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Abstract Given a simplicial complex L with vertex set I and a familyA = {(A(i), B(i))}i∈I
of pairs of spaces with base points ∗i ∈ B(i), there is a definition of the “polyhedral product”
AL of A with respect to L . Sometimes this is called a “generalized moment angle complex”.
This note concerns two refinements to earlier work of the first author. First, when L is
infinite, the definition of polyhedral product needs clarification. Second, the earlier paper
omitted some subtle parts of the necessary and sufficient conditions for polyhedral products
to be aspherical. Correct versions of these necessary and sufficient conditions are given in
the present paper.

Keywords Aspherical space · Graph product · Polyhedral product ·
Right-angled Coxeter group · Right-angled building
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The definition of a polyhedral product Let L be a simplicial complex. Suppose that A =
{(A(i), B(i))}i∈I is a collection of pairs of spaces, with base points ∗i ∈ B(i), indexed by the
vertex set I of L . As a set, the polyhedral product of A with respect to L is the subset AL of
the product

∏
i∈I A(i) consisting of the points (xi )i∈I satisfing the following two conditions:

(I) xi = ∗i for all but finitely many i ,
(II) {i ∈ I | xi /∈ B(i)} is a simplex of L .
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For pairs M < M ′ of subcomplexes of L , the base points determine natural inclusions
AM ↪→ AM ′

. When L is finite, the polyhedral product inherits its topology from the product∏
i∈I A(i). In general AL acquires the topology of the colimit lim−→ AM as M runs through the

finite subcomplexes.
The above definition is given in [5, Sect. 4.1]. When L is finite, condition (I) is vacuous

and the definition reduces to the one in [4, Sect. 2.1]. The restriction to finite L in [4] is
implicit but inessential.

In [1] and [4], the notation ZL(A, B) was used for the polyhedral product, here denoted
simply by AL .

It is assumed that all the spaces A(i) and B(i) are CW-complexes. In particular, simply
connected aspherical spaces are contractible.

Asphericity of polyhedral products We assume each A(i) is path connected. Let Gi denote
the fundamental group π1(A(i), ∗i ) and let Ei = π1(A(i), B(i), ∗i ), so that Ei is a Gi -set.
Define a subset I ′′ of I , by

I ′′ = {i ∈ I | Card(Ei ) �= 1} (1)

and let L ′′ be the full subcomplex of L with vertex set I ′′.
In the statement and proof of [4, Theorem 2.22] two implicit assumptions are made:

(a) for each path component of B(i), the induced map of fundamental groups π1(B(i)) →
π1(A(i)) is injective, and

(b) when B(i) is path connected, the image of π1(B(i)) is a proper subgroup of π1(A(i)).

Under assumptions (a) and (b), it is shown in [4] that AL is aspherical if and only if the
following three conditions hold:

• Each A(i) is aspherical.
• If a vertex i is not joined to every other vertex by an edge, then (A(i), B(i)) is an aspherical

pair. (See Definition 2, below, for the meaning of “aspherical pair”.)
• L is a flag complex.

In proving the necessity of these conditions, assumption (a) leads to a conclusion that cer-
tain pairs (A(i), B(i)) must be aspherical; without (a), the (A(i), B(i)) are only “nearly
aspherical” (cf. Definition 2, below). Assumption (b) implies that I = I ′′ and hence L = L ′′.
When (b) does not hold further modifications are needed in [4, Theorem 2.22] (cf. Example 1
below).

Example 1 (cf. [4, Example 2.1]). If for each i ∈ I , (A(i), B(i)) = ([0, 1], {1}), then the
polyhedral product ([0, 1], {1})L is elsewhere called a chamber and denoted K (L). Since
K (L) is isomorphic to the cone on the barycentric subdivision of L , the space ([0, 1], {1})L
is contractible for any L .

Example 2 More generally, if, for each i , A(i) is contractible and B(i) is acyclic, then AL

is simply connected and the the natural map AL → ([0, 1], {1})L induces an isomorphism
on homology; hence, AL is contractible for any L .

Example 3 If L is a simplex, then AL = ∏
i∈I A(i). Hence, AL is aspherical if and only if

each A(i) is aspherical—no condition is needed on the B(i).

