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Abstract

Orbifolds and the orbifold fundamental group are defined in Lecture 1.
Lecture 2 deals with Euler characteristics of orbifolds and the classification
of 2-dimensional orbifolds. the last three lectures concern orbifolds coming
from groups genenerated by reflections (“reflectofolds”).
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1 Lecture 1: transformation groups and
orbifolds

1.1 Transformation groups

1.1.1 Definitions

An action of a topological group G on a space X is a (continuous) map G×X →
X, denoted by (g, x)→ gx, so that

• g(hx) = (gh)x,

• 1x = x.

(Write Gy X to mean that G acts on X.)
Given g ∈ G, define θg : X → X by x→ gx. Since θg ◦θg−1 = 1X = θg−1 ◦θg,

the map θg is a homeomorphism and the map Θ : G → Homeo(X) defined by
g → θg is a homomorphism of groups.

Given x ∈ X, Gx := {g ∈ G | gx = x} is the isotropy subgroup. The action
is free if Gx = {1}, for all x ∈ X.
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Definitions 1.1. G(x) := {gx ∈ X | g ∈ G} is the orbit of x. The action is
transitive if there is only one orbit. Given x ∈ X, the natural mapG/Gx → G(x)
defined by gGx → gx is a continuous bijection. The orbit space X/G is the set
of orbits in X endowed with the quotient topology (with respect to the natural
map X → X/G). A map f : X → Y of G-spaces is equivariant (or a G-map) if
f(gx) = gf(x)

Definitions 1.2. Suppose H ⊂ G is a subgroup and Y is a H-space. Then H
acts on G × Y via h · (g, x) = (gh−1, hx). The orbit space is denoted G ×H Y
and called the twisted product. The image of (g, x) in G×H Y is denoted [g, x].
Note that G y G×H Y via g′[g, x] = [g′g, x].

Definition 1.3. A slice at a point x ∈ X is a Gx-stable subset Ux so that the
map G×Gx Ux → X is an equivariant homeomorphism onto a neighborhood of
G(x). If Ux is homeomorphic to a disk, then G×Gx

Ux is an equivariant tubular
neighborhood of G(x).

Remark 1.4. A neighborhood of the orbit in X/G is homeomorphic to Ux/Gx
(= (G×Gx Ux)/G).

1.1.2 The Differentiable Slice Theorem

The next result is basic in the study of smooth actions of compact Lie groups
(including finite groups) on manifolds. For details, see [3].

Theorem 1.5. Suppose a compact Lie group acts differentiably (= “smoothly”)
on a manifold M . Then every orbit has a G-invariant tubular neighborhood.
More precisely, there is a linear representation of Gx on a vector space S so
that that G×Gx

S is a tubular neighborhood of G(x). (The image of S in M is
a slice at x.)

Proof. By integrating over the compact Lie group G we can find a G-invariant
Riemannian metric. Then apply the usual proof using the exponential map.

1.1.3 Proper actions of discrete groups

Suppose Γ a discrete group, X a Hausdorff space and Γ y X. The Γ-action is
proper if given any two points x, y ∈ X, there are open neighborhoods U of x
and V of y so that γU ∩ V 6= ∅ for only finitely many γ.

Exercise 1.6. Show that a Γ-action on X is proper iff

• X/Γ is Hausdorff,

• each isotropy subgroup is finite,

• each point x ∈ X has a slice, i.e., there is Γx-stable open neighborhood
Ux so that γUx ∩Ux = ∅, for all γ ∈ Γ−Γx. (This means that Γ×Γx

Ux
maps homeomorphically onto a neighborhood of the orbit of x.)
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Actions on manifolds. Suppose a discrete group Γ acts properly on an n-
dimensional manifold Mn. A slice Ux at x ∈ Mn is linear if there is a linear
Γx-action on Rn so that Ux is Γx-equivariantly homeomorphic to a Γx-stable
neighborhood of the origin in Rn. The action is locally linear if every point has
a linear slice.

Proposition 1.7. If Γ y Mn properly and differentiably, then the action is
locally linear.

Proof. Since Γx is finite, we can find a Γx-invariant Riemannian metric on M .
The exponential map, exp : TxM → M , is Γx-equivariant and takes a small
open disk about the origin homeomorphically onto a neighborhood Ux of x. If
the disk is small enough, Ux is a slice.

1.2 Orbifolds

1.2.1 Definitions and terminology

Definition 1.8. An orbifold chart on a space X is a 4-tuple (Ũ , G, U, π), where

• U is open subset of X,

• Ũ is open in Rn and G is finite group of homeomorphisms of Ũ ,

• π : Ũ → U is a map which can be factored as π = π◦p, where p : Ũ → Ũ/G

is the orbit map and π : Ũ/G→ U is a homeomorphism.

The chart is linear if the G-action on Rn is linear.

For i = 1, 2, suppose (Ũi, Gi, Ui, πi) are orbifold charts on X. The charts

are compatible if given points ũi ∈ Ũi with π1(ũ1) = π2(ũ2), there is a homeo-

morphism h from neighborhood of ũ1 in Ũ1 onto neighborhood of ũ2 in Ũ2 so
that π1 = π2 ◦ h on this neighborhood.

Definition 1.9. An orbifold atlas on X is a collection {(Ũi, Gi, Ui, πi)}ı∈I of
compatible orbifold charts which cover X. An orbifold Q consists of an under-
lying space |Q| together with an atlas of charts.

An orbifold is smooth if the groups act via diffeomorphisms and the charts
are compatible via diffeomorphisms. A locally linear orbifold means all charts
are equivalent to linear ones. By the Differentiable Slice Theorem a smooth
orbifold is locally linear.

From now on, all orbifolds will be locally linear

Exercise 1.10. Suppose Γ acts properly on a manifold Mn. By choosing
slices we can cover M/Γ with compatible orbifold charts. Show this gives the
underlying space M/Γ the structure of orbifold, which we denote by M//Γ.
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Remark 1.11. (Groupoids). As Professors Adem and Xu said in their talks,
the best way to view an orbifold is as a groupoid. This point was first made by
Haefliger [9]. Given an atlas {(Ũi, Gi, Ui, πi)}i∈I for an orbifold Q one associates
a groupoid G to it as follows. The set of object G0 is the disjoint union:

G0 :=
∐
i∈I

Ũi.

The set of morphisms G1 is defined as follows. Given ũi ∈ Ũi and ũj ∈ Ũj , a

morphism ũi → ũj is the germ of a local homeomorphism Ũ → Ṽ from a neigh-
borhood of ũi to a neighborhood of ũj which commutes with the projections,
πi and πj . (Note: in the above we can take i = j and f to be the germ of
translation by a nontrivial element γ ∈ Gi.)

The local group. There is more information in an orbifold than just its
underlying space. For example, if q ∈ |Q| and x ∈ π−1(q) is a point in the inverse
image of q in some local chart, then the isotropy subgroup Gx is independent
of the chart, up to an isomorphism of groups. With this ambiguity, we call it
the local group at q and denote it by Gq.

A manifold is an orbifold in which each local group is trivial.

Strata. In transformation groups, if Gy X and H ⊂ G, then

X(H) := {x ∈ X | Gx is conjugate to H}

is the set of points of orbit type G/H. The image of X(H) in X/G is a stratum
of X/G.

This image can be described as follows. First, take the fixed set XH (:=
{x ∈ X | hx = x, ∀h ∈ H}). Next, remove the points x with Gx ) H to get
XH

(H). Then divide by the free action of N(H)/H to get X∗(H), the stratum of

type (H) in X/G. In an orbifold, Q, a stratum of type (H) is the subspace of
|Q| consisting of all points with local group isomorphic to H.

Proposition 1.12. If Q is a locally linear orbifold, then each stratum is a
manifold.

Proof. Suppose a finite group G y Rn linearly and H ⊂ G. Then (Rn)H is a
linear subspace; hence, (Rn)H(H) is a manifold. Dividing by the free action of

N(H)/H, we see that (Rn)∗(H) is a manifold.

The origin of the word “orbifold”: the true story. Near the beginning
of his graduate course in 1976, Bill Thurston wanted to introduce a word to re-
place Satake’s “V-manifold” from [12]. His first choice was “manifolded”. This
turned out not to work for talking - the word could not be distinguished from
“manifold”. His next idea was “foldimani”. People didn’t like this. So Bill
said we would have an election after people made various suggestions for a new
name for this concept. Chuck Giffen suggested “origam”, Dennis Sullivan “spa-
tial dollop” and Bill Browder “orbifold”. There were many other suggestions.
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The election had several rounds with the names having the lowest number of
votes being eliminated. Finally, there were only 4 names left, origam, orbifold,
foldimani and one other (maybe “V-manifold”). After the next round of voting
“orbifold” and the other name were to be eliminated. At this point, I spoke up
and said something like “Wait you can’t eliminate orbifold because the other two
names are ridiculous.” So “orbifold” was left on the list. After my impassioned
speech, it won easily in the next round of voting.

