
Pergamon Topology Vol. 34, No. 2, pp. 329%350,1995 

Copyright 0 1995 Elsevier Science Ltd. 

Printed m Great Britain. All rights reserved 

004O-9383195 $9.50 + 0.00 

0040-9383(94)00027-l 

STRICT HYPERBOLIZATION 

RUTH M. CHARNEY? and MICHAEL W. DAVIS+ 

(Received 12 September 1992; in revised form 22 March 1994) 

0. INTRODUCTION 

IN [12, Section 3.41 Gromov described several procedures for converting a cell complex 
K into a new polyhedron Z’(K) with a piecewise Euclidean metric of nonpositive curva- 
ture-X’(K ) is called a “hyperbolization” of K. Expositions of this idea are given in 
[9, 21, 173. 

Gromov claims in [12, Section 4.31 that in two of his constructions the metric can be 
perturbed so that the curvature is strictly negative. A “proof” of this claim, and a similar 
claim of the “product with interval” construction of [9, p. 3773, is provided in [21, Theorem 
4.3(iv)]. However, there is a gap in the proof; in fact, as we shall see in Section 4, the claim is 
false. 

The goal of this paper is to find a “strict” hyperbolization, i.e. a procedure in which the 
result has curvature bounded above by some negative number. (Here the notion of 
“curvature bounded from above” is defined via comparison triangles as in [l, 12, 111.) The 
motivation for finding a strict hyperbolization procedure is that the fundamental group of 
a compact, strictly negatively curved space is “word hyperbolic” in the sense of [l l-131. 
Hence, strict hyperbolization gives a method for producing examples of word hyperbolic 
groups. One application of our strict hyperbolization procedure is to show that any 
triangulable manifold is cobordant to a triangulable manifold of strictly negative curvature 
(Theorem 7.7). This strengthens Gromov’s result that any triangulable manifold is cobor- 
dant to a nonpositively curved one. Other applications may be found in [9, Section 5c; 23. 

In all previous hyperbolization constructions, the result is naturally a cubical cell 
complex where each cube is isometric to a regular Euclidean cube. The naive idea for 
perturbing the metric is to replace each Euclidean cube by a regular cube in hyperbolic 
space. We shall call this the “naive perturbation”. As was pointed out in [12, p. 1231, the 
naive perturbation may fail to have curvature bounded from above. This can be understood 
by considering a two-dimensional example. Suppose a surface S is tiled by Euclidean 
squares in such a fashion that at least four squares meet at each vertex. The sum of the 
angles at each vertex is then 2 2~. It follows that S is nonpositively curved. (The “curvature 
at vertex” is 0 if the angle sum is equal to 2x and - a: if it is greater than 2~) For a square in 
the hyperbolic plane each interior angle is < 7c/2; hence, if we naively perturb the metric on 
S, the angle sum at a vertex where only four squares meet will be < 2x. In effect, the metric 
will have curvature + #X at such a vertex. The problem occurs whenever a link of a vertex 
contains a circuit with four edges. Such circuits in links of cubes cause similar problems in 
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all dimensions. (The condition that no such circuit occurs is referred to as “Siebenmann’s no 
Cl condition” in [12, p. 1231.) 

The situation can be remedied as follows. We shall prove (as Corollary 6.2) the following 
result. 

THEOREM. In each dimension n there is a compact, connected, orientable, hyperbolic 
manifold with corners X n such that (a) the codimension 1 faces of X” are totally geodesic and 
intersect orthogonally and (b) the poset offaces of X” is isomorphic to the poset offaces of an 
n-cube 0 “. In particular, the link of a face in X” is isometric to the link of a corresponding face 
in 0”. 

Rather than use the naive perturbation, our approach is to replace each Euclidean cube 
in S(K) by an appropriate face of X”. The result will be piecewise hyperbolic and (since 
links are unchanged) will have curvature bounded above by - 1. This gives the following 
result which is proved as Theorem 7.6, below. 

THEOREM. There is a strict hyperbolization procedure which associates to a simplicial 
complex K a piecewise hyperbolic space 21x(K) of curvature I - 1. 

Note, however, that this is not a perturbation: we have altered the topology. Strict 
hyperbolization has, therefore, been accomplished in two steps: first, we use one of 
Gromov’s techniques to construct Z(K) and then we replace the cubes in S(K) by faces of 
X” to obtain ‘3x(K). 

1. PRELIMINARIES CONCERNING POLYHEDRA OF PIECEWISE CONSTANT CURVATURE 

Constant curvature space. For x E Iw let lVl; denote the n-dimensional, complete, simply- 
connected Riemannian manifold of constant sectional curvature x (called constant curvature 

space). For x > 0, lU$! is the n-sphere of radius l/h, for x = 0 it is the Euclidean n-space 
[w”, and for x < 0 it is the hyperbolic n-space of curvature x. We shall use the notations 9 
and O-I” for 44: and ~vI’! 1, respectively. 

Cells: In lU1 the notion “half-space” makes sense. A cell (= “convex polytope”) in ~+JQ; is 
defined to be a nonempty compact intersection of a finite number of half-spaces and 
hyperplanes. If 1 > 0, then we also require that a cell contain no pair of antipodal points. 

If C is a cell, then 9(C) denotes its set of faces, partially ordered by inclusion, Its derived 
complex 9(C)’ is the poset of chains in Y(C); as an abstract simplicial complex it can be 
identified with the poset of simplices in the barycentric subdivision of C. A combinatorial 
equivalence from a cell Cr to another C2 is an isomorphism of posets rp : 9(C,) + Y(C,). 
Such a cp induces a simplicial isomorphism cp : *(Cl)’ -P 9(C,)’ and the geometric realiz- 

ation of cp’ is a face-preserving PL-homeomorphism from C1 to C2. Any cell in f~4; is 
combinatoricaly equivalent to one in [w”. 

A cell C is regular if its isometry group acts transitively on the set of top-dimensional 
simplices in F(C)‘. It follows that for a regular cell, its isometry group is equal to its group 
of combinatorial automorphisms. 

Cell complexes: By a combinatorial cell complex (or simply a “cell complex”) we shall 
mean a space X formed by gluing together cells via (geometric realizations of) combina- 
torial equivalences of their faces, together with the decomposition of X into cells. We want 
to allow the possibility that distinct cells intersect in a union of proper faces (rather than just 
one face); however, each cell should be embedded (i.e. we do not want to allow the 
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possibility of gluing together two faces in the boundary of a single cell). We shall also always 

require that the decomposition into cells be locally finite. The space X is called the 
underlying polyhedron of the combinatorial cell complex. 

A cell complex is simplicial if each cell is a simplex; it is cubical if each k-cell is 
combinatorially equivalent to a k-cube. 

To define an Ml,-cell complex (or a “geometric cell complex”) one requires that the space 
X be formed by gluing together cells in Ml;, for some n, via isometries of their faces. (For 
a precise definition, see [21, Definition 3.4, p. 3321.) 

A metric on a space Y is intrinsic (or “inner”) if the distance between any two points 
y0 and yi is the infimum of the lengths of paths connecting them. If, in addition, this 
infimum can always be realized by a path of minimal length then Y is a geodesic space (or 
a “length space”). The image of such a minimal length path is a geodesic segment in Y. 
A subspace 2 of a geodesic space Y is totally geodesic (or “locally convex”) if, locally, any 
geodesic segment between two points in Z lies entirely in Z. 

Arc length makes sense in the underlying polyhedron X of an Ml,-cell complex; hence, 
X has a natural intrinsic metric: the distance between two points is the infimum of the 
lengths of paths connecting them. (This metric agrees locally with the given metric on each 
cell of X, so after suitable subdivision, we may assume that the intrinsic metric restricts to 
the given metric on each cell.) The underlying polyhedron of an Ml,-cell complex together 
with its natural metric is a polyhedron of piecewise constant curoature x. We shall also say 
that X is piecewise spherical, Euclidean or hyperbolic, as x = + 1, 0, or - 1, respectively. 

Definition 1.1. An MO-cell complex is called a cubical Euclidean cell complex if each 
k-cell is isometric to a regular Euclidean k-cube. 

Remark 1.2. Since the group of combinatorial automorphisms of a regular cube is equal 
to its isometry group, it follows that to each combinatorial cubical cell complex there 
corresponds a cubical Mx-cell complex (in which each cube is regular). In particular, for 
x = 0, we get a cubical Euclidean cell complex. Similarly, given an n-dimensional simplicial 
complex we can give it an M,-structure by declaring each simplex to be a regular simplex in 
mm;. 

Links: The link of a k-face of an n-cell in Ml; is the set of unit vectors normal to the 
k-plane supported by the k-face and pointing into the n-cell. Such a link is naturally an 
(n .- k - 1)-cell in s’-i. 

