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Abstract

These notes are intended as an introduction to the theory of Cox-
eter groups. They closely follow my talk in the Lectures on Modern
Mathematics Series at the Mathematical Sciences Center in Tsinghua
University on May 10, 2013. They were prepared from the beamer
presentation which I used during my talk.
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1 Geometric reflection groups

By a geometric reflection group we mean a discrete group generated by re-
flections across the faces of a convex polytope in Sn, En or Hn (the n-sphere,
Euclidean n-space or hyperbolic n-space, respectively). The simplest reflec-
tion group is the cyclic group of order two acting as a reflection on the real
line. The next simplest are the dihedral groups.

Dihedral groups A dihedral group is any group which is generated by two
involutions, call them s and t. Such a group is determined up to isomorphism

∗The author thanks the Mathematical Sciences Center at Tsinghua University for the
opportunity to visit during the spring of 2013. These notes were written during that
period. The author also was partially supported by NSF grant DMS 1007068.
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by the order m of st (m is an integer ≥ 2 or∞). Let Dm denote the dihedral
group corresponding to m.

For m 6= ∞, Dm can be represented as the subgroup of O(2) which is
generated by reflections across lines L and L′, making an angle of π/m. (See
Figure 1.)

r
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r
L´

π/m

Figure 1: A finite dihedral group

1.1 Some history

In 1852 Möbius determined the finite subgroups of O(3) that are generated
by isometric reflections on the 2-sphere. The fundamental domain for such a
group on the 2-sphere is a spherical triangle with angles π

p
, π
q
, π
r
, with p, q, r

integers ≥ 2. Since the sum of the angles is > π, we have 1
p

+ 1
q

+ 1
r
> 1. For

p ≥ q ≥ r, the only possibilities are: (p, 2, 2) for any p ≥ 2 and (p, 3, 2) with
p = 3, 4 or 5. The last three cases are the symmetry groups of the Platonic
solids. (See Figure 2.)

Later work by Riemann and Schwarz showed there were discrete groups
of isometries of E2 or H2 generated by reflections across the edges of triangles
with angles integral submultiples of π. (See Figure 3 for a hyperbolic triangle
group.) Poincaré and Klein showed there were similar groups for polygons
in H2. (See Figure 4 for a right-angled pentagon group.)

In the second half of the nineteenth century work began on finite reflec-
tion groups on Sn, n > 2, generalizing Möbius’ results for n = 2. It developed
along two lines. First, around 1850, Schläfli classified regular polytopes in
Rn+1, n > 2. The symmetry group of such a polytope was a finite group
generated by reflections and, as in Möbius’ case, the projection of a funda-
mental domain to Sn was a spherical simplex with dihedral angles integral
submultiples of π. Second, around 1890, Killing and E. Cartan classified
complex semisimple Lie algebras in terms of their root systems. In 1925,
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Figure 2: (2, 3, 3), (2, 3, 4) and (2, 3, 5) triangle groups

Figure 3: (3, 6, 6) triangle group

Figure 4: Right-angled pentagon group

3



Weyl showed the symmetry group of such a root system was a finite reflec-
tion group. These two lines were united by Coxeter [7] in the 1930’s. He
classified discrete reflection groups on Sn or En.1 (See Figure 5.)

1.2 Properties

Let K be a fundamental polytope for a geometric reflection group. For Sn,
K is a simplex (i.e., the generalization of a triangle to a higher dimension).
For En, K is a product of simplices, for example, K could be a product of
intervals. For Hn there are other possibilities, e.g., a right-angled pentagon
in H2 (see Figure 4) or a right-angled dodecahedron in H3. For a survey
of the known examples of geometric reflection groups on Hn, see Vinberg’s
article [18].

Conversely, given a convex polytope K in Sn, En or Hn so that all dihedral
angles have form π/integer, there is a discrete group W generated by isomet-
ric reflections across the codimension one faces of K (cf. [8, Thm. 6.4.3]).