1.2.2 Covering spaces and πorb1

Thurston’s big improvement over Satake’s earlier version in [12] was to show
that the theory of covering spaces and fundamental groups worked for orbifolds.
(When I was a graduate student a few years before, this was “well-known” not
to work.)

The local model for a covering projection between n-dimensional manifolds
is the identity map, id : U → U , on an open subset U ⊂ Rn. Similarly, the local
model for an orbifold covering projection is the natural map Rn/H → Rn/G
where a finite group Gy Rn and H ⊂ G is a subgroup.

Proposition 1.13. If Γ acts properly on M and Γ′ ⊂ Γ is a subgroup, then
M//Γ′ →M//Γ is an orbifold covering projection.

Definition 1.14. An orbifold Q is developable if it is covered by a manifold.
As we will see, this is equivalent to the condition that Q be the quotient of a
discrete group acting properly on a manifold. (In Thurston’s terminology, Q is
a “good” orbifold.)

Remark 1.15. Not every orbifold is developable (later we will describe the
“tear drop,” the standard counterexample).

Definition 1.16. Q is simply connected if it is connected and does not admit a
nontrivial orbifold covering, i.e., if p : Q′ → Q is a covering with |Q′| connected,
then p is a homeomorphism.

Fact. Any connected orbifold Q admits a simply connected orbifold covering
π : Q̃ → Q. This has the following universal property: if we pick a “generic”
base point q ∈ Q and p : Q′ → Q is another covering with base points q′ ∈ Q′
and q̃ ∈ Q̃ lying over q, then π factors through Q′ via a covering projection
Q̃→ Q′ taking q̃ to q′. In particular, Q̃→ Q is a regular covering in the sense
that its group of deck transformations acts simply transitively on π−1(q). (A
simply transitive action is one which is both free and transitive.)

Definitions of the orbifold fundamental group.

Definition 1.17. (cf. [13]). πorb1 (Q) is the group of deck transformations of

the universal orbifold cover, p : Q̃→ Q

There are three other equivalent definitions of πorb1 (Q), which we list below.
Each involves some technical difficulties.
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Figure 1: The infinite dihedral group

• In Subsection 1.3, I will give a definition in terms of generators and rela-
tions.

• A third definition is in terms of “homotopy classes” of “loops” [0, 1]→ Q.
The difficulty with this approach is that we must first define what is meant
by a “map” from a topological space to Q - it should be a continuous map
to |Q| together with a choice of a “local lift” (up to equivalence) for each
orbifold chart for Q.

• A fourth definition is in terms of the groupoid. If GQ is the groupoid
associated toQ and BGQ is its classifying space, then πorb1 (Q) := π1(BGQ),
the ordinary fundamental group of the space BGQ. The only problem with
this definition is that one first needs to define the classifying space of a
groupoid.

Developability and the local group. For each x ∈ |Q|, let Gx denote
the local group at x. (It is a finite subgroup of GL(n,R), well-defined up to
conjugation.) We can identifyGx with the fundamental group of a neighborhood

of the form Ũx/Gx where Ũx is a ball in some linear representation. So, Gx is
the “local fundamental group” at x. The inclusion of the neighborhood induces
a homomorphism Gx → πorb1 (Q).

Proposition 1.18. (cf. [13]). Q is developable ⇐⇒ each local group injects
(i.e., for each x ∈ |Q|, the map Gx → πorb1 (Q) is injective).

1.2.3 1- and 2-dimensional orbifolds

Dimension 1. The only finite group which acts linearly (and effectively) on
R1 is the cyclic group of order 2, C2. It acts via the reflection x 7→ −x. The
orbit space R1/C2 is identified with [0,∞).

It follows that every 1-dimensional orbifold Q is either a 1-manifold or a
1-manifold with boundary. If Q is compact and connected, then it is either a
circle or an interval (say, [0, 1]).

The infinite dihedral group, D∞ is the group generated by 2 distinct affine
reflections on R1 and R1/D∞ ∼= [0, 1]. (See figure 1.) It follows that the
universal orbifold cover of [0, 1] is R1.

2-dimensional linear groups. Suppose a finite group Gy Rn linearly. Then
G is conjugate to a subgroup of O(n). (Proof: By averaging we get an invariant
inner product.) Hence, G acts on the unit sphere Sn−1 ⊂ Rn.

Suppose G ⊂ O(2). Then S1//G = S1 or S1//G = [0, 1].
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• In the first case, S1 → S1//G = S1 is an n-fold cover, where n = |G|, and
G is the cyclic group Cn acting by rotations.

• In the second case, the composition, R1 → S1 → S1//G = [0, 1], is the
universal orbifold cover with group of deck transformations D∞. It follows
that G = Dm (the dihedral group of order 2m) or G = C2 (= D1) acting
by reflection across a line.

This proves the following classification of the finite subgroups of O(2).

Theorem 1.19. (Theorem of Leonardo da Vinci, cf. [14, pp. 66, 99].) Any
finite subgroup of O(2) is conjugate to either Cn or Dm.

r
L

r
L´

π/m

Question. What does R2//G look like?

Here are the possibilities:

• R2 (G = {1}),

• a cone (G = Cn),

• a half-space (G = D1),

• a sector (G = Dm).

In the half-space case, a codimension 1 stratum is a mirror. In the sector
case, a codimension 2 stratum is a corner reflector.

2-dimensional orbifolds. Here is the picture: the underlying space of a 2-
dimensional orbifold Q is a 2-manifold, possibly with boundary . Certain points
in the interior of the |Q| are “cone points” labeled by an integer ni specifying
that the local group is Cni

. The codimension 1 strata are the mirrors; their
closures cover ∂|Q|. The closures of two mirrors intersect in a corner reflectors
(where local group is Dmi). The picture in Figure 2 is possible; however, it is
not developable.

1.2.4 General orbifolds

• If G ⊂ O(n) and Dn ⊂ Rn denotes the unit disk, then Gy Dn.

• Since Dn = Cone(Sn−1), we have Dn//G = Cone(Sn−1//G). So, a point
in a general orbifold has a conical neighborhood of this form.

Example 1.20. Suppose G = C2 acting via antipodal map, x 7→ −x. Then
Dn//C2 = Cone(RPn−1)
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Figure 2: Not developable

Suppose Q is an n-dimensional orbifold and Q(2) denotes the complement
of the strata of codimension > 2. The description of Q(2) is similar to a 2-
dimensional orbifold. |Q(2)| is an n-manifold with boundary ; the boundary is
a union of (closures of) mirrors; the codimension 2 strata in the interior are
codimension 2 submanifolds labeled by cyclic groups; the codimension 2 strata
on the boundary are corner reflectors labeled by dihedral groups.

During one of the problem sessions I was asked the following question.

Question. When is the underlying space of an orbifold a manifold?

This question is equivalent to the following.

Question. For which finite subgroups G ⊂ O(n) is Rn/G homeomorphic to
Rn.

One example when this holds is when G ⊂ U(n) is a finite subgroup gener-
ated by “complex reflections.” (A complex reflection is a linear automorphism
of Cn with only one eigenvalue 6= 1, i.e., it is a rotation about a complex hy-
perplane.) For any complex reflection group G, Cn/G ∼= Cn. (This follows
from the famous result that for such a G the ring of invariant polynomials
C[x1, . . . , xn]G is a polynomial ring on n variables.) Identifying Cn with R2n

we get R2n/G ∼= R2n. Another case when the answer is affirmative is when G
is the orientation-preserving subgroup of a finite group W generated by (real)
reflections on Rn. We will see in Corollary 3.4 that Rn//W is a simplicial cone
(which is homeomorphic to a half space). The orbifold Rn//G is the “double”
discussed in Example 1.21 below. Hence, in this case we also have Rn/G ∼= Rn

After making these comments, I made the following conjecture.1

Conjecture. Rn/G is homeomorphic to Rn if and only if either

(i) n = 2m and G is complex reflection group on Cm, or

(ii) G is the orientation-preserving subgroup of a real reflection group on Rn.

Examples of orbifold coverings.