Given a k-cell cr in an Mx-cell complex P, the links of CJ in the cells containing it fit 
together to form an M 1 -cell complex, denoted Link(a, P). Thus, the link of any cell has 
a natural piecewise spherical structure. 

Definition 1.3. A regular spherical k-simplex is all right if the length of each edge is x/2. 
(This terminology is due to G. Moussong.) Thus, a k-simplex is all right if it is isometric to 
the simplex in Sk spanned by the standard basis of Rk+‘. An M 1 -simplicial complex is all 
right if each of its simplices are all right. 

Observation 1.4. The link of a k-face of a regular n-cube is an all right (n - k - l)- 
simplex. Hence, the link of any cell of a cubical Euclidean cell complex is all right. 

Curvature bounded from above: The notion of a triangle in a geodesic space Y has an 
obvious meaning: “edges” are geodesic segments. Using comparison triangles and the 
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so-called “CAT-inequalities” (cf. [12, p. 1061) one can define what it means for Y to have 
curvature bounded above by a real number x: given a triangle Tin a sufficiently small open 
set of Y and a vertex x of T, the distance from x to a point on the opposite edge must be less 
than or equal to the corresponding distance in a comparison triangle in Kvtlz. 

Definition 1.5. A piecewise spherical polyhedron L is lurge if there is a unique geodesic 
connecting any two points of distance < 7~. (Equivalently, L is large if it satisfies CAT(l).) 
The systole of L, denoted sys(L), is the infimum of the lengths of all closed geodesics in L. 

These concepts are related as follows: L is large if and only if L and the link of every cell 
in L has systole 227~ (see [S, Theorem 3.11). 

The following is a result of Gromov [12, 4.2.A, p. 1201 (see Ballman’s article in 
[l 1, Chapter lo] for a proof). 

THEOREM 1.6 (Gromov). An Mlz-cell complex has curvature <x ifand only ifthe link of 
each cell is large. 

DeJnition 1.7 (compare [4, p. 28)). An abstract simplicial complex K is ajag complex if 
anytime K (I) contains the complete graph on a finite set of vertices S then it actually 
contains the full simplex on S. (K is a flag complex if and only if K and all links of simplices 
in K satisfy Gromov’s “no A condition”, cf. [ 12, p. 1221.) The simplicial complex K satisfies 
the no 0 condition if any circuit of length 4 in K”’ is the boundary of the union of two 
2-simplices along a common edge. 

For a proof of the following result see [12, p. 1221, as well as [20]. 

LEMMA 1.8. (Gromov). Let L be an all right MO,-simplicial complex. 

(i) L is large if and only if it is a jag complex. 
(ii) If L is ajag complex and, in addition, satisfies the no 0 condition, then sys(K) > 2x. 

COROLLARY 1.9 (Gromov). If the link of each cell in a cubical Euclidean complex is aflag 
complex, then it is nonpositively curved. 

COROLLARY 1.10 (Gromov). If the link of each cell in a combinatorial cubical cell complex 
X is a Jag complex and satisjes the no U condition, then X can be given the structure of 
a cubical M _ 1 -cell complex of curvature I - 1. 

The kill_,-cell complex in Corollary 1.10 is constructed by the “naive perturbation” 
mentioned in the Introduction. 

2. SOME HYPERBOLIZATION PROCEDURES 

All hyperbolization constructions work roughly as follows: the hyperbolization of an 
n-cell is defined to be some nonpositively curved n-manifold with (totally geodesic) bound- 
ary, the hyperbolization of a cell complex K is then constructed by gluing together 
hyperbolized cells according to the same combinatorial pattern as are the cells of K. Since 
a hyperbolized cell will generally not be homeomorphic to a cell, the topology of Z’(K) is 
drastically altered; however, some important properties can be retained. 
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Each of the various hyperbolization constructions has advantages and disadvantages. 

We list below some properties which one might wish such a procedure Z to have. 

(1) (Functorality). 2 is a functor from cell complexes to nonpositively curved poly- 
hedra in the following sense: if i : J + K is an embedding onto a subcomplex, then there is 
a mapping X(i): X(J) -+ X(K) which is an isometric embedding onto a totally geodesic 

subspace. 
(2) (Preservation of local structure). If c” is an n-cell in K, then J?((T”) is an n-manifold 

with boundary and the link of x(c) in x(K) is PL-homeomorphic to the link of cr in K. 
(3) % (a point) = a point. 
(4) (Orientability). For a cell 6, the manifold with boundary Z’(a) is orientable. 
If conditions (1) and (2) holds, then there is a continuous map cp: x(K)-, K, well- 

defined up to homotopy, such that ~(%(a)) c CJ for all g in K. Hence, we can require the 

following condition. 
(5) (Homological surjectiuity). The map cp: Z?(K) -+ K induces a surjection on homol- 

ogy. 
Condition (5) is equivalent to conditions (3) and (4). The importance of condition (3) 

(which in fact does not hold for all hyperbolization procedures) is that it is needed to prove 
Theorem 7.7 which states that every closed triangulable manifold in cobordant to a nega- 
tively curved one. 

Conditions (2) and (4) imply that if K is a manifold (resp. orientable manifold) then so is 
x(K). Another condition we might require is the following. 

(6) (Covered by bundle map). If the underlying polyhedron of K is a manifold, then 
cp : S(K )) -+ K is covered by a map between the stable tangent bundles. 

A weaker version of (6) is the following. 
(6’). (Pontryagin classes). If K is a manifold, then the map cp pulls back the rational 

Pontryagin classes of K to those of S(K). 

Following [21] we now discuss in detail the “product with interval procedure” of [9, 
Section 4b] and the “Moebius band procedure” of [12, Section 3.4, p. 1141. The product 
with interval procedure does not satisfy condition (3) above, while the Moebius band 
procedure does not satisfy condition (4) (orientability). There is, however, a closely related 
construction of Gromov [ 12, p. 1161 which does satisfy conditions (l)-(6). It is described in 
detail in [9, Section 4c] and more briefly in Section 7 of this paper. On the other hand, as 
Gromov points out, this last procedure yields spaces whose fundamental groups obviously 
contain copies of Z x H and hence are not word hyperbolic. 

Let %‘,, denote the category of cell complexes of dimension in. A morphism cp : P --+ P’ 
in %$ is an isomorphism of P onto a subcomplex of P’. Let p&n denote the category of 
piecewise Euclidean polyhedra of dimension in. A morphism 8: X + X’ in 9V,, is an 
isometry onto a totally geodesic subpolyhedron of X’. 

The product with interval procedure: We shall define, for each integer n 2 1, a functor 
9” from %?,, to g&,,. In fact, for a cell complex P, the polyhedron Y”(P) will have the structure 
of a cubical Euclidean cell complex. 

If dim P 5 1, then put 9l(P) = P and declare each edge to be isometric to the interval 
I = [ - 1, 11; _$1 also leaves morphisms unchanged. 

Let Pck) denote the k-skeleton of P. Suppose, inductively, that & has been defined for 
k < n. We define & as follows. If dim P < n, then put 9n(P) = 9n.- I(P) x { - 1, + 1). If c? is 
an n-cell, put &(o”) = & 1(W) x I. Finally, if P is an arbitrary n-dimensional complex, 
then define .9,,(P) to be the result of gluing a copy of ,&(o”) onto 9n(P(“-1)) for each n-cell 0” 
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in P via the isometric embedding ~~_l(i)xid:~~_,(~o”)x~-l,+l}~~~_,(Pcn-l))x 

{ - 1, + 11, where i: 88 + P’“- ‘) denotes the inclusion. 

By the inductive hypothesis, ,a,_ 1 (Pcnml’ ) and & 1 (W) are both cubical Euclidean cell 

complexes. Since the product of a regular (n - I)-cube with I is a regular n-cube, &(o”) 

(= X## _ 1(W) x I) is a cubical Euclidean cell complex; hence, so is &(P). 

If cp : P + P’ is a morphism in %?n and dim P < n, then Ynp,(cp) is defined to be & 1 (cp) x 

idi_ ,, + I;. In the general case, this gives a definition for the restriction of &(cp) to PC"- I). The 

definition is extended over Yn((r”), (T” an n-cell of P, by the formula Y,Jcp 1 a”) = 

& l(rp 1 &Y) x idI. It is not difficult to show that the image of Y,,(P) is totally geodesic in 

A(P’). 

LEMMA 2.1. The group (h/2)“-’ is a group of natural automorphisms of YE. 