Let S be the set of reflections across the codimension one faces of K.
Then S generates W . For s, t ∈ S, let m(s, t) be the order of st. The faces
corresponding to s and t intersect in a codimension two face if and only if
m(s, t) 6= ∞, and for s 6= t, the dihedral angle along that face is π/m(s, t).
(The S×S symmetric matrix (m(s, t)) is the Coxeter matrix.) Moreover, W
has a presentation of the form

〈S | (st)m(s,t), where (s, t) ∈ S × S〉 (1.1)

Coxeter diagrams Associated to (W,S), there is a labeled graph Γ called
its Coxeter diagram. The vertex set of Γ is S. Connect distinct vertices s and
t by an edge if and only if m(s, t) 6= 2. Label the edge by m(s, t) if m(s, t)
is > 3 or =∞ and leave it unlabeled if it is = 3. (W,S) is irreducible if Γ is
connected. (The components of Γ give the irreducible factors of W .)

Figure 5 shows Coxeter’s classification in [7] of irreducible spherical and
irreducible cocompact Euclidean reflection groups. Figure 6 shows Lannér’s
classification in [13] of the hyperbolic reflection groups with fundamental
polytope equal to a simplex in Hn.

1This subsection is based on the Historical Notes in [3].
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Spherical Diagrams Euclidean Diagrams
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Figure 5: Coxeter diagrams
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Hyperbolic Simplicial Diagrams
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Figure 6: Hyperbolic simplicial diagrams
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1.3 The relationship with Lie theory

The class of finite Coxeter groups coincides with the class of geometric re-
flection groups on spheres. These groups are intimately tied to Lie theory.

Suppose G is a simple Lie group with Lie algebra g. The Lie algebra h of a
maximal torus is a “Cartan subalgebra.” The derivative of the adjoint action
of G on g leads to the adjoint action of g on itself by Lie brackets, defined
by ad(x)(y) :== [x, y]. Restricting this action to h, we get a decomposition
of g into simultaneous eigenspaces:

g =
⊕
α

gα,

where the α are certain linear functionals on h, called the roots. The set
of such α ∈ h∗ is a root system. The classification of simple Lie algebras
over C reduces to the classification of finite root systems. As mentioned
earlier, Weyl showed that the automorphism group of a root system is a finite
reflection group. (Each root defines a hyperplane and the group generated by
reflections across these hyperplanes is a reflection group on h. For this reason,
automorphism groups of root systems are usually called “Weyl groups.”) The
spherical diagrams in Figure 5 are automorphism groups of root systems
except in the cases H3, H4, and the dihedral groups I2(5) and I2(p), p > 6.
The classification of root systems is almost the same as the remaining list of
spherical diagrams except that there are two types of root systems for Bn.
These are usually denoted by Bn and Cn.

The connection between spherical Coxeter groups and root systems has
many ramifications. For one, the field need not be the field of complex
numbers. For example, algebraic groups over finite fields (i.e., finite groups
of “Lie type”) have corresponding spherical Coxeter diagrams. “Spherical
buildings” are associated to these groups. Euclidean reflection groups arise
in a number of related ways. One is as the automorphism group of the
weight lattice in h∗. (This automorphism group is an extension of the finite
Coxeter group by a lattice in h∗.) Euclidean reflection groups also occur in
the theory of algebraic groups over local fields. The corresponding building
is called “Euclidean” or “affine.”

Finally, there are the theories of Kac-Moody algebras, groups and build-
ings. These are related to the more general Coxeter groups that are consid-
ered in the next section. In particular, the Tits representations of 2.2 are
related to root systems for Kac-Moody Lie algebras.
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2 Abstract reflection groups

The theory of abstract reflection groups was invented by Tits [16] around
1961. His term for an abstract reflection group was a “Coxeter group.” This
theory of Coxeter groups is explained in the beautiful book of Bourbaki [3];
Ken Brown’s book [4] is also an excellent source.

Question 2.1. Given a group W and a set S of involutions which generate
W , when does (W,S) deserve to be called an “abstract reflection group”?

There are two answers to Question 2.1. Suppose Cay(W,S) is the Cayley
graph of (W,S) (i.e., its vertex set is W and {w, v} spans an edge if and only
if v = ws for some s ∈ S)).

First answer : For each s ∈ S, the fixed point set of s on Cay(W,S)
separates Cay(W,S).

