(V/F )� to be S(V/F ) �
(SF⊥

F ). It is shown in [32, Section 5] that {∂EV�} is the set of codimension-one strata of
V�; moreover, the union is ∂V�. By Proposition 1.20, ∂EV� is connected, and hence, is a
codimension-one face of V�.

Next we describe intersections of codimension-one faces that give rise to faces of higher
codimension. Let α be a subset of I(0). Define

∂αV� :=
⋂
E∈α

∂EV� , ∂αSV� :=
⋂
E∈α

∂ESV�.

Let Kα be the forest as in Definition 1.6. For E ∈ Vertα, let {E0, E1, . . . , Ek} be vertices of Kα

in the next level. Set Ê =
⋂k

i=0 Ei (if there are no vertices in the next level, then Ê = V ). As
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E is irreducible, E � Ê. Define S(Ê/E)� to be S(Ê/E) � SÊ∩E⊥
E . Let Eα be the intersection

of subspaces of V arising from vertices of α at level 0. Define (Eα)� to be Eα � (SEα).
Suppose that α is nested. By Lemma 1.17, for each E ∈ Vertα, SÊ∩E⊥

E is a building set and
S∩α(0) is a building set. Hence, S(Ê/E)� and (Eα)� are smooth manifolds with faces.

Theorem 1.21 (Gaiffi [32, Theorems 5.2 and 5.3]). The intersection ∂αV� is nonempty if
and only if α is nested. Moreover, there are diffeomorphisms of smooth manifolds with faces:
∂αV� ∼= (Eα)� ×∏

E∈α S(Ê/E)� and ∂αSV� ∼= S(Eα)� ×∏
E∈α S(Ê/E)�.

Now we explain the diffeomorphism in Theorem 1.21 in the case of |α| = 2, general cases
are similar [32]. Suppose α = {E,F} is nested. First case to consider is that E ⊂ F or F ⊂ E
(assume the former). Use the inner product on V , we have the identification V = E ⊕ (F/E) ⊕
(V/F ). Let SM(SF∩E⊥

E ) denotes the interior of S(F/E) � SF∩E⊥
E . Let x1, x2, x3 be elements

in M(SE), SM(SF∩E⊥
E ), and SM(SF⊥

F ), respectively. Consider the curve in V represented by
t → x1 + tx2 + t2x3, where we think x2 (respectively, x3) as a unit vector in F/E (respectively,
V/F ). When t is small enough, this curve is in M(A), and as t → 0+, we obtain a point in
∂(V � S). This gives a injective map

M(SE) × SM(SF∩E⊥
E ) × SM(SF⊥

F ) → ∂(V � S).

The closure of the image of this map turns out to be ∂E(V � S) ∩ ∂F (V � S) [32]. The
second case is that E � F and F � E. Let U = E ∩ F . Then AV/U

∼= AV/E ⊕AV/F . The
inner product of V induces V = U ⊕ E⊥ ⊕ F⊥ = U ⊕ (V/E) ⊕ (V/F ). Consider the curve in V

represented by t → x1 + tx2 + tx3, where x1 ∈ M(SU ), x2 ∈ SM(SE⊥
E ), and x3 ∈ SM(SF⊥

F ),
which gives a map

M(SU ) × SM(SE⊥
E ) × SM(SF⊥

F ) → ∂(V � S) .

The closure of the image of this map is ∂E(V � S) ∩ ∂F (V � S).
We summarize part of the above discussion as follows.

Lemma 1.22. For each E in the building set S, the arrangement of subspaces SE⊥
E ⊕ SE in

Q(AV/E ⊕AE) is also a building set. The face ∂E(V � S) can be naturally identified with a

codimension-one face of ((V/E) ⊕ E) � (SE⊥
E ⊕ SE). For a nested subset {E,F} of S, ∂E(V �

S) ∩ ∂F (V � S) can be identified as a codimension two face of ((V/E) ⊕ E) � (SE⊥
E ⊕ SE).

Method 2: Iterated blowups. We now describe an alternative definition of V�. Linearly
order the elements of I(0): E1, . . . , Ep in some fashion compatible with the partial order (here
p = Card I(0)). In other words, Ei < Ej ⇒ i < j. The idea is to blow up V along the Ei in
succession. We shall inductively define a sequence of manifolds with faces:

V = V�(1) , V�(2) , . . . , V�(p) = V�,

where, roughly speaking, V�(k) is obtained by blowing up V�(k − 1) along Ek. More precisely,
let Ek denote the closure of M(AEk) in V�(k − 1). (Since Ek has not yet been removed from
V�(k − 1), the restriction arrangement complement M(AEk) is a submanifold in the interior
of V�(k − 1).) By induction we can assume that Ek is a submanifold with faces of V�(k − 1).
Define V�(k) = V�(k − 1) � Ek, where the blowup along Ek is as defined in the final paragraph
of Subsection 1.2. The bordification of M(A) is the manifold with faces defined by

V� := V�(p).

The bordification is well-defined modulo the following two issues:
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(1) for each k, we need to verify that Ek is a submanifold with faces of V�(k − 1);
(2) choosing a different linear order on I(0) will result the same V� (up to diffeomorphism

between manifolds with corners).

We refer to [32, Sections 7–10] for the details of (1) and (2). The arguments rely on the fact
that I(0) is a building set. (As before, the results of [32] are proved in the more general setting
of blowing up along building sets.) For (2), it is shown in [32, Proposition 10.2] that the identity
map between the interior of the two blowups arising from different linear orders of I(0) extends
to a diffeomorphism of the blowups. One can use Method 2 to give an independent description of
Proposition 1.20 and Theorem 1.21 (see [32, Section 11]). We leave the equivalence of Methods
1 and 2 to the reader.

Remark 1.23 (Deleting tubular neighborhoods). Although Methods 1 and 2 might seem to
be complicated, the concept underlying both methods is simple. As explained in Subsection 1.2,
given a submanifold Y of a manifold M , the blowup M � Y is diffeomorphic to the complement
of an open tubular neighborhood of Y in M . In this subsection we have started with a more
complicated situation, a collection S of linear subspaces. Under either Methods 1 or 2 the
blowup is diffeomorphic to the complement of an open regular neighborhood of the union of
subspaces in S. One can try to remove the tubular neighborhoods directly, one at a time.
Although this method is the easiest to visualize, technical difficulties could be encountered.
For example, one needs to choose carefully radial functions on the normal bundles in order
to specify the size of tubular neighborhoods to be removed. Also, in order for the blowup to
be a well-defined manifold with corners, we need S to be a building set. The point is that
if a stratum is the transverse intersection of subspaces, then there is no reason to remove it
first: it will be deleted when we remove the tubular neighborhoods of the subspaces and since
their normal sphere bundles will intersect transversely, we will get a manifold with corners.
However, if the stratum is not a transverse intersection of subspaces, then we must remove
it first. This will have the effect that the intersections of various subspaces with the normal
sphere bundle of the stratum will be disjoint submanifolds. So, the elements of S that are not
transverse intersections must be blown up first. This is exactly what it means for S to be a
building set. Finally, one removes neighborhoods of the strata in the same order as was done
in Method 2. Our conclusion is that blowing up can be accomplished by the naive method of
removing tubular neighborhoods, provided that S is a building set.

Definition 1.24 (The compact core). Suppose that A has an irreducible decomposition
A = A1 × · · · × A� and corresponding vector space decomposition V = V1 ⊕ · · · ⊕ V�. Then
V� = (V1)� × · · · × (V�)� = [0,∞)� × S(V1)� × · · · × S(V�)� (cf. (1.5)). The compact core X
(or X(A)) of V� is defined by omitting the interval factors, that is,

X =
�∏

i=1

S(Vi)� .

If X◦ := M(A) ∩∏
S(Vi), then X is a bordification of X◦. So, X is homotopy equivalent

to V� (or to M(A)). The faces of S(Vi)� of codimension � 1 are indexed by the simplices of
I0(Ai) whose vertices are the nonzero irreducible subspaces in Vi. In general define I0(A) by

I0(A) ∼= I0(A1) ∗ · · · ∗ I0(A�).

Since X(A) =
∏�

i=1 X(Ai), the faces of X are indexed by I0(A). So, the face structure on X
reduces to the case where A is irreducible. When A is irreducible a codimension-one face of X
has the form ∂EX = SE� × S(V/E)�. When A has more than one factor, a codimension-one
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face of X has one factor of the form ∂EX(Ai) and the others are of the form X(Aj), with
j 	= i.

1.4. The curve complex

Let Y denote the universal cover of X and π : Y → X the covering projection. Then Y is a
manifold with faces. Each face of Y is a connected component of π−1(∂αX) for some α ∈ I0.

The goals in this subsection are (1) to describe the bordification Y of the universal cover of
X◦, (2) to give the definition of the topological curve complex Ctop associated to the manifold
with faces Y (cf. Definition 1.25 below), and (3) to describe some properties of Y which are
needed to insure that Ctop is naturally isomorphic to Calg in Definition 1.14.

As in Subsection 1.2, let N (X) be the nerve of the cover of ∂X by the set of its codimension-
one faces, that is, by {∂EX}E∈Vert I0 . By Theorem 1.21, the N (X) = I0. It also follows that X
has the connected intersection property (that is, each nonempty intersection of codimension-
one faces is connected). Hence, the Δ-complex Δ(X) is also equal to the simplicial complex
I0.

Definition 1.25. The topological curve complex Ctop (= Ctop(A)) is the Δ-complex Δ(Y )
as in Subsection 1.2. In other words, a (k − 1)-simplex in Ctop corresponds to a codimension-k
face of Y .

Each vertex of Ctop has a well-defined type, which is a subspace in I(0).
We have ∂EX = SE� × S(V/E)�. By Lemma 1.9, the composition of inclusions S(V/E)� ↪→

∂EX ↪→ X is π1-injective and the image of π1(S(V/E)� in G (= π1(X)) is an irreducible
parabolic subgroup of type E. The composition of inclusions SE� ↪→ ∂EX ↪→ X induces a
homomorphism π1(SE�) → G.

Properties A, B, C, and D. Next we introduce four group theoretic properties that can be
used to guarantee that Ctop and Calg are isomorphic. These properties will be proved later for
complexifications of real simpliciial arrangements, although we expect the properties to hold
in greater generality.

Property A. For each E ∈ Q(A), the inclusion SE� ↪→ SE� × S(V/E)� = ∂EX ↪→ X is
π1-injective.

By Theorem 1.21, each face ∂αX is a product of blown up spheres S(E′/E)� in subnormal
arrangements. By Lemma 1.9, S(E′/E)� ↪→ S(E′)� is a retract, and hence, is π1-injective.
Property A states that S(E′)� ↪→ X is π1-injective. So, π1(S(E′/E)�) → π1(X), being the
composition of two injections, also is injective. Therefore, Property A implies the following.

Property A
′
. For each α ∈ I0, the inclusion ∂αX ↪→ X is π1-injective.

Property B. For each simplex α of I0, we have

π1(∂αX,x) =
⋂

v∈Vertα

π1(∂vX,x)

for a base point x ∈ ∂αX.

Property B
′
. Suppose that {∂vY } is a collection of codimension-one faces of Y such that

the intersection of any subcollection is nonempty. Then {∂vY } has the connected intersection
property (see Subsection 1.2).
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The fibration of S(V/E) by S1 naturally extends to a fibration of S(V/E)� by S1, which
we will call the Hopf fibration of S(V/E)�. For any base point p ∈ S(V/E)�, π1(S(V/E)�, p)
gives a parabolic subgroup P of G (cf. Definition 1.11) and the Hopf fiber passing through p
represents the central Z-subgroup ZP .

Property C. For each E ∈ I(0) and a basepoint p ∈ ∂EX, the image of π1(∂EX, p) in
π1(X, p) = G is equal to the normalizer of ZE in G where ZE is represented by the Hopf fiber
of S(V/E)� passing through p.

Before we formulate the next property, we record the following lemma, which is a
straightforward consequence of the relevant definitions.

Lemma 1.26. Let α be a simplex of I0. Take p ∈ ∂αX. For each E ∈ Vertα, consider the
Hopf fiber for each S(V/E)� passing through p. This gives rise to a collection of mutually
commuting Z-subgroups in G (and hence, a free abelian subgroup of rank = dimα + 1).

Property D. For k � 2 and for any collection {L1, L2, . . . , Lk} of k commuting Z-
subgroups such that each of Li is the central Z- subgroup of some parabolic subgroup of
G, there exists g ∈ G so that g{L1, L2, . . . , Lk}g−1 arises from a simplex of I0 as described in
Lemma 1.26.