1There is an obvious counterexample to this conjecture: let G ⊂ SU(2) be the binary
dodecahedral group of order 120. Then G acts freely on S3 and S3/G is Poincaré’s homology
3-sphere. If we take the product of this representation with the trivial 1-dimensional repre-
sentation, we obtain a representation on R5 such that S4/G is the suspension of S3/G. It
then follows from Cannon’s Double Suspension Theorem that R5/G is homeomorphic to R5.
The correct conjecture should be that this is the only counterexample.

9



Example 1.21. Suppose X → |Q| is an ordinary covering of topological spaces.
Pullback the strata of Q to strata in X to obtain an orbifold Q′. (Here is a
specific example: Q is RP 2 with one cone point labeled n. S2 → RP 2 is the
double cover. The single cone point pulls back to two cone points in S2 labeled
n.)

Double |Q| along its boundary to get a 2-fold orbifold covering Q′ → Q
without codimension 1 strata. For example, if Q is a triangle, then Q′ is a 2-
sphere with three cone points. As another example, if Q is the nondevelopable
orbifold pictured on the previous page (a 2-disk with one corner reflector), then
Q′ is the tear drop (a 2-sphere with one cone point).

Example 1.22. The n-fold branched cover of Q along a codimension 2 stratum
labeled by the cyclic group of order n.

1.3 Generators and relations for πorb1 (Q)

Remark 1.23. πorb1 (Q) = πorb1 (Q(2)). (Proof : general position.)

Let Q̂ denote the complement in |Q| of the strata of codimension ≥ 2 (retain
the mirrors on ∂|Q|). Choose a base point x0 in interior Q̂. We are going to
construct πorb1 (Q, x0) from π1(Q̂, x0) by adding generators and relations.

New generators.

• For each component T of a codimension 2 stratum in interior of |Q|, choose
a loop αT starting at x0 which makes a small loop around T . Let n(T )
be the order of the cyclic group labeling T .

• For each mirror M and each homotopy class of paths γM from x0 to M
introduce a new generator β(M,γM ).

Suppose P is a codimension 2 stratum contained in the intersection of the
closures of two mirrors, M and N (so that P is a corner reflector). Let m(P )
be the label on P (so that the dihedral group at P has order 2m(P )).

Relations.

• [αT ]n(T ) = 1,

• [β(M,γM )]
2 = 1, and

• ([β(M,γM )][β(N,γN )])
m(P ) = 1,

Here P is a corner reflector in M ∩N and γM and γN are homotopic as paths
from x0 to P . (We allow the possibility that M = N but with 2 different paths
to x0.)

10



2 Lecture 2: two-dimensional orbifolds

2.1 Orbifold Euler characteristics

We know what is meant by the “Euler characteristic” of a closed manifold or
finite CW complex (the alternating sum of the number of cells). A key property
is that it is multiplicative under finite covers: if M ′ → M is an m-fold cover,
then

χ(M ′) = mχ(M).

The Euler characteristic of an orbifold should be a rational number with same
multiplicative property, i.e., if M → Q is an m-fold cover and M is a manifold,
then we should have χ(M) = mχorb(Q), i.e.,

χorb(Q) =
1

m
χ(M).

(“m-fold cover” means Card(p−1(generic point)) = m.)

The Euler characteristic of an orbifold.2 Suppose Q is an orbifold which
is cellulated as a CW complex so that the local group is constant on each open
cell c. Let G(c) be the local group on c and |G(c)| denote its order. Define

χorb(Q) :=
∑

cells c

(−1)dim c

|G(c)|
.

Exercise 2.1. Suppose Γ y M properly, cocompactly, locally linearly and
Γ′ ⊂ Γ is a subgroup of index m. Show

χorb(M//Γ′) = mχorb(M//Γ).

Alternate formula. Each stratum S of a compact orbifold Q is the interior of
a compact manifold with boundary Ŝ. Define e(S) := χ(Ŝ)− χ(∂Ŝ). Then

χorb(Q) =
∑

strata S

e(S)

|G(S)|

Example 2.2. Suppose |Q| = D2 and Q has k mirrors and k corner reflectors
labeled m1, . . . ,mk. Then

χorb(Q) = 1− k

2
+

(
1

2m1
+ · · ·+ 1

2mk

)
= 1− 1

2

∑
i

(
1− 1

mi

)
.

2In his lectures, Alejandro Adem gave a completely different definition of the “orbifold
Euler number, χorb(Q)”. For him, it is a certain integer which is defined using equivariant
K-theory. Although this definition has been pushed by string theorists, the rational number
which I am using this terminology for goes back to Thurston’s 1976 course and before that to
Satake.
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Example 2.3. Suppose |Q| = S2 and Q has l cone points labeled n1, . . . , nl.
Then

χorb(Q) = 2− l +

(
1

n1
+ · · ·+ 1

nl

)
= 2−

∑
i

(
1− 1

ni

)
(This is twice the number in the previous example, as it should be.)

Example 2.4. (The general formula). Suppose |Q| is a surface with boundary
and that Q has k corner reflectors labeled m1, . . . ,mk and l cone points labeled
n1, . . . , nl. Then

χorb(Q) = χ(|Q|)− 1

2

k∑
i=1

(
1− 1

mi

)
−

l∑
i=1

(
1− 1

ni

)
.

Remark 2.5. This formula shows that χorb(Q) ≤ χ(|Q|) with equality iff there
are no cone points or corner reflectors.

Notation 2.6. If a 2-dimensional orbifold has k corner reflectors which are
labeled m1, . . . ,mk and l cone points labeled n1, . . . , nl, we will denote it by

(n1, . . . , nl;m1, . . . ,mk).

If ∂|Q| = ∅, then there can be no mirrors or corner reflectors and we simply
write (n1, . . . , nl).

2.2 Classification of 2-dimensional orbifolds

Recall that closed surfaces are classified by orientability and Euler characteristic:

• χ(M2) > 0 =⇒ M2 = S2 or RP 2 (positive curvature).

• χ(M2) = 0 =⇒ M2 = T 2 or the Klein bottle (flat).

• χ(M2) < 0 =⇒ arbitrary genus > 1 (negative curvature).

The idea is to classify orbifolds Q2 by their Euler characteristics. Since
χorb( ) is multiplicative under finite covers, this will tell us which manifolds
can finitely cover a given orbifold. For example, if Q = S2//G, with G finite,
then χorb(S2//G) > 0. Conversely, if Q is developable and χorb(Q) > 0, then its
universal cover is S2.

Exercise 2.7. List the 2-dimensional orbifolds Q with χorb(Q) ≥ 0. (In fact, I
will do this exercise below.)

Sample calculation. Suppose |Q| = D2 with ( ;m1, . . . ,mk). Recall

χorb(Q) = 1− 1

2

k∑
i=1

(1− (mi)
−1).

12



Since 1− (mi)
−1 ≥ 1/2, we see that if k ≥ 4, then χorb(Q) ≤ 0 with equality iff

k = 4 and all mi = 2. Hence, if χorb(Q) > 0, then k ≤ 3.

More calculations. Suppose |Q| = D2 and k = 3 (so that Q is a triangle).
Then

χorb(Q) =
1

2
(−1 + (m1)−1 + (m2)−1 + (m3)−1)

So, as (π/m1 + π/m2 + π/m3) is >, = or < π, χorb(Q) is, respectively, >, =
or < 0. For χorb > 0, we see the only possibilities are: ( ; 2, 2,m), ( ; 2, 3, 3),
( ; 2, 3, 4), ( ; 2, 3, 5). The last three correspond to the symmetry groups of the
Platonic solids. For χorb(Q) = 0, the only possibilities are: ( ; 2, 3, 6), ( ; 2, 4, 4)
( ; 3, 3, 3).

Making use of Remark 2.5, we do Exercise 2.7 below.

χorb(Q) > 0:

• Nondevelopable orbifolds:

- |Q| = D2: ( ;m), ( ;m1,m2) with m1 6= m2.

- |Q| = S2: (n), (n1, n2) with n1 6= n2.

• Spherical orbifolds:

- |Q| = D2: ( ; ), ( ;m,m), ( ; 2, 2,m), ( ; 2, 3, 3), ( ; 2, 3, 4), ( ; 2, 3, 5),
(2;m), (3; 2).

- |Q| = S2: ( ), (n, n), (2, 2, n), (2, 3, 3), (2, 3, 4), (2, 3, 5).

- |Q| = RP 2: ( ), (n)

Implications for 3-dimensional orbifolds.