Definition 1 (cf. [4, p. 249]). A vertex of a simplicial complex L is conelike if it is joined
by an edge to every other vertex of L .
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Definition 2 (cf. [4, Definition 2.21]). Suppose (A, B) is a pair of spaces with A path con-
nected. Let Ã denote the universal cover of A and let B̃ be the inverse image of B in Ã. Then
(A, B) is an aspherical pair if Ã is contractible and each component of B̃ is contractible
(in other words, A is aspherical, each path component of B is aspherical and the fundamen-
tal group of each such component maps injectively into π1(A)). The pair (A, B) is nearly
aspherical if Ã is contractible and if each path component of B̃ is acyclic.

For any subset J ≤ I , write 〈J 〉 for the full subcomplex of L spanned by J . Given a field
F define disjoint subsets of I − I ′′:

I1 := {i ∈ I − I ′′ | B̃(i) is acyclic with coefficients in Z}
I2 := {i ∈ I − I ′′ | B̃(i) is not acyclic with coefficients in F},

Put
I ′ = I2 ∪ I ′′ and L ′ = 〈I ′〉. (2)

From now on we assume the following:
(∗) for some field F, I1 ∪ I2 is a partition of I − I ′′.

Although this assumption seems fairly mild, without it there is a problem finding a clean
statement of our theorem (cf. Example 4 below).

The corrected statement of Theorem 2.22 in [4] is the following.

Theorem 1 Suppose that I is the vertex set of a simpliciial complex L, that A =
{(A(i), B(i))}i∈I is a family of pairs and that condition (∗) holds. The following four condi-
tions are necessary and sufficient for AL to be aspherical.

(i) Each A(i) is aspherical.
(ii) If i ∈ I ′ is not conelike in L ′, then (A(i), B(i)) is nearly aspherical.
(iii) The vertices of I2 are conelike in L ′. Moreover, 〈I2〉 is a simplex and L ′ is the join

〈I2〉 ∗ L ′′
(iv) L ′ is a flag complex.

Remark When I = I ′′, Theorem 2.22 of [4] is almost correct as stated, except that in
condition (ii) the phrase “aspherical pair” should be replaced by “nearly aspherical pair.”
Condition (iii) of Theorem 2.22 reads L instead of L ′ (as in condition (iv) above). The point
is that for AL to be aspherical it is not necessary that L be a flag complex but only that L ′ be
a flag complex. This should have been obvious from Example 2.1 in [4] (which is essentially
Example 1, above).

An important observation in the proof of Theorem 2.22 of [4] is that if J < I , then
the natural map r : AL → A〈J 〉 induced by the projection,

∏
i∈I A(i) → ∏

i∈J A(i) is a
retraction (cf. [4, Lemma 2.5]). Applying this to the case where J is a singleton, we see that
if AL is aspherical, then so is each A(i).

As in [4], Theorem 1 is proved by reducing to the special case where each pair (A(i), B(i))
has the form (Cone(Ei ), Ei ), for some discrete set Ei , whereCone(Ei )means the cone on Ei .
Put C := {(Cone(Ei ), Ei )}i∈I . Consider the polyhedral product CL and its universal cover
C̃L . A key point is that C̃L is the standard realization of a right-angled building (abbreviated
as RAB) if and only if the following two conditions hold:

• for each i ∈ I , Card(Ei ) ≥ 2, and
• L is a flag complex.
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This is stated in [4, Example 2.8] and a proof is given in [3]. Let W denote the right-angled
Coxeter group associated to the 1-skeleton of L and let C denote the underlying chamber
system of the RAB.

One flaw in [4] traces back to the assertion in the proof of Lemma 2.11 that when L is
a flag complex, the chamber system C (obtained, as in [3], via a covering of a nonstandard
realization of

∏
i∈I Ei ) is a RAB. However, this is only true when each Ei has more than

one element, i.e., when the statement after the first bullet point holds.
Let I ′′ < I be the subset defined by (1). As before, put L ′′ = 〈I ′′〉. The correct version of

Lemma 2.11 in [4] is the following.

Lemma 1 Let C := {(Cone(Ei ), Ei )}i∈I . The polyhedral product CL is aspherical if and
only if L ′′ is a flag complex.