Proposition 1.27. Suppose that A is an essential complex arrangement in an n-
dimensional complex vector space. Suppose that A satisfies properties A, B, C, and D. Then
the following statements are true.

(1) Ctop is naturally isomorphic to Calg.
(2) The action of fundamental group on C = Ctop = Calg has no inversions (that is, the

pointwise stabilizer of each simplex equal to its setwise stabilizer), and the quotient complex
is naturally isomorphic to the complex I0 of irreducible subspaces.

(3) If ∂αX is aspherical for each simplex α of I0, then C has the same homology as a wedge
of spheres of dimension n− k − 1, where k is the number of irreducible components of A.

(4) If dim C � 1, then C is homotopy equivalent to a wedge of spheres. If dim C > 1 and if C
is simply connected, then C is homotopic to a wedge of spheres.

Proof. First we define a map f : C(0)
top → C(0)

alg . Each vertex v of C(0)
top corresponds to a face

∂vX̃ with a product decomposition

∂vX̃ ∼= S̃E� × ˜S(V/E)�,

where E is the type of v. The setwise stabilizer of each ˜S(V/E)� fiber is the same, namely, a
parabolic subgroup of G and f(v) is defined to be the center of this parabolic subgroup. As
this parabolic subgroup cannot correspond to an irreducible factor of A, we know that f(v)
gives a vertex in C(0)

alg . Note that f is surjective, G-equivariant, and type preserving. Suppose for
vertices v1 and v2 we have f(v1) = f(v2). Then v1 and v2 have the same type. Thus there exists
g ∈ G such that g∂v1X̃ = ∂v2X̃. Suppose that Zv1 is the Z-subgroup associated with f(v1). As
f is G-equivariant, g normalizes Zv1 . By Property C, g stabilizes ∂v1X̃. Thus, v1 = v2 and
f is injective. For two adjacent vertices v1 and v2 in Ctop, we have ∂v1X̃ ∩ ∂v2X̃ 	= ∅. So,
∂E1X ∩ ∂E2X 	= ∅ where Ei is the type of vi. By Theorem 1.21, {E1, E2} is a nested set. By
Lemma 1.26, f(v1) and f(v2) commute. So, if a collection of vertices of Ctop spans a simplex,
then their f -images span a simplex. By Property D, the converse of this statement also holds.
So to show that f extends to an isomorphism from Ctop to Calg, it suffices to prove that Ctop is
a simplicial complex. Equivalently, we need to prove if {vi}ki=1 is a collection of vertices of Ctop
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spanning a simplex, then
⋂k

i=1 ∂vi
X is connected. The case k = 2 follows from Properties A′

and B and Lemma 1.29 below. We can use Property B to reduce the general case to the case
k = 2 by noticing that

⋂k
i=1 ∂vi

X = (
⋂k−1

i=1 ∂vi
X) ∩ (

⋂k
i=2 ∂vi

X). This finishes the proof of the
first assertion.

For (2), as the action of G on Calg is type preserving, and different vertices in a simplex have
different types, the action does not have inversions. As Ctop = Δ(X̃) and the (k − 1)-simplices
of Δ(X̃) are in one-to-one correspondence with codimension-f faces of X̃, we know that the
G-orbits of simplices in Ctop are in one-to-one correspondence with the simplices of I0. This
proves (2).

In order to prove (3) we begin with the fact that M(A) is homotopy equivalent to a CW
complex of dimension n. It is proved in [20] that for any A that is essential and central,
H∗(M(A); ZG) is concentrated in degree n and it is a free abelian group in that degree. (This
is a generalization a result of Squier [54], where this is proved in the case of the complexification
of a reflection arrangement.) Since M(A) is homotopy equivalent to the compact space X, we
have H∗(X; ZG) ∼= H∗

c (X̃). Since each face of ∂X̃ is contractible and since C is the nerve
of covering of ∂X̃ by its codimension-one faces, ∂X̃ is homotopy equivalent to C. Note that
dim C = dim I0 = n− k − 1 since I0 is the join of k factors of the form I0(Ai). Since (X̃, ∂X̃)
is a manifold with boundary of dimension 2n− k, Poincaré duality gives:

H∗
c (X̃) ∼= H2n−k−∗(X̃, ∂X̃)

∼= H̃2n−k−∗−1(∂X̃) ∼= H̃2n−k−∗−1(C),

where the second equation holds since X̃ is contractible. Since H∗
c (X̃) is concentrated in degree

n, H∗(X̃, ∂X̃) is concentrated in degree n− k, and hence, H̃∗(C) is concentrated in degree
n− k − 1 (= dim C). This proves (3). Equation (4) follows immediately from (3). �

Remark 1.28. Suppose that A satisfies properties A, B, C, and D. When dim Ctop > 1,
the condition that C is simply connected is equivalent to the condition that the map ∂X → X
induces an isomorphism on the fundamental groups. However, this is always true. Since ∂X is
homeomorphic to the boundary M of a closed regular neighborhood (cf. [28]) of SV ∩⋃

H∈A H
in SV and since M → SV ∩M(A) induces isomorphism on the fundamental group whenever
V is irreducible and dimV � 4 (see [27, Proposition 5.2.31]). So, in Proposition 1.27(4) we can
drop, the assumption C is simply connected.

Lemma 1.29. Suppose B = B0 ∪B1, where B, B0, B1, and C = B0 ∩B1 are path
connected. Take base point x0 ∈ C. Let h : π1(B, x0) → G be a homomorphism to some group
G such that

(1) for i = 0, 1, π1(Bi, x0) → π1(B, x0) → G is injective (denote the image of π1(Bi, x0) in
G by Gi) and π1(C, x0) → π1(B, x0) → G is injective (denote the image in G by H),

(2) G0 ∩G1 = H.

Let π : B̃ → B be a regular covering space with group of deck transformations Imh. Then if
C ′ is a component of π−1(C) and if B′

i is a component of π−1(Bi) that contains C ′, then
B′

0 ∩B′
1 = C ′.

Proof. Assume G = Imh for simplicity. Suppose that B′
0 ∩B′

1 contain a connected compo-
nent C ′′ which is different from C ′. Let x′ ∈ C ′ and x′′ ∈ C ′′ be lift of x0 ∈ C. For i = 1, 2,
let ωi be a path from x′ to x′′ inside B′

i. Let gi ∈ Hi be the element represented by π(ωi). As
ω0ω

−1
1 is a loop in B̃, g0g

−1 represents the trivial element in G. So, g0 = g1. By condition (2),
g0 ∈ H, which contradicts that C ′ 	= C ′′. The lemma follows. �
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Admissible families of arrangements.

Definition 1.30. Let C be a collection of complex hyperplane arrangements. We say that
C is admissible if the following conditions hold.

(1) if A ∈ C is an arrangement in vector space V and E ∈ Q(A), then AV/E ∈ C and AE ∈ C;
(2) if A1,A2 ∈ C, then A1 ⊕A2 ∈ C.

For example, the collection of all complex hyperplane arrangements that are complexi-
fications of simplicial real arrangements is admissible [26]. The collection of supersolvable
arrangements is also admissible (see [14, Section 2] for a summary).

Proposition 1.31. Suppose that C is an admissible collection of complex hyperplane
arrangements. Suppose that each element in C satisfies Properties A, C, and D. Then the
following statements are true.

(1) Suppose A ∈ C. Then the stabilizer of each simplex in Calg is isomorphic to π1(M(A′))
for some A′ ∈ C.

(2) Each element of C satisfies properties A, B, C, and D.

Proof. We prove (1). Suppose that the simplex has vertex set {vi}ki=1. Let Zi be the central
Z-subgroup of the parabolic subgroup associated with vi of type Ei. By Property D, {Ei}ki=1

is a nested subset. Let Hi be the stabilizer of vi. Then Hi = NG(Zi) = CG(Zi) by property
C. Suppose that E1 does not properly contain any other Ei. There is a natural map f :
G1 := π1(M(AV/E1 ⊕AE1)) → H1, which is an isomorphism by Properties A and C. Note
that

⋂k
i=1 CG(Zi) =

⋂k
i=2 CH1(Zi). It follows from Property D that if E1 ⊂ Ei, then f−1(Zi)

is a central Z-subgroup of a parabolic subgroup in π1(M(AV/E1)) that is irreducible. The case
AV/(E1∩Ei)

∼= AV/E1 ⊕AV/Ei
is similar, where f−1(Zi) is a central Z-subgroup of an irreducible

parabolic subgroup in π1(M(AE1)). Thus, we are reduced to the stabilizer of a simplex with
k − 1 vertices in the curve complex for AV/E1 ⊕AE1 . The arrangement AV/E1 ⊕AE1 is in
C. So we are done by induction. Next we prove (2). We use the same notation as before. By
Lemma 1.22 and Properties A and C for AV/E1 ⊕AE1 , the inclusion ∂E1X ∩ ∂Ei

X → ∂E1X
induces injective map on fundamental groups and its π1-image is CH1(Zi). The case k = 2
follows. The more general case can be proved by induction as in (1). �

2. Zonotopes, Salvetti complexes, and Deligne groupoids

This section deals with some complexes associated to a real, simplicial arrangement of
hyperplanes. So, A denotes an essential, central arrangement of hyperplanes in a real vector
space A.

2.1. Real arrangements and their dual zonotopes

The hyperplanes in A cut A into a collection of convex polyhedral cones, called the fan of A,
denoted by Fan(A). The intersection of these polyhedral cones with the sphere SA defines a
cellulation of SA by totally geodesic spherical polytopes. This gives rise SA to a piecewise
linear cellulation of SA, and we denote the associated cell complex by ∂ Fan(A). We define the
dual zonotope of A, denoted by Z(A), to be SA with the cell structure dual to ∂ Fan(A). The
real arrangement is simplicial if ∂ Fan(A) is a simplicial complex.

Example 2.1. If A is the braid arrangement corresponding to the action of the symmetric
group Sn+1 on A = Rn, then ∂ Fan(A) is the Coxeter complex and Z(A) is the permutohedron.
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We denote the barycentric subdivision of Z(A) by bZ(A), which is a simplicial complex (the
“b” indicates “barycentric subdivision”). Note that bZ(A) and b∂ Fan(A) can be naturally
identified. One can realize Z(A) as a convex polytope in the dual space A∗ of A. However, in
this paper, we would like to embed Z(A) (and bZ(A)) as a (not necessarily convex) piecewise
linear subset of A as follows.

For each cone U ∈ Fan(A), choose a point xU in the relative interior of U . The partial order
on Fan(A) is defined by U1 < U2 if U1 is contained in the closure of U2 and in this case, we also
write xU1 < xU2 . Each chain xU1 < xU2 < · · · < xUk

determines a simplex in A with vertex set
{xUi

}ki=1. This defines an embedding of the simplicial complex bZ(A) as a subset of A. The
simplices of bZ(A) can be assembled into cells in two different ways to obtain the cell structure
on ∂ Fan(A) and Z(A). The faces of the zonotope Z(A) are in one-to-one correspondence with
vertices of bZ(A). We identify the face of Z(A) associated with vertex xU ∈ bZ(A) with the
union of all simplices of bZ(A) corresponding to chains whose smallest element is xU . In this
way each vertex of bZ(A) can also be regarded as the barycenter of a face of Z(A).

Suppose that B is a subspace in Q(A). A face F of Z(A) is dual to B if F ∩B = {bF },
where bF denotes the barycenter of F . It follows that F is isomorphic to the zonotope dual to
the real arrangement AA/B. Note that Fan(AB) ⊂ Fan(A). So, our previous choices of the xUi

yield an embedding bZ(AB) → B. Therefore, we can treat bZ(AB) as a subcomplex of bZ(A),
that is, bZ(AB) = bZ(A) ∩B.

Two faces F1 and F2 of Z(A) are parallel if they are dual to the same subspace in Q(A):
we write F1 ‖ F2. When Z(A) is realized as a convex polytope in A∗ dual to Fan(A), then F1

and F2 actually are parallel faces of Z(A). Parallel classes of faces of Z(A) are in one-to-one
correspondence with subspaces of Q(A). For example, the duals to a hyperplane in A form a
parallel class of edges in Z(A).

Given two faces F1 and F2 of Z(A) both dual to B ∈ Q(A), define p : VertF1 → VertF2 as
follows. Let AB be the collection of hyperplanes of A containing B. For x ∈ VertF1, define p(x)
to be the unique vertex in F2 such that x and p(x) are not separated by any hyperplanes in
AB . The map p is called parallel translation. (When F1 and F2 are regarded as actual parallel
faces of the zonotope Z(A), the map p is the restriction of the parallel translation taking F1

to F2.)
Define F1 to be orthogonal to F2, denoted by F1 ⊥ F2, if there is another face F of Z(A)

containing F1 and F2 such that F ∼= F1 × F2 (and consequently, F1 ∩ F2 will be a vertex). Note
that F1 ⊥ F2 if and only if AA/B1 ×AA/B2 = AA/(B1∩B2) where Bi is the subspace dual to Fi.