Second answer : W has a presentation of the same form as (1.1):

〈S | (st)m(s,t), where (s, t) ∈ S × S〉. (2.1)

Here (m(s, t)) is a symmetric (S × S)-matrix with 1 s on the diagonal and
off-diagonal elements integers ≥ 2 or the symbol ∞. Such a matrix is called
a Coxeter matrix.

It turns out that these two answers are equivalent! (This is implicit in
[3]. It also is stated explicitly and proved in [8, Chapter 3].)

Some of the terms used above should be defined.

Definition 2.2. (Cayley graphs). Given a group G and a set of generators
S, let Cay(G,S) denote the graph with vertex set G which has a (directed)
edge from g to gs, for all g ∈ G and for all s ∈ S. The group G acts on
Cay(G,S) (written G y Cay(G,S)), the action is simply transitive on the
vertex set, and the edges starting at a given vertex can be labeled by the
elements of S.

Definition 2.3. (Presentations). Suppose S is a set of letters and R is a
set of words in S. Let FS be the free group on S and let NR be the smallest
normal subgroup containing R. Set G := FS/NR and write

G = 〈S | R〉.

It is a presentation for G.
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2.1 Coxeter systems

Definition 2.4. If either of the previous two answers holds, (W,S) is a
Coxeter system and W is a Coxeter group.

The terms “Coxeter group” and “Coxeter system” were coined by Tits
[16]. The second answer is usually taken to be the official definition: W has
a presentation of the form given by (2.1).

Definition 2.5. Given a subset T ⊂ S, put WT := 〈T 〉 and call it a special
subgroup. T is spherical if WT is finite. Let S denote the poset of spherical
subsets of S. (N.B. ∅ ∈ S.)

Definition 2.6. The nerve of (W,S) is the simplicial complex L (= L(W,S))
with vertex set S and with T ⊂ S a simplex if and only if T is spherical.
(So, the poset of simplices in L, including the empty simplex, is S.)

Definition 2.7. (Right-angled Coxeter systems or RACSs). A Coxeter sys-
tem (W,S) is right-angled (a RACS for short) if all off-diagonal m(s, t) are
= 2 or ∞. W is a right-angled Coxeter group (a RACG).

Suppose Γ is a graph with vertex set S. Define an (S×S) Coxeter matrix
(m(s, t)) with off-diagonal elements given by

m(s, t) =

{
2, if {s, t} ∈ Edge Γ

∞, otherwise.

This defines a RACS, (W,S). A subset T ⊂ S is spherical if and only if
it spans a complete subgraph of Γ. So, the nerve L is the associated flag
complex of Γ (called the “clique complex” of Γ by combinatorialists).

Question 2.8. Does every Coxeter system have a geometric realization?

Answer 2.9. Yes. In fact, there are two different realizations:

(1) the Tits representation,

(2) the cell complex Σ.

Both realizations use the following basic construction.
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The basic construction A mirror structure on a space X is a family of
closed subspaces {Xs}s∈S. For x ∈ X, put S(x) = {s ∈ S | x ∈ Xs}. Define

U(W,X) := (W ×X)/ ∼ ,

where ∼ is the equivalence relation: (w, x) ∼ (w′, x′) ⇐⇒ x = x′ and
w−1w′ ∈ WS(x) (the special subgroup generated by S(x)). In other words,
U(W,X) is formed by gluing together copies of X (the chambers), one for
each element of W . The group W acts on U(W,X) via w · [v, x] = [wv, x],
where [v, x] denotes the equivalence class of (v, x). (Think of X as the fun-
damental polytope and the Xs as its codimension one faces.)

Definition 2.10. Suppose (W,S) is a Coxeter system. The action of W on
a space U is a reflection group if there is a mirror structure {Xs}s∈S on a
space X such that U is equivariantly homeomorphic to U(W,X). (In the
past I considered various possible definitions of a “reflection group” - always
with an eye to proving that the action was equivalent to the action of W on
U(W,X). Finally, I decided this should be taken as the definition.)

The properties a geometric realization should have: It should be an
action of W on a space U so that

(i) W is a reflection group on U .

(ii) The stabilizer of each x ∈ U is finite.

(iii) U is contractible.

(iv) U/W (= X) is compact.