Proof For any object P in %7,, we need to define (n - 1) commuting involutions 

“, 1, . . . , z, n _ 1 of Yn(P). The involution T,,, 1 

~n~“(an)i=~“_,(~~n)xr) 

switches the two copies of 9” _ 1 (Pen- “) and acts 

as id x r where r : I + I is reflection. Suppose by induction that 

we have defined commuting natural involutions zk. i, . . . , TV,_ 1 of J$, for 2 I k < n. For 

i>1definez,,ion~~_1(P(“-1))~{-l,+1}tober,_,~i_,xid~_~,+~~andon~~(a”)tobe 

Z,_l.i_l xid~:~~_l(~on)xZ~~~-,(~an)X I. H 

Remark 2.2. The orbit space &(P)/z,,, can be identified with the subspace of xn(P) 
consisting of & l(P’“-“) x { + l} with a copy of & _ 1(&r”) x [0, l] glued on for each n-cell 

0”. But this subspace obviously deformation retracts onto Yn_ 1 (PC’- “). Continuing in this 

fashion we see that YJP)/(h/2)“-’ can be identified with a subspace of&(P) and that this 

subspace deformation retracts onto PC’). Thus, P(l) is a retract of Y,,(P). 

The Moebius band procedure: Let %iub be the full subcategory of %$ consisting of the 

cubical cell complexes of dimension <n. By a construction very similar to the product with 

intervals procedure, we shall define a functor J$ : %iUb + 98” called the “Moebius band 

procedure”. One advantage of this construction over the product with interval procedure is 

that it is independent of n, that is to say, the restriction of A, to the full subcategory Q?frbl is 

equal to JY~ _ 1. Hence, we can safely drop the subscript and write A for Jlt,. 

The restriction of A’ to %?yub is equal to the restriction of Y1, i.e. if dim P I 1, then 

_/Z(P) = Yl(P) = P. Suppose, by induction, that A! has been defined on the full subcategory 

%,c!!~, of G?z;ub. Since A! is a functor, the group of combinatorial symmetries of an n-cube 0’ 

acts on A(8 0 “) as a group of isometries. Let a : Cl” + 0” denote the central symmetry (i.e. 

a is the antipodal map if 0” is a regular Euclidean cube centered at the origin). Define an 

involution r on A’(8Cl”) x I by t: (x, t) + (A’(a)(x), -t). Put 

_P( On) = (Af(aon) x 1)/T. 

(When applied to a square this procedure yields the Moebius band; hence, the terminol- 

ogy.) Note that the image of (JJ(80”) x (- 1, l})/ r in A( Cl”) is canonically identified with 

A’(8O”). Hence, for a cubical complex P of dimension n, we define A(P) to be the result of 

gluing a copy of A( On) to _A(P’“- ‘)) for each n-cube in P via the above identification. We 

may assume, inductively, that .AI(P(“-‘)) and A(aU”) are cubical Euclidean complexes. 

Hence, &(a 0 “) x I is naturally a cubical Euclidean complex. Since the central involution 

a freely permutes the faces of a q “, the involution z freely permutes the cells of &(a 0 “) x I 

and, hence, the cubical cell complex structure on &(a0 “) x I descends to one on A!( 0”). It 
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follows that the cubical Euclidean complex structure on J+!(P’“- “) extends across each 

A( [3 “) to give such a structure on A(P). 

As with &,, the restriction of ~8 to %?‘,cu-“, is extended to morphisms in wiUb by taking the 

product with the identity map on the I-factor. (That this is well-defined depends on the fact 

that the involution a is in the center of the group of combinatorial symmetries of the 

n-cube.) 

Both hyperbolization procedures, $, and A, described above are defined inductively by 

gluing together nonpositively curved polyhedra along totally geodesic subspaces. It follows 

from Gromov’s gluing lemma (cf. [9, p. 3621) that the resulting M,-structures are nonposi- 

tively curved. Alternatively, this can be proved by showing that the link of each cell in &(P) 

or A(P) is a flag complex, and applying Corollary 1.9. Both of these proofs can be found in 

[21, Theorem 4.33. (However, the claim there that yj(P) and A(P) satisfy the no 0 condi- 

tion is false, so Corollary 1.10 does not apply.) 

Relatioe hyperbolization: There is a relative version of the product with interval con- 

struction which has been described and exploited by Hu in [ 161. Suppose that K is an 

f&-cell complex, that it is a subcomplex of a (combinatorial) cell complex P, and that every 

cell in P - K is of dimension <n. We shall define a piecewise Euclidean polyhedron 

&(P, K) which contains K as a totally geodesic subcomplex. To begin with, put 

X1 (P(l) u K, K) = P(l) u K. Assuming the construction has been defined in dimension 

n- 1, define ,O,(P(“-“uK,K) to be ~~-~(P(“-l)uK,K)x(-l,+l); whenever a” is 

a cell which is not contained in K, define &(g”, K n CT”) to be y”_ ,(a#, K n W’) x I. Then 

construct Y,,(P, K) by gluing J$((T”, K n a”) to &(P O- ‘) u K, K ) for each n-cell 0” in P but 

notinK.Clearly,Kx{-l,+l)“-’ c &(P, K). By passing to the barycentric subdivision 

of P, we may assume that P and K are simplicial complexes and that K is a full subcomplex. 

(This means that if the vertices of c are in K, then fl c K.) Since K is full, K n g” is a face of 

cr” and, hence, a totally geodesic subspace of K. Using the gluing lemma, it then follows, as 

before, that each copy of K is a totally geodesic subspace of &(P, K) and that if K is 

nonpositively curved then so is LQP, K). (It should be noted however, that the metric on K, 
induced by the intrinsic metric on &(P, K), while locally the same as the original metric on 

K, need not be globally the same.) Remark 2.2 also carries over to the relative version: 

@J/2)“-’ acts on .Y,,(P, K) and P”‘u K is a retract of Y,,(P, K) (see [16]). 

Any relative hyperbolization procedure should have the following two properties: if 

P and K are as above then (1) a hyperbolization of P relative to K should contain K as 

a totally geodesic subcomplex and (2) if K is nonpositively curved, then the relative 

hyperbolization of P should be nonpositively curved. Some general claims concerning the 

existence of such procedures are made in [12, p. 1171, but we only understand the 

construction in the above case of the product with interval procedure. (A relative version of 

hyperbolization is described explicitly in [9, p. 3581, but the result is only a polyhedron-no 

metric is given. However, this version is good enough to prove that any manifold is 

cobordant to a nonpositively curved manifold.) 

3. REFLECTION GROUPS 

Coxeter groups: Given a finite set S, a Coxeter matrix is a function m : S x S + Z u (cc} 

such that (i) m(s, s’) = m(s’, s) for all (s, s’) in S x S, (ii) m(s, s’) 2 2 if s # s’, and (iii) 

m(s, s) = 1 for all s in S. One can associate to a Coxeter matrix m, a “Coxeter diagram”, 

a “Coxeter group”, and a “cosine matrix”, as follows. The Coxeter diagram is the labeled 

graph with vertex set S; distinct vertices s and s’ bound an edge if and only if m(s, s’) 2 3; the 

corresponding edge is labeled by m(s, s’), where, by convention, we omit the label when 
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m(s, s’) = 3. The Coxeter group W is the group with presentation (S; (ss’)“‘(~.~‘)) where 

(s,s’)rangesoverSxS-m-‘(co).Th e associated cosine matrix is the function c : S x S + [w 

defined by c(s, s’) = -cos(n/m(s, s’)). The cosine matrix defines a symmetric bilinear form 

on [w’. There is a linear W-action on Iws preserving this form called the “canonical 

representation”. It follows from the existence of this representation that the natural map 

S + W is an injection (and we henceforth identify s with its image in W), that the order of 

s in W is 2, and that the order of ss’ in W is m(s, s’). The pair ( W, S) is a Coxeter system; its 

rank is Card(S). The group W is finite if and only if the matrix c is positive definite; in this 

case the canonical representation exhibits Was a finite orthogonal reflection group on IL!“, 

n = Card(S). Conversely, if G is any finite reflection group on [w”, then G is a Coxeter group, 

and if the representation is without a trivial summand, then it is equivalent to the canonical 

representation. The quotient space IL!“/ W(where W is finite) can be identified with one of the 

simplicial cones in [w” cut out by the hyperplanes of reflection; such a simplicial cone is 

called a fundamental chamber for W (for further details, see [3]). 

The groups A, and B,: If an n-cell rr” in Ml: is regular, then its isometry group is a rank 

n Coxeter group W(8), the diagram of which is a straight line segment (e.g. see [X, p. 741). 

An n-cell is simple if the link of each vertex is an (n - I)-simplex. Suppose a” is simple. 