The 1-skeleton of Z(A) is endowed with a path metric d such that each edge has length 1.
Given x, y ∈ VertZ(A), it turns out that d(x, y) is the number of hyperplanes separating x
and y (cf. [26, Lemma 1.3]). In the next lemma we collect some basic facts which will be used
in Sections 3 and 5.

Lemma 2.2. Let x be a vertex in Z(A) and F be a face of Z(A).

(1) There exists a unique vertex xF ∈ F such that d(x, xF ) � d(x, y) for any vertex y ∈ F .
The vertex xF is called the projection of x to F , and is denoted by ProjF (x).

(2) For any vertex y ∈ F , there exists a shortest edge path ω in the 1-skeleton of Z(A) from
x to y so that ω passes through xF and so that the segment of ω between xF and y is contained
in F .

(3) Let HF be the collection of hyperplanes in A dual to some edge of F . Then xF can be
characterized as the unique vertex in F such that no element in HF separates x from xF .

(4) Let F ′ be another face parallel to F and let p : F ′ → F be parallel translation. Let
y ∈ F ′. Then ProjF (y) = p(y).

Statements (1) and (2) are proved in [49, Lemma 3]. Statements (3) and (4) follow
immediately from (1) and(2).
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Lemma 2.3. Suppose that A is finite, central, simplicial arrangement. Then the following
statements are true.

(1) Given edges e1, . . . , ek of Z(A) sharing a vertex x, let F be the smallest face of Z(A)
containing each ei. Then any edge of F containing x has to be one of the ei. This F is called
the face spanned by {ei}ki=1.

(2) Let F ⊂ Z(A) be a face containing a given vertex x. Let {e1, . . . , el} ⊂ Z(A) be a set of
distinct edges that contain x but do not lie in F . Then there is a unique face F ′ ⊂ Z(A)
containing F and {e1, . . . , el} such that dim(F ′) = dim(F ) + l. This F ′ is called the face
spanned by F and {e1, . . . , el}.

This lemma follows immediately from the fact that the link of each vertex of Z(A) is a
simplex (since A is simplicial). Also, with regard to assertion (2), suppose that {e′i}ki=1 is the
set of edges of F that contain x. Then F ′ is the face spanned by {e′1, . . . , e′k, e1, . . . , el}.

Remark 2.4. Suppose that A is finite, central, and simplicial. Let E ∈ Q(A) be a subspace.
Then both AE and AV/E are simplicial, cf. [14, Lemma 2.17].

2.2. The Salvetti complex

Suppose that A is a real arrangement in a vector space A (∼= Rn) and that Z (= Z(A)) is the
dual zonotope. Consider the set of pairs (F, v) ∈ P(Z) × VertZ. Define an equivalence relation
∼ on this set by

(F, v) ∼ (F, v′) ⇐⇒ F = F ′ and ProjF (v′) = ProjF (v).

Denote the equivalence class of (F, v′) by [F, v′] and let E(A) be the set of equivalence classes.
Note that each equivalence class [F, v′] contains a unique representative of the form (F, v), with
v ∈ VertF . The partial order on P(Z) induces a partial order on E(A). In [49] the Salvetti
complex Sal(A) of A is defined as the regular CW complex given by taking Z × VertZ (that
is, a disjoint union of copies of Z) and then identifying faces F × v and F × v′ whenever
[F, v] = [F, v′], that is,

Sal(A) = (Z × VertZ)/ ∼ . (2.1)

For example, for each edge F ∈ EdgeZ Z(1) with endpoints v0 and v1, we get two 1-cells [F, v0]
and [F, v1] of Sal(A) glued together along their endpoints [v0, v0] and [v1, v1]. So, the 0-skeleton
of Sal(A) is equal to the 0-skeleton of Z, while its 1-skeleton is formed from the 1-skeleton of
Z by doubling each edge.

Since Sal(A) is a union of cells of the form (Z(A), v) with v ranging over vertices of Z(A),
there is a natural map Sal(A) → Z(A) defined by ignoring the second coordinate. A standard
subcomplex of Sal(A) is the inverse image of a face of Z(A) under this map. A standard
subcomplex is proper if it is associated with a positive dimensional proper face of Z(A), that
is, a face which is neither a vertex nor the entire zonotope Z(A).

Remark 2.5. Each edge of Sal(A) has a natural orientation, namely, if F = {v0, v1} is an
edge of Z, then [F, v0] is oriented so that [v0, v0] is its initial vertex and [v1, v1] is its terminal
vertex. An edge path in the Sal(A) is positive if each of its edges is positively oriented. (Positive
paths are related to the Deligne groupoid defined in Section 2.3 below.)

For example, if Z(A) is a hexagon, then Sal(A) is a CW complex with six vertices, twelve
edges and six 2-cells.

There is a natural projection π : Sal(A) → Z(A).
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The main property of Sal(A) is that it has the homotopy type of the complement of the
complexified arrangement A⊗ C.

We write a simplex in the barycentric subdivision bSal(A) of Sal(A) as a pair (Δ, v), where
Δ is a simplex of bZ(A) and v is a vertex of Z(A).

Remark 2.6. Suppose Δ = [bF0 , bF1 , . . . , bFk
] where each Fi is a face of Z(A) and bFi

is the barycenter of Fi. We assume Fk ⊂ Fk−1 ⊂ · · · ⊂ F0. Let v1 and v2 be two vertices of
Z(A). Note that if ProjFi

(v1) = ProjFi
(v2), then ProjFj

(v1) = ProjFj
(v2) for any j < i. Then

(Δ, v1) ∩ (Δ, v2) = (Δ′, v), where Δ′ = [bF0 , bF1 , . . . , bFm
] where m � k is the largest possible

number such that ProjFm
(v1) = ProjFm

(v2) and v = ProjFm
(v2). (If ProjF0

(v1) 	= ProjF0
(v2),

then (Δ, v1) ∩ (Δ, v2) = ∅.)

2.3. The Deligne groupoid

We recall the definition of the “Deligne groupoid” from [26, 47]. A chamber of A is a connected
component of A− (

⋃
H∈A H). In other words, a chamber is the interior of a top-dimensional

cone in Fan(A). Two chambers C and D are adjacent if there exists exactly one hyperplane in
A separating C from D. The chambers of A are in bijective correspondence with the vertices of
Z(A) and two chambers are adjacent if there is an edge of Z(A) connecting the corresponding
vertices. Let Γ(A) be the directed graph whose vertices are the chambers, and whose arrows are
pairs (C,D) of adjacent chambers ((C,D) and (D,C) are distinct oriented edges). Then Γ(A)
can be identified with the 1-skeleton of the Salvetti complex Sal(A) with edge orientations as
in Remark 2.5. We identify the vertices of Γ(A) with the vertices of Z(A). (A vertex of Γ(A)
is identified with the vertex [v, v] of Sal(A), and then with the vertex v of Z(A).) So, there is
a natural map π : Γ(A) → Z(A) whose image is the 1-skeleton of Z(A). (We think of Γ(A) as
the “doubled 1-skeleton of Z(A)”). Given an edge e of Γ(A), write ē for π(e).

Let E(Γ) be the collection of edges of Γ(A). Since the edges of Γ(A) are directed, each
element a ∈ E(Γ) has a source, denoted by s(a), and a target, denoted by t(a). Introduce a
formal inverse of a, denoted as a−1. It can be thought as traveling the same edge but in the
opposite direction. Thus, t(a−1) = s(a) and s(a−1) = t(a).

A path of Γ is an expression g = aε11 aε22 · · · aεnn where ai ∈ E(Γ), εi ∈ {±1}, and t(aεii ) =
s(aεi+1

i+1 ). Define s(g) = s(aε11 ) and t(g) = t(aεnn ). The length of g is n. A vertex is a path of
length 0. The path g is positive if εi = 1 for each 1 � i � n. The path g is minimal if any path
from s(g) to t(g) has length � n.

Let ∼ be the smallest equivalence relation on the set of paths such that

(a) ff−1 ∼ s(f) for any path f ;
(b) if f ∼ g, then f−1 ∼ g−1;
(c) if f ∼ g, and h1 is a path with t(h1) = s(f) = s(g), and h2 is a path with s(h2) = t(g) =

t(g), then h1fh2 ∼ h1gh2;
(d) if f and g are both minimal positive paths with s(f) = s(g) and t(f) = t(g), then f ∼ g.

Let [f ] be the collection of all paths equivalent to f . Define another equivalence relation
on the set of positive paths, called positive equivalence and denoted as ∼+: it is the smallest
equivalence relation generated by conditions (c) and (d) above. If f is positive, let [f ]+ be the
set of all positive paths that are positively equivalent to f . Note that the elements of [f ]+ all
have the same length; so, [f ]+ has a well-defined length.

Define G(A) (respectively, G+(A)) to be the collection of all equivalence (respectively,
positive equivalence) classes of paths (respectively, positive paths). The category G(A)
(respectively, G+(A)) has the structure of a groupoid (respectively, a category), whose objects
are vertices of Γ(A), whose morphisms are equivalence classes of paths (respectively, positive
paths) with compositions given by concatenation of paths. Then G(A) is called the Deligne
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groupoid. Put G = G(A) and G+ = G+(A). For objects x, y ∈ G+, let G+
x→ denote the

collection of morphisms whose source is x. Define G+
→y and G+

x→y similarly. These notions
can be defined for G (that is, without using the superscript +) in the same way. Note that
the collection of morphisms of G with source and target both equal to x is a group, called the
isotropy group at x denoted by Gx.

For two morphisms (that is, for two positive equivalence classes of positive paths) f and g in
G+, define the prefix order in such a way that f � g if there is a morphism h such that g = fh.
Similarly, define the suffix order so that g � f if there is a morphism h such that g = hf . Then
(G+

x→,�) and (G+
→y,�) are posets.

Theorem 2.7 [26]. Suppose that the real hyperplane arrangement A is a finite, central,
and simplicial. The following statements are true.

(1) The natural map G+ → G is injective. In other words, two positive path are positively
equivalent if and only if they are equivalent. Moreover, left and right cancellation laws both
hold in G+.

(2) For any vertex x ∈ Γ(A), the posets (G+
x→,�) and (G+

→x,�) are lattices.
(3) For any vertex x ∈ Γ(A), the posets (Gx→,�) and (G→x,�) are lattices.

For two morphisms f and g with s(f) = s(g) (respectively, t(f) = t(g)), we write f ∨p g and
f ∧p g (respectively, f ∨s g and f ∧s g) for the join and meet of f and g with respect to the
prefix order (respectively, suffix order). (Here, as usual, the words “join” and “meet” mean
“least upper bound” and “ greatest lower bound,” respectively).

For paths f and g, write f
∗= g if [f ] = [g].

Lemma 2.8. Given any path f on Γ(A), there exist positive paths a and b such that f
∗= ab−1

and a ∧s b = t(a). Moreover, if f
∗= cd−1 where c and d are positive paths with c ∧s d = t(c),

then a
∗= c and b

∗= d. Thus if f
∗= a1b

−1
1 for a1 and b1 positive, then a � a1 and b � b1.

In the above lemma t(a) denotes the identity morphism at the vertex t(a). The proof of
Lemma 2.8 is identical to that of [8, Theorem 2.6]. The decomposition f

∗= ab−1 is called the
pn-normal form of f .

Given a path f = aε11 aε22 · · · aεnn , define the signed intersection number, denoted as i(f,H),
to be the sum of all the εi such that ai is dual to H. In the special case when f is positive,
i(f,H) is the number of times the edge path π(f) crosses H. Two positive minimal paths with
the same end points cross the same collection of hyperplanes (and each hyperplane is crossed
exactly once). This gives the following lemma.

Lemma 2.9 [26, Proposition 1.11]. Let f and g be paths on Γ(A) such that f ∼ g. Then
i(f,H) = i(g,H) for any H ∈ A.

2.4. Some facts about irreducible arrangements

Let Z(A) be the dual zonotope of A and x a vertex in Z(A). Following [14], the Coxeter graph
of A at x, denoted by Γx, is defined as follows. Let {ei}ki=1 be the collection of edges of Z(A)
containing x, and let Hi be the hyperplane of A dual to ei. Let Bij = Hi ∩Hj . The vertices of
Γx are in one-to-one correspondence with {ei}ki=1. Two distinct vertices are joined by an edge
if AA/Bij

is irreducible (that is, if it contains more than two lines).

