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Abstract. We prove that there exist closed, aspherical, smooth 4-manifolds that
are homeomorphic but not diffeomorphic. These provide counterexamples to a
smooth analog of the Borel conjecture in dimension four.

1. Introduction

The Borel conjecture predicts that closed aspherical manifolds are topologically
rigid, with their homeomorphism type determined by their homotopy type. This
conjecture seeks to generalize the rigidity exhibited by hyperbolic manifolds and other
(non-positively curved) locally symmetric spaces, a setting in which every homotopy
equivalence is realized by an isometry [Mos68, Mos73].

This paper concerns the smooth version1 of the Borel conjecture, which asks whether
closed, aspherical n-manifolds that are homotopy equivalent are in fact diffeomorphic.
This is classical in dimensions n ≤ 2 and is known to hold for orientable 3-manifolds,
using Perelman’s results [Per02, Per03b, Per03a, MT14, BBM+10]. On the other
hand, it is known [Wal99, Chapter 15] that there exist exotic aspherical manifolds
in dimensions at least 5, including exotic smooth structures on Tn for n ≥ 5. In
dimensions at least 7, such examples can be obtained by connected sum of certain
aspherical manifolds (such as tori or stably parallelizable hyperbolic manifolds) with
an exotic sphere [BT23, FJ89]. We resolve the last remaining case, in dimension 4:

Theorem 1.1. There exist pairs of smooth, closed, aspherical 4-manifolds that are
homeomorphic but not diffeomorphic.

In fact, we will find infinitely many such pairs; see Remark 5.4. The key adjective in
the theorem is the word closed. It was previously known that there are exotic smooth
structures on R4 (cf. [GS99]) and on compact aspherical manifolds with boundary, in
fact on compact [AR16] contractible manifolds. (If one is working relative to a fixed
identification of the boundary, as in some formulations of the Borel conjecture, then
exotic contractible manifolds go back to [Akb91].)
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1See [Wei23] for some interesting historical comments on the formulation of the Borel conjecture as

a statement about homeomorphism, rather than diffeomorphism, of homotopy equivalent aspherical
manifolds.
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Figure 1. (Left) The 4-manifold X is the union of a contractible
4-manifold and a thickened, once-punctured torus. (Right) The 4-
manifold D(X) is a union of countably many copies of X and −X,
glued along 3-cells in their boundaries.

Among closed manifolds, most previous constructions of exotic 4-manifolds appear
ill-suited to the aspherical setting. For example, one obstacle is that closed, aspherical
4-manifolds must have infinite fundamental groups, and these are typically not known
to be “good” groups that allow [FQ90] topological surgery theory and the s-cobordism
theorem to function in the 4-dimensional setting. Therefore one must take a more
local approach to establishing homeomorphisms; our exotic pairs Q,Q′ are related by
explicit cork twisting, which is known to preserve homeomorphism type by work of
Freedman [Fre82]. Since cork twisting takes place in a contractible region, it has more
in common with counterexamples obtained by sums with exotic spheres than with
other constructions from surgery theory.

The construction underlying Theorem 1.1 begins with a pair of exotic aspherical
4-manifolds X,X ′ with boundary (based on [HP19]) and then produces closed 4-
manifolds by applying the reflection group trick developed by the first author [Dav83].
As depicted schematically in Figure 1, each of X and X ′ is obtained from a contractible
4-manifold C (namely the Akbulut cork [Akb91]) by attaching a thickened punctured
torus, hence has the homotopy type of T 2, which is aspherical. Necessary data for
the reflection group trick includes a triangulation T of ∂X as a flag complex. Then
T defines a right-angled Coxeter group W (T ). The reflection group trick proceeds by
constructing an associated noncompact space D(X) (resp., D(X ′)) built from infinitely
many copies of X and −X (resp., X ′ and −X ′), as depicted schematically on the right-
hand side of Figure 1. The closed aspherical 4-manifolds Q(X) and Q(X ′) claimed in
Theorem 1.1 are then obtained as certain quotients of D(X) and D(X ′).