Choose a simplex in the barycentric subdivision of 0” with vertices vo, . . . , c,, where Ui is the 

barycenter of a cell of dimension i. Then S = {so_ . . . . s,_ 1 ) is a set of fundamental gener- 

ators for W(8), where si is the reflection across the face spanned by {ro, . . . . di, . . . . v,,}. It 

follows that if a” is regular and simple, then the Coxeter diagram of (W(Y), S) has the form 

m 
l -o-o~~~o- 0 
5” .y,- I 

where m 2 3. For n arbitrary the only cases which occur are m = 3 or m = 4. The case m = 3 

corresponds to the regular n-simplex A”; its symmetry group is usually denoted A,. The case 

m = 4 corresponds to the regular n-cube 0”; its symmetry group is B,. When n = 2 and o2 

is a regular m-gon, we get the diagram l m l (so that any value of m 2 3 can occur). In 

this case, W(a2) is the dihedral group of order 2m. For n > 2, the only other possible value 

of m is 5 and it occurs only when n = 3 (the dodecahedron) or n = 4 (the “120-cell”); the 

corresponding Coxeter groups are denoted by H3 and H4, respectively. The group A, is the 

symmetric group of degree n + 1. (Consider its action on the vertex set of A’.) Thought of as 

a subgroup of O(n), the group B, is generated by all permutations of coordinates and sign 

changes; hence, as an abstract group it is the semidirect product of (Z/2)” and the symmetric 

group of degree n. Explicitly, so changes the sign of the first coordinate, and si, 

1 5 i 5 n - 1, switches the ith and (i + 1)th coordinates. 

Coxeter orbijolds: The quotient space of a locally smooth, proper action of a discrete 

group on a manifold has the structure of an orbifold, where, roughly speaking, an “orbifold” 

X” is a space together with local “charts” such that each point .y has a neighborhood of the 

form KY/G, for some finite linear group G,. (For precise definitions see [23, Chapter 133 or 

[ 15, Section 41.) The group G, (which is only defined up to conjugation in GL(n, R)) is called 

the local group at x. An orbifold X” is a rej7ectofold if each local group is a finite reflection 

group. Since the orbit space of a finite reflection group W on Iw” has the form C’ x KY’, 

where [w”-’ is the fixed subspace and C’ is a simplicial cone in [w’, it follows that 

a reflectofold X” has a natural structure of a manifold with corners: a point x E X” belongs 

to the relative interior of a codimension i stratum if and only if G, is a Coxeter group of rank 

i. The only Coxeter groups of rank two are the dihedral groups: a codimension two stratum 

of a reflectofold is labeled m if the associated local group is dihedral of order 2m. 
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Suppose that X” is a reflectofold and that the codimension one strata are F1, . . . , Fk. 
Then X” is a Coxeter orbifold if the following two conditions hold: 

(a) each codimension two stratum lies in precisely two codimension one strata, 
(b) for i #j, each component of Fin Fj has the same label. 

A codimension one stratum is a mirror; a codimension two stratum is a corner. Put 

S = {sl, . . ..$J where si corresponds to the mirror Fi. Associated to the Coxeter orbifold 
X”, there is a Coxeter matrix m defined by 

1 if i=j 

the label on Fi n Fj if i #j 

co if Fi n Fj = 8. 

Let (IV, S) denote the associated Coxeter system. There is an orbifold covering 2” -+ X” 
with Was group of covering transformations. The space 2” is a manifold; it is constructed 
by pasting together copies of X” (one for each element of W) in the obvious manner (see 
[6, Section 131 for details). If the underlying space of Xn is simply connected, then _??” is 
simply connected (cf. [6, Corollary 10.21); hence, in this case dn is the universal orbifold 
cover of X”. 

In general, for any orbifold Y, its orbifold fundamental group, denoted nyb( Y), is the 
group of covering transformations of the universal orbifold cover of Y (see [23, Chapter 
131). The previous paragraph is summarized by the following lemma. 

LEMMA 3.1. Suppose that X” is a Coxeter orbifold and that its underlying space is simply 
connected. Then ny”(X”) can be canonically identi$ed with the associated Coxeter group W. 

The Coxeter orbifold Q”: We shall define an orbifold which will be important in the next 
section. (Coincidentally, this same orbifold turns up in a different context in [7] as the 
quotient orbifold of an action on Tomei’s manifold of isospectral tridiagonal matrices,) 

The underlying space of Q” is the cube [0, 11”. The mirrors are named as follows: the 
ith-right mirror, denoted Ri, is given by Ri = {x E [0, 11” 1 Xi = l}, the ith-left mirror, denoted 
Li, is given by Li = {XE [0, 11” 1 xi = O}. The corner Ri n Ri+ 1, 1 5 i < n - 1, is labeled 3; 
all other corners are labeled 2. To check that this defines an orbifold structure we must 
check that the induced Coxeter group at each face is finite. But this is clear, for example, the 
local group at the rightmost vertex RI n ... n R, is A,, at the opposite vertex L1 n a.. n L, it 
is (A,)” (= (Z/2)“). Let ri (resp. e,) be the generator for the Coxeter group rryb(Q”) 
corresponding to Ri (resp. Li). The corresponding Coxeter diagram is the following: 

LEMMA 3.2. The Coxeter group nyb(Q”) contains a free abelian subgroup of rank 

L-(n + 1)/21. 

Proof: The standard subgroup generated by {rlrr3,...rr2d_1,el,e3,...,e,,_,), 
d = [(n + 1)/2], has as diagram d disjoint copies ofo z l ; hence, it is (D,)d where D, is 
the infinite dihedral group. n 
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COROLLARY 3.3. For n > 2, the group 7cyb(Q”) is not word hyperbolic. 

Proof: Word hyperbolic groups do not contain Z x Z (cf. [ 11, Theorem 8.34, p. 1561). 
H 

4. HYPERBOLIZATION OF THE BOUNDARY COMPLEX OF A REGULAR CELL 

In this section we show that when the Moebius band procedure is applied to the 
boundary of an n-cube or when the product when interval procedure is applied to the 
boundary of a simple regular n-cell, the result is a finite orbifold covering of Q”-’ (the 
orbifold described in the previous section). The fundamental group of this covering is 
a subgroup of finite index in nprb(Q”- ‘); hence by Corollary 3.3, it is not word hyperbolic for 
IZ 2 4. For any cell complex K and any subcomplex K’ c K, the hyperbolization of K’ is 
totally geodesic in the hyperbolization of K, and hence the fundamental group of the 
hyperbolization of K’ injects into that of K. It follows that for n 2 4, the result of 
hyperbolizing an n-dimensional cubical or simplicial cell complex by either the Moebius 
band or product with interval procedure can never be given a metric of strictly negative 
curvature. 

As in Section 3, B, denotes the symmetry group of the n-cube 0 ” and {so, . . . , s, _ 1 } is its 
set of fundamental generators. For i I IZ, we identify Bi with the subgroup (s,,, . . . , si_ 1 ) of 
B,. Let ai E Bi denote the central symmetry (= antipodal map of 0 ‘). 

Since the Moebius band procedure & is a functor, the group B, acts on &( On), and on 
&(a 0 “). 

PROPOSITION 4.1. The n-dimensional orbifold &(a 0 “+ ‘)/B,+ I can be identij?ed with Q” 
and xI((A!(aOn+l)) with the kernel of the homomorphism rp,: rcyrb(Q”) -+ B,+ 1 defined by 

CpJri) = si9 Vntei) = 4 

where {rI, . . . . r,, e,, . . . . e,} is the fundamental set of generators for zyrb(Q”). 

Proof: Set 0” = A(~O”+‘)/B “+ 1 and set zi = A(ai), fi = A(si), i = 1, . . . . n. We will 
show: 

(1) the underlying space of 0” is [0, 11”; 
(2) & and ?i act locally as reflections on A(3 0 ‘+ ’ ) and the image of the fixed point set 

of & (resp. ?i) in [0, 11” is L, (resp. R,). 

From (2), it follows that the projection _k!(aCl”+ ‘) --+ 0” is the orbifold covering 
corresponding to the homomorphism 

defined by i&,(8) = ai, Gn(fi) = Si. Moreover, since _#(aOn”) is a manifold (viewed as an 
orbifold with all local groups trivial), @,, induces an injection on the local groups of 0”. In 
particular, on a codimension two face, the local group maps isomorphically to a dihedral 
subgroup of B,, 1 whose order determines the label on the face. For example, the local 
group on Ri n Ri + 1 is the group generated by ?i and ?i + 1 which maps isomorphically onto 

<si~si+l)=D~CB”+l so this face has label 3. Similarly, Ri n Lj, i # j, has local group 
isomorphic to (si, aj) = 212 x H/2 c B,+ 1 and hence is labeled 2, and so on. Thus 0” can 
be naturally identified with Q” and iJ,, with (P,,. 
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It remains to check (1) and (2). We do this by induction on n. For n = 1, 

A(C302) = d02, &Y(q) = a, = so, A(Q) = s1 

so (1) and (2) are immediate. 
Suppose n > 1. First note that since B,+ 1 acts transitively on top-dimensional faces of 

8 q “+ 1 and the stabilizer of such a face is B,, the natural map 

_M(O”)/B,+ JY(ao”+l)/B,+, = Q”” 

is a homeomorphism on underlying spaces. By definition, 

%A(o”)=&Y(ao”)X[-1,1]/(r) 

wherer=a,xr~B,xH/2(and where t:[-l,l]-+[-l,l] isdefined byt(x)= -x). It 
follows that 

A!(O”)/B” = A@O”)/B” x [- 1,1]/(2/2) 

con-lx J 

where J = [ - 1, l-J/(2/2) = [0, 11, viewed as an orbifold. By induction, the underlying 
space of on-l x J, and hence of Q”“, is [0, 11”. 