Lemma 2.10 [14, Lemma 3.5]. Let A and Z(A) be as above. Then the following statements
are equivalent.
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(1) The arrangement A is an irreducible.
(2) The Coxeter graph Γx is connected for some vertex x ∈ Z(A).
(3) The Coxeter graph Γx is connected for any vertex x ∈ Z(A).

A face F of Z(A) that is dual to a subspace B ∈ Q(A) is irreducible if AA/B is irreducible.
Then we have the following corollary to Lemma 2.10.

Corollary 2.11. Let x ∈ Z(A) be a vertex. Suppose that there exists a pair of irreducible
faces F1 and F2 of Z(A) such that

(1) any edge of Z(A) containing x is contained in either F1 or F2;
(2) there exists an edge e such that x ∈ e and e ⊂ F1 ∩ F2.

Then A is irreducible.

Lemma 2.12 [14, Lemma 3.11]. Suppose that A is a finite, central, simplicial real
arrangement. If A is irreducible, then AB is irreducible and simplicial for any subspace
B ∈ Q(A).

3. Garside theoretic computations

In this section, A is, as before, an essential, simplicial arrangement of linear hyperplanes in a
real vector space A. Let V = A⊗ C and let A⊗ C be the complexification of A.

3.1. Faces of zonotopes and words of longest length

Let Z(A) be the zonotope dual to A and let Γ(A), G+ = G+(A), G = G(A), and π : Γ(A) →
Z(A) be as in Subsection 2.3.

Definition 3.1. Suppose that F is a face of Z(A). An F -path of Γ(A) is a path whose
image under π is contained in F .

Put Γ(A, F ) = π−1(F ). We can identify Γ(A, F ) with Γ(AA/B), where B is the subspace
dual to F . Let G(F ) denote the Deligne groupoid over Γ(A, F ) so that G(F ) is isomorphic to
G(AA/B). By Remark 2.4, G(F ) also satisfies Theorem 2.7.

Define a retraction rF : Γ(A) → Γ(A, F ) as follows. Given a vertex x ∈ Γ(A), put rF (x) =
ProjF (x), where ProjF is the “nearest vertex projection” defined in Lemma 2.2. Let e be an
oriented edge Γ(A). Suppose He ∈ Q(A) denotes the hyperplane dual to e. If He is not dual
to any edge of F , then rF (s(e)) = rF (t(e)) and we define rF (e) := rF (s(e)). If He is dual to
an edge of F , then rF (e) is the oriented edge from rF (s(e)) to rF (t(e)). The map rF induces a
map from the set of paths on Γ(A) to the set of paths on Γ(A, F ); moreover, rF takes positive
paths to positive paths, and positive minimal paths to positive minimal paths.

Lemma 3.2 [26, Proposition 1.30]. The natural map G(F ) → G is injective and preserves
the lattice structure. Moreover, the image of G+(F ) is contained in G+.

The lemma follows from the existence of rF . Although the preservation of the lattice structure
is not mentioned explicitly in [26], it follows easily from existence of rF and the fact that a
positive F -path cannot be equivalent to a path which is not an F -path (by Lemma 2.9).

For a vertex x ∈ Γ(A) and a face F of Z(A), denote by Σx→(F ) (respectively, Σ→x(F ))
the collection of edges in Γ(A) whose image under π is contained in F and whose source
(respectively, target) is x. Let Ant(x, F ) denote the antipodal vertex to x in F . (Any zonotope
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is centrally symmetric.) For y = Ant(x, F ) define Δx(F ) (respectively, Δx(F )) to be the
morphism represented by a minimal positive path from y to x (respectively, x to y). The
equivalence classes of such positive paths of this form are called Garside elements. For an
integer k � 1, define

(Δx(F ))k := Δx(F )Δy(F )Δx(F ) · · ·︸ ︷︷ ︸
k times

.

To simplify notation, put

Δx = Δx(Z(A)), Σx→ = Σx→(Z(A)),

Δx = Δx(Z(A)), Σ→x = Σ→x(Z(A)),

and set Ant(x) = Ant(x, Z(A)).

Lemma 3.3 [26]. The following statements are true.

(1) For any vertex x ∈ Γ(A) and for any path g from x to y, we have (Δx)2g ∗= g(Δy)2.
(2) Let y = Ant(x). Then Δx � e for any e ∈ Σ→y.

(3) Suppose Σx→ = {e1, e2, . . . , ek} and Σ→x = {e′1, e′2, . . . , e′k}. Then Δx
∗= e1 ∨p e2 ∨p

· · · ∨p ek and Δx ∗= e′1 ∨s e
′
2 ∨s · · · ∨s e

′
k.

(4) Let f be any path with x = s(f). Then there is an integer k � 0 and positive path g

such that f
∗= (Δx)−2kg

∗= g(Δt(f))−2k.
(5) Suppose that v is a positive path with x = s(v) and y = t(v). Then there is a positive

path u such that Δxv
∗= uΔy.

The next lemma is a consequence of Lemma 3.2 and Lemma 3.3 (3).

Lemma 3.4. For vertex x ∈ Γ(A), let Σx→(F ) = {e1, e2, . . . , ek} and Σ→x(F ) =
{e′1, e′2, . . . , e′k}). Then

Δx(F ) = e1 ∨p e2 ∨p · · · ∨p ek and Δx(F ) = e′1 ∨s e
′
2 ∨s · · · ∨s e

′
k,

where F is the face of Z(A) spanned by {ē1, . . . , ēk}, where the ēi (= π(ei)) are as defined in
the first paragraph of Subsection 2.3

3.2. Elementary B-segments

Definition 3.5. Parallel faces F and F ′ of Z(A) are adjacent if F 	= F ′ and if they are
contained in a face F0 with dim(F0) = dim(F ) + 1.

Lemma 3.6. Let F, F ′ and F0 be as in Definition 3.5.

(1) For any vertex x ∈ F , Ant(x, F0) ∈ F ′.
(2) If p : F → F ′ is parallel translation, then Ant(p(x), F ′) = Ant(x, F0).

The following is a generalization of the notion of elementary conjugator in [46, Section 5].

Definition 3.7. Let B ∈ Q(A). Let F and F ′ be two adjacent parallel faces of Z(A) that
are dual to B. An elementary B-segment, or an (F, F ′)-elementary B-segment is a minimal
positive path from a vertex x ∈ F to x′ = p(x) ∈ F ′, where p : F → F ′ is parallel translation.

Lemma 3.8. Let B,F, F ′, and F0 be as in Definition 3.7.
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(1) For any vertex x ∈ F and y = Ant(x, F0) ∈ F ′, Δx(F0)(Δy(F ′))−1 ∗= Δy(F0)(Δy(F ′))−1

is an elementary B-segment.
(2) Any elementary B-segment can be written as Δx(F0)(Δy(F ′))−1 for some vertex x ∈ F .

(3) Let u be an elementary B-segment. Let x′ = t(u). Then (Δx(F ))ku ∗= u(Δx′(F ′))k for
any positive even integer k.

(4) Let e ∈ Σx→(F ) (respectively, e ∈ Σ→x(F )) and let e′ be the oriented edge in F ′ that

is parallel to e. Then there is an elementary B-segment v such that ev
∗= ue′ (respectively,

eu
∗= ve′).

(5) A positive path representing an elementary B-segment does not cross any hyperplane
dual to an edge of F .

Proof. Let p : F → F ′ be parallel translation. By Lemma 2.2, there is a minimal positive
path from x to y passing through p(x) such that the segment from p(x) to y is an F ′-path.
So, statements (1) and (2) follow from Lemma 3.6 (2). For (3), let z = Ant(x, F ) and z′ =
Ant(x′, F ′). Then z′ = p(z). Let v be an elementary B-segment from z to z′. By Lemma 2.2,
both uΔx′(F ′) and Δx(F )v are minimal positive paths with same endpoints. Thus, uΔx′(F ′) ∗=
Δx(F )v. Similarly, vΔz′(F ′) ∗= Δz(F )u. Statement (3) now follows by repeatedly applying
these two equations. Similarly, statement (4) can be deduced from Lemma 2.2. Statement (5)
is immediate. �

Lemma 3.9. Take two pairs of adjacent parallel faces (F1, F ) and (F2, F ) dual to the
subspace B. For i = 1, 2, let ui be an (Fi, F )-elementary B-segment. Suppose t(u1) = t(u2) = x.

Then u1 ∨s u2
∗= Δy(F ′)(Δx(F ))−1 where F ′ is the smallest face of Z(A) containing F, F1 and

F2 and y = Ant(x, F ′). Moreover, dim(F ′) = dim(F ) + 2 unless F1 = F2.

In particular, u1 ∨s u2 is represented by a minimal positive path which is a concatenation of
elementary B-segments.

Proof. For i = 1, 2, let F ′
i be the face containing F ∪ Fi such that dim(F ′

i ) = dim(Fi) + 1.
Let ei be the last edge of ui. Then F ′

i is spanned by F and ei (by Lemma 2.3). Moreover,
F ′ is the face spanned by F, e1 and e2. Also, F ′ = F ′

1 = F ′
2 if and only if e1 = e2; otherwise,

dim(F ′) = dim(F ) + 2. Let y = Ant(x, F ). By Lemma 3.4,

Δy(F ′
1) ∨s Δy(F ′

2)
∗= (∨sΣ→y(F ′

1)) ∨s (∨sΣ→y(F ′
2))

∗= ∨sΣ→y(F ′) ∗= Δy(F ′)

where ∨sΣ→y(F ′
1) denotes the least common multiple of all edges in Σ→y(F ′

1) (where “least”
is with respect to the suffix order).

By Lemma 3.8 (1), uiΔx(F ) ∗= Δy(F ′
i ) for i = 1, 2. Thus,

(u1 ∨s u2)Δx(F ) ∗= (u1Δx(F )) ∨s (u2Δx(F )) ∗= Δy(F ′
1) ∨s Δy(F ′

2)
∗= Δy(F ′).

The lemma follows. �

3.3. Computation of centralizers

In this subsection, we modify some computations of centralizers of parabolic subgroups of
spherical Artin groups from [46, Lemma 5.6 and Theorem 5.2] to the context of Deligne
groupoids.

Lemma 3.10. Take a face F ′ ⊂ Z(A). Let f be a positive path in Γ(A). For a positive
integer k, consider g = f(Δx′(F ′))k where x′ = t(f). Suppose g � e for an edge e with ē � F ′.
Then there exists an elementary B-segment u such that f � u.
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Proof. Let x′
m = t(f(Δx′(F ′))m). Let F ′

1 be the face spanned by F ′ and ē. We prove by
induction on i that if 1 � i � k, then there exists a positive path fi and an elementary B-
segment vi such that

f(Δx′(F ′))k−i ∗= fivi

and v̄i ⊂ F ′
1.

First consider the case i = 1. Then e ∨s Δx′
k(F ′) ∗= Δx′

k(F ′
1). Thus, f(Δx′(F ′))k ∗= f1Δx′

k(F ′
1)

for some positive path f1. Then

f(Δx′(F ′))k−1 ∗= f1Δx′
k(F ′

1)(Δ
x′
k(F ′))−1 ∗= f1v1.

Next suppose that f(Δx′(F ′))k−i ∗= fivi. As vi ends with an edge ei such that ēi ⊂ F ′
1 and

ēi � F ′, we have that ei ∨s Δx′
k−i(F ′) ∗= Δx′

k−i(F ′
1). Thus, fi(Δx′(F ′))k−i ∗= fi+1Δx′

k−i(F ′
1) for

a positive path fi−1. Then

fi(Δx′(F ′))k−i−1 ∗= fi+1Δx′
k−i(F ′

1)(Δ
x′
k−i(F ′))−1 ∗= fi+1vi+1.

This completes the proof. �

Lemma 3.11. Given two parallel faces F , F ′ of Z(A), let f be a positive path in Γ(A) from
x ∈ F to x′ ∈ F ′ satisfying the following.

(1) f(Δx′(F ′))k ∗= hf , for an even integer k � 2 and a positive path h.
(2) There does not exist an edge e ∈ Σ→x′(F ′) such that f � e.

Then f
∗= u1u2 · · ·un where each ui is an elementary B-segment and B ∈ Q(A) is dual to F .

Moreover, h = (Δx(F ))k.

Proof. We use induction on the length of f . Let e be the last edge of f . By assumption,
ē � F . Let F ′

1 be the face spanned by F ′ and e. By Lemma 3.10, f ∗= fkvk where fk is positive
and vk is an elementary B-segment. Let x′′ = t(fk) and let F ′′ be the face such that F ′′ is
parallel to F and x′′ ∈ F ′′. By Lemma 3.8 (3),

fk(Δx′′(F ′′))kvk
∗= fkvk(Δx′(F ′))k ∗= f(Δx′(F ′))k

∗= hf
∗= hfkvk.

