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Random graph products of finite groups are rational
duality groups

Michael W. Davis and Matthew Kahle

Abstract

Given an edge-independent random graph G(n, p), we determine various facts about the
cohomology of graph products of groups for the graph G(n, p). In particular, the random graph
product of a sequence of finite groups is a rational duality group with probability tending to 1
as n → ∞. This includes random right-angled Coxeter groups as a special case.

1. Introduction

A simplicial graph G determines a simplicial complex X(G), called its flag complex (or its
‘clique complex’). The simplices of X(G) are the complete subgraphs of G.

Given a sequence Γ = (Γi)i∈N of discrete groups indexed by the natural numbers and a graph
G with vertex set [n] (where [n] := {1, . . . , n}), we construct a new group G (= G(G,Γ)), called
the graph product, by taking the free product of the Γi, i ∈ [n], and then imposing the relations
that elements in Γi commute with elements of Γj whenever {i, j} ∈ Edge(G). We are mainly
interested in the case where Γ is the constant sequence Γi = Γ, for some group Γ.

It turns out that the cohomology of G with coefficients in the group ring, ZG, can be
calculated in terms of (1) cohomology groups of the Γi and (2) the cohomology groups of
X(G) and various subcomplexes of X(G) (cf. [10, 13–15, 18, 22]). With trivial coefficients,
the (co)homology groups of G depend only on the f -vector of X(G) (that is, the number of
simplices of X(G) in any given dimension) and the (co)homology groups of the Γi.

The edge-independent random graph is the probability space G(n, p), defined as follows. For
a real number 0 � p � 1 and natural number n, G(n, p) is the set of all graphs on vertex set
[n] with probability measure defined by

Pr(G) = peG(1 − p)(
n
2)−eG ,

where eG denotes the number of edges in G. It can be viewed as the result of
(
n
2

)
independent

coin flippings, that is, G(n, p) is the probability space of all graphs on vertex set [n] where
each edge is included with uniform probability p, jointly independently. (This is sometimes
called the ‘Erdős–Rényi’ random graph, even though Erdős and Rényi were interested in a
different but closely related model, G(n,m).) The random flag complex with edge probability
p is X(n, p) := X(G(n, p)). In other words, it is the same probability space as G(n, p) except
that its elements are regarded as flag complexes rather than graphs. Similarly, the random
graph product for Γ is the group G(n, p,Γ) associated to G(n, p) and Γ.

The groups G(n, p,Γ) were considered previously by Charney–Farber [7]. Somewhat earlier,
Costa–Farber [8] had looked at the special case of the random right-angled Artin group AG(n,p).
A formula for the cohomological dimension of AG(n,p) (= 1 + dimX(n, p)) in terms of (n, p)
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can be found in [8], as well as, a formula for the ‘topological complexity’ of its classifying space.
It is noted in [7] that if each Γi is finite, then the graph product G(n, p,Γ) is word hyperbolic
if and only if G(n, p) has no empty (induced) 4-cycles; furthermore, it is determined when this
condition holds ‘with high probability’ (w.h.p.).

We will write G ∼ G(n, p) to mean that G is chosen according to the distribution G(n, p).
In random graph theory, one often lets p depend on n. For a given sequence p = p(n), a

graph property Q is said to hold w.h.p. if

Pr[G(n, p) ∈ Q] −→ 1,

as n → ∞.
We will use Bachmann–Landau and related notation. Big O and little o are standard. We

also use Ω and ω, defined as follows: f = Ω(g) if and only if g = O(f), and f = ω(g) if and only
if g = o(f). Whenever we use asymptotic notation such as big O or little o, it is understood to
be as the number of vertices n → ∞. In slightly nonstandard notation, we will write f � g if
there exists a constant ε > 0 such that f/g = o(n−ε) (in other words, nεf/g → 0 as n → ∞).

A standard result in random graph theory is that if d is a fixed positive integer and

ω

(
1

n2/d

)
� p � o

(
1

n2/(d+1)

)
,

then G(n, p) w.h.p. has cliques of order d + 1 but not of order d + 2. In other words, X(n, p)
is w.h.p. d-dimensional.

A fundamental result of Erdős–Rényi is that if G ∼ G(n, p) where

p � log n + ω(1)
n

,

then G is connected w.h.p. This result was generalized to higher dimensions by the second
author in [23, 24]. Roughly, for the random flag complex X ∼ X(n, p) of dimension d, we have
w.h.p. that the reduced (co)homology, H̃∗(X; Q), is concentrated in degree �d/2� (where �x�
means the greatest integer not exceeding x). Moreover, with integer coefficients, Hi(X) = 0 for
i � �(d − 2)/4� and i > �d/2�. (Our convention is that, when not specified, the coefficients of
(co)homology groups are assumed to be in Z.) In § 3, we strengthen these results by showing
that the same is true w.h.p. for the homology of the ‘punctured complex’ X − σ for all simplices
σ of X. (Here, X − σ means the full subcomplex of X spanned by all vertices which are not
in σ.)

Calculations of the cohomology of a graph product G = G(G,Γ) with coefficients in its group
ring or its group von Neumann algebra were done in [14, 15, 18]. An interesting feature is
that there are essentially two different formulas depending on whether all Γi are finite or all
are infinite. (In the mixed case, the formulas are more complicated.) When all Γi are finite,
the formulas are in terms of the subcomplexes X(G) − σ, where σ ranges over the simplices of
X(G) (including the empty simplex). These formulas are recalled in Propositions 2.7 and 2.11
in §§ 2.5 and 2.6. When all the Γi are infinite, different formulas are needed, cf. [18]. These
formulas are expressed in terms of H∗(Lk(σ,X(G))) and cohomology groups of the Γi with
appropriate coefficients. (Here, Lk(σ,X(G)) denotes the link of a simplex σ in X(G).) The
precise formulas are recalled in Propositions 2.9 and 2.12.

This paper is organized as follows. In § 2, we review the formulas for the cohomology of
graph products of groups. In § 3, we review the results of [23, 24] on the cohomology of
X ∼ X(n, p). Finally, in § 4, these results are combined to get fairly complete computations for
the cohomology of random graph products of groups, G := G(G(n, p),Γ). Beginning in § 3, we
fix an integer k � 0 and impose the condition,

1
n1/k

� p � 1
n1/(k+1)

. (1.1)
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This condition entails dim X(n, p) = 2k or 2k + 1, w.h.p. A striking consequence of our
calculations is the following.