Proof First observe that the inclusion CL ′′
↪→ CL is a homotopy equivalence. The reason

is that there is a retraction r : CL → CL ′′
induced by the projection

∏
i∈I Cone(Ei ) →∏

i∈I ′′ Cone(Ei ); moreover, r is a deformation retraction. (Since, for each i ∈ I − I ′′, Ei is
a singleton, Cone(Ei ) deformation retracts onto Ei .)

The family {Ei }i∈I ′′ and the right-angled Coxeter group W ′′ associated to the 1-skeleton
of L ′′ define a RAB with underlying chamber system C′′ (defined as in [3] by taking the
universal cover of a nonstandard realization of the product building,

∏
i∈I ′′ Ei ). Suppose L ′′

is a flag complex. As was pointed out above,˜CL ′′ is the standard realization of C′′. Therefore,
it is CAT(0) and hence contractible (cf. [2, Thm.18.3.1,p.338]). So, CL ′′

is aspherical and by
the previous paragraph, CL also is aspherical.

Conversely, suppose L ′′ is not a flag complex. Then˜CL ′′ is a nonstandard realization of C′′,
i.e.,˜CL ′′ = U(C′′, K (L ′′)), where K (L ′′) is the chamber dual to L ′′ and where U(C′′, K (L ′′))
means the “basic construction” defined as in [2]. An apartment in this nonstandard realiza-
tion is U(W ′′, K (L ′′)). Since L ′′ is not a flag complex, the realization of the apartment,
U(W ′′, K (L ′′)), is not contractible (see [2, Thm.9.1.4,p.167]). Since U(C′′, K (L ′′)) retracts
onto the (nonstandard) realization of any apartment, we see that˜CL ′′ cannot be contractible
and hence, C̃L also cannot be contractible. �

Lemma 2 Suppose L is a simplicial complex consisting of two vertices. Let I = {1, 2}
be its vertex set and let A = {(A(i), B(i))}i∈I be two pairs of spaces such that A(i) path
connected, neither B̃(1) nor B̃(2) is acyclic (i.e., I1 = ∅), and condition (*) holds. Then AL

is aspherical if and only if, for i = 1, 2, (A(i), B(i)) is nearly aspherical.

Proof For i = 1, 2, let Ei denote the set of path components B̃(i) and let C denote the family
{(Cone(Ei ), Ei )}i∈I . Then CL is a complete bipartite graph � with vertex set E1

∐
E2.

Similarly, ÃL is a graph of spaces for the same graph �: the set of vertex spaces for one type
is {B̃(1)e × Ã(2)}e∈E1 and for the other type it is { Ã(1) × B̃(2) f } f ∈E2 . Here B̃(1)e (resp.
B̃(2) f ) means the path component corresponding to e ∈ E1 (resp. f ∈ E2). Since Ã(i) is
simply connected, π1(ÃL) ∼= π1(�). (The reason is that the cover of ÃL corresponding to
the universal cover of � is a tree of spaces with simply connected vertex spaces.)

SupposeAL is aspherical. Since A(i) is a retract ofAL , it also is aspherical; so its universal
cover Ã(i) is contractible. Since the universal cover of ÃL is contractible, the natural map
ÃL → � is a homotopy equivalence. In particular, it induces an isomorphism on homology.
On the other hand, when each Ã(i) is contractible, there is a formula for the homology of
any polyhedral product (cf. [1, Thm.2.21]). In the case at hand, it gives that ÃL has the same
homology as the suspension of a smash product, S0 ∗ (B̃(1) ∧ B̃(2)). So, B̃(1) ∧ B̃(2) must
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have the same homology as the discrete space E1 ∧ E2. By condition (*) there is a field
F so that I2 ∪ I ′′ is a partition of {1, 2}. With coefficients in F, the homology of a smash
product is concentrated in degree 0 if and only if both factors are concentrated in degree 0
or if one of them is acyclic over F. If I2 = {1, 2}, then both B̃(1) and B̃(2) are connected
and have nontrivial homology in positive degrees with F coefficients, which is impossible.
If I2 is a singleton, then the other element of {1, 2} is in I ′′ (since I1 = ∅) and we again get
a contradiction. So, I2 = ∅, i.e., neither B̃(1) nor B̃(2) is connected. In the case at hand, this
means that, for i = 1, 2, each component of B̃(i) is acyclic (over Z). Hence ( Ã(i), B̃(i)) is
nearly aspherical.