Thus, fk(Δx′′(F ′′))k ∗= hfk. Moreover, there does not exist an edge e ∈ Σ→x′′(F ) such that
fk � e, for otherwise, by Lemma 3.8 (4), we would have f � e′ for e′ parallel to e. The
lemma follows by induction. The last statement of the lemma follows from Lemma 3.8 (3)
and induction. �

Corollary 3.12. Let F ⊂ F ′ be two faces of Z(A). Suppose B ⊂ Q(A) is dual to F .
Let y ∈ F be a vertex. Then Δy(F ′)(Δy(F ))−1 is equivalent to a concatenation of elementary
B-segments.

Proof. Let f = Δy(F ′)(Δy(F ))−1 and x = Ant(y, F ). By Lemma 3.3, f(Δy(F ))2f−1 =
Δy(F ′)Δy(F )f−1 = Δy(F ′)Δy(F )Δy(F )(Δy(F ′))−1 is positive, so the first condition of
Lemma 3.11 holds. As Δy(F ′) ∗= fΔy(F ) is positive and minimal, f cannot cross any
hyperplane dual to F . So the second condition of Lemma 3.11 also holds. The corollary
follows. �

Corollary 3.13. Let F be a face of Z(A) and let x ∈ F be a vertex. Let f ∈ Gx be
such that f(Δx(F ))2 = (Δx(F ))2f . Let Gx,F be the collection of F -paths with both source
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and target equal to x. Then there exists an integer k � 0, and a collection of elementary
B-segments (where B ∈ Q(A) is dual to F ) {ui}ki=1 and a positive path in Gx,F such that
f = (Δx)−2ku1u2 · · ·ukv.

Proof. By Lemma 3.3, we have f = (Δx)−2kg where g is positive. Then g(Δx(F ))2 =
(Δx(F ))2g. We can write g = hv where v is a positive F -path, h is positive, and there does
not exist edge e with ē ⊂ F and h � e. Let x′ = s(v) = t(h). Then v(Δx(F ))2 = (Δx′(F ))2v.
It follows that h(Δx′(F ))2 = (Δx(F ))2h. By Lemma 3.11, h is a concatenation of elementary
B-segments. It follows from the definition of a B-segment that x′ = x. Thus, v ∈ Gx,F . �

3.4. Injectivity of the restriction arrangement groupoid

In this subsection we study how the Deligne groupoid of a restriction arrangement sits inside
the ambient Deligne groupoid. This will show how to push π1(M(AB ⊗ C) into π1(M(A⊗ C).

Lemma 3.14. Let B ∈ Q(A).

(1) There is a natural one-to-one correspondence between chambers of AB and the collection
of faces of Z(A) that are dual to B.

(2) Two chambers of AB are adjacent if and only if the associated faces of Z(A) (as in (1)
above) are adjacent (see Definition 3.5).

Definition 3.15. We define a map φ : Γ(AB) → Γ(A) as follows. First choose a vertex
x ∈ Γ(AB) and let F be the face of Z(A) associated with x as in the previous lemma. Then
choose a vertex y in F and set φ(x) = y. For any other vertex x′ ∈ Γ(AB), let F ′ be the face
of Z(A) associated with x′ and let p : F → F ′ be parallel translation. Define φ(x′) to be p(y).
Let e be the edge of Γ(AB) from x1 to x2. Define φ(e) be a positive minimal path from φ(x1)
to φ(x2). (Such a positive minimal path always exists; however, it might not be unique. If it is
not, choose one arbitrarily.)

It is clear that φ : Γ(AB) → Γ(A) induces maps G+(AB) → G+(A) and G(AB) → G(A),
both of which we also denote by φ.

Let y′ be a vertex of Γ(A) such that y′ = φ(y) for some y ∈ Γ(AB) (such a y is unique). Let
Fy′ be the face of Z(A) associated with y as in Lemma 3.14 (1).

Lemma 3.16. The map φ : G(AB) → G(A) is injective.

Proof. We first show that φ : G+(AB) → G+(A) is injective. Let f̂1, f̂2 be two positive paths
in Γ(AB) and let f1, f2 be their image under φ. Then f1 = u1u2 · · ·un, where each ui is an
elementary segment coming from an edge of f1. Similarly, f2 can be written as f2 = v1v2 · · · vm.

Suppose f1
∗= f2. We need to show that f̂1

∗=B f̂2, where ∗=B refers to equivalent paths in
Γ(AB). This will be proved by induction on c = �(f1) + �(f2), where �(f) denotes the length
of f . The case c = 0 is immediate, as �(φ(f̂)) > 0 if and only if �(f̂) > 0. Next we consider the
general case c � 0. Let w = un ∨s vm. Then there is positive path p such that f1

∗= pw
∗= f2. Let

w1 and w2 be positive paths such that w
∗= w1un

∗= w2vm. By Corollary 3.12 and Lemma 3.9,
w1 and w2 are equivalent to concatenations of elementary B-segments. By Lemma 3.8 (3),
both f1 and w satisfy condition (1) of Lemma 3.11; so, the same holds for the positive path p.
By Lemma 3.8 (5), both f1 and w do not cross any hyperplane dual to F , and so, the same
holds for p by Lemma 2.9. By Lemma 3.11, p is equivalent to a concatenation of elementary
B-segments. Thus, we can find positive paths ŵ1 and p̂ of Γ(AB) such that φ(ŵ1)

∗= w1 and
φ(p̂) ∗= p. We delete the last edge ê1 of f̂1 to obtain ĝ1. Then φ(ĝ1)

∗= φ(p̂ŵ1)
∗= u1u2 · · ·un−1.



BORDIFICATIONS AND CURVE COMPLEXES 29

We can assume by induction that ĝ1
∗=B p̂ŵ1. Define ŵ2, ê2, and ĝ2 similarly and then conclude

that ĝ2
∗=B p̂ŵ2. By Lemma 3.9 both ŵ1ê1 and ŵ2ê2 are positive minimal paths in Γ(AB). Thus,

ŵ1ê1
∗=B ŵ2ê2. Then

f̂1
∗=B ĝ1ê1

∗=B p̂ŵ1ê1
∗=B p̂ŵ2ê2

∗=B ĝ2ê2
∗=B f̂2.

Next take paths f̂1, f̂2 on Γ(AB) not necessarily positive and let f1, f2 denote their φ-images.
Suppose f1

∗= f2. By Lemma 3.3 and Remark 2.4, there is a k � 0 such that for i = 1, 2,
f̂i

∗=B (Δs(f̂i)
)−2k · ĝi with ĝi positive. Since f1

∗= f2, we deduce that φ(ĝ1)
∗= φ(ĝ2). By the

previous discussion, ĝ1
∗=B ĝ2. Hence, f̂1

∗=B f̂2, as required. �

Let F be a face of Z(A) and let Γ(A, F ) be the graph defined in Section 3.1. For the
product arrangement AA/B ×AB (which is also simplicial by Remark 2.4), we can identify
Γ(AA/B ×AB) with the 1-skeleton of Γ(A, F ) × Γ(AB). Thus, each vertex of Γ(AA/B ×AB)
corresponds to a vertex of Γ(A). This induces a map

θ : Γ(AA/B ×AB) → Γ(A)

so that for each vertex x ∈ F , the restriction of θ to {x} × Γ(AB) is equal to the map φ in
Definition 3.15.

Corollary 3.17. The map θ satisfies the following.

(1) The homomorphism of groupoids θ∗ : G(AA/B ×AB) → G(A), that is induced by θ, is
injective.

(2) Let x′ ∈ Γ(AA/B ×AB) be a vertex. Let x = θ(x′) and let Fx be the face containing x
and parallel to F . Then θ∗(Gx′(AA/B ×AB)) is the centralizer of (Δx(Fx))2 in Gx(A).

(3) Let U = 〈(Δx(Fx))2〉 and G = Gx(A). Then CG(U) = NG(U) = θ∗(Gx′(AA/B ×AB)).

The centralizer U in G is denoted by CG(U) and the normalizer denoted by NG(U).

Proof. Note that θ takes minimal positive paths to minimal positive paths; so, θ∗ is well
defined. Moreover, G(AA/B ×AB) ∼= G(AA/B) × G(AB). So, the first assertion follows from
Lemmas 3.2 and 3.16. By Lemma 3.3 (1), θ∗(Gx′(AA/B ×AB)) is contained in the centralizer
of (Δx(Fx))2. The containment in the other direction follows from Corollary 3.13. For (3),
we need to show that (Δx(Fx))2 is not conjugate to its inverse; however, this follows from
Lemma 2.9 since two conjugate paths have the same intersection number with each hyperplane
in A. �

3.5. Simultaneously conjugating mutually commuting Dehn twists

Definition 3.18. Take a base vertex x0 ∈ Γ(A). Let F be an irreducible face of Z(A) and let
xF = ProjF (x) (defined in Lemma 2.2). Let hF be a minimal positive path from x0 to xF . The
standard Dehn twist associated with F , denoted by ZF , is defined to be hF (ΔxF

(F ))2h−1
F .

Lemma 3.19. Let h be a positive path from x0 to xF . We write f = hZFh
−1 in its pn-

normal form ab−1. Then there is a F ′ parallel to F such that b−1fb
∗= (Δx(F ′))2 for a vertex

x ∈ F ′.

This observation is taken from [12, Theorem 4] in the case of spherical Artin groups. The
same proof given there also works for the Deligne groupoid and we give it below.
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Proof. Let g = hhF . Then f = g(ΔxF
(F ))2g−1. If there does not exist an edge e such that

g(ΔxF
(F ))2 � e and g � e, then we are done by Lemma 2.8. Suppose that such e exists. If

ē ⊂ F , then e(ΔxF
(F ))2e−1 ∗= (Δt(e)(F ))2 by Lemma 3.3 and we can shorten g. If ē � F , then

Lemma 3.10 implies that g ∗= g1u where g1 is positive and u is an elementary B-segment where
B is the subspace dual to F . By Lemma 3.8 (3), u(Δt(e)(F ))2u−1 ∗= (Δs(u)(F1))2 for a face
F1 ‖ F . So again, we can shorten g again. The lemma follows by repeatedly applying this
procedure. �

Alternatively, one could define ZF by taking an arbitrary vertex x ∈ F (not necessarily xF ),
taking a minimal positive path h from x0 to x, and considering h(Δx(F ))2h−1. We claim that
ZF

∗= h(Δx(F ))2h−1. Indeed, by [26, Section 2], there exists a minimal path h′ = h1h2 such
that h

∗= h′, t(h1) = s(h2) = xF and h̄2 ⊂ F . We can then use the same argument as in the
proof of Lemma 3.19 to deduce the claim.

The following lemma is proved in [13] for spherical Artin groups, where the argument is
based on solution of the conjugacy problem for Garside groups. We give a shorter proof based
on arguments from [46].

Lemma 3.20. Let {Fi}ki=1 be a collection of faces of Z(A). Consider a mutually commuting
collection {gi := hiZFi

h−1
i }ki=1 where hi ∈ Gx0 . Then there exist an element g ∈ Gx0 such that

for each i, ggig
−1 = ZF ′

i
for some face F ′

i ⊂ Z(A) parallel to Fi. Moreover, there is a vertex

x ∈ Γ(A) such that x ∈ ⋂k
i=1 F

′
i .

Proof. The proof is by induction on k. The case k = 1 is clear. Assume by induction that
hi is the trivial element for 1 � i � k − 1, and assume, moreover, that there is a vertex x ∈
Γ(A) and a minimal positive path h from x0 to x such that ZFi

= h(Δx(Fi))2h−1 for each
1 � i � k − 1. Define S0 = {ZF1 , . . . ,ZFk−1 , hkZFk

h−1
k }. Then any two elements from the set

S1 = {(Δx(F1))2, . . . , (Δx(Fk−1))2, h−1hkZFk
h−1
k h} commute.

By Lemma 3.3, we can assume f := h−1hk is positive. Let ab−1 be the pn-normal
form of fZFk

f−1. For each i with 1 � i � k − 1, we have (Δx(Fi))2ab−1 = ab−1(Δx(Fi))2.
Thus, (Δx(Fi))2a · [(Δx(Fi))2b]−1 ∗= a · b−1. It follows from Lemma 2.8 that a−1(Δx(Fi))2a

∗=
b−1(Δx(Fi))2b is positive. Decompose b as b = b1b2, where b2 is a maximal positive Fi-path.
By applying Lemma 3.3 (1) to b2 and Lemma 3.11 to b1, we deduce that b−1(Δx(Fi))2b

∗=
(Δy(F ′

i ))
2 where F ′

i ‖ Fi and y = t(b). By Lemma 3.19, b−1(fZFk
f−1)b ∗= (Δy(F ′

k))
2 with F ′

k

parallel to Fk. Thus, b−1h−1S0hb = b−1S1b = {(Δy(F ′
i ))

2}ki=1. Take a minimal positive path
h′ from x0 to y and let g = h′b−1h−1. Then gS0g

−1 = {ZF ′
i
}ki=1. �

Lemma 3.21. Let F1 and F2 be two irreducible faces of Z(A). Then ZF1 and ZF2 commute
if and only if F1 ⊥ F2 or if F1 and F2 are comparable.