Theorem 1.1 (cf. Theorem 4.3(1)). Suppose n−1/k � p � n−1/(k+1), for some given
integer k � 0. Let G = G(n, p,Γ) be a random graph product of finite groups. Then w.h.p.
Hi(G; QG) is nonzero only for i = k + 1 (where k is the middle dimension of the random
flag complex X ∼ X(n, p)). In other words, G is a duality group over Q of formal dimension
k + 1.

When all Γi are infinite, different formulas establish the vanishing w.h.p. of Hi(G; QG) for
i < k + 1. (However, in degrees > k + 1 the rational cohomology can be nonzero.) This gives
the following result.

Theorem 1.2 (cf. Theorem 4.8(1)). Suppose n−1/k � p � n−1/(k+1) for a given integer
k � 0 and that G is a random graph product of infinite groups. Then w.h.p. Hi(G; QG) = 0 for
i < k + 1 and Hk+1(G; QG) 	= 0.

The first theorem applies to random right-angled Coxeter groups, the second to random
right-angled Artin groups.

In either case (where all Γi are finite or all are infinite), similar calculations give w.h.p. the
virtual cohomological dimension of G, the number of its ends and, at least in some cases, its
L2-Betti numbers. For example, in the case of random right-angled Artin groups we have the
following.

Theorem 1.3 (cf. Corollary 4.9(3)). Suppose n−1/k � p � n−1/(k+1), for a given integer
k � 0. Let AG be the random right-angled Artin group associated to G ∼ G(n, p). Then w.h.p.
L2bi(AG) is nonzero if and only if i = k + 1.

2. Cohomology of graph products

2.1. The f and h polynomials

Let [n] := {1, . . . , n}. Suppose that X is a simplicial complex on vertex set [n]. We identify a
simplex σ with its vertex set. Following common practice, we shall blur the distinction between
a simplicial complex as a poset of simplices or as a topological space and write X for either. By
convention, the empty set is considered a simplex in any simplicial complex. Given σ ∈ X, its
link, denoted by Lk(σ,X) (or sometimes simply Lk(σ)), is the simplicial complex whose poset
of nonempty simplices is isomorphic to X>σ (:= {τ ∈ X | τ > σ}).

Let P(I) denote the power set of a finite set I. Given an I-tuple t = (ti)i∈I of indeterminates
and J ∈ P(I), define a monomial tJ by

tJ =
∏
j∈J

tj . (2.1)

The f -polynomial of X is the polynomial in t = (ti)i∈[n] defined by

fX(t) :=
∑
σ∈X

tσ.
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The ĥ-polynomial of X is defined by

ĥX(t) := (1 − t)[n]fX

(
t

1 − t

)
, (2.2)

where 1 denotes the constant n-tuple (1)i∈[n]. If t is the constant indeterminate given by ti = t,
then fX is a polynomial in one variable. Denote it by fX(t). If dim X = d, then

fX(t) =
d∑

i=−1

fi(X)ti+1,

where fi(X) is the number of i-simplices in X (and f−1(X) = 1, the number of empty
simplices). The h-polynomial of X is then defined by

hX(t) := ĥX(t)/(1 − t)n−d−1 = (1 − t)d+1fX

(
t

1 − t

)
.

2.2. (Co) homology of polyhedral products

As before, X is a simplicial complex with vertex set [n]. Suppose that (A,B) = {(Ai, Bi)}i∈[n]

is a collection of pairs of nonempty subspaces. For a point x in the Cartesian product,
∏n

i=1 Ai,
put σ(x) := {i ∈ [n] | xi ∈ Ai − Bi}. The polyhedral product, ZX(A,B), is defined by

ZX(A,B) :=

{
x ∈

n∏
i=1

Ai

∣∣∣∣∣ σ(x) ∈ X

}
.

(σ(x) = ∅ is allowed.) When all the (Ai, Bi) are equal to the same pair (A,B), we write
ZX(A,B) for the polyhedral product. The (co)homology of these spaces can be calculated.
The formulas simplify if either (1) each Bi is contractible (for example, if Bi is a base point
∗i) or (2) each Ai is contractible (cf. [2]). If each Bi is contractible, then

H̃∗(ZX(A,B)) =
⊕
σ∈X

H̃∗(Â
σ
), (2.3)

where Â
σ

denotes the σ-fold smash product of the Ai. (See [2, Theorem 2.15].) By using
the Künneth Formula, the (co)homology of Â

σ
can be calculated from that of the Ai. The

formula is simplified if we take with coefficients in a field F. Using (2.3), we see that there is
an isomorphism of algebras:

H∗(ZX(A,B);F) =

[
m⊗

i=1

H∗(Ai;F)

]/
I(X), (2.4)

where I(X), the generalized Stanley–Reisner ideal, is the ideal in the tensor product of algebras
generated by all xi1 ⊗ · · · ⊗ xil

, such that xik
∈ H̄

∗(Aik
;F) and such that {i1, . . . , il} is not a

simplex of X (see [19] or [2, Theorem 2.34]). The right-hand side of (2.4) is the generalized
face ring.

On the other hand, when each Ai is contractible, the formula is

H∗(ZX(A,B)) =
⊕

I�[n]
I is not a simplex of X

H∗(X(I) ∗ B̂
I
), (2.5)

where X(I) denotes the full subcomplex spanned by I, B̂
I

denotes the I-fold smash product of
copies of the Bi and X(I) ∗ B̂I denotes their join. (Again, each summand on the right-hand side
can be computed from the Künneth Formula.) If each Bi is connected and simply connected,
then the fundamental group of ZX(A,B) is the graph product G(G; Γ), where the graph G is
the 1-skeleton of X and Γi = π1(Ai) (cf. [11]). If each Γi is infinite, then the argument of [18]
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shows

GrHm(ZX(A,B); ZG) =
⊕
σ∈X

i+j=m

Hi(Cone Lk(σ),Lk(σ);Hj(Aσ; ZG)). (2.6)

Here, Gr means the ‘associated graded’ group (because each summand in (2.6) is the Ei,j
∞ term

of a spectral sequence). Also, Aσ stands for the σ-fold product
∏

i∈σ Ai so that the coefficients
in a summand on the right-hand side of (2.6) can be calculated from the Künneth Formula.
Indeed, once we replace Z by a field F, we get

H∗(Aσ;FG) =

[⊗
i∈σ

H∗(Ai;FΓi)

]
⊗
∏
Γi

FG.