• The list of 2-dimensional spherical orbifolds is the list of finite subgroups
of O(3).

• Every 3-dimensional orbifold is locally isomorphic to the cone on one of
the spherical 2-orbifolds.

• For example, if |Q| = S2 with three cone points, (n1, n2, n3), then Cone(Q)
has underlying space an open 3-disk. The three cone points yield three
codimension 2 strata labeled m1, m2, m3 and the origin is labeled by the
corresponding fintie subgroup of O(3).

Flat orbifolds, χorb(Q) = 0: the 17 wallpaper groups.

- |Q| = D2: ( ; 2, 3, 6), ( ; 2, 4, 4), ( ; 3, 3, 3), ( ; 2, 2, 2, 2), (2; 2, 2), (3; 3),
(4; 2), (2, 2; ).

- |Q| = S2: (2, 3, 6), (2, 4, 4), (3, 3, 3), (2, 2, 2, 2), (), (), .

- |Q| = RP 2: (2, 2),

13



xn+1

Figure 3: The quadratic form model of the hyperbolic plane

- |Q| = T 2: ( ).

- |Q| = Klein bottle: ( ).

- |Q| = annulus: ( ; ).

- |Q| = Möbius band: ( ; ).

Remark. In [14, pp. 103–115], Weyl emphasized the fact that there are exactly
17 discrete, cocompact subgroups of Isom(E2) up to conjugation in the group
of affine automorphisms. These 17 “wallpaper groups” are exactly the orbifold
fundamental groups of the orbifolds listed above.

χorb(Q) < 0: It turns out that all remaining 2-dimensional orbifolds are de-
velopable and can be given a hyperbolic structure.

The triangular orbifolds, i.e., |Q| = D2; ( ;m1,m2,m3), with (m1)−1 +
(m2)−1 + (m3)−1 < 1, have a unique hyperbolic structure (because hyperbolic
triangles are determined, up to congruence, by their angles). The others have a
positive dimensional moduli space.

2.3 Spaces of constant curvature

In each dimension n, there are three simply connected spaces of constant cur-
vature: Sn (the sphere), En (Euclidean space) and Hn (hyperbolic space).

Definition 2.8. (Minkowski space). Let Rn,1 denote Rn+1 equipped with the
indefinite symmetric bilinear form:

〈x, y〉 := x1y1 + · · ·+ xnyn − xn+1yn+1.

Definition 2.9. The hypersurface defined by 〈x, x〉 = −1 is a hyperboloid of
two sheets. The component with xn+1 > 0 is Hn.

Definition 2.10. (The Riemannian metric on Hn). As in the case of a sphere,
given x ∈ Hn, TxHn = x⊥. Since 〈x, x〉 < 0, the restriction of 〈 , 〉 to TxHn is
positive definite. So, this defines a Riemannian metric on Hn. It turns out that
this metric has constant secional curvature −1.

14



Geometric structures on orbifolds. Suppose G is a group of isometries act-
ing real analytically on a manifold X. (The only examples we will be concerned
with are Xn = Sn, En or Hn and G the full isometry group.) By a (G,X)-

structure we mean that each of the charts (Ũ ,H, U, π) has Ũ ⊂ X, that H is a
finite subgroup of G and the overlap maps (= compatibility maps) are required
to be restrictions of isometries in G.

Convex polytopes in Xn. A hyperplane or half-space in Sn or Hn is the
intersection of a linear hyperplane or half-space with the hypersurface. The
unit normal vector u to a hyperplane is a vector of length 1 such that the
hyperplane is the orthogonal complement, u⊥ (orthogonal with respect to the
standard bilinear form, in the case of Sn, or the form 〈 , 〉, in the case of
Hn). A half-space in Hn bounded by the hyperplane u⊥ is a set of the form
{x ∈ Hn | 〈u, x〉 ≥ 0} and similarly, for Sn. A convex polytope in Sn or Hn is a
compact intersection of a finite number of half-spaces.

Reflections in Sn and Hn. Suppose u is unit vector in Rn+1. Reflection
across the hyperplane u⊥ (either in Rn+1 or Sn) is given by

x 7→ x− 2(x · u)u.

Similarly, suppose u ∈ Rn,1 satisfies 〈u, u〉 = 1. Reflection across the hyperplane
u⊥ in Hn is given by x 7→ x− 2〈x, u〉u.

3 Lecture 3: reflection groups

3.1 Geometric reflection groups

Suppose K is a convex polytope in Xn (= Sn, En or Hn) such that whenever
two codimension 1 faces have nonempty intersection, the dihedral angle between
them has form π/m for some integer m ≥ 2. (This condition is familiar: it
means that each codimension 2 face has the structure of a codimension 2 corner
reflector.) Let W be the subgroup of Isom(Xn) generated by reflections across
the codimension 1 faces of K.

Some basic facts:

• W is discrete and acts properly on Xn.

• K is a strict fundamental domain in the sense that the restriction to K
of the orbit map, p : Xn → Xn/W , is a homeomorphism. It follows that
Xn//W ∼= K and hence, K can be given the structure of an orbifold with
an Xn-structure.

(Neither fact is obvious.)

Example 3.1. A dihedral group is any group which is generated by two invo-
lutions, call them s, t. It is determined up to isomorphism by the order m of
st (m is an integer ≥ 2 or the symbol ∞). Let Dm denote the dihedral group
corresponding to m.

15
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π/m

Figure 4: The dihedral group of order 6

Example 3.2. For m 6= ∞, Dm can be represented as the subgroup of O(2)
which is generated by reflections across lines L, L′, making an angle of π/m.
(See Figure 4.)

History and properties.3

• In 1852 Möbius determined the finite subgroups of O(3) generated by
isometric reflections on the 2-sphere.

• The fundamental domain for such a group on the 2-sphere was a spherical
triangle with angles π

p , π
q , π

r , with p, q, r integers ≥ 2.

• Since the sum of the angles is > π, we have 1
p + 1

q + 1
r > 1.

• For p ≥ q ≥ r, the only possibilities are: (p, 2, 2), for p ≥ 2, and (p, 3, 2)
with p = 3, 4 or 5. (The last three cases are the symmetry groups of the
Platonic solids.)

• Later work by Riemann and Schwarz showed that there are discrete groups
of isometries of E2 or H2 generated by reflections across the edges of
triangles with angles integral submultiples of π. Poincaré and Klein proved
similar results in H2 for polygons with more than three sides.

In 2nd half of the 19th century work began on finite reflection groups on Sn,
n > 2, generalizing Möbius’ results for n = 2. It developed along two lines.

• Around 1850, Schläfli classified regular polytopes in Rn+1, n > 2. The
symmetry group of such a polytope is a finite group generated by reflec-
tions and as in Möbius’ case, the projection of a fundamental domain to
Sn is a spherical simplex with dihedral angles integral submultiples of π.

• Around 1890, Killing and E. Cartan classified complex semisimple Lie al-
gebras in terms of their root systems. In 1925, Weyl showed the symmetry
group of such a root system is a finite reflection group.

• These two lines were united by Coxeter [4] in the 1930’s. He classified
discrete reflection groups on Sn or En.

3In this paragraph I have relied on the Historical Note of [2, pp. 249-257].
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Figure 5: Tessellation of hyperbolic plane by right-angled pentagons

Let K be a fundamental polytope for a geometric reflection group. For Sn,
K is a simplex. For En, K is a product of simplices. For Hn there are other
possibilities, e.g., a right-angled pentagon in H2 (see Figure 5) or a right-angled
dodecahedron in H3.

• Conversely, given a convex polytope K in Sn, En or Hn so that all dihedral
angles have form π/integer, there is a discrete group W generated by
isometric reflections across the codimension 1 faces of K.

• Let S be the set of reflections across the codimension 1 faces of K. For
s, t ∈ S, let m(s, t) be the order of st. Then S generates W , the faces
corresponding to s and t intersect in a codimension 2 face iff m(s, t) 6=∞,
and for s 6= t, the dihedral angle along that face is π/m(s, t). Moreover,

• If m(s, t) = 1 for s = t and is as defined above for s 6= t, then

〈S | (st)m(s,t), where (s, t) ∈ S × S〉

is a presentation for W .

Polytopes with nonobtuse dihedral angles.

Lemma 3.3. (Coxeter, [4]). Suppose K ⊂ Sn is an n-dimenional convex poly-
tope which is “proper” (meaning that it does not contain any pair of antipodal
points). Further suppose that whenever two codimension 1 faces intersect along
a codimension 2 face, the dihedral angle is ≤ π/2. Then K is a simplex.