Proof. By Lemma 3.20, F1 ∩ F2 	= ∅. We assume without loss of generality that the
base point x0 is contained in F1 ∩ F2, and that Z(A) is spanned by F1 and F2. Let
f = (Δx0(F1))2(Δx0(F2))2

∗= (Δx0(F2))2(Δx0(F1))2. By Lemma 3.3, e � f for any e ∈ Σx0→;
hence, Δx0 � f . Let H (respectively, Hi) be the collection of hyperplanes dual to edges of Z(A)
(respectively, Fi). Let Hf be the collection of hyperplanes crossed by f . Then Hf = H1 ∪H2.
By Lemma 2.9, HΔx0

⊂ Hf . As HΔx0
= H, we have that H = H1 ∪H2. Thus, if F1 ∩ F2 is a

vertex, then H = H1 
H2, which implies F1 ⊥ F2.
Next assume F := F1 ∩ F2 contains an edge, then Z(A) is irreducible by Corollary 2.11.

Suppose that B is the subspace dual to F . Let θ : Γ(AA/B ×AB) → Γ(A) be the map defined
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before Corollary 3.17. Let x̄0 be such that θ(x̄0) = x0. Let Δx̄0(AA/B) be the Garside element
of the AA/B-factor.

An edge e of Σx0→(F1) − Σx0→(F ) gives rise to an elementary B-segment contained in the
face spanned by e and F that corresponds to an edge ē in Γ(AB). Let F ′

1 be the face of Z(AB)
spanned by all such edges coming from elements of Σx0→(F1) − Σx0→(F ). Define F ′

2 similarly.
Then F ′

1 ∩ F ′
2 is a vertex, and Z(AB) is spanned by F ′

1 and F ′
2.

It is readily verified that θ((Δx̄0(AA/B))2(Δx̄0(F
′
i ))

2) ∗= (Δx0(Fi))2 for i = 1, 2. By Corol-
lary 3.17 (1), (Δx̄0(F

′
1))

2(Δx̄0(F
′
2))

2 ∗= (Δx̄0(F
′
2))

2(Δx̄0(F
′
1))

2 in Γ(AB). By the argument in
the previous paragraph, Z(AB) ∼= F ′

1 × F ′
2. By Lemma 2.12, either F ′

1 or F ′
2 has to be a point.

Thus, F1 ⊂ F2, or F2 ⊂ F1. �

4. The Deligne groupoid, the Deligne complex, and simple connectivity of the curve complex

Throughout the this section we assume that A is irreducible. To prove the main theorem, we
need to know that one of Cgro(A) or Ctop(A) is simply connected when dimV � 4. Simple
connectivity of Ctop(A) follows from Remark 1.28. On the other hand, it is possible to prove
that Cgro(A) is simply connected via a direct elementary argument, which is given in this
section. Readers who are comfortable with Remark 1.28 can slip this section. Alternatively,
the material in this section offers an independent route to the main theorem without relying
on Remark 1.28.

4.1. From the Deligne complex to the curve complex

Here we define a version of the curve complex without using bordifications; instead, it is defined
in terms of the Deligne groupoid. Choose a base vertex x0 ∈ Γ(A) and let G = Gx0 denote
the isotropy group at x0. A standard Z-subgroup of G is a conjugate of a standard Dehn
twist associated to a proper irreducible face of Z(A) (cf. Definition 3.18). The groupoidal
curve complex Cgro (= Cgro(A)) is defined as follows. The vertices of Cgro are in one-to-one
correspondence with standard Z-subgroups of G and a set of vertices spans a simplex if the
associated Z-subgroups mutually commute. From this we see that Cgro is a flag complex. The
group G acts by conjugation on the set of standard Z-subgroups and this induces G � Cgro.

Remark 4.1. In this section we only need to consider Cgro(A) when A is irreducible. How-
ever, if A has more than one irreducible factor, say A = A1 ⊕ · · · ⊕ Al, then, by Definition 1.4,
I0(A) = I0(A1) ∗ · · · ∗ I0(Al). By analogy, in the general case, it would make sense to define
Cgro(A) as Cgro(A1) ∗ · · · ∗ Cgro(Al), although we never use this definition.

Definition 4.2. The spherical Deligne complex associated with A, denoted as Del′(A), is
defined as follows. Let ∂ Fan(A)) denote the cellulation of the unit sphere in A cut out by the
hyperplanes of A. For each vertex y ∈ Γ(A), let Cy be chamber containing y (so that Cy is a

top-dimensional closed cell of ∂ Fan(A)). For each vertex x ∈ S̃al(A), put Cx = Ck(x), where

k : S̃al(A) → Sal(A) is the covering projection. The spherical Deligne complex associated with
A, denoted as Del′(A), is defined by:

Del′(A) =
⊔

x∈Vert(S̃al(A))

(x,Cx)/ ∼ .

Here ∼ is the equivalence relation which glues adjacent chambers along codimension-one faces.
To be more explicit, suppose that Fi is a face of Cxi

for i = 1, 2. We identify (x1, F1) with
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(x2, F2) if x1 and x2 are adjacent in S̃al(A) and F1 = F2; the equivalence relation ∼ is generated
by such identifications. There is an action G � Del′(A).

The union of all (x,Cx), with x ranging over the vertices of a top-dimensional face of

S̃al(A), gives rise to an embedded sphere in Del′(A) called an apartment of Del′(A). The
Deligne complex, denoted as Del(A), is obtained from Del′(A) by filling in independently each
apartment of Del′(A) by a disk of dimension equal to dim(A).

Lemma 4.3. Suppose that A is a central arrangement of hyperplanes in a real vector space
A. Then Del(A) is simply connected.

The above lemma follows from [26] (see also [45, p. 49]) since the Deligne complex (up to
subdivision) is isomorphic to the nerve of an open cover of the universal cover of M(A⊗ C)
where each open set of the cover is connected.

Each face of Del′(A) can be written as (x, F ) where x ∈ Vert(S̃al(A)) and F being a simplex
of ∂ Fan(A). For a simplex F of ∂ Fan(A), we define KF to be the standard subcomplex of
Sal(A) associated with the face of Z(A) dual to F (cf. Subsection 2.2). A standard subcomplex
of Sal(A) is proper if it is neither a vertex nor the entire zonotope Z(A). Similarly, a proper

standard subcomplex of S̃al(A) is a connected component of the inverse image of a proper

standard subcomplex in Sal(A) under the covering map k : S̃al(A) → Sal(A). A standard
subcomplex is nontrivial if it is not a point. Then (x, F ) = (y, F ) if and only if x and y are in the

same standard subcomplex of S̃al(A) that projects to KF . Thus, the vertices of the barycentric
subdivision bDel′(A) of Del′(A) are in one-to-one correspondence with standard subcomplexes

of S̃al(A). This gives rise to an alternative description of the simplicial complex bDel′(A): the

vertices of bDel′(A) are in one-to-one correspondence with standard subcomplexes of S̃al(A),

and a simplex in bDel′(A) corresponds to a chain of standard subcomplexes in S̃al(A).
Now suppose that A is irreducible. Let D(A) be the full subcomplex of bDel′(A) spanned

by vertices that correspond to proper standard subcomplexes. In other words, D(A) can be
identified with the barycentric subdivision of (n− 2)-skeleton of Del′(A), where n = dimA;
that is to say, the interiors of top-dimensional simplices of Del′(A) have been deleted. Thus,
D(A) is simply connected whenever n � 4 (that is, when n− 2 � 2).

We define a G-equivariant map ρ : D(A) → Cgro as follows. Let v ∈ D(A) be a vertex. Then v

corresponds a standard subcomplex K ⊂ S̃al(A). Let K =
∏m

i=1 Ki be the decomposition of K
into irreducible standard subcomplexes. Then stabilizer of each Ki is an irreducible parabolic
subgroup, whose centralizer gives rise to a vertex wi ∈ Cgro. The vertices {wi}mi=1 span a simplex
in Cgro and ρ sends v to the barycenter of this simplex. Suppose that {vi}ki=1 is a collection
of vertices of D(A) spanning a simplex σ. Let K1 ⊂ K2 ⊂ · · · ⊂ Kk be the associated chain

of standard subcomplexes of S̃al(A). Then {ρ(vi)}ki=1 is contained in a simplex of Cgro (the
simplex associated with the product decomposition of Kk). Thus, we can extend ρ linearly to
a map into Cgro. N.B. ρ is usually not a simplicial map.

4.2. Cgro is simply connected

In this subsection we study the map ρ in more detail in order to prove that Cgro is simply
connected when n � 4. As before, A is assumed to be irreducible.

Lemma 4.4. Let v and v′ be two vertices in D(A) corresponding to irreducible proper

standard subcomplexes K and K ′ of S̃al(A) such that ρ(v) = ρ(v′). Then there exists a finite
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sequence of vertices {vi}ki=1 ⊂ D(A) with associated standard subcomplexes {Ki}ki=1 such
that

(1) v1 = v and vk = v′;
(2) for any i, ρ(vi) = ρ(v);
(3) Ki and Ki+1 are contained in a common standard subcomplex C with dim(C) =

dim(Ki) + 1.

Proof. Let F (respectively, F ′) be the irreducible face of Z(A) corresponding to K

(respectively, K ′). Let g̃ be an edge path in S̃al(A) connecting a vertex x̃ ∈ K and vertex
x̃′ ∈ K ′. Let g be the projection of g̃ into Γ(A) to get an edge path from x to x′. As ρ(v) = ρ(v′),
we have (Δx(F ))2g ∗= g(Δx′(F ′))2. By the same argument as in Corollary 3.13, up to changing
x and x′ (which corresponds to replace x̃ and x̃′ by other vertices in the same standard
subcomplex), we can assume that g is a positive path and that there does not exist edge
e of Γ(A) with ē ∈ F ′ and g � e. By Lemma 3.11, F and F ′ are parallel and g = g1g2 · · · gk,
where each gi is an elementary B segment (B is the subspace dual to F ′). For 1 � i � k − 1,
define Fi to be the face of Z(A) that is parallel to F and contains s(gi). Let g̃ = g̃1g̃2 · · · g̃k−1

be the induced decomposition. For 1 � i � k − 1, define Ki to be the standard subcomplex of
S̃al(A) associated to F and containing the initial vertex of g̃i. It follows from Lemma 3.8 (3)
that ρ(vi) = ρ(vi+1) for 1 � i � k − 1. This implies assertion (2) of the lemma. For assertion
(3), note that Fi and Fi+1 are contained in a common face F̂ of one higher dimension. Let

C be the standard subcomplex of S̃al(A) associated with F̂ such that Ki ⊂ C. Then clearly
Ki+1 ⊂ C. �

Corollary 4.5. Let v and v′ be as in Lemma 4.4 with ρ(v) = ρ(v′) = w. Suppose
dim(A) � 4. Then there is an edge path ω in D(A) connecting v and v′ such that ρ(ω) is
a loop representing the trivial element in π1(Cgro, w).

Proof. Suppose dim(A) = n. Let {Ki}ki=1 be as in Lemma 4.4. Put n′ = dim(Ki). If n′ <
n− 1, then the standard subcomplex C in Lemma 4.4 (3) is proper. Hence, by Lemma 4.4 (3),
there is an induced edge path ω in D(A) connecting v and v′. By Lemma 4.4 (2), the image
ρ(ω) is trivial in π1(Cgro, w) due to its multiple back-tracking. Suppose n′ = n− 1. We claim

that there are irreducible proper standard subcomplexes K̂ and K̂ ′ of S̃al(A) such that

(1) K̂ � K and K̂ ′ � K ′;
(2) ρ(v̂) = ρ(v̂′) where v̂ and v̂′ are vertices of D(A) associated with K̂ and K̂ ′.