2.3. Polyhedral products as classifying spaces for graph products

Our interest in the polyhedral product construction stems from its relationship to graph
products of groups. Given a graph G with vertex set [n] and a collection of discrete groups
Γ = {Γi}i∈N, let G (= G(G,Γ)) denote their graph product. For any subset I � [n], let ΓI

denote the ordinary product,
∏

i∈I Γi. Let BΓi denote the classifying space for Γi (that is, BΓi

is a K(Γi, 1) complex). We consider two cases: (Ai, Bi) = (BΓi, ∗i) (which we denote (BΓ, ∗)
and (Ai, Bi) = (Cone Γi,Γi) (denoted by (Cone Γ,Γ)).

Proposition 2.1 [18]. Suppose that, as above, G is a graph with vertex set [n], X(G) is
its flag complex and G is the graph product of the (Γi)i∈[n].

(1) BG = ZX(G)(BΓ, ∗).
(2) Let G0 denote the kernel of the natural map G → Γ[n] to the direct product. Then

BG0 = ZX(G)(Cone Γ,Γ).

Sketch of proof. One first proves (2). The group Γ[n] acts on ZX(G)(Cone Γ,Γ) and G can be
identified with the group of all lifts of elements in Γ[n] to the universal cover Z̃X(G)(Cone Γ,Γ).
Since X(G) is a flag complex, Z̃X(G)(Cone Γ,Γ) is the standard realization of a right-angled
building (cf. [11, Proposition 2.10]) and hence, is contractible. Since G0 is the group of covering
transformations, statement (2) follows. To prove (1), first observe that ZX(G)(Cone Γ,Γ) is
homotopy equivalent to the covering space of ZX(G)(BΓ, ∗) corresponding to the subgroup G0.
Next observe that ZX(G)(EΓ,Γ) is homotopy equivalent to ZX(G)(Cone Γ,Γ), where EΓi is
the universal cover of BΓi and EΓ := {EΓi}i∈[n]. Hence, the universal cover of ZX(G)(EΓ,Γ)
is also contractible and so, can be identified with EG, which proves (1).

2.4. Homology with trivial coefficients

Notation is as before. Given a subset I � [n] and a field F, the dimension of the following
tensor product in degree m is denoted by

bI,m(Γ;F) := dimF

(⊗
i∈I

H̄
∗(BΓi;F)

)m

.

In other words, bI,m(Γ;F) is the mth Betti number of the smash product of the BΓi, i ∈ I.
When Γ is the constant sequence Γi = Γ and k ∈ N, put bk,m(Γ;F) := b[k],m(Γ;F). In the next
proposition, we use (2.3) and Proposition 2.1 to compute the Betti numbers of BG.
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Proposition 2.2. Let bm(BG;F) := dimF Hm(BG;F) be the mth Betti number of BG.
Then

bm(BG;F) =
∑
σ∈X

bσ,m(Γ;F).

In particular, if Γ is the constant sequence Γ, then

bm(BG;F) =
m∑

k=1

fk−1bk,m(Γ;F),

where fk−1 = fk−1(X) is the number of (k − 1)-simplices in X.

For example, if Γ = Z/2, then G(G; Z/2) = WG, the right-angled Coxeter group associated
to G and BWG = ZX(G)(B(Z/2), ∗). Let F2 be the field with two elements. Since H∗(Z/2;F2)
is the polynomial ring F2[t], formula (2.4) and Proposition 2.1 give the following result of [16],

H∗(BWG;F2) = F2[X],

where the right-hand side denotes the Stanley–Reisner face ring of X. It follows that the
Poincaré series,

∑
bi(BWG;F2)ti, is given by

∞∑
i=0

bi(BWG;F2)ti =
d∑

i=−1

fi(X)ti+1

(1 − t)i+1

= fX

(
t

1 − t

)
:=

hX(t)
(1 − t)d+1

, (2.7)

where d = dim X.
For another example, if Γ = Z, then G = AG, the right-angled Artin group associated to G.

Since BZ = S1, Proposition 2.2 yields

bk(AG;F) = fk−1(X), (2.8)

and this implies that H∗(BAG) =
∧

[X], the exterior face ring of X, cf. [6, 25]. Alternatively,
we could have proved this (even with integral coefficients) by using formula (2.4) and
Proposition 2.1 as before.

Some definitions. A group Γ is type F if BΓ has a model which is a finite CW complex.
If Γ is type F, then it is automatically type FL, which means that Z has a finite resolution
by finitely generated free ZG-modules. The group Γ is type FP if Z has a finite resolution
by finitely generated projective ZG-modules. Similarly, for a commutative ring R, Γ is type
FLR (respectively, FPR) if R has a finite resolution by finitely generated, free (respectively,
projective) RΓ-modules. The group Γ is virtually torsion-free if it has a torsion-free subgroup
Γ0 of finite index. A virtually torsion-free group Γ is, respectively, type VF, VFL or VFP as
Γ0 is F, FL or FP.

If each Γi is finite of order qi + 1, then we say Γ has order q + 1, where q := (qi)i∈N. If
G0 denotes the subgroup of G(G,Γ) defined in Proposition 2.1(2), then G0 is a torsion-free
subgroup of finite index in G. (In the notation (2.1) from § 2.1, its index is (1 + q)[n].) By
Proposition 2.1(2), BG0 = ZX(Cone Γ,Γ), which is a finite complex. So, G is type VF. Applying
(2.5), we get the following.

Proposition 2.3. Suppose that each Γi is finite and Γ has order q + 1. Then

H∗(BG0) =
⊕

I�[n]
I /∈X

H∗(Cone X(I),X(I)) ⊗ MI ,
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where MI is a free abelian group of rank qI . (It is the ‘Steinberg module’ for ΓI , that is, the
I-fold tensor product of augmentation ideals of ZΓi, i ∈ I.)

Remark 2.4. If G is not a complete graph, then there are distinct elements i, j in [n]
which are not connected by an edge; so, H1(Cone X(I),X(I)) = Z, for I = {i, j}. It follows
that when G0 is nontrivial, its abelianization maps onto Z. So, Proposition 2.3 implies that a
graph product of finite groups never has Kazhdan’s property T unless it is finite.

Using [12], we can compute the Euler characteristic of ZX(G)(Cone Γ,Γ) as well as the
‘orbihedral Euler characteristic’ of ZX(G)(Cone Γ,Γ)/Γ[n] (also called the rational Euler
characteristic, χ(G), of G).

Proposition 2.5 (cf. [12]). Suppose that each Γi is finite and Γ has order q + 1.

(1) The Euler characteristic of BG0 is given by

χ(BG0) = (q + 1)[n]fX(G)

( −q
q + 1

)
= ĥX(G)(−q).