2.2 The first realization: the Tits representation

Definition 2.11. (Linear reflections). Two data determine a (not necessar-
ily orthogonal) linear reflection on Rn:

(1) linear form α ∈ (Rn)∗ (the fixed hyperplane is α−1(0)).

(2) a (−1)-eigenvector h ∈ Rn (normalized so that α(h) = 2

The formula for the reflection is v 7→ v − α(v)h.
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A symmetric bilinear form Let (es)s∈S be the standard basis for RS.
Given a Coxeter matrix m(s, t) define a symmetric bilinear form B on RS by

B(es, et) = −2 cos(π/m(s, t)).

(In the case of geometric reflection group, if the es denote the unit normal
vectors to the codimension one faces of a fundamental polytope, then the
matrix on the right hand side of this formula is the matrix of inner products,
(es · et).) For each s ∈ S, we have a linear reflection rs : v 7→ v − B(es, v)es.
Tits showed this defines a linear action W y RS. We are interested in the
dual representation ρ : W → GL(RS) defined by s 7→ ρs := (rs)

∗.

Theorem 2.12. (Properties of Tits representation W → GL(RS), cf. [3]).

(i) The ρs are reflections across the faces of the standard simplicial cone
C ⊂ (RS)∗.

(ii) ρ : W ↪→ GL(RS), that is, ρ is a faithful representation.

(iii) WC (:=
⋃
w∈W wC) is a convex cone. Let I denote the interior of this

cone.

(iv) I = U(W,Cf ), where Cf denotes the complement of the nonspherical
faces of C (a face is spherical if its stabilizer is finite). So, W is a
“discrete reflection group” on I.

Figure 7: A hyperbolic triangle group

Selberg’s Lemma asserts that a finitely generated linear group is residually
finite and virtually torsion-free. So, a consequence of Theorem 2.12 is the
following.

Corollary 2.13. W is residually finite and virtually torsion-free.
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Advantages of the Tits representation: I is contractible (since it is
convex) and W acts properly (i.e., with finite stabilizers) on it.

Disadvantage: I/W is not compact (since Cf is not compact).

Remarks 2.14. (1) By dividing by scalar matrices, we get a representation
W ↪→ PGL(RS). So, W y PI, the image of I in projective space. When W
is infinite and irreducible, this is a proper convex subset of RP n−1, n = #S.

(2) In [17] Vinberg showed one can get linear representations across the
faces of more general polyhedral cones. As before, W y I, where I is
a convex cone; PI is a open convex subset of RP n−1. The fundamental
chamber is a convex polytope with some faces deleted. Sometimes it can be
a compact polytope, for example, a pentagon. (See Figure 4 again).

Yves Benoist [2] has written a series of papers (see [2]) about these pro-
jective representations W ↪→ PGL(n,R). In particular, there are interest-
ing examples with fundamental chamber a compact polytope which are not
equivalent to a Euclidean or hyperbolic reflection group. In particular, Mous-
song [14, 15] had given examples of word hyperbolic Coxeter groups whose
nerves were boundary complexes of simplicial polytopes yet could not be
realized as reflection groups on any hyperbolic space. Benoist showed that
certain of Moussong’s examples admit cocompact projective representations
as reflection groups.

Question 2.15. For (W,S) to be a reflection group in PGL(n + 1,R) with
fundamental chamber a compact convex polytope P n ⊂ RP n there is an obvi-
ous necessary condition: its nerve L(W,S) (defined by the spherical subsets of
S) must be dual to ∂P n. In other words, the simplicial complex L(W,S) must
be the boundary complex of a simplicial polytope. Is this condition sufficient?

Almost certainly the answer is no. In the opposite direction, one could
ask the following.

Question 2.16. Are there irreducible, non-affine examples of such W ⊂
PGL(n + 1,R) with P n ⊂ RP n a compact convex polytope, for n arbitrarily
large?
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2.3 The second realization: the cell complex Σ

The second answer is to construct a contractible cell complex Σ on which
W acts properly and cocompactly as a group generated by reflections. Its
advantage is that Σ/W will be compact.

t

s

1

t

s

s

s

t

t

st

sts= tst

ts

Figure 8: The Cayley 2-complex of a finite dihedral group

Figure 9: Cayley 2-complex of (3, 3, 3)-triangle group

There are two dual constructions of Σ:

(1) Build the correct fundamental chamberK with mirror structure {Ks}s∈S,
then apply the basic construction to get Σ = U(W,K).