To establish this claim, let F, F ′, g, and g̃ be as in Lemma 4.4. Since F is irreducible, it follows
from Lemma 2.10 that there is a 2-dimensional irreducible face F̂ ⊂ F . Note that F̂ 	= F since
dim(A) � 4. Let F̂ ′ be the face of F ′ parallel to F̂ . Let K̂ (respectively, K̂ ′) be the standard
subcomplex of K (respectively, K ′) associated with F̂ (respectively, F̂ ′) such that s(g̃) ⊂ K̂
(respectively, t(g̃) ⊂ K̂ ′). As g is a concatenation of elementary B segments, it follows from
Lemma 3.8 that (Δx(F̂ ))2g ∗= g(Δx′(F̂ ′))2. Thus, ρ(v̂) = ρ(v̂′).

By the previous case when n′ < n− 1, there is an edge path ω′ connecting v̂ and v̂′ such
that ρ(ω′) is trivial in π1(Cgro, ρ(v̂)). Defining ω to be the concatenation of the edge vv̂, ω′,
and the edge v̂′v′, we see that it satisfies the requirements of the corollary. �

Proposition 4.6. Suppose A an irreducible, central, simplicial real arrangement in A. If
dimA � 4, then Cgro is simply connected.
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Proof. Let C̃gro be the universal cover of Cgro and π : C̃gro → Cgro the covering projection.
The proposition will be proved by showing that π is a homeomorphism. Let ρ : D(A) → Cgro be
the G-equivariant map defined previously. Since dimA � 4, D(A) is simply connected. Hence,
there is a lift ρ̃ : D(A) → C̃gro of ρ. Next we construct a section of s : Cgro → C̃gro of π. Choose
a vertex v ∈ Cgro. Since ρ̃ is a lift of ρ, it follows from Corollary 4.5 that if two vertices v1,
v2 of D(A) satisfy ρ(v1) = ρ(v2) = w where w is a vertex of Cgro, then ρ̃(v1) = ρ̃(v2). Define
s(w) = ρ̃(v1), and note that this does not depend on the choice of v1 in the preimage of w.
Taking two adjacent vertices w1 and w2, we claim that s(w1) and s(w2) are adjacent. By
Lemma 3.20, one of the following holds:

(1) There are proper standard subcomplexes K1 and K2 in S̃al(A) with one contained in
the other so that for i = 1, 2, ρ(vKi

) = wi, where vKi
is the vertex of D(A) associated to Ki.

(2) There are proper standard subcomplexes K1,K2, and K in S̃al(A) with K = K1 ×K2

and with ρ(vKi
) = wi for i = 1, 2.

In either case, ρ̃(vK1) and ρ̃(vK2) are adjacent, which establishes the claim. Therefore, we can
extend the map s to 1-skeleton of Cgro. Since both Cgro and C̃gro are flag simplicial complexes,
s extends to a section Cgro → C̃gro; hence, Cgro is simply connected. �

5. The fundamental groups of the faces of a blowup

Throughout this section, A denotes an essential arrangement of linear hyperplanes in a real
vector space A, V = A⊗ C, Z = Z(A) is the zonotope associated to A, and bZ denotes
the barycentric subdivision of Z. We treat Z as an embedded subset of A as indicated in
Subsection 2.1. The barycenter of a face F of Z is denoted by bF . Let Sal(A) be the Salvetti
complex associated with A as defined in Subsection 2.2.

5.1. Salvetti’s embedding

We recall the definition from [49] of an embedding of Sal(A) into M(A⊗ C). A simplex in
bSal(A) is represented by a pair (Δ, v), where Δ = [bF0 , bF1 , . . . , bFk

] is a simplex of bZ where
each Fi a face of Z, and v is a vertex of Z. Write barycentric coordinates of a point x ∈ Δ as
x =

∑k
i=0 λFi

bFi
. Then the Salvetti’s embedding Ψ(x, v) is defined by

Ψ : (x, v) �→ x + i

(
k∑

i=0

λFi
[pFi

(v) − bFi
]

)
, (5.1)

where i =
√−1. By Remark 2.6, the definitions of Ψ on each simplex of bSal(A) fit together

to give a continuous map Ψ : bSal(A) → V .

Theorem 5.1 (cf. [49]). The map Ψ is injective; its image is contained in M(A⊗ C); and
Ψ : Sal(A) → M(A⊗ C) is a homotopy equivalence.

Let (Δ, v) be as before and let x ∈ Δ. We also consider a modified version Ψ′ of Salvetti’s
embedding, defined by:

Ψ′ : (x, v) �→ x + i

(
k∑

i=0

λFi
pFi

(v)

)
. (5.2)
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Lemma 5.2. The map Ψ′ is an embedding. Let J be the straight line homotopy between Ψ
and Ψ′. Then the image of J is contained in M(A⊗ C). Hence, Ψ′ : bSal(A) → M(A⊗ C) is
a homotopy equivalence.

Proof. The first statement follows from the description of intersection of two simplices in
bSal(A) as in Remark 2.6. For the second statement, we follow the argument in [49, pp. 609–
611]. Suppose that x is in the relative interior of Δ and that there is a hyperplane H ∈ A such
that x ∈ H. Then Δ ⊂ H and bFi

∈ H for each i. By [49, Lemma 3], the pFi
(v) all lie on the

same side of H. So, {pFi
(v) − tbFi

}0�i�k,0�t�1 lies on the same side of H. Hence, the image of
J is contained in M(A⊗ C). The final statement of the lemma follows from Theorem 5.1. �

Although both Ψ and Ψ′ depend on a choice of points in the fan (that is, on the choice of
the bFi

), different choices lead to maps Ψ and Ψ′ that are homotopic inside M(A⊗ C) via a
straight line homotopy.

Let Gx and Γ(A) be as in Subsection 2.3. By combining Lemma 5.2 with results of [26, 44,
49], one can prove the following theorem.

Theorem 5.3. Suppose that A is a finite, central, real arrangement. Let x ∈ Γ(A) be a
vertex. Consider the embeddings Γ(A) → Sal(A) and Γ(A) → M(A⊗ C) (where the second
map is induced by the modified Salvetti’s embedding of (5.2)). These embeddings induce
well-defined homomorphisms Gx → π1(Sal(A), x) and Gx → π1(M(A⊗ C), x) both of which
are isomorphisms.

5.2. Standard subcomplexes and parabolic subgroups

Let B ∈ Q(A) be a subspace and let CB be a face of Z(A) dual to B. The standard complex K
of Sal(A) associated to CB was defined in Subsection 4.1. Alternatively, it can be characterized
as the union of all cells of Sal(A) of form (CB , v) with v ranging over vertices of CB . Note that
K is isomorphic to Sal(AA/B).

Let Ψ0 : K → M(A⊗ C) be the restriction of the modified Salvetti embedding (5.2) to K,
that is, if Δ = [bF0 , bF1 , . . . , bFk

] is a simplex of bCB , and if v is a vertex of CB , we have the
map,

Ψ0 : (x, v) �→ x + i

(
k∑

i=0

λFi
pFi

(v)

)
. (5.3)

Note that the barycenter b of CB lies in B.
We perturb the choice of point in each fan in the definition of Ψ0 to obtain another embedding

Ψ1 : K → M(A⊗ C) such that bF − b is orthogonal to B for any face F ⊂ CB . Let J1 be the
straight line homotopy between Ψ0 and Ψ1. Define Ψ2 : K → V = A + iA to be the constant
map with image b + ib. Let J2 be the straight line homotopy between Ψ1 and Ψ2. Let J denote
the concatenation of J1 and J2.

The complexifications of the real vector spaces A and B are denoted by V = A⊗ C and
E = B ⊗ C. The complex vector spaces V and E are identified with A + iA and B + iB.
As before, let V� be the blowup of V along A⊗ C. Let ∂EV� = E� × S(V/E)� denote the
codimension one face of V� associated with E.

We claim that J induces a homotopy J̃ : K × [0, 1] → V�. Since the interior of V� is identified
with M(A⊗ C) and J(·, t) ∈ M(A⊗ C) for t < 1, we can define J̃(·, t) to be J(·, t) when 0 �
t < 1. Note that Ψ1(x, v) − Ψ2(x, v) is a vector orthogonal to E, so this vector defines a point
μ(x, v) in the interior of S(V/E)�. We can extend J̃ to t = 1 by J̃((x, v), 1) := (b + ib, μ(x, v)) ∈
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∂EV� = E� × S(V/E)� (note that b + ib ∈ M(AB ⊗ C), which is the interior E�). One checks
that J̃ is continuous.

Let B⊥ be the orthogonal complement to B in A at b. Taking D to be a small enough
open disk in B⊥ centered at b, the arrangement A induces an arrangement in D which can
be identified with AA/B. We can assume without loss of generality that the image of Ψ1

is contained in D ×D. By Lemma 5.2, Ψ1 : K → (D ×D) − (
⋃

H∈A H ×H) is a homotopy
equivalence. Thus, the map K → S(V/E)�, defined by J̃(·, 1), is a homotopy equivalence. We
summarize the above discussion in the following proposition.

Proposition 5.4. Let B be a subspace of A. Let CB be a face of Z(A) dual to B and
let b = bCB = CB ∩B. Suppose that K is the standard subcomplex of Sal(A) associated with
CB . Let Ψ0 : K → M(A⊗ C) be the restriction of the modified Salvetti embedding of (5.2).

Let D be small open disk orthogonal to B at b of complementary dimension. Let E = B ⊗ C
and let ∂EV� = E� × S(V/E)� be the codimension one face of V� associated with E. Then

(1) the map Ψ0 is homotopic in M(A⊗ C) to a map Ψ1 : K → (D ×D) − (
⋃

H∈A H ×H);
moreover, Ψ1 is a homotopy equivalence;

(2) the map Ψ0 is homotopic in V� to Ψ2 : K → {x} × S(V/E)� for some x ∈ E�; moreover,
Ψ2 is a homotopy equivalence.

5.3. Orthogonal complements of standard subcomplexes

Let A, A,B, V,E,CB , and b = bCB
be as in the previous subsection. Suppose Z = Z(A) and

Z ′ = Z(AB). Let P(Z ′) denote the set of faces of Z ′. For each F ∈ P(Z ′) there is a unique face
F̂ of Z such that B ∩ F̂ = F . If v is a vertex of Z ′, then F (v) := v̂ is a dual face to B. If v, v′ are
vertices of Z ′, then F (v) and F (v′) are parallel faces of Z. Hence, parallel translation defines
a bijection from VertF (v) to VertF (v′). For each v ∈ VertZ ′ choose a vertex u(v) ∈ F (v) so
that u(v) corresponds to u(v′) under parallel translation. Since we can also treat b as a vertex
of Z ′, the meaning of u(b) is clear.

Lemma 5.5. Let F be a face of Z ′ and let v be a vertex of Z ′. Then u(ProjF (v)) =
ProjF̂ (u(v)).

Proof. Let HF (respectively, HF̂ ) be the collection of hyperplanes of A which intersect an
edge of F (respectively, F̂ ) in one point. Then HF ⊂ HF̂ . Since each element of HF̂ contains
bF̂ = bF , each element of H′ = HF̂ \ HF contains B. By Lemma 2.2 (3), for any H ∈ HF , v
and ProjF (v) are on the same side of H. Since no hyperplane of A separates v from u(v),
u(v) and u(ProjF (v)) are on the same side of H for any H ∈ HF . The same statement holds
if H ∈ A′, since each element of A′ contains B. The lemma follows after applying Lemma 2.2
(3) to F̂ . �

Definition 5.6. For each face F of Z ′, choose a homeomorphism ΦF : CB × F → F̂ such
that

(i) for each vertex v ∈ Z ′, Φv maps CB × {v} to the face of Z ′ which is parallel to CB and
contains v (we regard Z ′ as a subset of Z); moreover, Φv is a simplicial isomorphism
induced by parallel translation;

(ii) for each edge e ⊂ Z ′ endpoints v1 and v2, Φe({u(b)} × e) is an edge path in Z(1) of the
shortest length from Φv1({u(b)} × {v1}) to Φv2({u(b)} × {v2});

(iii) for two faces F1 ⊂ F2 of Z ′, the maps ΦF1 and ΦF2 agree on CB × F1;
(iv) we have ΦF ({b} × F ) = F (where the F on the right-hand side is understood to be a

subset of F̂ ).

Define TSal(AB) to be CB × Sal(AB).
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Lemma 5.7. The homeomorphisms ΦF defined above fit together to induce a map Φ :
TSal(AB) → Sal(A). Moreover, the image of Φ is

⋃
v∈VertZ′ (Z, u(v)).