Conversely, suppose each ( Ã(i), B̃(i)) is nearly aspherical. There is a π1(�)-equivariant
map of trees of spaces, from the universal cover of ÃL to C̃L , which induces an isomorphism
on homology. Hence the universal cover of ÃL is contractible. �


Example 4 For i = 1, 2, suppose Ã(i) is contractible and that the reduced homology of B̃(i)
is pi -torsion for distinct primes p1 and p2. Then B̃(1) ∧ B̃(2) is acyclic over Z. Hence, for
L = 〈{1, 2}〉 as in Lemma 2, ÃL is contractible.

Proof of Theorem 1 First suppose AL is aspherical. As noted previously, this implies (i).
Suppose i ∈ I ′ is not conelike in L ′. Then there is another vertex j ∈ I ′ not connected by
an edge to i . Since A〈{i, j}〉 is a retract of AL , it is also aspherical. Applying Lemma 2, we
see that (ii) holds. For each i ∈ I2, B̃(i) is path connected and not acyclic, so, (A(i), B(i))
is not a nearly aspherical pair; hence, i must be conelike. By assumption, there is a field
F so that for each i ∈ I2 ∪ I ′′, B̃(i) is not acyclic with coefficients in F. (If i ∈ I ′′, then
B̃(i) is not connected.) Suppose there is an “empty simplex” in 〈I2 ∪ I ′′〉, i.e., a subset
J < I ′ so that 〈J 〉 is isomorphic to the boundary of a k-simplex, k ≥ 2. Since the reduced
homology (with coefficients in F) of smash product of {B̃(i)}i∈J is nonzero, it follows from
the formula in [1, Thm. 2.21] that this homology, shifted up in degree by k, appears as a
direct summand of H∗(Ã〈I2∪I ′′〉; F). This shows, first of all, that J cannot be a subset of I2.
(Since A〈I2〉 is aspherical, Ã〈I2〉 must be contractible.) Hence, 〈I2〉 is a simplex. Furthermore,
J cannot decompose as J2 ∪ J ′′, where J2 = J ∩ I2 and J ′′ = J ∩ I ′′ are both nonempty.
(This is because A〈J 〉 is aspherical and has the same fundamental group as C〈J ′′〉; hence, the
homology of Ã〈J 〉 must vanish in degrees ≥ Card(J ′′).) Therefore, L ′ is the join 〈I2〉 ∗ L ′′,
i.e., (iii) holds. A similar argument shows that 〈I ′′〉 cannot contain an empty k-simplex for
k ≥ 2 with vertex set J ′′, for then the universal cover of Ã〈J ′〉 has a nonzero homology in
degree k (cf. the second paragraph of the proof of Theorem 2.22 in [4, p. 249]). Therefore,
L ′′ and L ′ are both flag complexes, i.e., (iv) holds.

Conversely, suppose conditions (i), (ii), (iii), (iv) hold. Let J be the set of conelike vertices
in L ′. Since L ′ is flag, 〈J 〉 is a simplex and L ′ = 〈J 〉∗〈I ′− J 〉. Since each Ã(i) is contractible,
so is Ã〈J 〉 = ∏

i∈J Ã(i). Therefore, Ã〈L ′〉 = Ã〈J 〉 × Ã〈I ′−J 〉 is homotopy equivalent to
Ã〈I ′−J 〉. Since the universal cover ofC〈I ′−J 〉 is contractible (being the standard realization of a
RAB) and since for each i ∈ I ′− J , the natural map ( Ã(i), B̃(i)) → (Cone(Ei ), Ei ) induces
an isomorphism on homology, it follows that the universal cover of Ã〈I ′−J 〉 is contractible
and therefore, so is the universal cover of Ã〈L ′〉. For any set of vertices H < I , we have that
the reduced homology of the smash product of {B̃(i)}i∈H is trivial if H ∩ I1 �= ∅. It follows
from the formula in [1, Thm. 2.21] that ÃL → ÃL ′

induces an isomorphism on homology
and hence is a homotopy equivalence. So, ÃL is aspherical and therefore, so is AL .
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