To verify (2) we compare Q”‘- ’ x J with Q”” as orbifolds. The former is an orbifold with 
boundary (where IY(Q”~- ’ x J) = on-’ x { 1) = R, and where the local group is trivial on 
this boundary). On the other hand, in Q”“, R, is a mirror. To see this, note that the element 

%lOf&I+1 takes one top-dimensional face of 8 0 “+ ’ to an adjacent one, fixing pointwise an 
(n - 1)-dimensional face q “- ‘. It follows that A&) acting on A(3Ci”+‘) takes one copy 
of A( Cl”) to another, fixing their intersection A(On-‘). The image of A(Cl”- ‘) in 0” is 
precisely R,, so we conclude that in Q”“, R, is a mirror with corresponding reflection A(s,). 

For a point x in Q”“- ’ x J not on the boundary, the local structure for x in Q”“-’ x J is 
the same as its local structure in 0”. Thus by induction, for i = 1, . . . . n - 1, Li and Ri are 
mirrors with corresponding reflections A(si) and A(ai). The face L, is also a mirror of 
on- ’ x J with reflection given by id x t. Since r acts on A’(80”) x [ - 1, l] via .&(a,) x t, it 
follows that on M(Un) = A(aU”) x [- 1, l]/(r), the action of id x t is the same as the 
action of _M(a,) (which by definition is induced by the action of &(a,,) x id on _M(aCl”) x 

c- 1, 11). n 

In Section 2 we showed that (A,)“-’ is a group of natural transformations of the 
product with interval functor Xn. Thus, if G is any group of symmetries of an n-dimensional 
cell complex K, then G x (A,)“-’ acts on Y”(K). 

By an argument entirely similar to the proof of the previous proposition we get the 
following. 

PROPOSITION 4.2. Let IS”+ ’ be a simple regular (n + 1)-cell and let W(cf” ’ ) be its symmetry 

group. The n-dimensional orbifold 9~(&s”+ ’ )/( W(tf’+ ‘) x (A, )“- ‘) can be identijied with Q” and 

q(9”(&““)) with the kernel ofu homomorphism q:zyb(Q”)+ W(a”+‘) x(Al)“-’ given by 

the formulas 

q(ri) = si, 1 I i I n 

q(fi) = ti_1, 2 I i I n 

CPVI) = so 
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where {rI, . . . . I,, et, . . . . e,}, {so, . . . . s,,), and {tI , . . . , t, _ 1 } are the fundamental generating sets 
for the Coxeter groups I$~(Q”), W(a”+‘), and (A,)“-‘, respectioely. 

The following two corollaries now follow from the discussion at the beginning of this 

section. 

COROLLARY 4.3. Let q ” be an n-cube and 19 any simple regular n-cell. If n 2 4, then the 

fundamental groups of the manifold _&(a0 “) and yn_ I(aa”) are never word hyperbolic. 

COROLLARY 4.4. Let P be a cubical complex of dimension at least 4. Then z1 (A(P)) is not 

word hyperbolic. Similarly, if P is cubical or simplicial of dimension 24 and 

n 2 sup(4, dim P}, then zl(&(P)) is not word hyperbolic. 

5. CUITING OPEN A MANIFOLD ALONG A SYSTEM OF SUBMANIFOLDS 

Definition 5.1. Suppose that M” is a smooth manifold and that g = { &, . . . . yk} is 

a collection of codimension one submanifolds of M” which intersect transversely. Then we 

say that g is a system of codimension one submanifolds. The system g is two-sided if each q is 

two-sided in M. If a finite group G acts on M and if u x is a G-stable subset of M, then the 

system g is called G-stable. 

Example 5.2. Let T” denote the n-torus, i.e. the n-fold Cartesian product of a circle. Let 

q denote the codimension one subtorus defined by setting the ith coordinate equal to 1. 

Then 5 = {T,, . . . . Tn} is a two-sided system of submanifolds of T”; we shall call it the 

standard system of subtori. 

Suppose g = {Y,, . . . . yk} is a system of submanifolds of M. For each subset J of 

(1, -1.1 k}, put 

rJ=nI;. 
jeJ 

It is a smooth submanifold (possibly empty) of codimension lJ 1 in M (where )J 1 = Card(J)). 

Suppose that M is oriented and that g is two-sided. If we choose a “side” of each & (i.e. 

a section of the normal SO-bundle of X in M), then there is an induced orientation on each 

Y J. 

LEMMA 5.3. (a) Suppose that 97 = { Y,, . . . . K} is a two-sided system of codimension one 

submanifolds of a smooth manifold M”. Then there is a smooth map cp : M” -+ T” such that g is 

the transverse inverse image of the standard system of subtori in T”. 

(b) Suppose further that M” is closed and oriented and that & n & ... n Y, is a single point 

y.ForeachsubsetJc{l,..., n}, let yJ denote the component of YJ which contains y. Then for 

each J, the map cp ( FJ : FJ + TJ is degree one (her a convenient choice of sides). In particular, 

cp is degree one. 

Proof Choose tubular neighborhoods Ai: x x [w + M”. We may assume that 2.i takes 

(x n 5) x R into rj for j # i. The Pontryagin-Thorn construction applied to the framed 

submanifold x yields a map (pi:M”-,S’ with 47-i(l) = x. Then 

cp = (~1, . . ..&.M” + T” is the map described in (a). To prove (b) we suppose that 

Y, n ... n K = {y}. Then e = (l,..., 1) is a regular value of cp and q.‘(e) is a single point, 

namely y; hence deg(cp) = f 1. If we arrange our orientation conventions properly, then the 

degree is + 1. Similar remarks apply to each cp 1 g : g + TJ. n 
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Suppose that M” is a smooth manifold and that Yn-r is a smooth submanifold of 
codimension one. To cut M open along Y one removes Y and replaces it by the normal 
SO-bundle of Y in M. The result is denoted by M 0 Y. It has the natural structure of 
a smooth manifold with boundary; its interior is M - Y; its boundary is the normal 
SO-bundle of Y. There is a natural projection n: M 0 Y-+ M which is a homeomorphism 
on M - Y and the projection map of the SO-bundle on the boundary. If we wish to iterate 

this process, then we should allow M” to be a smooth manifold with corners and Y”-’ 
a smooth submanifold with corners in the sense that it intersects each codimension 
i stratum of M in a codimension i stratum of Y. If this is the case, then M 0 Y will again be 
a smooth manifold with corners. 

If g = (y,,..., yk} is a system of codimension one submanifolds of M, then one can 
iterate the above cutting-open construction to obtain a smooth manifold with corners 

together with a projection map n : M 0 % + M. If y is a generic point of YJ (i.e. if y does not 

belong to x for i#J) then I~-‘(y)l = 2”‘. 

Example 5.4. If we cut open the n-torus along the standard system of subtori we obtain 
the n-cube 0 “; moreover, rc : 0 ” + T” is the standard quotient map. 

Remark 5.5. If a finite group G acts smoothly on M and stabilizes ?V, then there is an 
induced G-action on the cut-open object M 0 ?V. 

We suppose for the remainder of this section that C!V = { Y, , . . . , Y,} is a two-sided system qf 
codimension one submanifolds in a closed manifold M”. The manifold with corners M 0 ?V 
then has a “face structure” which is combinatorially that of an n-cube. We make this precise 
below. 

For each subset J of {l,..., n} there is a two-sided system 3” of submanifolds in 
G defined by 

% = l&n Y)i$J. 

(When J is a singleton, say { j}, we shall write gj instead of ?V{j} .) 
Foreachi,i= l,..., n, choose a section si of the normal SO-bundle of x in M. Denote the 

corresponding COPY of x 0 gi in n- l(x) by a,i, + i)( M 0 ZV); the other copy is denoted by 
a,i, _ r,(d 0 CV). For an arbitrary subset J of { 1, . . . , n}, n- ’ (5) consists of 2”’ copies of 
Y, 0 gJ indexed by functions E : J + { ) l}. Such a copy is denoted &,,,,(M 0 g) and 
defined by 

&,&A 0 g) = n a(j,E(j))(d 0 W. 
jeJ 

It is called a face of & 0 C!J of codimension 1 J I. Here we allow J = 8, so that JZ 0 ?? is the 
codimension 0 face of itself. A face can be empty and it need not be connected; however, 
a face of codimension L’ is a union of codimension e strata in the manifold with corners 
structure on 4 0 CV. 

In the next lemma we record the fact that the faces of M 0 ?V have the same index set as 

do the faces of 0”. 