(2) The rational Euler characteristic of G is given by

χ(G) =
χ(BG0)

(q + 1)[n]
= fX(G)

( −q
q + 1

)
.

Proof. The formula in (1) is proved in [12, Corollary 2]. The group G0 has index (q + 1)[n]

in G0; so, (2) is immediate from the definition of the rational Euler characteristic.

Recall that if a group is nontrivial and type FL, then it is necessarily infinite.

Proposition 2.6. Suppose that each Γi is type FL (so that its Euler characteristic is
defined). Let ei = e(Γi) := χ(Γi) − 1 be the reduced Euler characteristic of BΓi, and put e =
(ei)i∈N. Then χ(G) = fX(e).

Proof. By Proposition 2.1(1), BG = ZX(G)(BΓ, ∗). In [12, Corollary 1], there is a formula
for the Euler characteristic of the polyhedral product, which gives χ(BG) = fX(e).

2.5. Cohomology with group ring coefficients

An important invariant of an infinite discrete group H is its cohomology with coefficients in
its group ring, ZH. For example, the number of ends of H, denoted by EndsH, is 1, 2 or ∞
as the rank of H1(H; ZH) is 0, 1 or ∞. If H is type FPR, then its cohomological dimension,
cdR(H), with respect to a commutative ring R is given by,

cdR H = max{k | Hk(H;RH) 	= 0}.
As usual, when R = Z, the subscript is omitted and we write cdH instead of cdR H.

The case where each Γi is finite. In what follows, X = X(G) and for any σ ∈ X, X − σ
means the full subcomplex of X spanned by [n] − σ.

Proposition 2.7 ([14] or [13, Corollary 9.4]). Suppose that each Γi is finite. Then, for
G = G(Γ, G),
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H∗(G; ZG) =
⊕
σ∈X

H∗(Cone X,X − σ) ⊗ Âσ,

where Âσ is a certain (free abelian) subgroup of Z(G/Γσ) (where Γσ denotes the σ-fold product
of the Γi).

Corollary 2.8. Suppose that each Γi is finite.

(1) If X is a simplex, then G is finite and Ends(G) = 0. If X is the suspension of a simplex
and the groups for both suspension vertices are ∼= Z/2, then Ends(G) = 2. Otherwise,

Ends(G) =

{
1 if H̄

0(X − σ) = 0 for all σ ∈ X,

∞ if H̄
0(X − σ) 	= 0 for some σ ∈ X.

(2)

vcdG = max{k | Hk−1(X − σ) 	= 0 for some σ ∈ X}.

For example, when WG is the right-angled Coxeter group associated to the graph G,
Proposition 2.7 becomes the following formula of [9]:

H∗(WG; ZWG) =
⊕
σ∈X

H∗(Cone X,X − σ) ⊗ ZW σ,

where Wσ denotes the set of elements in W which can end (exactly) with letters of σ and
where ZW σ denotes the free abelian group on W σ.

The case where each Γi is infinite. In what follows, GrH∗( ; ) means the associated graded
group arising from a certain filtration.

Proposition 2.9 ([18, Theorem 4.5]). Suppose that each Γi is infinite. Then for G =
G(Γ, G), we have

GrHm(G; ZG) =
⊕
σ∈X

i+j=m

Hi(Cone Lk(σ),Lk(σ);Hj(Γσ; ZG)).

For example, if AG is the right-angled Artin group associated to G, then we have the following
formula of [18, 22]:

GrHn(AG; ZAG) =
⊕
σ∈X

Hn−dim σ−1(Cone Lk(σ),Lk(σ)) ⊗ Hdim σ+1(Zσ; ZAG), (2.9)

where Zσ denotes the free abelian group on σ and dim σ + 1 is the number of elements in σ
(so that Hdim σ+1(Zσ; ZAG) = Z(AG/Zσ)).

2.6. L2-Betti numbers

Let WG be the right-angled Coxeter group associated to a graph G. Its growth series, WG(t),
is the rational function in t = (ti)i∈[n] given by

1
WG(t)

= fX(G)

( −t
1 + t

)
=

ĥX(G)(−t)
(1 + t)[n]

.

(See [10, § 17.1].)
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Let RG denote the region of convergence of WG(t). For example, if G = V [n], the graph
with vertex set [n] and no edges, then we have

1
WV [n](t)

= 1 −
n∑

i=1

ti
1 + ti

.

It follows that

RV [n] ∩ [0,∞)n =

{
t ∈ [0,∞)n

∣∣∣∣∣
n∑

i=1

ti
1 + ti

< 1

}
. (2.10)

(Indeed, t in the indicated range 1/WV [n](t) is always positive; hence, WV [n](t) converges.)
For another example, when t is the constant indeterminate t, we have

1
WG(t)

=
hX(G)(−t)
(1 + t)d+1

,

so that RG consists of all complex numbers of modulus less than the smallest positive real root
ρ of hX(G)(−t). (Note ρ ∈ (0, 1].)

In § 4.1, we will need the following lemma.

Lemma 2.10. Suppose that G, G′ are two graphs with the same vertex set [n] such that
G′ is obtained by deleting edges of G. Then RG′ � RG. In particular, for any graph G, RG

always contains the region defined by (2.10).

Proof. Since there are more relations in WG than in WG′ , the number of elements of word
length k with letters in a given subset of [n] is greater for WG′ than for WG. Hence, the
coefficients in the power series WG′(t) are positive integers which dominate the coefficients of
WG(t). So, RG′ � RG. The last sentence of the lemma follows immediately.

Let 1/t denote the sequence (1/ti)i∈N. For each simplex σ ∈ X, define a series

Dσ(t) =
∑

τ∈X�σ

(−1)dim τ−dim σ

(1 + 1/t)I(τ)
.

Let G(σ) denote the 1-skeleton of Lk(σ). Note that Dσ(t) is related to the power series for
WG(σ) by the following formula (see [10, Lemma 17.1.8, Corollary 20.6.17]):

Dσ(t) =
1

(1 + t)σ
· 1
WG(σ)(1/t)

. (2.11)

Proposition 2.11 (cf. [10, Theorem 20.8.4]). Suppose that each Γi is finite and Γ has
order q + 1. Suppose further that 1/q lies in the region of convergence RG for WG(t). Then

L2bm(G) =
∑
σ∈X

bm(Cone X,X − σ; Q) · Dσ(q),

where bm(Cone X,X − σ; Q) is the ordinary Betti number (with rational coefficients) of the
pair. (Since Cone X is contractible, bm(Cone X,X − σ; Q) is equal to the reduced Betti number
b̃m−1(X − σ; Q).)