The main claim in the theorem is then proved in two steps. In §4, we construct
a homeomorphism between Q(X) and Q(X ′), and argue that it is not homotopic to
a diffeomorphism.2 In fact, we show that there is no diffeomorphism between Q(X)

2In many treatments, e.g. [Far02, Wei23], the Borel conjecture is stated as saying that any ho-
motopy equivalence is homotopic to a homeomorphism, so that this step would already give a coun-
terexample to that version of the smooth Borel conjecture.
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and Q(X ′) that lifts to the covering spaces D(X) and D(X ′). (These covers are
distinguished by comparing the genera of smoothly embedded surfaces; here some
care with obstructions is required because these covers are built from copies of X with
both orientations.) This reduces Theorem 1.1 to a lifting problem that we solve in
§5; the key is an algebraic argument showing that the fundamental group π1(D(X))
(resp., π1(D(X ′))) is characteristic in π1(Q(X)) (resp. π1(Q(X ′))). In order to make
this algebraic argument work we need to make a special choice of T : it must satisfy
the “flag-no-square condition.” This implies that the resulting Coxeter group is word
hyperbolic, a fact which we need in our algebraic argument. The fact that π1(D(X))
and π1(D(X ′) are characteristic subgroups implies that Q(X) and Q(X ′) are not
diffeomorphic.

We close this discussion by noting that the reflection group trick has had many
applications to the construction of “exotic” spaces and groups, including closed as-
pherical manifolds that are not covered by Euclidean space [Dav83], Poincaré duality
groups that are not finitely presented [Dav98] (c.f., [BB97]), 4-dimensional locally
CAT(0)-manifolds that do not admit a Riemannian metric of nonpositive curvature
[DJL12], and — closer to our purposes here — aspherical topological manifolds that
admit no smooth structure [DH89]. However, to our knowledge, Theorem 1.1 is the
first application of the reflection group trick to the study of exotic smooth structures
on manifolds. Given the trick’s capacity for promoting exotic phenomena from the
compact to the closed setting, we expect further applications in this direction.

Acknowledgments. The authors thank Lisa Piccirillo for valuable discussions at the
beginning of this project. We also thank Jim Davis and Bena Tshishiku for corrections
to some of the introductory historical remarks.

2. The input manifolds

Let X be the 4-manifold shown in Figure 2, which arises from a very slight modifi-
cation to the examples underlying [HP19, Theorem 4.1]. The manifold X is obtained
from the contractible Akbulut cork C [Akb91] by attaching a “genus-1 handle” (i.e., a
copy of F ×D2 where F is a genus-1 surface with one boundary component) along a
knot K in ∂C. The embedded copy C ⊂ X can be seen as the union of the 0-handle,
the 1-handle represented by the topmost dotted curve, and the green 2-handle.

Our proof of Theorem 1.1 will leverage the following properties of X.

Proposition 2.1. The 4-manifold X satisfies the following:

(a) X is homotopy equivalent to the torus,
(b) X embeds smoothly in B4,
(c) every homologically essential, smoothly embedded surface in X has genus ≥ 2

(hence the same is true of −X), and
(d) X is homeomorphic to a smooth 4-manifold X ′ such that H2(X

′) is generated
by a smoothly embedded torus.
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Figure 2. Kirby diagrams for the 4-manifolds X and X ′.

Most of these properties follow verbatim from the proof of [HP19, Theorem 4.1]; for
the reader’s convenience, we sketch the arguments, adding detail only where necessary.

Proof. For (a), recall from above that X is obtained from the contractible Akbulut
cork C by attaching a genus-1 handle F × D2. Collapsing F × D2 to F × 0 and C
to a point (hence ∂F to a point) yields a map to T 2 that is easily seen to be a weak
homotopy equivalence, hence a homotopy equivalence.

For (b), first attach 0-framed 2-handles along meridians to all of the 1-handle curves
of X in Figure 2. This has the diagrammatic effect of erasing the 1-handles of X,
leaving only the green and blue 0-framed 2-handle curves. These can be seen to form
a 2-component unlink, so attaching two 3-handles yields B4.