LEMMA 5.6. The faces of M 0 CV are indexed by pairs (J, E) where J is a subset of { 1, . . . , n> 
and E : J -+ { f l} is a function. Hence, the poset of nonempty faces of M 0 (?V can be identijied 
with a subset of the poset of faces of the n-cube •i *. 
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LEMMA 5.7. Suppose that Y, n ..a n Y, is a single point y. For each i, let I(i) = 

{l,..., n} - (i} and let Si denote the component of the one-dimensional intersection Yl(i, which 
contains y. 

(1) U Si is a bouquet of circles and 71-l (U Si) is isomorphic to the l-skeleton of 0”. 

(2) For anyface F = ~3(~,~,( M 0 CV), all 0-dimensionalfaces of F lie in a single component 
F. In particular, x- l(y) is contained in a single component of M 0 g. 

Proof: Since M is closed, Si is a closed l-manifold; hence, a circle. Since Si n Sj = { y} if 
i #j, it is clear that U Si is a bouquet of circles. Call the points of 6 ‘(y) vertices. They are 
indexed by functions E : (1, . . . , n} + { + l}. Let u, denote the vertex corresponding to E. Let 

Ei be the function defined by Ei( j) = (- l)“i~. A component of n-l (Si) is an edge connecting 
two vertices and for any E there is such an edge connecting u, and uEiE. This proves (1). 

Statement (2) follows easily. n 

LEMMA 5.8. Suppose that Yl n .‘. n Y, is a single point y. Suppose further that M is 
connected and that there are nontriuial commuting involutions rl, . . . , r,, on M (generating an 
action of G = (Z/2)“) such that & is contained in thejixed point set Ri of ri and such that 
G stabilizes g. Then M 0 g is connected. 

Proof: Let U = M - u x denote the interior of M 0 g. We must show that U is 
connected. Put W = M - U Ri. Since W is open and dense in U, rcO( W) + Q(U) is onto. 
Let p: M + M/G be the projection. Since M is connected, so is M/G. Since p(Ri) cannot 
disconnect M/G locally, p(W) is connected. Choose a vector in T,M not tangent to any 
Ri and use it to push y into W. Call the resulting point w. Since G acts freely on W, 
p 1 W: W-+ p(W) is a 2”-sheeted cover and each component of Wcontains at least one point 
in Gw (the G-orbit of w). Hence, each component of U contains at least one point in Gw. By 
Lemma 5.7(2), z- ’ (y) is contained in a single component of M 0 g; hence, Gw is contained 
in a single component of U. Therefore, U (and consequently M 0 g) is connected. n 

In Lemma 5.3 we produced a map cp: M”-, T”. This map is compatible with the 
cutting-open operation; hence, we get a map from M Q g to 0 “. This gives us the following 
lemma, the proof of which is left to the reader. 

LEMMA 5.9. (a) There is a smooth face-preserving map f: M 0 g + q ” (in fact, unique up 
to homotopy through such maps). 

(b) Suppose that M is closed and oriented and that & n ... n x is a single point y. Let 
F be a k-dimensionalface of M 0 g and F” the distinguished component of F containing y (as in 
Lemma 5.7(2)); then f) F”: F”+ q ik is degree one (and the other components are mapped by 
degree zero maps). 

If M has a Riemannian metric, then there is an induced Riemannian metric on M 0 g. 
In the next lemma we record two elementary observations. 

LEMMA 5.10. Suppose M is a Riemannian manifold and that g is a system of codimension 
one submanifolds. 

(1) Zf each q is totally geodesic in M, then each face of M 0 g is totally geodesic. 
(2) If G is ajinite group of isometries of M stabilizing g, then G acts isometrically on 

MO?_V. 
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6. A HYPERBOLIC MANIFOLD WITH A SYSTEM OF TOTALLY GEODESIC SUBMANIFOLDS 

Recall that B, denotes the symmetry group of the n-cube. It has a standard orthogonal 
action on [w” generated by all permutations of coordinates and sign changes. The sign 
changes are generated by involutions Ti, i = 1, . . . . n, where ri denotes the linear reflection 
across the hyperplane xi = 0. 

Our goal in this section is to prove the following theorem. 

THEOREM 6.1. For each n > 0, there is a closed, connected hyperbolic n-manifold M”, 
asystem = (Y,,..., Y,} of closed, connected submanifolds of codimension one in M”, and an 
isometric action of B, on M”, stabilizing 9, such that the following properties hold: 

(1) x is a component of the fixed point set of ri on M”. 
(2) Each x is totally geodesic in M”. 
(3) The x’s intersect orthogonally. 

(4) r, n ‘.. n Y, is a single point y. 
(5) B, fixes y and the representation of B, on TyMn is equivalent to the standard 

representation. 
(6) M”, as well as each x, is orientable. 

If we put 

X”=M”a% 

then the lemmas of Section 5 gives us the following corollary. 

COROLLARY 6.2. For each n > 0, there is a compact, connected, orientable hyperbolic 
n-manifold with corners X” together with an action of B, on X” by isometries so that the 
following properties hold. 

(1) The poset of faces of X” is B,-equivariantly isomorphic to the poset of faces of 0 “. 
(2) Each face of X” is totally geodesic. 
(3) The faces of X” intersect orthogonally. 
(4) Each O-dimensional face is a single point (i.e. X” has precisely 2” vertices). 
(5) The map f : X ” + 0” of Lemma 5.9 is degree one as is its restriction to each face of X “. 

Remark. In this corollary the meaning of the word “face” is as in the previous section: 
a k-dimensional face of Xn is a union of k-dimensional strata. In particular, a face need not 
be connected. Statement (4) asserts that each O-dimensional face is connected; however, in 
general we do not know if it is possible to find such X” with all faces connected. 

Proof of Corollary 6.2. It follows from Lemma 5.8 that X” is connected. It is compact 
and orientable since M” is. The B,-action on M” lifts to one on X” (cf. Remark 5.5). 
Statements (2))(4) follow, respectively, from parts (2)-(4) of Theorem 6.1. Statement (1) 
follows from (4) and Lemma 5.6. Statement (5) is just Lemma 5.9(b). n 

Remark. In dimension 3, it follows from the work of W. Thurston (his geometrization 
theorem for orbifolds) that there are lots of examples of such X 3. 

All known methods for constructing closed hyperbolic manifolds in arbitrary dimen- 
sions involve the arithmetic of quadratic forms, e.g. see [14, 18, 191. Our construction of M” 
involves such a standard procedure. 
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_ 
Let K = Q(Jd) be a totally real quadratic extension of the rationals and let A denote 

the ring of algebraic integers in K. Denote the automorphism of K induced by J’li -+ - $ 
by a + E. Choose E in A so that E > 0 and F -=z 0. Define a symmetric bilinear form on A”’ i 

by 

yh, ej) = 

i 

6,; 0, j) # (0.0) 
-4; (i,j) = (0,O) 

where eo, el, . . . . e, is a basis for A”+ ‘. The isometry group of c;o will be denoted by O(c;o). 

The form tp induces a symmetric bilinear form rpoa on A”+’ @ BB = UP+’ of signature 
(n, 1). The associated quadratic form is 4(x,, xi, . . ..x.) = --am + (x~)~ + **- + (x,J2. 
The hypersurface S in I%“’ ’ defined by q(x) = - 1 is a two-sheeted hyperboloid. The 
positive sheet defined by x0 > 0 is hyperbolic n-space W”. The form rpn induces a Rieman- 
nian metric on W” of constant sectional curvature - 1. 

The isometry group of cpu can be identified with the Lie group O(n, 1). There are index 
two subgroups 

SO&, 1) = (gEO(n, l)ldet(g) = l> 

and 

Qo& 1) = (9 EW, 1) I4dw0, e0) < 01. 

The group O(n, 1) acts on the hypersurface S and Oo(n, 1) is the subgroup which preserves 
the sheets. In fact, O,,(n, 1) is the full group of isometries of the Riemannian manifold U-U”. 
(Since the central element - 1 of O(n, 1) reverses the sheets we can also identify the isometry 
group of I-O” with PO(n, 1) = O(n, l)/{ + l>.) The identity component of SO(n, 1) is 

SO& 1) = SO@, 1) n O&t, 1). 
The group O(q) is naturally a subgroup of O(n, 1). It follows from the assumption that 

L < 0 that O(rp) is discrete and cocompact in O(n, 1) (e.g. see [14, 2.2 and 2.31). Thus, 
O(&/( f l> is a discrete group of isometries of I-0” with compact orbit space. 

We can identify B, as a subgroup of O(q) generated by all permutations of el , . . . , e,, and 
reflections ri, i = 1, . . . . n, where ri is the reflection which sends ei to -ei and fixes the 

orthogonal complement to et. Thus, B, fixes the vector eo. 
Fori = l,..., n, let Pi denote the intersection of the orthogonal complement of ei in I?‘+ ’ 

with HI”, that is, Pi is the hyperplane in I-I” defined by 

Pi= fXEW”IXj=O)* 

Then P, n ma+ n P,, is a single point p, where p = (l/G, 0, . . . , 0). The group B, fixes p and 
acts on T’W” via the standard representation. 