As one might suspect from the results in the previous subsection, the calculation is different
when all Γi are infinite. So, suppose that each Γi is infinite and that their L2-Betti numbers are
defined. Given σ ∈ X, let L2bσ,m denote the mth L2-Betti number of the σ-fold product, Γσ.
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If σ = {i1, . . . , ik}, then, by the Künneth Formula,

L2bσ,m =
∑

f(i1)+···+f(ik)=m

L2bf(i1)(Γi1) · · ·L2bf(ik)(Γik
), (2.12)

where f ranges over all functions from σ to N which sum to m.

Proposition 2.12 ([18, Theorem 4.6]). Suppose that each Γi is infinite. Then

L2bl(G) =
∑
σ∈X

i+m=l

bi(Cone Lk(σ),Lk(σ)) · L2bσ,m,

where L2bσ,m is given by (2.12).

Since all L2-Betti numbers of the infinite cyclic group vanish, for right-angled Artin groups
the previous proposition drastically simplifies to the following.

Corollary 2.13 (Davis–Leary [17]). L2bl(AG) = bl(Cone X(G),X(G); Q). In other
words, the L2-Betti numbers of AG are the ordinary reduced Betti numbers of X(G) with
degree shifted up by 1.

3. Random flag complexes

In this section, we state some results about the topology of the random flag complex X =
X(n, p). Earlier results were proved by the second author in [23, 24]. The results of [24] depend
on a spectral gap estimate from [21]. Here, we show that similar results hold w.h.p. for X − σ
for all simplices σ of X, and for Lk(σ,X) for all simplices σ ∈ X of sufficiently small dimension.

Theorem 3.1 (cf. [21, 23, 24]). Suppose X ∼ X(n, p) where

1
n1/k

� p � 1
n1/(k+1)

,

where k is a given integer � 0. Then w.h.p., for every face σ ∈ X the subcomplex X − σ satisfies
the following properties:

(1) dim(X − σ) = d, where d = 2k + 1 (when ω(n−2/(2k+1)) � p) or d = 2k (when p �
o(n−2/(2k+1)));

(2) H̃i(X − σ; Q) = 0 if and only if i 	= k.

Remark 3.2. The case σ = ∅ follows from [24, Corollary 2.2].

Remark 3.3. As for homology with integer coefficients, it is proved in [23] that w.h.p.
H̃i(X) vanishes whenever i lies in either of the following two ranges:

(a) i � �(k − 1)/2� or
(b) i > k.

With regard to (a), it is proved in [23] that X is �(k − 1)/2�-connected w.h.p. With some work,
this can be extended to show that X − σ is �(k − 1)/2�-connected for all σ ∈ X. With regard
to (b), with no additional work, the argument in [23] shows that for any full subcomplex Y of
X, for i > k, Hi(Y ) = 0 w.h.p. In particular, this holds for Y = X − σ.
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We do not know if statement (2) of Theorem 3.1 holds with integer coefficients when (k −
1)/2 < i � k. In this range, H̃i(X − σ) could have torsion (cf. the comments in [24, § 7]). In
particular, H̃k(X − σ) might have nontrivial torsion. If this happens, then, by the Universal
Coefficient Theorem, H̃k+1(X − σ) has nontrivial torsion.

Remark 3.4. For each i � 0, there is a small interval of p for which both H̃i(X) and
H̃i+1(X) are nonvanishing. For example, when i = 0, it is well known that if c/n � p �
o(log n/n) (see [4]), then w.h.p. G(n, p) is disconnected but contains cycles. For every i, the
width of this window of overlap is of order

Θ((log n/n)1/i+1)

(where f = Θ(g) means f = O(g) and g = O(f)). Since this is peripheral to our main argument,
we do not prove it here.

The main tool needed to prove Theorem 3.1 is Theorem 3.5. In [20], Garland proved vanishing
results for cohomology groups of k-dimensional simplicial complexes (possibly with coefficients
in a unitary representation of the fundamental group) through degree k − 1, provided the link
of each (j − 2)-simplex σ, with j � k, is connected and that its Laplacian in degree 0 has
sufficiently large spectral gap.

Suppose that X is a pure simplicial complex of dimension at least 1. Given a vertex v, let m(v)
denote the degree of v in the 1-skeleton, X1. The averaging operator A : C0(X; R) → C0(X; R)
and the normalized Laplacian Δ : C0(X; R) → C0(X; R) are defined by

A(ϕ)(v) :=
1

m(v)

∑
ϕ(w) and Δ := 1 − A,

where the summation is over all vertices w which are adjacent to v. Then Δ is positive
semidefinite. The spectrum of A lies in [−1, 1]; hence, the spectrum of Δ lies in [0, 2]. Let
0 = λ1 � λ2 � · · · � λn be the eigenvalues of Δ. The space X is connected if and only if 0
occurs with multiplicity 1. Assuming this to be the case, the first positive eigenvalue, λ2, is
called the spectral gap.

Garland’s method is explained and expanded upon in [3], where one can find the following
result. (See also [5].)

Theorem 3.5 (Ballmann–Świa̧tkowski [3, Theorem 2.5]). Suppose that X is a finite
simplicial complex and k is a positive integer less than dim X so that the k-skeleton, Xk, is pure
(that is, every σ ∈ Xk is contained in at least one k-dimensional simplex). Given σ ∈ X, let
λ1(σ) � λ2(σ) � · · · , denote the eigenvalues of the normalized Laplacian on C0(Lk(σ,X); R).
Assume that there is an ε > 0 so that λ2(σ) � k/(k + 1) + ε. Then Hk−1(X; R) = 0.

We need another tool before proving Theorem 3.1, namely the following estimate from [21]
on spectral gaps of edge-independent random graphs.

Theorem 3.6. Let G ∼ G(n, p) be a Bernoulli random graph. Let Δ denote the normalized
Laplacian of G, and let λ1 � λ2 � · · · � λn be the eigenvalues of Δ. For every fixed α � 0, there
is a constant C̃α depending only on α, so that if

p � (α + 1) log n + C̃α

√
log n log log n

n
,
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then G is connected and

λ2(Γ) > 1 − o(1),

with probability 1 − o(n−α).

Proof of Theorem 3.1. The first claim is that dim(X − σ) = d for every simplex σ ∈ X.
When σ = ∅, this is a standard result about random graphs, if p is in the given regime, then
w.h.p. there are d-simplices (that is, cliques of order d + 1) but no (d + 1)-simplices (that is,
cliques of order d + 2), which is exactly the claim.