A similar result holds for a polytope K ⊂ En which is not a product.

Corollary 3.4. The fundamental polytope for a spherical reflection group is a
simplex.

Proof. For m an integer ≥ 2, we have π/m ≤ π/2.

17



3.2 Simplicial Coxeter groups

3.2.1 The Gram matrix of a simplex in Xn

Suppose σn is a simplex in Xn. Let u0, . . . un be its inward pointing unit normal
vectors. (The ui lie in Rn+1, Rn or Rn,1 as Xn = Sn, En or Hn.) The Gram
matrix G of σ is the symmetric (n+ 1)× (n+ 1) matrix (gij) defined by gij =
ui · uj . G > 0 means the symmetric matrix G is positive definite.

Definition 3.5. A symmetric matrix G with 1’s on the diagonal is type

(1) if G > 0,

(0) if G is positive semidefinite with 1-dimensional kernel, each principal sub-
matrix is > 0, and there is a vector v ∈ KerG with all its coordinates
> 0,

(-1) if G has signature (n, 1) and each principal submatrix is > 0.

A fact from linear algebra. The extra condition in type (0) (that KerG
is spanned by a vector with positive coordinates) is automatic when G is in-
decomposable and has gij ≤ 0, for all i 6= j, i.e., when all dihedral angles are
nonobtuse. (See [6, Lemma 6.3.7].)

Let Xnε is Sn, En, Hn as ε = +1, 0, −1.

Theorem 3.6. Suppose G is a symmetric (n+ 1)× (n+ 1) matrix with 1’s on
the diagonal. Let ε ∈ {+1, 0,−1}. Then G is the Gram matrix of a simplex
σn ⊂ Xnε ⇐⇒ G is type ε.

Proof. For Sn: we can find basis vectors u0, . . . un in Rn+1, well-defined up to
isometry, so that (ui · uj) = G. (This is because G > 0.) Since the ui form a
basis, the half-spaces, ui·x ≥ 0, intersect in a simplicial cone and the intersection
of this with Sn is σn.

The proof for Hn is similar. The argument for En has additional complica-
tions.

Suppose σn ⊂ Xn is a fundamental simplex for a geometric reflecton group.
Let {u0, . . . un} be the set of inward-pointing unit normal vectors. Then

ui · uj = − cos(π/mij)

where (mij) is a symmetric matrix of posiive integers with 1’s on the diagonal
and all off-diagonal entries ≥ 2. (The matrix (mij) is called the Coxeter matrix
while the matrix (cos(π/mij)) is the associated cosine matrix.) The formula
above says:

Gram matrix = cosine matrix.

Suppose M = (mij) is a Coxeter matrix, i.e., a symmetric (n + 1) × (n + 1)
matrix with 1’s on the diagonal and with off-diagonals ≥ 2 (sometimes we allow
the off-diagonal mij to =∞, but not here).
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Theorem 3.7. Let M be a Coxeter matrix as above and C its associated cosine
matrix (i.e., cij = − cos(π/mij)). Then there is a geometric refllection group
with fundamental simplex σn ⊂ Xnε ⇐⇒ C is type ε.

So, the problem of determining the geometric reflection groups with fun-
damental polytope a simplex in Xnε becomes the problem of determining the
Coxeter matrices M whose cosine matrix is type ε. This was done by Coxeter,
[4], for ε = 1 or 0 and by Lannér, [10], for ε = −1. The information in a Coxeter
matrix is best encoded by its “Coxeter diagram.”

3.2.2 Coxeter diagrams

Figure 7 shows Lannér’s classification from [10] of the hyperbolic reflection
groups with fundamental polytope a simplex in Hn.

Exercise 3.8. Derive Lannér’s list in Figure 7 from Coxeter’s lists in Figure 6.

Associated to (W,S), there is a labeled graph Γ called its “Coxeter diagram.”
Put Vert(Γ) := S. Connect distinct elements s, t by an edge iff m(s, t) 6= 2.
Label the edge by m(s, t) if this is > 3 or = ∞ and leave it unlabeled if it is
= 3. (W,S) is irreducible if Γ is connected. (The components of Γ give the
irreducible factors of W .)

Figure 6 shows Coxeter’s classification from [4] of the irreducible spherical
and cocompact Euclidean reflection groups.

3.3 More reflection groups

Recall Xn stands for Sn, En or Hn. Let K ⊂ Xn be a convex polytope with
dihedral angles between codimension 1 faces of the form π/m, where m is an
integer ≥ 2 or the symbol ∞ (where π/∞ means the faces do not intersect).
Let W be the group generated by reflections across the codimension 1 faces of
K.
Goal: Show W is discrete, acts properly on Xn and that K is an orbifold with
geometric structure of an Xn-orbifold.

3.3.1 Generalities on abstract reflection groups

Suppose W is a group and S a set of involutions which generates it. For s,
t ∈ S, let m(s, t) denote the order of st. (W,S) is a Coxeter system (and W is
a Coxeter group) if the group defined by the presentation,

{generators} = S

{relations} = {(st)m(s,t)}, where (s, t) ∈ S × S, m(s, t) 6=∞,

is isomorphic to W (via the natural map).
For each T ⊂ S, let WT denote the subgroup generated by T .
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Figure 6: Coxeter diagrams
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Hyperbolic Simplicial Diagrams
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Figure 7: Hyperboloic simplicial diagrams

Definition 3.9. A mirror structure on a space X, indexed by a set S, is a family
of closed subspaces {Xs}s∈S . The Xs are called mirrors. For each x ∈ X, put
S(x) := {s ∈ S | x ∈ Xs}.

Example 3.10. Suppose K is a convex polytope with its codimension 1 faces
indexed by S. For each s ∈ S, let Ks denote the face corresponding to s. This
defines a mirror structure on K. S(x) is the set of faces which contain x. (In
particular, if x is in the interior of K, then S(x) = ∅.)

The basic construction. Starting with a Coxeter system (W,S) and a mirror
structure {Xs}s∈S we are going to define a new space U(W,X) with W -action.
The idea is to paste together copies of X, one for each element of W . Each copy
of X will be a fundamental domain and will be called a “chamber.”

Define an equivalence relation ∼ on W ×X by

(w, x) ∼ (w′, x′) ⇐⇒ x = x′ and wWS(x) = w′WS(x).

Here W has the discrete topology. (Recall that S(x) indexes the set of mirrors
which contain x.) Put

U(W,X) = (W ×X)/ ∼ .

To simplify notation, write U for U(W,X). Denote the image of (w, x) in U by
[w, x].
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Some properties of the construction.

• W y U via u[w, x] = [uw, x]. The isotropy subgroup at [w, x] is wWS(x)w
−1.

• We can identify X with the image of 1×X in U . X is a strict fundamental
domain for the W -action in the sense that the restriction of the orbit map
U → U/W to X is a homeomorphism (i.e., U/W = X).

• W y U properly ⇐⇒ X is Hausdorff and each WS(x) is finite (i.e.,⋂
s∈T Xs = ∅, whenever |WT | =∞).

Universal property. Suppose W y Z and f : X → Z is a map so that for all
s ∈ S, f(Xs) ⊂ Zs. (Zs denotes the fixed set of s on Z.) Then there is a unique
extension to a W -equivariant map f̃ : U(W,X) → Z. (In fact, f̃ is defined by
f̃([w, x]) = wf(x).)

Exercise 3.11. Prove the above properties hold.

3.3.2 Geometric reflection groups, again

The set up:

• K is a convex polytope in Xn (= Sn, En or Hn). S is the set of reflec-
tions across the codimension 1 faces of K. The face corresponding to s is
denoted by Ks.

• If Ks ∩Kt 6= ∅, then it is a codimension 2 stratum and the dihedral angle
is π/m(s, t), where m(s, t) is some integer ≥ 2. (We know this implies K
is a simple polytope.) If Ks ∩Kt = ∅, then put m(s, t) =∞.

• Let W ⊂ Isom(Xn) be the subgroup generated by S.

• Let W be the group defined by the presentation corresponding to the
(S × S) Coxeter matrix (m(s, t)). It turns out that (W,S) is a Coxeter
system. (There is something to prove here, namely, that the order of st
is = m(s, t) rather than just dividing m(s, t).) Let p : W → W be the
natural surjection.

By the universal property, the inclusion ι : K ↪→ Xn induces a W -equivariant
map ι̃ : U(W,X)→ Xn.

Theorem 3.12. ι̃ : U(W,K)→ Xn is a W -equivariant homeomorphism.