We suppose from now on that I is some torsion-free normal subgroup of O(q). We put 

M” = I-P/I-. 

Then M” is a closed, connected hy~rbolic manifold. Let a: W” + M” be the covering 
projection and put 

& = n(Pi) 

Y = n(p). 

Since B, normalizes r, it acts via isometries on M”. 
In the following lemma we prove a large part of Theorem 6.1. (Only statements (4) and 

(6) of Theorem 6.1 are missing; (4) is replaced by the weaker (4)’ in the lemma.) 
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LEMMA 6.3. Let r be any torsion-free subgroup of O(q). Let M” = W”/T and CV = 

{Y,,..., Y,}, where the x are as above. Then Oy is a system of closed, connected submanifolds of 
codimension one in M” such that the following properties hold: 

(1) x is a component of the fixed point set of ri on M”. 
(2) Each x is totally geodesic in M”. 
(3) The q’s intersect orthogonally. 
(4)’ Y,n... n Y” is a finite set which contains the point y. 
(5) B” fixes y and the representation of B” on TyM” is equivalent to the standard 

representation. 

Proof Each &, being the image of a connected space, is connected, and q is clearly 
contained in the fixed set of ri. Since the fixed set of any smooth involution is a submanifold, 
it follows that each & is an embedded submanifold and a component of the fixed set of ri. 
Thus, g is a system of closed, connected, codimension one submanifolds. Since ri is an 
isometry, (2) holds; since the ri commute, (3) holds. Statements (4)’ and (5) are 
obvious. n 

Hence, it remains to verify properties (4) and (6) of Theorem 6.1. With regard to (6) the 
following result is immediate from the fact that SOO(n, 1) is connected. 

LEMMA 6.4. Suppose that I- is as in Lemma 6.3 and that r c SO,(n, 1). Then M”, as well 
as each Y, is orientable. 

We now focus on property (4) of Theorem 6.1. Suppose that z E Y, n ... n x and that 2 is 
a lift of z to W”. We seek a condition on I which will insure that z = y, i.e. that z” = yp for 
some y E I. Let yi in I be such that yiPi is the component of x- r(x) which contains .?. Since 
the vector ei is a unit normal to Pi, yiei is a unit normal to YiPi. Since the YiPi intersect 

orthogonally at F, we have that 

q(Yiei, yjej) = 6ij, 1 I i,j I n. 

Hence, (ytel , . .., y”e”) is an orthogonal basis for a sublattice L of A”+i. Moreover, L is 
equivalent to (1) I a.. I (1) where (a) denotes the one-dimensional lattice generated by 
a basis vector of norm a and where -L denotes orthogonal direct sum. It follows that A “+ ’ is 
the orthogonal direct sum of L and its orthogonal complement L’ and that L’ z (--E). 
Hence, there is a vector in A “+ 1 orthogonal to L and of norm -E. The only possibilities are 

+e,wheree=&i.Let[e,y,e, , . . . , y”e”] denote the (n + 1) by (n + 1) matrix with column 

vectorse, ylel, . . . . y”e”. Since {e, y1 e, , . . . , y”e”} is an orthogonal basis for A”+ ’ with respect 

tocp,thematrix[e,y,e, ,..., ” ” y e ] lies in O(q). Since it maps e. to e, it takes p = (l/&)eo to 

Z = (l/&)e. 

LEMMA 6.5. Let r be a normal, torsion-free subgroup of O(cp). With notation as above, the 
following statements are equivalent: 

(i) Yr n ... n x = {y}. 

(ii) Given any n-tuple (yI, . . . . y”) in r x ... x r such that ylPl n ... n y”P” is nonempty, 
there is an element y in r such that ylPl n ... n y”P” = y(P1 n ... n P”). 

(iii) Given any n-tuple (yI, . . . . y”) in r x ... x r such that q(yiei, yjej) = 6ij, 1 I i,j I n, 
one of the two matrices [ + e, yl el , . . . . y”e”] lies in B”T. 
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The lemma is obvious. Perhaps the only point which needs comment is the appearance 
of the group B, in statement (iii). The reason is that in passing from (ii) to (iii) there is no 
reason to choose ei as the unit normal to Pi rather than - ci. Similarly there is no preferred 
ordering for { yiei , . . . , y,,e,,}. These sign changes and permutations of coordinates are 
accounted for by B,. 

We remark that if there is an element y in I such that [ + e, yi ci, . . . , ynen] = by, for some 
b E B,, then y is unique. For if bI y1 = bzyz, then y1 yz - 1 E B,. Since I is torsion-free, it follows 
that yr y;r = 1. 

It turns out that Lemmas 6.4 and 6.5 can be used to complete the proof of Theorem 6.1 if 
we choose I to be an appropriate congruence subgroup of O(q). 

Let p be a prime ideal in A. Then A/p is a finite field and the form cp induces 
a nonsingular bilinear form ‘p,, on (A/p)“+‘. Its isometry group O((pp) is finite. The kernel of 
the natural projection I : O(q) + O((p+,) is denoted by I(p) and called a congruence subgroup 
of O(q). It is, of course, normal and of finite index in O(q). Moreover, if 1 pi is sufficiently 
large, then I(p) is torsion-free. More generally, if 3 is any nonzero ideal in A, then 

I(Y) = {y~O(cp)ly = l(modY)} 

is also called a congruence subgroup. 

LEMMA 6.6. Let r be any torsion-free congruence subgroup of O(q). Then Y, n .‘. n G is 
a single point. 

Proof Suppose I = I(N). Using Lemma 6S(iii) we consider an n-tuple (yi, . . . , y.) 
where yi E I and q(Yici, yjcj) = 6ij. Since Yi E I, yiei E ci (mod f). Hence, the vector e, which 
generates the orthogonal complement to the lattice spanned by yiei , . . . , yn e, , satisfies 
e = +ec(modY). Therefore, either the matrix Y+ = Cc ylel, . . ..ynenl or 
y_ = [-e,y,e, ,..., ynen] lies in r. n 

To complete the proof of Theorem 6.1 we need to show that we can find a congruence 
subgroup which is contained in SO,(n, 1). Any g E O(n, 1) has det(g) = f 1. If y E I(p), then 
det(l(y)) = det(1) = 1 E A/p. Hence, det(y) 3 1 (mod p). If 2$ p, then + 1 and - 1 are not 
congruent modulo p and so this forces y to lie in SO(n, 1). The problem of insuring that 
a congruence subgroup is contained in the identity component of SO(n, 1) is subtler, but it 
has been solved in [19, Proposition 4.1, p. 1203. 

LEMMA 6.7 (Millson-Raganuthan). There is an ideal 9 in A, which is a product of 
(finitely many) suitably chosen relatively prime ideals, such that the congruence subgroup 
r(9) is contained in SO&, 1). 

For the reader’s convenience we sketch a proof, which was explained to us by G. Prasad. 
First we need to recall the notion of the “spinor norm”. Suppose that cp is an m- 

dimensional quadratic form over a field K, and denote the associated symmetric bilinear 
form Km x Km + K by (v, w) -+ v. w. If v E K” is any vector of nonzero norm (i.e. if v. v # 0), 
then orthogonal rejlection with respect to v is the isometry rv of cp defined by 

r,(x) = x - [2(x * v)/(v v)] v. 

According to [lo] any isometry geO(cp; K) can be written as a product of orthogonal 
reflections g = rv, “‘r”,. The spinor norm pK(g) is defined to be the image of the product 
cp(vl)~~~cp(v,) in K*/(K*)‘. It turns out that p,:SO(cp; K)+ K*/(K*)* is a well-defined 
homomorphism. We note that the abelian group K*/(K*)2 is 2-torsion. 
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For example, if K = [w, then (rW*)2 consists of the positive reals and, hence rW*/(rW*)’ is 

cyclic of order two. The kernel of pn: SO@, 1) + Z/2 is obviously SO&, 1). 

Proof of Lemma 6.7. Let K = Q (,,h) and let cp be the quadratic form on A “+ ’ defined 
after Corollary 6.2. We shall show that there is an ideal 9 such that I($) is contained in the 
kernel of pK : SO(q) + K */(K *)2. Since the kernel of pK is contained in the kernel of pn this 
will complete the proof. The key observation is that the group SO(q) is finitely generated. 
(The reason is that W 2/SO(q) is compact.) Hence, pK takes SO(q) onto a finitely generated 
subgroup J of K*/(K*)2 (J z (Z/2)m for some m). 