Proof. A face of TSal(AB) is represented by (F, v) where F is a face of Z ′ and v is a vertex of
F . Define Φ on CB × (F, v) by taking CB × (F, v) to (F̂ , u(v)) via ΦF . Recall that for two cells
(F1, v1) and (F2, v2) in Z ′, (F1, v1) ⊂ (F2, v2) if and only if F1 ⊂ F2 and ProjF1

(v2) = v1. So,
by Lemma 5.5, F̂1 ⊂ F̂2 and ProjF̂1

(u(v2)) = u(ProjF1
(v2)) = u(v1). Therefore, (F̂1, u(v1)) ⊂

(F̂2, u(v2)) as cells of Sal(A). This shows that Φ is well defined. The final statement in the
lemma follows from the definition of Φ. �

Let ΨB : Sal(AB) → E and ΨA : Sal(A) → V be two modified Salvetti embeddings (cf.
(5.2)). Define f0 to be the composition,

Sal(AB)
j→ TSal(AB) k→ Sal(A) ΨA→ V,

where j sends Sal(AB) to {b} × Sal(AB). Perturb the choice of points in each fan in the
definition of ΨA so that

(1) for each vertex v ∈ Z ′, the vector u(v) − v is orthogonal to B;
(2) for any two vertices v1, v2 ∈ Z ′, the vectors u(v1) − v1 and u(v2) − v2 are parallel.

The perturbation of ΨA leads to a perturbation of f0. Denote the resulting map by f1. Let H1

be the straight line homotopy between f0 and f1. Define f2 to be the composition, Sal(AB) ΨB→
E ↪→ V , where the second map is the inclusion. Next, we compare f1 and f2.

Recall that any simplex in bSal(AB) has the form (Δ, v) where Δ is a simplex in bZ ′, and v
is a vertex of Z ′. Let Δ = [bF0 , bF1 , . . . , bFk

], where each Fi is a face of Z ′. Note that bF̂i
= bFi

.
Then

f2((bFi
, v)) = bFi

+ i(pFi
(v)).

Note that Φ sends (Δ, v) to (Δ, u(v)), which is a simplex of bSal(A). Thus,

f1((bFi
, v)) = bF̂i

+ i(pF̂i
(u(v))) = bFi

+ i(u(pFi
(v))),

where the second inequality follows from Lemma 5.5.
By our choice of points in each fan, it follows that there is a unit vector �μ ∈ A orthogonal

to B such that for each vertex v ∈ Z ′, u(v) − v is the vector αv�μ, where αv is some positive
number. So, for each vertex x of bSal(AB), H1(x) −H0(x) is proportional to i�μ. Since H1 and
H0 are linear on each simplex of bSal(AB), the same holds for any x ∈ bSal(AB). Let H2 be
the straight line homotopy between f1 and f2, and let H be the concatenation of H1 and H2.
Note that H(·, t) ∈ M(A⊗ C) whenever t < 1.

Then H(·, t) induces a homotopy H̃ : bSal(AB) × [0, 1] → V� as follows. As the interior
of V� is identified with M(A⊗ C), put H̃(x, t) = H(x, t) when t < 1 and define H̃(x, 1) =
(ΨB(x), μ) ∈ ∂EV� = E� × S(V/E)�. Again, the interior of E� is equal to M(AB ⊗ C) in
which the image of ΨB lies, and the point μ ∈ S(V/E)� is determined by the vector i�μ (note
that i�μ ⊥ E). One checks that H̃ is continuous. Moreover, by Lemma 5.2, H̃(·, 1) : Sal(AB) →
E� is a homotopy equivalence.

Lemma 5.8. Let K be the standard subcomplex of Sal(A) associated with CB . Put K⊥ =
Φ({b} × Sal(AB)). Then

(1) the restriction of Φ to {b} × Sal(AB) is an embedding;
(2) the intersection K ∩K⊥ is single vertex of bSal(A) represented by the point (b, u(b)).

(Here we treat b as a vertex of Z ′; hence, u(b) makes sense.)
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Proof. Let Δ be a simplex of bZ ′. Let v1, v2 be vertices of Z ′. It follows from Remark 2.6 and
Lemma 5.5 that if (Δ, v1) ∩ (Δ, v2) = (Δ′, v), then (Δ, u(v1)) ∩ (Δ, u(v2)) = (Δ′, u(v)). As Φ
maps (Δ, v) to (Δ, u(v)), statement (1) follows. Note that the unique top-dimensional cell of K
that has nonempty intersection with K⊥ is of the form (CB , u(b)). Statement (2) follows. �

Definition 5.9. The subcomplex K⊥ of bSal(A) in the above lemma can be described
directly as follows: it is the union of all simplices of form (Δ, u(v)) with (Δ, v) ranging over
simplices of bSal(AB). We call K⊥ the orthogonal complement of K at (b, u(b)).

Take a copy of K and a copy of K⊥ and glue them together at b∗ := (b, u(b)) to obtain a
space K∗. So, K∗ is the wedge of bSal(A) and bSal(AB), and there is a natural embedding
K∗ → Sal(A). Let g0 : K∗ → V� be the map induced by the modified Salvetti embedding
Sal(A) ↪→ M(A⊗ C) (cf. (5.2)). Let J̃ , J1, and J2 be the homotopies defined in Subsection 5.2.
Since J1 and H1 arise by perturbing of the choice of points in fans and since this can be done
simultaneously and consistently, we can assume that these homotopies fit together to give a
homotopy K∗ × [0, 1] → M(A⊗ C). Moreover, the restrictions of J2 and H2 to (b, u(b)) × [0, 1]
agree (they both give a segment from (b, u(b)) to (b, b)). By Lemma 5.8 (2), H̃ and J̃ together
induce a homotopy K∗ × [0, 1] → V� from g0 to g1, where g1 is obtained by gluing together
H̃(·, 1) and J̃(·, 1). We summarize the above discussion in the following proposition.

Proposition 5.10. Let B ⊂ A be a subspace in Q(A). Let CB be a face of Z(A) dual to
B and let K be the standard subcomplex of Sal(A) associated with CB . For a top-dimensional
cell C of K, let b∗ be the barycenter of C and let K⊥ be the orthogonal complement to
K at b∗. As in the preceding paragraph, glue K to K⊥ at b∗ to obtain K∗. Then the map
g0 : K∗ → V� induced by the modified Salvetti embedding is homotopic (in V�) to a continuous
map g1 : K∗ → ∂EV� = E� × S(V/E)� satisfying the following conditions.

(1) There exists a point y in the interior of E� such that g1(K⊥) ⊂ E� × {y} and (g1)|K⊥ :
K⊥ → E� × {y} is a homotopy equivalence.

(2) There exists a point y′ in the interior of S(V/E)� such that g1(K) ⊂ {y′} × S(V/E)�
and (g1)|K : K → {y′} × S(V/E)� is a homotopy equivalence.

5.4. The isomorphism between Calg and Ctop

Proposition 5.11. Suppose that A is a finite, central, simplicial real arrangement in a real
vector space A and let V = A⊗ C. Let B be a subspace in Q(A) and let E = B ⊗ C.

(1) The inclusion map i : ∂EV� = E� × S(V/E)� → V� induces an injective map of funda-

mental groups. Hence, any component of the inverse image of ∂EV in the universal cover Ṽ�
is contractible.

(2) Let U be the center of π1(S(V/E)�). Then i∗(π1(∂EV�)) is the centralizer of i∗(U) in
π1(V�), and this also is equal to the normalizer of i∗(U) in π1(V�).

Proof. Let Φ be the map from Lemma 5.7 and let φ : Γ(AB) → Γ(A) be the map from
Definition 3.15. Let Γ(AB) and Γ(A) be the graphs defined in Section 3. We identify Γ(A)
as the 1-skeleton of Sal(A) and Γ(AB) as a subset of TSal(AB) = CB × Sal(AB) of the form
{u(b)} × (Sal(AB))1 (where the edges of Sal(A) and Sal(AB) are oriented as in Remark 2.5).
It follows from Definition 5.6 (2) that we can assume that φ is the restriction of Φ to Γ(AB).
Theorem 5.3 implies that the morphism induced by Φ|{u(b)}×Sal(AB) : {u(b)} × Sal(AB) →
Sal(A) is described, on the level of fundamental groups, by a morphism of groupoids φ :
G(AB) → G(A). Take a vertex v of Sal(AB) and let x = Φ((u(b), v)). Let K ∼= Sal(AA/B)
be as before. Let h1 : π1(K,x) → π1(Sal(A), x) be the map induced by the inclusion K →
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Sal(A). Let h2 : π1(Sal(AB), v) → π1(Sal(A), x) be the map induced by Φ|{u(b)}×Sal(AB). By
Corollary 3.17,

(1) Imh1 and Imh2 commute;
(2) h = h1 × h2 : π1(K,x) × π1(Sal(AB), v) → π1(Sal(A), x) is injective;
(3) if U denotes the center of π1(Sal(AB), v), then both the centralizer and normalizer of

h1(U) in π1(Sal(A), x) are generated by Imh1 and Imh2.

The existence of the map Φ implies that these properties still hold if we choose as base
point Φ((b, v)) instead of x in the definition of h1, and let h2 be induced by Φ|{b}×Sal(AB).
Proposition 5.10 can be used to complete the proof. �

Let Calg(A) be as in Definition 1.14. By Proposition 5.4(1), when A is irreducible, Cgro(A)
is isomorphic Calg(A).

Theorem 5.12. Suppose that A is the complexification of a finite, central real simplicial
arrangement of hyperplanes in an n-dimensional vector space and let l be the number of
irreducible components of A. As in Definition 1.24 let X be the compact core of V� and let Y
be the universal cover of X. Then Properties A, C, and D in Section 1.4 hold and the following
statements are true.

(i) The algebraic and topologicial versions of the curve complex Calg and Ctop are identical
(and we denote this simplicial complex by C).

(ii) The faces in ∂X are indexed by the set of simplices in a complex I0 which is defined in
Definition 1.4 in Section 1.1. The faces of Y are indexed by C and the group G = π1(X) acts
on C with quotient space I0.

(iii) The simplicial complex C is homotopy equivalent to a wedge of (n− l − 1)-spheres
(where dim C = n− l − 1).

(iv) Each face of X is aspherical and its fundamental group injects into G.
(v) The fundamental group of each codimension-one face of X is the normalizer of an

irreducible parabolic subgroup.
(vi) The stabilizer of each simplex of C is the fundamental group of M(A′) where A′ is also

the complexification of some real simplicial arrangement.

Proof. Once we verify Properties A, C, and D, the theorem follows from Propositions 1.27,
4.6, and 1.31 (or alternatively Propositions 1.27 and 1.31 and Remark 1.28). Property A follows
from Proposition 5.11(1). Property C is follows from Proposition 5.11(2). Property D follows
from Lemma 3.20. �
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14. M. Cuntz and P. Mücksch, ‘Supersolvable simplicial arrangements’, Adv. Appl. Math. 107 (2019) 32–73.
15. M. Davis, ‘Smooth G-manifolds as collections of fiber bundles’, Pacific J. Math. 77 (1978) 315–363.
16. M. W. Davis, ‘Buildings are CAT(0)’, Geometry and cohomology in group theory (Durham, 1994), London

Mathematical Society Lecture Note Series 252 (Cambridge University Press, Cambridge, 1998) 108–123.
17. M. W. Davis, The geometry and topology of Coxeter groups, London Mathematical Society Monographs

Series 32 (Princeton University Press, Princeton, NJ, 2008).
18. M. W. Davis, ‘Right-angularity, flag complexes, asphericity’, Geom. Dedicata 159 (2012) 239–262.
19. M. W. Davis and J. Huang, ‘Determining the action dimension of an Artin group by using its complex

of abelian subgroups’, Bull. Lond. Math. Soc. 49 (2017) 725–741.
20. M. W. Davis, T. Januszkiewicz, I. J. Leary and B. Okun, ‘Cohomology of hyperplane complements

with group ring coefficients’, Int. Math. Res. Not. 9 (2011) 2110–2116.
21. M. W. Davis, T. Januszkiewicz and R. Scott, ‘Nonpositive curvature of blow-ups’, Selecta Math. (N.S.)

4 (1998) 491–547.
22. M. W. Davis and P. H. Kropholler, ‘Criteria for asphericity of polyhedral products: Corrigenda to

“right-angularity, flag complexes, asphericity”’, Geom. Dedicata 179 (2015) 39–44.
23. M. W. Davis, G. Le and K. Schreve, ‘Action dimensions of simple complexes of groups’, J. Topol. 12

(2019) 1266–1314.
24. M. W. Davis and B. Okun, ‘Cohomology computations for Artin groups, Bestvina-Brady groups, and

graph products’, Groups Geom. Dyn. 6 (2012) 485–531.
25. C. De Concini and C. Procesi, ‘Wonderful models of subspace arrangements’, Selecta Math. 1 (1995)

459–494.
26. P. Deligne, ‘Les immeubles des groupes de tresses généralisés’, Invent. Math. 17 (1972) 273–302. (French)
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