For (c), consider the handle diagram for X shown in Figure 3, which is in Gompf’s
standard form [Gom98]. It can be checked that Thurston-Bennequin numbers tb and
rotation numbers r of the (oriented) 2-handle curves G and B satisfy

tb(G) = 1, tb(B) = 1 r(G) = 1, r(B) = 3

The 2-handle framings are both 0 = tb − 1, hence X admits a Stein structure
[Gom98]. Observe that H2(X) is generated by a class α corresponding to the differ-
ence of the 2-handles attached along the oriented curves B and G. Gompf’s formula
[Gom98, Proposition 2.1] for the Chern class c1(X) of the Stein structure on X yields

⟨c1(X), α⟩ = r(B)− r(G) = 3− 1 = 2.

Now suppose that S is a smoothly embedded surface in X satisfying [S] = kα for
k ̸= 0. The adjunction inequality for homologically essential, smoothly embedded
surfaces of non-negative self-intersection in X [LM98] gives us

2g(S)− 2 ≥ |⟨c1(X), [S]⟩|+ [S] · [S] = |⟨c1(X), kα⟩|+ k2(α · α) = 2|k|+ k2 · 0,

hence 2g(S) ≥ 2|k|+ 2 and thus g(S) ≥ |k|+ 1 ≥ 2.
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Figure 3. A Stein handle diagram for X.

For (d), let X ′ be the 4-manifold shown on the right-hand side of Figure 2. It is
obtained from X by twisting along the Akbulut cork C ⊂ X, which can be described
diagrammatically by exchanging the roles of the green 0-framed 2-handle and the top-
most dotted 1-handle curve. This corresponds to removing C̊ ⊂ X and regluing by an
involution of ∂C that extends to a homeomorphism of C (but not a diffeomorphism);
see [Akb91, Fre82].

To see the torus that generates H2(X
′), note that X ′ is also obtained by attaching

a genus-1 handle to the Akbulut cork C, where the attaching curve corresponds to the
underlying blue curve B in Figure 2. At the cost of dragging the green 2-handle curve,
one can check that this blue curve is an unknot that can be isotoped away from the
black dotted 1-handle curve in C, hence bounds a smooth disk in C. Capping off this
disk with the core genus-1 surface in the genus-1 handle yields the desired torus. □

Remark 2.2. We can extend this to an infinite family of such exotic pairs Xm, X ′
m

for m ≥ 0 (all homotopy equivalent to T 2) such that H2(X
′
m) is represented by a

smoothly embedded torus but a nonzero element of H2(Xm) cannot be represented
by a smoothly embedded surface S of genus ≤ 2 +m. This can be achieved through
modifying the attaching curve B by adding m positive clasps across the 1-handle (and
m positive stabilizations) as in [HP19, Figure 8], which has the effect of increasing the
evaluation of the Chern class c1(Xm) on the generator of H2(Xm) by m.

3. The Reflection Group Trick

We now recall some components of Davis’ construction [Dav83, Dav08].

3.1. The Coxeter group. Fix a flag triangulation T of ∂X. (Recall that a simplicial
complex is flag if any finite subset of its vertices that are pairwise connected by edges
spans a simplex. For example, the barycentric subdivision of any simplicial complex is
flag.) Letting V denote the set of vertices in T , there is an associated Coxeter system
(W,V ) where W is the right-angled Coxeter group with a generator v of order two for
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each vertex v ∈ V and a relation of the form (vw)2 = 1 for each pair of vertices v, w
joined by an edge in T .

More generally, for any flag simplicial complex T (which is not necessarily a mani-
fold), we can defined an associated right-angled Coxeter group, denoted by W (T ), in
a similar way.

3.2. The Davis complex. The dual decomposition T ′ to T gives a cell structure on
∂X; we view the top-dimensional cells of T ′ as equipping X with the structure of a
manifold with faces. Davis’ construction yields a noncompact manifold D(X) formed
from gluing a countable collection of copies of X via reflections across these faces in a
prescribed way as follows. For each vertex v of T , let Xv be the closed cell in T ′ dual
to v. For each point x ∈ ∂X, let Wx be the subgroup of W generated by all v ∈ V
such that x ∈ Xv. Define an equivalence relation ∼ on W × X by (h, x) ∼ (g, y) if
and only if x = y and h−1g ∈ Wx. Give G×X the product topology and define D(X)
to be the quotient space (G×X)/ ∼.