Since SO(q) is finitely generated, we can find a finite set of vectors I’ in K”+l so that 

every element of some generating set for SO(q) can be written as a product of orthogonal 
reflections with respect to vectors in I’. Clearing denominators, we can assume V c A”+l. 
For a given UE V, q(u) is a unit except at finitely many places, i.e. Icp(u)l, = 1 except for 
finitely many places p. Hence, we can find a finite set of places S so that cp is nonsingular 
modulo primes outside of S and so that 1 (p(u)/,, = 1 for all u E I’ and p # S. For a prime ideal 
p of A, let k, denote the residue field Atp)/~A(p,. For primes not in S, the spinor norm 
descends to k,. (In other words, if ‘pp denotes the quadratic form on k:“induced by cp and 
if, for g E SO(q), gp denotes the element of SO(cp,) obtained from g by reduction mod p, then 
pk,(gp) equals the image of pK(g) in kp* read modulo (kp*)2.) 

By the Cebotarev density theorem, given any x E A* - (A*)2, x is not a square modulo 
p for half the primes outside of S. Hence, choosing a representative x E A* for each generator 
of J, we can pick a prime ideal px such that x is not a square in kPx. Taking 9 to be the 
product of the px we will then have that F(9) c kerp,. n 

7. CONVERTING A CUBICAL EUCLIDEAN CELL COMPLEX INTO A PIECEWISE HYPERBOLIC 

POLYHEDRON 

Recall from Section 2 that 98” is the category of piecewise Euclidean polyhedra of 
dimension I n. Let 9’%n denote the category of piecewise hyperbolic polyhedra of dimen- 
sion < n. Morphisms in both categories are isometries onto totally geodesic subcomplexes. 

Let X” be the hyperbolic n-manifold with corners constructed in Corollary 6.2. 

PROPOSITION 7.1. Suppose that K is a cubical Euclidean cell complex of dimension <n (cf 
Definition 1.1). Then there is a piecewise hyperbolic polyhedron Kx and a map q : Kx + K such 
that the following properties hold: 

(1) For each k-cell 0 k in K, q- ’ (0 k, is isometric to a k-dimensional face of X”. 
Furthermore, if J is any subcomplex of K, then q-‘(J) is isometric to Jx. 

(2) The directions normal to q- ‘( Ok) naturally form a piecewise spherical polyhedron, 
denoted Link (q- ‘( 0 k), K,), and this polyhedron is isometric to Link( 0 k, K). 

(3) The construction of Kx from K defines a functor from 98” to 9%‘“. In particular, it 
takes totally geodesic subcomplexes to totally geodesic subcomplexes. 

(4) The map q induces a surjection on homology. 
(5) If K has curvature 10, then Kx has curvature I - 1. 

Proof The polyhedron K can be constructed as a quotient space of a disjoint union 
Z? of copies of standard Euclidean cubes. Such a standard cube may be viewed as a face of 
a fixed n-cube 0 “. The equivalence relation on i is defined by identifying various faces via 
isometries viewed as elements of B,. By Corollary 6.2(l), the poset of faces, of X” is 
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B,-equivariantly isomorphic to the poset of faces of Cl”. To construct K, one replaces each 
k-cube in i by the corresponding k-face of X “. Call the resulting disjoint union ix. To each 
isometry in the equivalence relation on Z? the associated element of B, gives an isometry 
between the corresponding faces of X”. By definition Kx is then the quotient space of I?x by 
the resulting equivalence relation. The map q : Kx + K is then defined on each face of Kx via 
the mapfof Corollary 6.2(5). Statement (1) is now obvious. Sincef: X” + Cl” is degree one 
on each face, statement (4) follows as in [9, Section Id, p. 3543. Since the faces of X” 
intersect orthogonally, the link of a face of X” in X” is isometric to the link of a face of Cl” in 
0”. Statement (2) follows. Statements (3) and (5) follow from (2) and Theorem 1.6. H 

Dejinition 7.2. Suppose that K is a cubical cell complex of dimension 5 n. A projection 
to 0 ’ is a cellular map p : K + 0” such that the restriction of p to any cell is a combinatorial 
isomorphism. 

If K admits a projection to Cl”, then the piecewise hyperbolic polyhedron Kx of the 
previous proposition can be obtained as a fiber product: 

That is to say, Kx can be identified with the subspace of K x X” consisting of all (k, x) such 
that p(k) = f(x). 

PROPOSITION 7.3. Suppose that K is a cubical cell complex homeomorphic to a smooth or 
PL manifold (i.e. K is a smooth or PL “cubization” of a manifold). Suppose further that 
K admits a projection p : K + 0”. Then: 

(1) Kx is embedded in K x X” with trivial normal bundle. 
(2) The rational Pontryagin classes of Kx are the pullbacks (via q) of those of K. 

Proof: The proof of (1) is similar to that of Propositions (lf.3) and (lf.5) in [9, p. 3571. 
(These propositions are the PL and smooth cases, respectively.) For example, in the smooth 
case the argument goes as follows. Viewing I7 ” as [0, 11” c Iw”, the space Kx is the inverse 
image of 0 E [w” under the map $ : K x X” + R” defined by (k, x) + p(k) -f(x). Assuming, as 
we may, that f is transverse to each face of El”, we have that 0 is a regular value of $; 
statement (1) follows. Statement (2) follows from the fact that the rational Pontryagin 
classes of any hyperbolic manifold (e.g. M” or X”) are trivial together with the Whitney 
product formula. H 

QUESTION 7.4. Can weJind a stably parallelizable X” in each dimension n? (Sullivan [22, 
p. 5533 has shown that any hyperbolic manifold isJinitely covered by a stably parallelizable 
mantfold.) 

We can apply the above construction to the result of a (nonstrict) hyperbolization 
procedure. For our purposes the most useful procedure is the second construction of 
Gromov [12, p. 1161 which is described in detail in [9, Section 4c]. For the reader’s 
convenience we shall briefly recall this construction below. 

Gromov’s second construction: As in Section 2, let %” be the category of cell complexes of 
dimension < n and let %zrnp be the full subcategory of %?” consisting of simplicial complexes. 
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We shall define a hyperbolization functor ‘9,, from %Ziimp to 9V,, satisfying conditions (l)-(6) 

of Section 2. We first define the hyperbolization of an n-simplex $(A”) and a map 
$(An) -+ A”. One then defines 9”(K) as the fiber product 

where K’ denotes the barycentric subdivision of K and p the natural projection. The 
definition of the hyperbolized simplex 9(A”) is by induction on n. Put Y(A’) = A’ = [0, 11. 
Assuming $9” _ 1 (aA”) has been defined, we form ‘?&(A”) by taking a reflection on aA” and 
then gluing the ends of 9&,_ i(aA”) x [ - 1, l] together along a “half-space” for the induced 
reflection on 4_ 1 (aA”). Alternatively, ??&(A”) can be viewed as +9_ I @A”) x S ’ cut open 
along the half-space. Each hyperbolized simplex %“(A”) has a natural structure of a cubical 
Euclidean cell complex and this induces such a structure on 3”(K). (We assume, by 
induction, that gn,- 1 (aA”- ‘) has a cubical structure. Then 9JA”) inherits a cubical structure 
from ‘9- i(aAn-‘) x [ - 1, l] where [ - 1, l] is subdivided into two unit intervals.) 

LEMMA 7.5. There is a projection p,, jiom C!?,,(K) to 0”. 

Proof It suffices to define p.: %,,(A”) + 0” and then compose with the canonical map 
‘$(K) + 9&(A”). Identify S’ with [ - 1, l] with endpoints identified and let 1: S’ -+ [0, l] be 
the map induced by t + 1 t I. We may inductively assume that pn _ 1 : 29” _ 1 (aA”) --f 0 “- ’ is 
defined. The pn is defined to be the map induced by pn_ I x I : G, _ r (aA”) x S1 + 0 “- ’ x 
[O, l] = 0”. n 

Strict hyperbolization: Combining the two constructions above, we define a functor 
9& from %?tmp to YXl, by 

%X(K) = V%(K)),. 

The next theorem follows immediately from Propositions 7.1 and 7.3. 

THEOREM 7.6. There is a strict hyperbolization jiunctor C!& from YfmP to Y& satisfying 
conditions (l)-(5) and (6)’ of Section 2. 

If Question 7.4 can be answered affirmatively then condition (6) of Section 2 also holds. 

THEOREM 7.7. Any triangulable manifold is cobordant to an triangulable manifold of 
strictly negative curvature. 

Proof The proof is the same as in [21, Section 4.31. Let K be a triangulation of the given 
PL-manifold. Let f denote K x [0, l] with the cone on K glued on to K x 0. Applying the 
functor &, there is a unique vertex v0 = gX(x,,) of ‘?&(K”) corresponding to the cone point 
x0 of K”. The link of v,, in gX(K”) is PL-homeomorphic to the link of x0 in K”, namely K x 0. 
Thus, removing a neighborhood of v. gives the desired cobordism from K x 0 to 

F&(K x 1). n 
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