We include a proof here of the case of an arbitrary σ for the sake of completeness. First
consider the case σ = ∅. The claim that X(n, p) is w.h.p. d-dimensional is equivalent to showing
that X(n, p) w.h.p. contains a simplex on d + 1 vertices, but contains no simplices on d + 2
vertices. This is a special case of standard results on subgraphs of random graphs [4]. We recall
the proof here.

Let fi−1 be the number of simplices on i vertices. The expected value is given by

E[fi−1] =
(

n

i

)
p(i

2). (3.1)

If p � n−2/(d+1), then

E[fd+1] =
(

n

d + 2

)
p(d+2

2 )

� nd+2(n−2/(d+1)−ε)(
d+2
2 )

= n−c1 ,

where c1 = ε
(
d+2
2

)
> 0. By Markov’s inequality, fd+1 = 0 w.h.p. It follows that dimX � d.

On the other hand, if p � n−2/d, then

E[fd] =
(

n

d + 1

)
p(d+1

2 )

� (1 − o(1))
(d + 1)!

nc2 ,

where c2 = ε
(
d+1
2

)
> 0.

Janson’s inequality [1] gives for this range of p that

Pr[fd � (1/2)E(fd)] � e−nc2/6.

We can apply this argument separately to each of the subcomplexes X − σ. Since X is w.h.p.
d-dimensional, there are w.h.p. at most O(nd+1) faces total. Applying a union bound, the total
probability that any one of these complexes fails to be d-dimensional is at most

O(nd+1)e−nc2/6 = o(1).

For the second claim, that H̃i(X − σ; Q) = 0 whenever i 	= k, we extend the ideas from
[23, 24] which were used to prove this in the case σ = ∅. The proof has two parts: first we
check that H̃i(X − σ; Q) = 0 when i > k and then when i < k.

The proof that H̃i(X; Q) = 0 when i > k in [23, § 5] is to show first that for this range of
p, homology is w.h.p. generated by cycles supported on simplices which are supported on a
bounded number of vertices as n → ∞, and then that all such cycles are boundaries. The same
argument goes through verbatim to show that this also holds for every subcomplex of X. In
particular, H̃i(X − σ; Q) = 0 for every simplex σ and with i > k.

The proof that H̃i(X; Q) = 0 when i < k in [24] uses Theorem 3.5. For any σ ∈ X, write
Lk(σ) as short for Lk(σ,X). It is shown in [24] that, for this range of p, the (k + 1)-skeleton
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of X is w.h.p. pure, and that w.h.p. for every (k + 1)-simplex α ∈ X, λ2(α) > 1 − o(1). (Here,
we are considering the link of α in the (k + 1)-skeleton of X, that is, as a graph.) In particular,
all these graphs are connected.

We extend this proof to show that H̃i(X − σ; Q) = 0 for i < k and for all σ ∈ X by applying
Theorem 3.5 to each of the subcomplexes X − σ. The link of a codimension-2 face in the
(i + 1)-skeleton X − σ is still a Bernoulli random graph, and we can use Theorem 3.6. Since
n−1/k � p, the probability that any of these graphs have spectral gap λ2 < 1 − ε is o(n−α) for
every fixed α > 0.

On the other hand, w.h.p. X is d-dimensional, where d = 2k or 2k + 1, so there are O(n2k+2)
simplices in total. Applying a union bound, the probability that any of the polynomially many
random graphs arising as the link of a simplex in a deleted subcomplex has small spectral
gap tends to zero. Then Theorem 3.5 gives that w.h.p. H̃i(X − σ; Q) = 0 for every face σ and
i < k.

We also need the following in § 4.2.

Theorem 3.7. Let X ∼ X(n, p) where n−1/k � p for a given integer k � 0. Then w.h.p.,
the following properties hold for all simplices σ ∈ X of dimension less than k, with l := dimσ +
1.

(1) dim Lk(σ) � 2k − 2l.
(2) If i < �(k − l)/2�, then H̃i(Lk(σ); Q) = 0.

Proof of Theorem 3.7. The proof of (1) is similar to the proof of statement (1) of
Theorem 3.1.

Given a simplex σ ∈ X(n, p) on l vertices, let Nm denote the number of extensions of σ to
a simplex on l + m vertices. This would require a choice of m new vertices out of a possible
n − l, and then there are (

m + l

2

)
−
(

l

2

)

new edges that must appear. By linearity of expectation,

E[Nm] =
(

n − l

m

)
p(l+m

2 )−(l
2)

≈ nm

m!
plm+(m

2 )

=
1
m!

(npl+(m−1)/2)m.

Setting m = 2k − 2l + 1 gives E[Nm] = Θ(npmk). Since, by assumption, p � n−1/k,
E[Nm] → ∞.

Janson’s inequalities, for example, give that

P[Nm = 0] = O(e−cn),

for some constant c > 0. Since w.h.p., there are only polynomially many simplices σ, a union
bound gives (1).

The proof of (2) is almost identical to the proof in Theorem 3.1 that H̃i(X − σ; Q) = 0 for
every simplex σ and for i < k. In particular, there are still only O(n2k) simplices σ and for
each, the probability of failure is O(n−α) for every fixed α > 0. So, a union bound shows that
the total probability of failure is o(1).
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Some remarks about nonrandom examples. Examples of simplicial complexes satisfying the
conclusions of Theorems 3.1 and 3.7 might not spring readily to mind. Similar properties hold
for Cohen–Macaulay complexes, except that for these, the homology is concentrated in the top
dimension rather than in the middle. One can construct examples of complexes satisfying the
conclusions Theorems 3.1 and 3.7 by ‘thickening’ certain Cohen–Macaulay complexes.

Let R be a nonzero principal ideal domain (for example, Z or Q). A k-dimensional complex Y
is Cohen–Macaulay over R if for each σ ∈ Y , H̃i(Lk(σ, Y );R) = 0 for i < k − dim σ − 1 and is
R-torsion-free for i = k − dim σ − 1. (When σ = ∅, Lk(σ, Y ) = Y ; so, in this case the condition
means that H̃i(Y ;R) is concentrated in degree k.) In other words, the link of any l-simplex
in Y has the same homology as a wedge of (k − l − 1)-spheres. A finite simplicial complex
Y (of any dimension) has punctured homology concentrated in degree k (with coefficients in
R) if for each σ ∈ Y , H̃i(Y − σ;R) is nonzero only in degree k and is R-torsion-free in that
degree. Cohen–Macaulay complexes satisfy a condition similar to the conclusion of Theorem 3.7
except that the cohomology is concentrated in the top dimension rather than in the middle.
In Theorem 3.1, we are concerned with the concentration of punctured homology. Many (but
not all) k-dimensional Cohen–Macaulay complexes have the punctured homology concentrated
in degree k. For example, any k-dimensional spherical building is Cohen–Macaulay and has
punctured homology concentrated in degree k (cf. [26, Theorem A]). An example of such a
spherical building is given by taking the join of any collection of k + 1 finite sets.