The Coxeter group W acts smoothly and properly on D(X) with closed fundamental
domain X so that we can write D(X) as a union

D(X) =
⋃
g∈W

gX.

We note that the fact that X is a smooth manifold ensures that D(X) and the
action by W are smooth [Dav08, Remark 10.1.11]

The copies of X can be ordered in a convenient way. To set this up, note that
the generating set V of reflections gives us a length function ℓ on W based on the
word length in terms of this generating set. Next choose any ordering on W such that
g < g′ implies ℓ(g) ≤ ℓ(g′). This in turn gives us an ordering of the tiles Xi := giX.

Using the above ordering, we can write D(X) as an increasing union of subspaces
Pn = ∪n

i=1Xi, each of which is a codimension-zero submanifold of D(X). (While
we may view these subspaces Pn as smooth manifolds with corners, it will suffice to
consider them in the PL category.) Moreover, each Pn is a boundary sum of the tiles
Xi for i ≤ n:

(1) Pn
∼= X1♮ · · · ♮Xn.

This decomposition is key to our arguments, so we sketch its proof in Lemma 3.2
below. Its main input is the following:

Lemma 3.1 ([Dav83, Remark 10.6]). The intersection of Pn and Xn+1 is a PL
codimension-zero disk ∆n ⊂ ∂Pn.

This description introduces two important subtleties. First, when the union Pn =
∪n
i=1Xi is expressed as a boundary sum, we must allow each summand Xi to be

diffeomorphic to either X or −X. (To see why both orientations on X arise, note that
copies of X whose boundaries share a common face must have opposite orientations,
since the gluing is achieved by reflection.)
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The second subtlety is that the summing region ∆n in Pn = Pn−1♮Xn is not
confined to the boundary of Xn−1 ⊂ Pn−1, as is the case in the usual construction of
X1♮ · · · ♮Xn. Therefore the inductive identification of Pn with X1♮ · · · ♮Xn is slightly
unnatural. (This is evidenced by the fact that any given tile Xi eventually lies strictly
in the interior of each Pn for n ≫ i, yet the ith summand of X1♮ · · · ♮Xn does not lie
in the interior of X1♮ · · · ♮Xn.) For completeness, we sketch a proof of (1):

Lemma 3.2. For each n, there exists a PL homeomorphism Pn ! X1♮ · · · ♮Xn.

Proof. We argue inductively, with the claim being trivially true for n = 1. Next,
suppose that for a given n there exists a PL homeomorphism

f : Pn ! X1♮ · · · ♮Xn.

By construction, we have Pn+1 = Pn∪∆nXn+1, where ∆n ⊂ ∂Pn is the disk Pn∩Xn+1

from Lemma 3.1. It follows that f induces a PL homeomorphism

Pn+1 ! (X1♮ · · · ♮Xn) ∪f(∆n) Xn+1,

where f(∆n) ⊂ ∂(X1♮ · · · ♮Xn) is identified with the disk in Xn+1 that was previously
identified with ∆n ⊂ ∂Pn.

Now choose a small codimension-zero disk ∆′
n ⊂ ∂Xn that lies away from the

boundary-summing region in X1♮ · · · ♮Xn. By the PL version of Palais’ disk theorem
[RS72, Theorem 3.34], there is an isotopy of ∂(X1♮ · · · ♮Xn) carrying f(∆n) to ∆′

n, and
such an isotopy extends to an isotopy of X1♮ · · · ♮Xn supported near a collar neighbor-
hood of its boundary (cf. [RS72, Theorem 3.22]). This defines a PL homeomorphism

g : (X1♮ · · · ♮Xn) ∪f(∆n) Xn+1 −! (X1♮ · · · ♮Xn) ∪∆′
n
Xn+1,

and the latter space is naturally identified with the boundary sum X1♮ · · · ♮Xn+1.
Composing f and g yields the desired PL homeomorphism from Pn+1 to X1♮ · · · ♮Xn+1,
completing the inductive argument. □

We record one more simple consequence of Lemma 3.1.

Lemma 3.3. Each inclusion Xn ↪! D(X) induces an injective map on homology.