(2) Fill in the Cayley graph of (W,S).

Filling in the Cayley graph Let W{s,t} be the dihedral subgroup 〈s, t〉.
Whenever m(s, t) <∞ each coset of W{s,t} spans a polygon in Cay(W,S). If
we fill in these polygons, we get a simply connected 2-dimensional complex,
which will be the 2-skeleton of Σ. If we want to obtain a contractible space,
then we need to fill in higher dimensional polytopes (”cells”). Corresponding
to a spherical subset T with #T = k, there is a k-dimensional convex poly-
tope called a Coxeter zonotope. (A zonotope means a convex polytope which
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is dual to the face poset of an arrangement of hyperplanes in Rn.) When
k = 2, a zonotope is the polygon with an even number of edges.

Coxeter zonotopes Suppose WT is finite reflection group on RT . Choose
a point x in the interior of fundamental simplicial cone and let PT be convex
hull of WTx. The 1-skeleton of PT is Cay(WT , T ) (See Figures 8 and 10.)

Figure 10: The permutohedron

Example 2.17. When WT = (Z/2)n, PT is an n-cube.

Let WS be the poset of spherical cosets, i.e., it is the disjoint union of all
cosets of spherical special subgroups (partially ordered by inclusion):

WS :=
∐
T∈S

W/WT . (2.2)

The idea is to build a cell complex with one cell (a Coxeter zonotope) for
each spherical coset.

Definition 2.18. (Geometric realization of a poset). Associated to any poset
P there is a simplicial complex |P| called its geometric realization. The vertex
set of |P| is P . A set of k + 1 distinct vertices {p0, p1, . . . , pk} spans a k-
simplex if and only if it is totally ordered, i.e., if, possibly after renumbering,
p0 < · · · < pk.

Put Σ := |WS|. There is a cell structure on Σ with

{cells in Σ} = WS.

This follows from fact that poset of cells in PT is ∼= WTS≤T . The cells of Σ
are defined as follows: the geometric realization of subposet of cosets ≤ wWT

is ∼= barycentric subdivision of PT .
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Theorem 2.19. (Properties of this cell structure on Σ, cf. [8]).

(i) W acts cellularly on Σ.

(ii) Σ has one W -orbit of cells for each spherical subset T ∈ S; the dimen-
sion of the cell is Card(T ).

(iii) The 0-skeleton of Σ is W

(iv) The 1-skeleton of Σ is Cay(W,S).

(v) The 2-skeleton of Σ is the Cayley 2 complex of the presentation.

(vi) If W is right-angled (i.e., if each m(s, t) is 1, 2 or∞), then each Coxeter
cell is a cube.

(vii) (Gromov [11] and Moussong [14]): the induced piecewise Euclidean met-
ric on Σ is CAT(0) (meaning that it is non positively curved).

(viii) Σ is contractible. (This follows from the fact it is CAT(0)).

(ix) The W -action is proper (by construction each isotropy subgroup is con-
jugate to some spherical WT ).

(x) Σ/W is compact.

(xi) If W is finite, then Σ is a Coxeter zonotope.

Theorem 2.20. (A typical application of CAT(0)-ness, cf. [9, Remark(5b.2),
p. 384]). There is a closed manifold M with a nonpositively curved (polyhe-
dral) metric so that M is not homotopy equivalent to a nonpositivley curved
Riemannian manifold (the reason being that the universal cover of M is not
homeomorphic to Euclidean space.)

The dual construction of Σ Recall S is the poset of spherical subsets of
S. The fundamental chamber K is defined by K := |S|. (K is the cone on the
barycentric subdivision of L.) The mirror structure is given by Ks := |S≥{s}|.
The proof of the following proposition is an easy exercise - it is essentially
just a matter of unraveling the definitions.

Proposition 2.21. (cf. [8]). Σ := U(W,K). So, K is homeomorphic to
Σ/W .

