
L’Enseignement Mathématique (2) 54 (2008), 76–78

27

THE HOPF CONJECTURE AND THE SINGER CONJECTURE

by Michael W. DAVIS

CONJECTURE 27.1. Suppose M2k is a closed, aspherical manifold of
dimension 2k . Then ( � 1)k � (M2k) � 0 .

The conjecture is true in dimension 2 since the only surfaces which
have positive Euler characteristic are S2 and RP2 and they are the only two
which are not aspherical. In the special case where M2k is a nonpositively
curved Riemannian manifold this conjecture is usually attributed to Hopf by
topologists and either to Chern or to both Chern and Hopf by differential
geometers.

When I first heard about this conjecture in 1981, I thought I could come
up with a counterexample by using right-angled Coxeter groups. Given a
finite simplicial complex L which is a flag complex, there is an associated
right-angled Coxeter group W . Its Euler characteristic is given by the
formula

(27.1) � (W) � 1 � dim L�
i � 0

� � 1
2 � i 	 1

fi 

where fi denotes the number of i -simplices in L . If L is a triangulation of
Sn � 1 , then W acts properly and cocompactly on a contractible n -manifold.
The quotient of this contractible manifold by any finite index, torsion-free
subgroup Γ � W is a closed aspherical n -manifold Mn . Since � (Mn) is a
positive multiple of � (W) (by [W : Γ] ), they have the same sign. So, this
looked like a good way to come up with counterexamples to Conjecture 27.1.
Conversely, if you believe Conjecture 27.1, then you must also believe the
following
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CONJECTURE 27.2. If L is any flag triangulation of S2k � 1 then

( � 1)k � (L) � 0 

where � (L) is the quantity defined by the right-hand side of (27.1).

Ruth Charney and I published this conjecture in [2]. It is sometimes called
the Charney–Davis Conjecture.

In the 1970’s Atiyah [1] introduced L2 methods into topology. If a
discrete group Γ acts properly and cocompactly on a smooth manifold or a
CW-complex Y , then one can define the reduced L2 -cohomology spaces of Y
and their “dimensions” with respect to Γ , the so-called “L2 -Betti numbers”.
Let L2bi(Y; Γ) be the Γ -dimension of the L2 -cohomology of Y in dimension i .
It is a nonnegative real number. If Y � X is a regular covering of a finite
CW-complex X with group of deck transformations Γ , the Euler characteristic
of X can be calculated from the L2 -Betti numbers of Y by the formula

(27.2) � (X) � �
( � 1)iL2bi(Y; Γ) �

Shortly after Atiyah described this formula in [1], Dodziuk [4] and Singer
realized that there is a conjecture about L2 -Betti numbers which is stronger
than Conjecture 27.1. It is usually called the Singer Conjecture. Beno
Eckmann [5] also discusses it in this volume.

CONJECTURE 27.3 ([4]). Suppose Mn is a closed, aspherical manifold
with fundamental group � and universal cover

�
Mn . Then L2bi(

�
Mn; � ) � 0

for all i
�� n

2 . (In particular, when n is odd this means all its L2 -Betti numbers
vanish.)

This implies Conjecture 27.1 since, when n � 2k , formula (27.2) gives :

( � 1)k � (M2k) � L2bk( �M2k; � ) � 0.

Of course, there is also the following version of Conjecture 27.3 for Coxeter
groups.

CONJECTURE 27.4. Suppose that L is a triangulation of Sn � 1 as a flag
complex, that W is the associated right-angled Coxeter group and that Σ is the
contractible n-manifold on which W acts. Then L2bi(Σ; W) � 0 for all i

�� n
2 .

Boris Okun and I discussed this conjecture in [3] and we proved it
for n � 4. The result for n � 4 implies Conjecture 27.2 when L is a
flag triangulation of S3 . So, Conjecture 27.2 is true in the first dimension for
which it is not obvious.
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(Orsay, 1974), 43–72. Astérisque 32–33. Soc. Math. France, 1976.

[2] CHARNEY, R. and M. W. DAVIS. The Euler characteristic of a nonpositively
curved, piecewise Euclidean manifold. Pacific J. Math. 171 (1995),
117–137.

[3] DAVIS, M. W. and B. OKUN. Vanishing theorems and conjectures for the
L2 -homology of right-angled Coxeter groups. Geom. Topol. 5 (2001),
7–74.

[4] DODZIUK, J. L2 harmonic forms on rotationally symmetric Riemannian mani-
folds. Proc. Amer. Math. Soc. 77 (1979), 395–400.

[5] ECKMANN, B. The Singer conjecture. (This volume.)

M. Davis

The Ohio-State University
231 West 18th Avenue
43210 Columbus, OH
USA
e-mail : mdavis@math.ohio-state.edu
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