Suppose that Y is a k-dimensional Cohen–Macaulay complex with concentrated punctured
homology. We can thicken Y to a complex Ŷ of dimension 2k or 2k + 1 by iterating the
procedure of replacing each vertex with a tree (or a forest). This means that we replace the
star of a vertex v by the join of the link of v and a forest. If we do this at each vertex, then
dim Ŷ = 2k + 1. By not replacing one vertex of each top-dimensional simplex, we get a 2k-
dimensional Ŷ . For example, when Y is a join of finite sets, Ŷ is a join of forests. It is then
straightforward to check that such Ŷ satisfy the conclusions of Theorems 3.1 and 3.7.

4. Random graph products of groups

As usual, G ∼ G(n, p), X ∼ X(n, p) and G ∼ G(G(n, p),Γ).

4.1. The case where each Γi is finite

In this subsection, Γi is finite of order qi + 1 (that is, Γ has order q + 1). As we noted in § 2.4,
the group G0 := Ker(G → Γ[n]) is torsion-free and it acts freely on the universal cover of the
finite complex ZX(Cone Γ,Γ). Moreover, this universal cover is contractible. So, G0 is type F.
Since the index of G0 in G is finite, G is type VF.

Let R denote the region of convergence for WG(n,p)(t).

Lemma 4.1. If
∑∞

i=1(qi + 1)−1 < 1, then 1/q ∈ R.

Proof. Set ti = 1/qi. Then ti/(1 + ti) = 1/(qi + 1). So, if the sum in the lemma is less than
1, then for all n ∈ N,

n∑
i=1

ti
(1 + ti)

< 1.

Then, by Lemma 2.10, 1/q ∈ R.

For example, the conclusion of Lemma 4.1 holds if qi + 1 � 2i for all i ∈ N.
We begin with some results about the Euler characteristic and L2-Betti numbers of G.
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Proposition 4.2. (1) The rational Euler characteristic of G is given by

χ(G) =
χ(BG0)

(1 + q)[n]
= fX(n,p)

( −q
1 + q

)
=

ĥX(n,p)(−q)
(1 + q)[n]

,

where ĥX(n,p) is defined by (2.2).

(2) Let WG = G(G, Z/2) be the random right-angled Coxeter group. Then the Poincaré
series of BWG with coefficients in F2 is given by

∞∑
i=0

bi(BWG;F2)ti = fX

(
t

1 − t

)
.

(3) Suppose
∑∞

i=1(qi + 1)−1 < 1. Then the L2-Betti numbers L2bm(G) are given by

L2bm(G) =
∑
σ∈X

bm(Cone X,X − σ; Q) · Dσ(q),

where Dσ(q) is defined by (2.11).

Proof. Statements (1), (2) and (3) follow from Proposition 2.5, equation (2.7) and
Proposition 2.11, respectively.

No assumption on p is made in the above proposition. The quantities in the equations
are all random variables. The expected values of these quantities can be made completely
explicit. For example, as we saw in (3.1), the expected number of (i − 1)-simplices is given by
E[fi−1(X)] =

(
n
i

)
p(i

2).
Recall that a group Γ is a rational duality group of formal dimension m if it is type FPQ and

if H∗(Γ; QΓ) is nonzero only in degree m. If this is the case, then, for D = Hm(Γ; QΓ) and for
any QΓ-module M , Hi(Γ;M) ∼= Hm−i(Γ;D ⊗ M).

The next result is one of our principal theorems. It follows from Theorem 3.1(2) and the
results in §§ 2.5 and 2.6.

Theorem 4.3. Fix an integer k � 0 and suppose n−1/k � p � n−1/(k+1). Then the
following properties hold w.h.p.

(1) The cohomology group Hi(G; QG) 	= 0 if and only if i = k + 1. Hence, G is a rational
duality group of formal dimension k + 1.

(2)

EndsG =

{
∞ if k = 0,

1 if k � 1.

(3) The cohomological dimension of G over Q is given by cdQ G = k + 1. Over Z, the virtual
cohomological dimension of G is either k + 1 (if Hk(X − σ) is torsion-free for all σ ∈ X) or
k + 2 (if Hk(X − σ) has nontrivial torsion for some σ ∈ X).

(4) Suppose that
∑∞

i=1(qi + 1)−1 < 1. Then L2bm(G) is nonzero only when m = k + 1.

Proof. (1) By Proposition 2.7, Hi(G; QG) is a sum of rational vector spaces of the
form H̃i−1(X − σ; Q) ⊗ (Âσ ⊗ Q) where X ∼ X(n, p). So, Hi(G; QG) 	= 0 if and only if the
cohomology H̃i−1(X − σ; Q) 	= 0 for some simplex σ. By Theorem 3.1(2), H̃i−1(X − σ; Q) 	= 0
w.h.p. only for i = k + 1.
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(2) By Corollary 2.8(1), Ends(G) is either 1 or ∞ depending on whether H̃0(X − σ; Q) is zero
or not zero. (The case Ends(G) = 2 does not occur w.h.p. for X ∼ X(n, p).) By Theorem 3.1(2)
(or the Erdős–Rényi Theorem), H̃0(X − σ; Q) 	= 0 only when k = 0.

(3) As in § 2.5, cdQ(G) is the largest integer i such that for some simplex σ, H̃i−1

(X − σ; Q) 	= 0. As before, the largest such i is k + 1. As explained in Remark 4.4(a), the
second sentence of (3) follows from Corollary 2.8(2).

(4) By Lemma 4.1, 1/q ∈ R. By Proposition 4.2(3), L2bm(G) 	= 0 if and only if
bm(Cone X,X − σ; Q) 	= 0 and by Theorem 3.1(2), this happens only for m = k + 1.