Some consequences:

• p : W →W is an isomorphism

• W is discrete and acts properly on Xn

• K is a strict fundamental domain for the action on Xn (i.e., Xn/W = K).
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• U(W,K) is a manifold (because Xn is a manifold).

• K is an Xn-orbifold (because it is identified with Xn/W ).

• If W y Rn as a finite linear group, then Rn//W is isomorphic to the
fundamental simplicial cone.

Sketch of proof of the theorem. The proof is by induction on the dimension n.
A neighborhood of a point in K looks like the cone over the suspension of a
spherical simplex σ. By induction, U(WT , σ) = Sn−1 (where WT is the finite
Coxeter group corresponding to σ). Since a neighorhood in K is an open Xn-
cone over σ, it follows that ι̃ : U(W,K)→ Xn is a local homeomorphism and a
covering projection and that U(W,K) has the structure of an Xn-manifold. Since
Xn is simply connected, the covering projection ι̃ must be a homeomorphism.
(The case Xn = S1 is handled separately.)

4 Lecture 4: 3-dimensional hyperbolic reflection
groups

4.1 Andreev’s Theorem

A geometric reflection group on Sn, En or Hn is determined by its fundamental
polytope. In the spherical case the fundamental polytope must be a simplex
and in the Euclidean case it must be a product of simplices. Furthermore, all
the possibilities for these simplices are listed in Figure 6. So, there is nothing
more to said in the spherical and Euclidean cases.

In the hyperbolic case we know what happens in dimension 2: the funda-
mental polygon can be an k-gon for any k ≥ 3 and almost any assignment of
angles can be realized by a hyperbolic polygon (there are a few exceptions when
k = 3 or 4). What happens in dimension 3?

There is a beautiful theorem due to Andreev, which gives a complete answer.
Roughly, it says given a simple polytopeK, for it to be the fundamental polytope
of a hyperbolic reflection group,

• there is no restriction on its combinatorial type

• subject to the condition that the group at each vertex be finite, almost any
assignment of dihedral angles to the edges of K can be realized (provided
a few simple inequalities hold).

In contrast to dimension 2, the 3-dimensional hyperbolic polytope is uniquely
determined, up to isometry, by its dihedral angles – the moduli space is a point.

Remark. By a theorem of Vinberg, hyperbolic examples do not exist in dimen-
sions ≥ 30.

Theorem 4.1 (Thurston’s Conjecture, Perelman’s Theorem). A closed, devel-
opable 3-orbifold Q3 with infinite πorb1 admits a hyperbolic structure iff it satisfies
the following two conditions:
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(i) Every embedded 2-dimensional spherical suborbifold bounds a quotient of
a 3-ball in Q3. (This condition implies Q3 is aspherical.)

(ii) Z× Z 6⊂ πorb1 (Q3).

A 2-dimensional suborbifold of Q3 is incompressible if the inclusion into Q3

induces an injection on πorb1 ( ). The orbifold Q3 is Haken if it does not contain
any nondevelopable 2-dimensional suborbifolds, if every spherical 2-dimensional
suborbifold bounds the quotient of a 3-ball by a finite linear group and if it
contains an incompressible 2-dimensional Euclidean or hyperbolic orbififold.

Proposition 4.2. ([13, Prop. 13.5]). An orbifold with underlying space a 3-
disk and with no singular points in its interior (called a “reflectofold” in Sub-
section 5.1) is Haken iff it is neither a tetrahedron nor the suspension of a
2-dimensional spherical orbifold.

In the late 1970’s Thurston proved his conjecture for Haken manifolds or
orbifolds. This can be stated as follows.

Theorem 4.3. (Thurston ∼ 1977). A 3-dimensional Haken orbifold Q3 ad-
mits a hyperbolic structure iff it has no incompressible 2-dimensional Euclidean
suborbifolds (i.e., Q3 is “atoroidal”).

Combining this with Proposition 4.2 we get Corollary 4.5 below as a special
case. This had been proved several years earlier by Andreev as a corollary to
the following theorem about convex polytopes in H3.

Theorem 4.4. (Andreev ∼ 1967, see [1, 11]). Suppose K is (the combinatorial
type of) a simple 3-dimensional polytope, different from a tetrahedron. Let E be
its edge set and θ : E → (0, π/2] any function. Then (K, θ) can be realized as a
convex polytope in H3 with dihedral angles as prescribed by θ if and only if the
following conditions hold:

(i) At each vertex, the angles at the three edges e1, e2, e3 which meet there
satisfy θ(e1) + θ(e2) + θ(e3) > π.

(ii) If three faces intersect pairwise but do not have a common vertex, then the
angles at the three edges satisfy θ(e1) + θ(e2) + θ(e3) < π.

(iii) Four faces cannot intersect cyclically with all four angles = π/2 unless two
of the opposite faces also intersect.

(iv) If K is a triangular prism the angles along base and top cannot all be π/2.

Moreover, when (K, θ) is realizable, it is unique up to an isometry of H3.

Corollary 4.5. Suppose K is (the combinatorial type of) a simple 3-polytope,
different from a tetrahedron, that {Fs}s∈S is its set of codimension 1 faces and
that est is the edge Fs ∩ Ft (when Fs ∩ Ft 6= ∅). Given an angle assignment
θ : E → (0, π/2], with θ(est) = π/m(s, t) and m(s, t) an integer ≥ 2, then (K, θ)
is a hyperbolic orbifold iff the θ(est) satisfy Andreev’s Conditions. Moreover,
the geometric reflection group W is unique up to conjugation in Isom(H3).
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Remark. The condition that K is not a tetrahedron and Andreev’s Condition
(iv) deal with the case when the orbifold K is not Haken.

Examples 4.6. Here are some hyperbolic orbifolds:

• K is a dodecahedron with all dihedral angles equal to π/2.

• K is a cube with disjoint edges in different directions labeled by integers
> 2 and all other edges labeled 2.

Exercise 4.7. Make up your own examples.

The dual form of Andreev’s Theorem. Let L be the triangulation of S2

dual to ∂K.

Vert(L)←→ Face(K)

Edge(L)←→ Edge(K)

{2-simplices in L} ←→ Vert(K)

Input data. Suppose we are given θ : Edge(L) → (0, π/2]. The condition
that K has a spherical link at each vertex is that if e1, e2, e3 are the edges of a
triangle, then θ(e1) + θ(e2) + θ(e3) > π.

Theorem 4.8. (Dual form of Andreev’s Theorem). Suppose L is a triangulation
of S2 and L 6= ∂∆3. Let θ : Edge(L)→ (0, π/2] be any function. Then the dual
polytope K can be realized as convex polytope in H3 with prescribed dihedral
angles iff the following conditions hold:

(i) If e1, e2, e3 are the edges of any triangle, then θ(e1) + θ(e2) + θ(e3) > π.

(ii) If e1, e2, e3 are the edges of a 3-circuit which is not the boundary of a
2-simplex, then θ(e1) + θ(e2) + θ(e3) < π.

(iii) If e1, e2, e3, e4 are the edges of a 4-circuit which is 6= to the boundary of
the union of two adjacent 2-simplices, then all four θ(ei) cannot = π/2.

(iv) If L is suspension of ∂∆2, then all “vertical” edges cannot have θ(ei) =
π/2.

A dimension count. Given a convex 3-dimensional polytope K, Andreev’s
Theorem asserts that a certain map Θ from the space C(K) of isometry classes
convex polyhedra of the same combinatorial type as K to a certain subset
A(K) ⊂ RE is a homeomorphism (where E := Edge(K) and where A(K)
is the convex subset defined by Andreev’s inequalities).

Let’s compute dimC(K). For each F ∈ Face(K), let uF ∈ S2,1 be the
inward-pointing unit normal vector to F . (S2,1 := {x ∈ R3,1 | 〈x, x〉 = 1}.)
The (uF )F∈Face(K) determine K (since K is the intersection of the half-spaces
determined by the uF ). The assumption that K is simple means that the
hyperbolic hyperplanes normal to the uF intersect in general position. So, a
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slight perturbation of the uF will not change the combinatorial type of K.
That is to say, the subset of Face(K)-tuples (uF ) which defines a polytope
combinatorially isomorphic to K is an open subset Y of (S2,1)Face(K).

• Let f = Card(Face(K)), e = Card(Edge(K)), v = Card(Vert(K)).

• Isom(H3) = O(3, 1), dim(O(3, 1) = 6, and dim S2,1 = 3.

• So, dimC(K) = 3f − 6.