Proof. First consider the inclusions Xn ↪! Pn and Pn−1 ↪! Pn. For all n, observe that
these induce injections on homology by applying a Mayer-Vietoris argument to the
decomposition Pn = Pn−1 ∪Xn and using the fact that the intersection Pn−1 ∩Xn is
a disk. It follows that, for all m > n, the composition of inclusions

Xn ↪! Pn ↪! Pm

induces an injection on homology. It follows that the inclusion Xn ↪! D(X) induces
an injection on homology, as a class α ∈ H∗(Xn) that becomes null-homologous in
H∗(D(X)) must become null-homologous in H∗(Pm) for some finite m > n. □
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3.3. A compact quotient. Finally, we produce a closed manifold Q(X): The Cox-
eter group W must contain a finite index, torsion-free subgroup W0 [Dav08, Corollary
6.12.12]. Set Q(X) = D(X)/W0. (Note that this quotient Q(X) is smooth [Dav08,
Remark 10.1.11].) For example, given that the Coxeter group W is right-angled, one
can take W0 to be the commutator subgroup of W (cf. [Dav08, p. 213]).

When X is aspherical (as it is in our case), it is easy to see that D(X) and Q(X) are
also aspherical using (1). For D(X), consider a map f : Sk ! D(X) with k ≥ 2. Its
image is compact, hence lies in some Pn. Applying (1), we see that Pn is homotopy
equivalent to a wedge sum of n copies of X. A wedge sum of aspherical spaces is
aspherical, hence f(Sk) is nullhomotopic in Pn and thus in D(X). We conclude D(X)
is aspherical, hence so is Q(X), because the homotopy groups πk of Q(X) and its
cover D(X) are isomorphic for k ≥ 2.

4. An exotic homeomorphism

Let X and X ′ denote the exotic 4-manifolds from §2. Applying the construction
from §3, we obtain an associated pair of closed, aspherical 4-manifolds Q(X) and
Q(X ′) with covers D(X) and D(X ′). As a step in the direction of Theorem 1.1, we
prove the following:

Theorem 4.1. There is a homeomorphism Q(X) ! Q(X ′) that is not homotopic to
any diffeomorphism.

Proof. Recall that X ′ is obtained from X by removing the interior of the Akbulut
cork C ⊂ X̊ and regluing C with a twist. The homeomorphism X ! X ′ constructed
in the proof of Proposition 2.1(d) can be viewed as the identity away from C̊, where
the definitions of X and X ′ agree. This induces a W -equivariant homeomorphism
f̃ : D(X) ! D(X ′), hence descends to a homeomorphism f : Q(X) ! Q(X ′).

We claim that there is no diffeomorphism D(X) ! D(X ′), which will imply that
f : Q(X) ! Q(X ′) is not homotopic to any diffeomorphism. (By the homotopy
lifting property, such a homotopy would lift to one from f̃ : D(X) ! D(X ′) to a
diffeomorphism D(X) ! D(X ′).) To prove this, recall from Proposition 2.1 that X ′

contains a smoothly embedded torus generating H2(X
′). In particular, since each

inclusion-induced map H2(X
′
i) ! H2(D(X ′)) is injective by Lemma 3.3, we see that

D(X ′) contains smoothly embedded, homologically essential tori.
In contrast, we claim that any smoothly embedded, homologically essential surface

S in D(X) has genus at least two. Since S is compact, it must be contained in
one of the compact subspaces Pn in the exhaustion of D(X). By Lemma 3.2, there
is a PL homeomorphism φ : Pn ! X1♮ · · · ♮Xn. The surface φ(S) is a locally flat,
PL codimension-2 submanifold of the smooth manifold X1♮ · · · ♮Xn, hence is isotopic
to a smoothly embedded surface S′ by Wall [Wal67]; also see the proof of [HLL22,
Lemma A.3].