15



The construction of Σ is very useful for constructing examples. The basic
reason is that the chamber K is the cone over a fairly arbitrary simplicial
complex (for example, any barycentric subdivision can occur). This means
we can construct Σ with whatever local topology we like.

Relationship with geometric reflection groups If W is a geometric
reflection group on Xn = En or Hn, then K can be identified with the fun-
damental polytope, Σ with Xn and the cell structure of Σ is dual to the
tessellation of Σ by translates of K. (See Figure 4; the dotted black lines
form the 1-skeleton of Σ.)

Relationship with Tits representation Suppose W is infinite. Then
K is subcomplex of b∆, the barycentric subdivision of the simplex ∆ ⊂ C.
Consider the vertices which are barycenters of spherical faces. They span
a subcomplex of b∆ (the barycentric subdivision of the simplex ∆). This
subcomplex is K. It is a subspace of ∆f . So, Σ = U(W,K) ⊂ U(W,∆f ) ⊂
U(W,Cf ) = I. Thus, Σ is the “cocompact core” of I.

2.4 The relationship between Coxeter groups
and Artin groups

Given a Coxeter matrix (m(s, t)) there is an associated Artin group A with
set of generators {xs}s∈S and with relations defined by

xsxt · · · = xtxs · · ·

for all s, t with s 6= t and m(s, t) 6= ∞. Here the words on each side on
the equation are alternating words of length m(s, t) in xs and xt. There is a
natural epimorphism from A to the associated Coxeter group W sending xs
to s. For example, if W is the symmetric group An on n + 1 letters than A
is the braid group on n+ 1 strands. (Artin was the first to study these braid
groups.)

The Tits representation W ↪→ GL(N ;R), where N = #S, has complexi-
fication W ↪→ GL(N ;C). The subset RN + iI is W -stable. For each r ∈ R
(where R is the set of conjugates of S), we have the complexified hyperplane
Hr that is fixed by r. Denote the complement of the union of these reflecting
hyperplanes by

M := (RN + iI)−
⋃
r∈R

Hr.
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The group W acts freely on M and π1(M/W ) = A. The major unknown
question in the area is the K(π, 1)-Problem for Artin groups. This asks
whether M is a model for K(A, 1) (see [5, 6]). The answer is affirmative
for Artin groups of spherical type, for right-angled Artin groups (as defined
below) and for many other cases (see [5]).

In analogy with Definition 2.7, an Artin group is right-angled if all the
off-diagonal m(s, t) are 2 or ∞. The term “right-angled Artin group” is
commonly abbreviated RAAG.

There is a beautiful model for the classifying space K(A, 1) of a RAAG
A. Let T S denote the product of S copies of S1. For each simplex σ ∈ L
(= L(W,S)), let T σ denote the subproduct over the vertices of σ of copies
of S1. Then

⋃
σ∈L T

σ is a K(A, 1). Its universal cover is a CAT(0) cube
complex (see [6]).

It is proved in [10] that every RAAG is commensurable with a RACG. (In
fact, any RAAG has a RACG as a subgroup of finite index as well as a RACG
as finite index super group.) Using this, one can show that RAAGs have
very strong separability properties. For example, since RACGs are linear
groups via the Tits representation, so are RAAGs. In particular, RAAGs
are residually finite. Furthermore, Haglund proved that every quasiconvex
subgroup of a RACG is a virtual retract of it; so, the same is true for any
RAAG.

Some recent spectacular advances in geometric group theory and in 3-
manifold theory involve RACGs and RAAGs. First, Haglund and Wise
proved that if a group Γ acts on a sufficiently nice CAT(0) cube complex,
then Γ virtually embeds in a RAAG or RACG. These nice cube complexes
are the “special” cube complexes of [12]. An overview of this theory can be
found in [19]. In [1] Ian Agol proved a conjecture of Wise asserting that if
a word hyperbolic groups acts on a CAT(0) cube complex, then it can also
act on a special CAT(0) cube complex. Using this, he proved Thurston’s
remaining conjectures on 3-manifolds and their fundamental groups. In par-
ticular, he proved Thurston’s Virtual Fibering Conjecture and Virtual Haken
Conjecture. For this work Agol and Wise were awarded the Veblen Prize in
2013.
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