Since f − e+ v = 2, we have 3f − 6 = 3e− 3v. Since three edges meet at each
vertex, we have 3v = 2e. Hence, 3f −6 = 3e−3v = e. So, Θ : C(K)→ A(K) ⊂
RE is a map between manifolds with boundary of the same dimension.

4.2 3-dimensional orbifolds

Recall the list of 2-dimensional spherical orbifolds from Subsection 2.2:

• |Q2| = D2: ( ; ), ( ;m,m), ( ; 2, 2,m), ( ; 2, 3, 3), ( ; 2, 3, 4), ( ; 2, 3, 5),
(2;m), (3; 2).

• |Q2| = S2: ( ), (n, n), (2, 2, n), (2, 3, 3), (2, 3, 4), (2, 3, 5).

• |Q2| = RP 2: ( ), (n)

The local models for 3-dimensional orbifolds are cones on any one of the above.
For example, if |Q2| = S2 with (n, n), then the 3-dimensional model is D3

with an interval of cone points labeled n. Quotients of n-fold branched covers
of knots or links in S3 (or any other 3-manifold) have this local model.

Example 4.9. (A flat orbifold). Consider the 3 families of lines in E3 of the
form (t, n,m+ 1

2 ), (m+ 1
2 , t, n) and (n,m+ 1

2 , t), where t ∈ R and n,m ∈ Z. Let
Γ be the subgroup of Isom(E3) generated by rotation by π about each of these
lines. A fundamental domain is the unit cube. The orbifold E3//Γ is obtained
by “folding up” the cube to get the 3-sphere. The image of the lines (= the
singular set) are 3 circles in S3 each labeled by 2 (meaning C2, the cyclic group
of order 2). These 3 circles form the Borromean rings. (See [13] for pictures of
the folding up process.)

Example 4.10. Suppose Q is an orbifold with underlying space S3, with singu-
lar set the Borromean rings and with the components of the singular set labeled
by cyclic groups of order p, q and r. I showed in my lecture how to use Andreev’s
Theorem to show that this orbifold admits a hyperbolic structure iff all three
integers are > 2. The proof uses the second example in Examples 4.6.
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Figure 8: A nondevelopable reflectofold

5 Lecture 5: aspherical orbifolds

5.1 Reflectofolds

Definition 5.1. An n-dimensional orbifold Q is a reflectofold 4 if it is locally
modeled on finite linear reflection groups acting on Rn.

If W acts on Rn as a finite reflection group, then Rn/W is a simplicial
cone, i.e., up to linear isomorphism it looks like [0,∞)n. It follows that the
underlying space of a reflectofold Q is a manifold with corners. Conversely, to
give a manifold with corners the structure of a reflectofold, essentially all we
need to do is label its codimension 2 strata by integers ≥ 2 in such a way that
the strata of higher codimension correspond to finite Coxeter groups (which are
listed in Figure 6).

It follows from the description of πorb1 (Q) in Subsection 1.3 that πorb1 (Q) is
generated by reflections if and only if π1(|Q|) = 1. (Here “reflection” means an
involution with codimension 1 fixed set.) Henceforth, let’s assume this (that |Q|
is simply connected).

If Q is developable, then any codimension 2 stratum is contained in the
closures of two distinct codimension 1 strata. Otherwise, we would have a non-
developable suborbifold pictured in Figure 8. Similarly, developability implies
that if intersection of two codimension 1 strata contains two distinct codimen-
sion 1 strata, then they must be labeled by the same integer.

5.2 Asphericity

Definition 5.2. An orbifold is aspherical if its universal cover is a contractible
manifold.

One might ask why, in the above definition, do we require the universal
cover to be a contractible manifold rather than just a contractible orbifold. (A
contractible orbifold is a simply connected orbifold all of whose higher homotopy
groups also vanish. This definiton does not automatically imply that the orbifold
is developable.) In fact, in the next questin we ask if it makes any difference
which condition is required.

4When I introduced this term in my lecture I suggested that, as in Thurson’s class, we
should have an election to name the concept. Lizhen Ji was enthusiastic about this idea;
however, in the end I didn’t implement it.
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Question. Is it true that every contractible orbifold is developable?

Remark. I think the question has an affirmative answer, but I have never seen
it written down.

Remark. A 2-dimensional orbifold Q2 is aspherical ⇐⇒ χorb(Q2) ≤ 0.

My favorite conjecture.

Conjecture. (Hopf, Chern, Thurston). Suppose Q2n is a closed aspherical
orbifold. Then (−1)nχorb(Q2n) ≥ 0.

Hopf and Chern made this conjecture for nonpositively curved manifolds
(I believe they thought it might follow from the Gauss-Bonnet Theorem) and
Thurston extended it to aspherical manifolds (at least in the 4-dimensional case).
For much more about this conjecture in the case of aspherical reflectofolds, see
[6].

The set up. Let Q be a reflectofold. Denote the underlying space by K
(instead of |Q|). Let S index the set of mirrors (= {codimension 1 strata}). Ks

denotes the closed mirror corresponding to s. Let m(s, t) be the label on the
codimension 2 strata in Ks∩Kt. Put m(s, t) =∞ if Ks∩Kt = ∅. Let (W,S) be
the Coxeter system defined by the presentation (i.e., W = πorb1 (Q)). For each
T ⊂ S, let WT denote the subgroup generated by T . The subset T is spherical
if WT is finite. Let S be the set of spherical subsets of S, partially ordered by
inclusion. (N.B. ∅ ∈ S.) Put

KT =
⋂
s∈T

Ks.

Since Q is an orbifold, whenever KT 6= ∅, we must have WT ∈ S.

Theorem 5.3. The reflectofold Q is aspherical iff the following conditions hold:

(i) KT 6= ∅ ⇐⇒ T ∈ S (i.e., when WT is finite).

(ii) For each T ∈ S, KT is acyclic (i.e., H∗(KT ) = 0).

(Notes: K∅ = K; also, when K is simply connected and acyclic, it is con-
tractible.)

The first condition means that the combinatorics of the intersections of mir-
rors is determined by (W,S). It is the analog of Andreev’s Conditions (without
the atoroidal condition), cf. Theorem 4.8. The second condition says that the
manifold with corners K “looks like” a convex polytope up to homology. We
elucidate these points below.

Definition 5.4. The nerve of the mirror structure {Ks}s∈S on K is an abstract
simplicial complex L′ defined as follows: its vertex set, Vert(L′), is S and a
nonempty subset T of S is the vertex set of a simplex in L′ iff KT 6= ∅.

28



If L′′ is any simplicial complex with Vert(L′′) = S, write S(L′′) for the poset
of vertex sets of simplices in L′′. If σ is a simplex of L′′ with vertex set T ,
let Lk(σ, L′′) denote the abstract simplicial complex corresponding to the poset
S(L′′)>T . (Lk(σ, L′′) is called the link of σ in L′′.) Given two topological spaces
X and Y , write X ∼ Y to mean that H∗(X;Z) ∼= H∗(Y ;Z). If dimK = n,
then, by standard arguments in algebraic topology, condition (ii) of Theorem 5.3
means that

L′ ∼ Sn−1 and Lk(σ, L′) ∼ Sn−1−dimσ. (5.1)

for all simplices σ in L′ (cf. [5] or [6, §8.2]). In the case where K is a convex
polytope, L′ is the boundary of the dual polytope, i.e., L′ is dual to ∂K (cf. the
last part of Subsection 4.1).

Definition 5.5. Suppose (W,S) is a Coxeter system. The elements of S which
are 6= ∅ are the simplices of an abstract simplicial complex, denoted by L(W,S)
(or more simply, by L) and called the nerve of (W,S). More precisely, Vert(L) =
S and a nonempty subset T of S is the vertex set of a simplex in L iff T is
spherical.

The fact that K is the underlying space of an orbifold means that L′ ⊂ L
(i.e., all local groups are finite). Condition (i) of Theorem 5.3 is that L′ = L.
By Condition (ii), L satisfies (5.1).

Before sketching the proof of Theorem 5.3 we discuss the following two ques-
tions:

(A) How do you produce a large number of examples of Coxeter systems (W,S)
with L(W,S) satisfying (5.1)?

(B) How do you recover K from L?