Since [S] is nonzero in H2(D(X)), it is nonzero in H2(Pn), hence its image φ∗[S] =
[S′] is nonzero in H2(X1♮ · · · ♮Xn). Note that H2(X1♮ · · · ♮Xn) splits as a direct sum
of H2(Xi), hence gives canonical projection H2(X1♮ · · · ♮Xn) ! H2(Xi) for each i.
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It follows that [S′] must project to a nonzero element in the homology H2(Xi) of
at least one summand Xi in X1♮ · · · ♮Xn. For notational convenience, let us assume
Xi = X1. By Proposition 2.1, we may attach 2- and 3-handles to all the other
summands X2, . . . , Xn in X1♮ · · · ♮Xn to turn them into 4-balls, giving an embedding
of X1♮ · · · ♮Xn into X1♮B

4♮ · · · ♮B4 ∼= X1. This embedding of X1♮ · · · ♮Xn into X1

induces the projection from H2(X1♮ · · · ♮Xn) to H2(X1), so it carries S′ to a smoothly
embedded surface in X1 that is still homologically essential. By Proposition 2.1, it
follows that S′ has genus at least two, hence so does the original surface S. □

It is important to note that the argument above proves an a priori stronger state-
ment than that of Theorem 4.1, which we record here for use in the final argument
for Theorem 1.1.

Theorem 4.2. There is no diffeomorphism Q(X) ! Q(X ′) that lifts to a diffeomor-
phism D(X) ! D(X ′).

Remark 4.3. Let X̃ (resp. X̃ ′) denote the universal cover of X (resp. X ′). The
triangulation of ∂X lifts to a triangulation T̃ of ∂X̃. Use this to define a right-
angled Coxeter group W̃ and a corresponding Davis complex D(X̃). Then D(X̃) is
the universal cover of D(X). Similarly, we get X̃ ′ and its universal cover D(X̃ ′).
We conjecture that D(X̃) and D(X̃ ′) are not simply connected at infinity and hence,
that neither is homeomorphic to R4. (In particular, neither is an exotic R4.) An
interesting open question is whether the open contractible manifolds D(X̃ ′) and D(X̃)
are diffeomorphic.

5. Characteristic subgroups

To complete the proof of Theorem 1.1 (in light of Theorems 4.1 and 4.2), it suffices to
show that any potential diffeomorphism Q(X) ! Q(X ′) would lift to a diffeomorphism
D(X) ! D(X ′). We will see that this lifting problem is easily recast in terms of the
behavior of the subgroup π1(D(X)) ≤ π1(Q(X)) under automorphisms of π1(Q(X)).

5.1. Flag-no-square complexes and characteristic subgroups. A cycle in a sim-
plicial complex T is a subcomplex homeomorphic to the circle S1, and its length is
the number of edges in the cycle. A diagonal of a cycle is an edge connecting any two
non-consecutive vertices in this cycle. A simplicial complex T is said to satisfy the
flag-no-square condition if T is a flag complex and any cycle of length 4 in T has a
diagonal.

Proposition 5.1. [PŚ09, Proposition 2.13] Let T be a 3-dimensional simplicial com-
plex. Then it admits a subdivision which is flag-no-square.

The following is a consequence of [Mou88, Theorem 17.1], see also [Dav08, Corollary
12.6.3].

Proposition 5.2. Let T be a simplicial complex which is flag-no-square. Let W (T )
be the right-angled Coxeter group associated with T (as defined in §3.1). Then W (T )
is word hyperbolic and so does not contain any subgroup which is isomorphic to Z2.
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In turn, the above results provide a degree of control over Z2-subgroups of π1(Q(X)),
enabling us to prove that π1(D(X)), which is an infinite free product of copies of
π1(X) ∼= Z2, is a characteristic subgroup of π1(Q(X)).

Lemma 5.3. Let X be a compact 4-manifold equipped with a flag triangulation T of
∂X. Let W = W (T ) be the right-angled Coxeter group associated with T . Let D(X)
be the associated Davis complex as in §3, with the natural action W ↷ D(X), and
let Q(X) be the quotient of D(X) by a torsion-free finite index subgroup W0 of W .
If π1(X) is isomorphic to Z2 and the triangulation T of ∂X is flag-no-square, then
π1(D(X)) is a characteristic subgroup of π1(Q(X)).

Proof. By construction, D(X) is a normal covering of Q(X) with the deck group W0.
This gives an exact sequence:

(2) 1 ! π1(D(X)) ! π1(Q(X)) ! W0 ! 1.