Remarks 4.4. (a) As in Remark 3.3, the integral homology Hi(X − σ) vanishes for
i � (k − 1)/2 or i > k. Hence, H̃i(G; ZG) = 0 for i � (k + 1)/2 or i > k + 2. With regard to
statement (3) of Theorem 4.3, if Hk(X − σ) is torsion-free, then, by the Universal Coefficient
Theorem, Hk+1(X − σ) = 0. Hence, if Hk(X − σ) is torsion-free for all σ ∈ X, then, by
Proposition 2.7, Hi(G; ZG) = 0 for all i > k + 1. On the other hand, if Hk(X − σ) has torsion
for some simplex σ, then Hk+1(X − σ) = Ext(Hk(X − σ), Z) 	= 0 and hence, Hk+2(G; ZG) 	= 0.

One could speculate that w.h.p. Hi(X − σ) is torsion-free for all i and for all σ ∈ X, that
is, that H̃i = 0 for i 	= k and that Hi is torsion-free for i = k (cf. Remark 3.3). If this is true,
then G0 is an (integral) duality group of formal dimension k + 1. In other words, G would be
a virtual duality group of dimension k + 1.

(b) By statement (3) of the theorem, cdQ G0 = k + 1. On the other hand, in Proposition 2.3
we computed the homology of BG0 in terms of H∗(Cone X(I),X(I)) where I ranges over all
subsets of [n] which are not vertex sets of simplices. Hence, (3) necessarily entails that w.h.p.
H̃i(X(I); Q) = 0, for i > k. The proof of Remark 3.3 given in [23] gives a stronger statement
with integral coefficients: H̃i(X(I)) = 0 for i > k (see [23, Proof of Theorem 3.6, p. 1667]).

(c) It follows from Proposition 4.2(1) that the sign of χ(G) is (−1)k+1 w.h.p. To see this, first
suppose that Γ is the constant sequence, Γk = Γ, where Γ is a nontrivial finite group. Then the
sign of χ(G) is determined by the fact that the coefficients fi of the f -polynomial are dominated
by fk. In fact, for i 	= k, fk/fi → ∞ as n → ∞. Moreover, since the order of Γ is an integer
at least 2, we have q � 1. Hence, the argument of fX(−q/(1 + q)) =

∑
fi(−q/(1 + q))i+1 lies

between −1 and − 1
2 . Since the absolute value of this is bounded away from 0, it follows that

the formula for χ(G) is dominated by the term with coefficient fk, so w.h.p. its sign is (−1)k+1.
The same argument works when the sequence Γ is not constant.

4.2. The case where each Γi is infinite

In this subsection, we suppose that each Γi is infinite. Once again we begin with some facts
about Euler characteristics and L2-Betti numbers.

Proposition 4.5. (1) Suppose that each Γi is type FL. Let ei = e(Γi) := χ(BΓi) − 1 be
the reduced Euler characteristic of BΓi, and put e = (ei)i∈N. Then χ(G) = fX(e).

(2)

L2bl(G) =
∑
σ∈X

i+m=l

bi(Cone Lk(σ),Lk(σ)) · L2bσ,m,

where L2bσ,m is defined by (2.12).

Proof. Statements (1) and (2) follow from Propositions 2.6 and 2.12, respectively.
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Remark 4.6. With regard to the formula in Proposition 4.5(2), Lk(σ) can be empty, in
which case Cone Lk(σ) is a point.

When each Γi = Z, G ∼ G(G(n, p), Z) is the random right-angled Artin group AG associated
to the random graph G ∼ G(n, p). Using (2.8), (2.9) and Corollary 2.13, we get the following.

Corollary 4.7 (cf. [6, Theorem 3.2.4, 8, Lemma 1, 17). With trivial coefficients, the
cohomology of AG is w.h.p. the random exterior face ring

∧
[X]. In particular, bl(AG) = fl−1(X)

and χ(AG) = χ(Cone X,X) = −e(X), where e means reduced Euler characteristic.

Theorem 4.8. Fix an integer k � 0, suppose n−1/k � p � n−1/(k+1) and that d =
dim X(n, p). Then the following hold w.h.p.

(1) For i < k + 1, Hi(G; QG) = 0 and Hk+1(G; QG) 	= 0.
(2)

EndsG =

{
∞ if k = 0,

1 if k � 1.

(3) Suppose further that the cohomological dimension of each Γi is finite and is equal
to max{l | H l(Γi; ZΓi) 	= 0}. (This holds, for example, if Γi is type FP.) Then cdG � (d +
1) sup{cd Γi}. If Γ is the constant sequence, Γi = Γ, then cdG = (d + 1) cd Γ. Here, as before,
d = 2k when p � o(n−2/(2k+1)) or d = 2k + 1 when p � ω(n−2/(2k+1)).

Proof. Basically, this follows from the formula in Proposition 2.9. Here are the details. Since
Γi is infinite, H0(Γi; ZΓi) = 0. So, for any l-simplex σ, by the Künneth Formula, Hi(Γσ; QΓσ) =
0 for i < l; hence, the same vanishing result holds with QG coefficients. So, in the formula of
Proposition 2.9, for the terms corresponding to σ, the cohomology groups Hi(Cone Lkσ,Lk σ)
are shifted up in degree by at least l. Comparing this with Theorem 3.7, we see that, with
QG coefficients, the first degree for which the right-hand side of the formula in Proposition 2.9
might not vanish is l + 1 (since (2k − 2l)/2 + l = k). So, (1) holds. Since the number of ends
of G are detected by H1(G; QG), (1) =⇒ (2). The formula in Proposition 2.9 also implies (3).
To see this, first note that

cd Γσ =
∑
i∈σ

cd Γi.

So, cd Γσ � (dim σ + 1) sup{cd Γi}. The nonvanishing terms in the formula of Proposition 2.9
which have highest possible degree occur when σ is a simplex of highest possible dimension d,
proving (3).

Corollary 4.9 (cf. (2.9), Corollary 2.13). Fix an integer k � 0 and suppose n−1/k �
p � n−1/(k+1). Then the following properties hold w.h.p. for the random right-angled Artin
group AG:

(1) cd AG = d + 1 where d = 2k (when ω(n−2/(2k+1)) � p) or d = 2k + 1 (when p �
o(n−2/(2k+1)));

(2) Hi(AG; QAG) = 0 for i < k + 1 or i > d + 1 and Hk+1(AG; QAG) 	= 0;
(3) L2bm(AG) is nonzero if and only if m = k + 1.

Proof. Statements (1) and (2) follow from (2.9) and Theorem 3.7(2). (Statement (1)
was first proved in [8, Theorem 4].) Statement (3) follows from Corollary 2.13 and
Theorem 3.1(2).
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