More generally, how do we find Coxeter system (W,S) with nerve a given
finite simplicial complex J? We should start as follows. Put S = Vert(J).
Label each edge {s, t} by an integer m(s, t) ≥ 2. This defines the Coxeter
system (W,S). The condition that we need to get an orbifold is that whenever
T is the vertex set of a simplex of J , then T ∈ S. Condition (i) of Theorem 5.3
(an analog of Andreev’s Theorem) is the converse: whenever T ∈ S, then T is
the vertex set of a simplex in J . We will see below that when all the m(s, t)’s
are 2 or ∞ these conditions are easy to decide.

Definition 5.6. A simplicial complex J is a flag complex if whenever T is a
finite, nonempty collection of vertices which are pairwise connected by edges,
then T spans a simplex of J

Remark 5.7. In [8] Gromov uses the terminology that J satisfies the “no ∆
condition” for this concept. I once used the terminology that J is “determined
by its 1-skeleton” for the same notion. Combinatorialists call such a J a “clique
complex”.

Examples 5.8.
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• If J is a k-gon (i.e., a triangulation of S1 into k edges), then J is a flag
complex iff k > 3.

• The barycentric subdivision of any simplicial complex (or, in fact, of any
cell complex) is a flag complex.

The second of Examples 5.8 shows that the condition of being a flag complex
does not restrict the topological type of J – it can be any polyhedron.

Definition 5.9. A Coxeter system (W,S) is right-angled if for each s 6= t,
m(s, t) is either 2 or ∞.

Since the nerve of any right-angled (W,S) is obviously a flag complex, the
second of Examples 5.8 yields the following answer to Question (A).

Proposition 5.10. The barycentric subdivision of any finite cell complex occurs
as the nerve of a right-angled Coxeter system.

Reconstructing K. Now suppose that L (= L′) is a PL triangulation of Sn−1.
Let K = Dn (= Cone(Sn−1)) and identify ∂K with L. We want to find a mirror
structure on K dual to L. The construction is the usual one for defining the
dual cell structure on a manifold. For each vertex s of L, let Ks be the closed
star of s in the barycentric subdivision, bL. Thus, Ks = Cone(bLk(s, L)). For
each T ∈ S, we then have KT =

⋂
s∈T Ks = Cone b(Lk(σT , L)), where σT is the

simplex in L corresponding to T . The assumption that the triangulation is PL
means that each Lk(σT , L) is a sphere (= Sn−1−dimσT ); so, each KT is a cell.

Exactly the same construction works when L is a PL triangulation of a ho-
mology sphere (that is, a closed PL manifold with the same homology as Sn−1),
except that instead of being a disk, K is a compact contractible manifold with
boundary L. (This uses the fact that any homology sphere L is topologically the
boundary of a contractible 4-manifold. This fact follows from surgery theory
when dimL > 3 and and is due to Freedman when dimL = 3.) In general,
when L is only required to satisfy (5.1), one must repeatedly apply this step of
replacing Cone(bLk(σ, L)) by a contractible manifold bounded by a contractible
manifold (cf. [5]).

5.3 Proof of the asphericity theorem

For each w ∈W , define the following subset of S:

In(w) := {s ∈ S | l(ws) < l(w)}.

(l(w) is the word length of w with respect to the generating set S.)
The following lemma in the theory of Coxeter groups is key to the proof of

Theorem 5.3.

Lemma 5.11. (See [6, Lemma 4.7.2]). For each w ∈ W , In(W ) is a spherical
subset of S.
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Sketch of proof of Theorem 5.3. The universal cover of the reflectofold Q is the
manifold U(W,K), which we denote simply by U . The manifold U is contractible
if and only if it is simply connected and acyclic. We will derive necessary and
sufficient conditions for this to hold.

Order the elements of W : w1, w2, . . . wk . . . , in any fashion so that l(wk) ≤
l(wk+1). Let Pk denote the union of the first k “chambers” in U , i.e.,

Pk := w1K ∪ · · · ∪ wkK.

We propose to study the exact sequence of the pair (Pk+1, Pk) in homology. To
simplify notation, put w = wk+1. By excision,

H∗(Pk+1, Pk) = H∗(wK,wK
In(w)) = H∗(K,KIn(w)),

where for any subset T ⊂ S,

KT :=
⋃
s∈T

Ks.

So, the long exact sequence of the pair becomes

· · · → H∗(Pk)→ H∗(Pk+1)→ H∗(K,K
In(w))→ . . . .

It is not hard to see that there is a splitting, H∗(K,K
In(w)) → H∗(Pk+1), of

the right hand map defined by multiplication by whIn(w)w
−1 ∈ ZW , where

for any T ∈ S, hT is the element in the group ring ZWT defined by hT :=∑
u∈WT

(−1)l(u)u. Hence,

H∗(Pk+1) ∼= H∗(Pk)⊕H∗(K,KIn(w)) and therefore,

H∗(U) ∼=
∞⊕
k=1

H∗(K,K
In(wk))

If AT denotes the free abelian group on {w ∈ W | In(w) = T}, then the above
formula can be rewritten as

H∗(U) ∼=
⊕
T∈S

H∗(K,K
T )⊗AT . (5.2)

From (5.2) we see that H∗(U) = 0 iff H∗(K,K
T ) = 0 for all T ∈ S. Standard

arguments using Mayer-Vietoris sequences (or the Mayer-Vietoris spectral se-
quence) show that these terms all vanish iff for all T ∈ S, the intersection KT

is acyclic (this includes the statement that K is acyclic). (See [6, §8.2].)
A similar argument using van Kampen’s Theorem applied to Pk+1 = Pk∪K

shows that U is simply connected iff K is simply connected, each Ks is connected
and for each {s, t} ∈ S, K{s,t} 6= ∅.
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5.4 Aspherical orbifolds not covered by Euclidean space

A noncompact space X is simply connected at infinity if given any compact
subset C there is a larger compact subset D so that any loop in X − D is
null homotopic in X − C. In favorable circumstances the inverse system of
fundamental groups {π1(X−C)}, where C ranges over all compact subsets, has
a well-defined inverse limit, π∞1 (X), called the fundamental group at infinity. If
X is simply connected at infinity, then π∞1 (X) is trivial. (See [7] for the basic
facts about the concepts in this paragraph.)

Theorem 5.12. (Stallings, Freedman, Perelman). A contractible n-manifold
is homeomorphic to Rn iff it is simply connected at infinity.

(Stallings proved this in dimensions ≥ 5, Freedman in dimension 4 and in dimen-
sion 3, I believe it follows from Perelman’s proof of the Poincaré Conjecture.)

For some time it was an open problem if the universal cover of a closed,
aspherical manifold had to be homeomorphic to Euclidean space. The issue was
not the existence of exotic (i.e., not simply connected at infinity) contractible
manifolds but whether such an exotic contractible manifold could admit a co-
compact transformation group. This was resolved in [5] by using the techniques
of this section.

Let L be a triangulation of a homology (n − 1)-sphere as a flag complex.
Label its edges by 2 and let (W,S) be the associated right-angled Coxeter group
with nerve L. Let K be a contractible manifold with ∂K = L. As explained
above, we can put the dual cell structure on ∂K to give K the structure of a
manifold with corners and hence, the structure of a reflectofold Q. The claim is
that if n > 2 and Ln−1 is not simply connected, then the contractible manifold
U(W,K) is not simply connected at infinity. As before, let Pk be the union of

the first k chambers and let
◦
P k be its interior. The argument goes as follows.

• Since Pk is obtained by gluing on a copy of K to Pk−1 along an (n−1)-disk
in its boundary, it follows that Pk is a contractible manifold with boundary
and that its boundary is the connected sum of k copies of π1(∂K). Hence,
π1(∂(Pk)) is the free product of k copies of π1(∂K).

• For a similar reason, U −
◦
P k is homotopy equivalent to ∂Pk.

• Hence, π∞1 (U) is the inverse limit, lim−→(π1(L)∗ · · ·∗π1(L)). In other words,
it is the “projective free product” of copies of π1(L). In particular, it is
nontrivial whenever π1(L) 6= 1.

The above is a sketch of the proof of the following result.

Theorem 5.13. ([5]) For each n ≥ 4 there are closed, aspherical n-dimensional
orbifolds with universal cover not homeomorphic to Rn.

Since Coxeter groups have faithful linear representations (cf. [2]), Selberg’s
Lemma implies that they are virtually torsion-free. So, there is a torsion-free
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subgroup Γ ⊂ W which then necessarily acts freely on U . Hence, M = U/Γ
is a closed, aspherical manifold. Thus, the previous theorem has the following
corollary.

Corollary 5.14. ([5]) For each n ≥ 4, there are closed, aspherical n-dimensional
manifolds with universal cover not homeomorphic to Rn.
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