We claim if H ≤ π1(Q(X)) is isomorphic to Z2, then H ≤ π1(D(X)). Recall that
π1(D(X)) is a free product of copies of π1(X), with one copy of π1(X) for each
element in W (c.f., [Dav83, Remark 15.9]). As π1(X) ∼= Z2, this claim implies for any
automorphism f of π1(Q(X)), we have f(π1(D(X))) ≤ π1(D(X)); hence, π1(D(X))
is a characteristic subgroup of π1(Q(X)).

It remains to prove the claim. As the triangulation of ∂X is flag-no-square, Propo-
sition 5.2 implies that W0 does not contain a subgroup isomorphic to Z2. Let L be
the image of H under π1(Q(X)) ! W0. As W0 is torsion-free, if L is nontrivial,
the only possibility for L is L ∼= Z. Next we show L ∼= Z leads to a contradiction,
which justifies the claim. Our strategy will be to consider the action of L ⊂ W0 on
the complementary subgroup N = H ∩ π1(D(X)) ∼= Z in the restricted short exact
sequence

1 ! N ! H ! L ! 1.

that parallels (2); the fact that H is abelian will constrain this action and lead to a
contradiction.

To that end, note that each element of W0 lifts to an element in π1(Q(X)), which
gives an automorphism of π1(D(X)); moreover, different lifts give rise to the same
automorphism up to an inner automorphism of π1(D(X)). This gives a well-defined
homomorphism φ : W0 ! Out(π1(D(X))), where Out(π1(D(X))) denotes the outer
automorphism group of π1(D(X)). Later, we will need the following topological de-
scription of φ. Take a base point p ∈ D(X). Then we can identify π1(D(X), p)
with π1(D(X), q) for any q ̸= p, by choosing a path from p to q. This identifi-
cation is well-defined up to an inner automorphism of π1(D(X), p). Given an ele-
ment ḡ ∈ W0, the action W0 ↷ D(X) by deck transformations gives an isomor-
phism ḡ∗ : π1(D(X), p) ! π1(D(X), ḡ(p)). As we can identify π1(D(X), ḡ(p)) with
π1(D(X), p), the isomorphism ḡ∗ gives an element in the outer automorphism group
of π1(D(X), p), which is exactly φ(ḡ) for the map φ defined above.

Now suppose L ∼= Z, and let ḡ ∈ L be a generator of L. Let N = π1(D(X))∩H ∼= Z
be defined as before. Let g ∈ H ≤ π1(Q(X)) be a lift of ḡ. As H is abelian, we know
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ghg−1 = h for all h ∈ N ≤ H. Thus conjugating by g gives an automorphism
β : π1(D(X)) ! π1(D(X)) that restricts to the identity on N . The element in
the outer automorphism group of π1(D(X)) represented by β is exactly φ(ḡ), where
φ : W0 ! Out(π1(D(X))) is defined in the previous paragraph. In particular, φ(ḡ)
fixes the π1(D(X))-conjugacy class of each element of N . (Note that the action of
Out(π1(D(X))) is only well-defined on the conjugacy classes of elements in π1(D(X)).
We have a particular lift of φ(ḡ) to Aut(π1(D(X))), namely conjugation by g, that
acts as the identity on each element of N , hence the associated outer automorphism
φ(ḡ) acts as the identity on the π1(D(X))-conjugacy class of N .)

Now let α be a loop based at p which represents a generator of N in π1(D(X), p).
Then the previous paragraphs imply that for any path β from p to ḡ(p), the loop
βḡ(α)β−1 gives an element in π1(D(x), p) which is conjugate to [α] by an element of
π1(D(X), p). Here β−1 denotes the inverse path of β. In particular, this implies that
α and ḡ(α) are freely homotopic in D(X). Thus α and ḡm(α) are freely homotopic in
D(X) for any m ≥ 1. We will show below that this leads to a contradiction.

Take a fundamental domain X1
∼= X for the action of W on D(X). As in §3.2, we

choose an enumeration g1 = id, g2, g3, . . . of elements of W such that ℓ(gi) ≤ ℓ(gj)
whenever i ≤ j. Let X1 = P1 ⊂ P2 ⊂ P3 ⊂ · · · be the exhaustion of D(X) as defined
in §3.2 with Pn =

⋃
1≤i≤n giX1. As α is compact, there exists n0 such that α ⊂ Pn0 .

As the deck group action W ↷ D(X) is properly discontinuous and g has infinite
order in W , we know there exists m0 > 0 such that

(3) Pn0 ∩ ḡm0(Pn0) = ∅.

Let Y ⊂ X be a subset obtained by removing a collar neighborhood of ∂X in X
(homeomorphic to ∂X× [0, 1)) from X. We collapse Y ⊂ X to a point and obtain the
topological space X̄ which is homeomorphic to a cone over ∂X. Let Y1 ⊂ X1 be the
subspace of X1 arising from Y ⊂ X. For each i > n0, we collapse giY1 in D(X) to a
point. This gives a new topological space D̄(X), with π : D(X) ! D̄(X) being the
natural continuous map. As α and ḡm0(α) are freely homotopic in D(X), we know
π(α) and π(ḡm0(α)) are freely homotopic in D̄(X). In what remains, we will show
π(ḡm0(α)) is null-homotopic in D̄(X), but π(α) is not null-homotopic in D̄(X), which
gives the desired contradiction.

Let P̄n = π(Pn). As the procedure of obtaining D̄(X) from D(X) does not change
the boundary of each chamber, we know from Lemma 3.1 that P̄n ∩ π(gn+1X1) is a
codimension-zero disk in ∂Pn. Thus the van Kampen theorem implies that P̄n ! P̄n+1

is π1-injective for each n, which further implies that P̄n ! D̄(X) is π1-injective for
each n. As α is not null-homotopic in D(X), we know it is not null-homotopic in
Pn0 . As π restricted to Pn0 is a homeomorphism onto P̄n0 , we know π(α) is not
null-homotopic in P̄n0 . Hence π(α) is not null-homotopic in D̄(X).

Now we look at π(ḡm0(α)). By (3), each chamber in ḡm0(Pn0) is collapsed under
π. We apply the Davis construction to X̄ to obtain D(X̄). Note that D(X̄) has a
similar filtration, denoted by R1 ⊂ R2 ⊂ · · · . As X̄ (that is, the cone on ∂X) is
simply-connected, we know Rn is simply-connected for each n by the same argument
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as the previous paragraph. Moreover, by construction, π(ḡm0(Pn0)) is homeomorphic
to Rn0 , hence is simply-connected. It follows that π(ḡm0(α)) is null-homotopic in
π(ḡm0(Pn0)), and hence, is null-homotopic in D̄(X), as desired. □

5.2. Conclusion. We now complete the proof of our main result.

Proof of Theorem 1.1. By Theorem 4.1, there is a homeomorphism f : Q(X) !
Q(X ′); that by construction is such that f∗ carries π1(D(X)) ≤ π1(Q(X)) isomorphi-
cally to π1(D(X ′)) ≤ π1(Q(X ′)).

Next suppose there is a diffeomorphism g : Q(X) ! Q(X ′). To obtain a con-
tradiction, by Theorem 4.2, it suffices to show that this lifts to a diffeomorphism
g̃ : D(X) ! D(X ′). Such a lift exists if and only if g∗(π1(D(X))) lies inside
π1(D(X ′)) ≤ π1(Q(X ′)). To show that this condition is met, note that f−1

∗ ◦ g∗ is an
automorphism of π1(Q(X)), hence preserves the characteristic subgroup π1(D(X)) by
Lemma 5.3. Since f−1

∗ restricts to an isomorphism between π1(D(X ′)) and π1(D(X)),
it follows that g∗ must carry π1(D(X)) to π1(D(X ′)), as desired. □

Remark 5.4. To obtain infinitely many such examples of exotic aspherical pairs, we
can apply these arguments to the 4-manifolds Xm, X ′

m described in Remark 2.2.
Alternatively, for fixed X and a fixed flag-no-square triangulation T of ∂X, taking

different finite index torsion free subgroups of the associated right-angled Coxeter
group W (there are plenty of such subgroups as any right-angled Coxeter group is
residually finite) in the construction of Section 3.3 also gives infinitely many exotic
aspherical pairs.
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