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I. CAT(0)-spaces and polyhedra

Roughly, a space which is “nonpositively curved” and simply

connected.

C = “Comparison” or “Cartan”

A = “Aleksandrov”

T = “Toponogov”



Some definitions. Let (X, d) be a metric space. A path

c : [a, b]→ X is a geodesic (or a geodesic segment) if

d(c(s), c(t)) = |s− t| for all s, t ∈ [a, b].

A geodesic ray c : [0,∞) → X is similarly defined. (X, d) is a

geodesic space if any two points can be connected by a geodesic

segment.

The CAT(κ)-inequality. For κ ∈ R, X2
κ is the simply connected,



complete, Riemannian 2-manifold of constant curvature κ:

• X2
0 is the Euclidean plane E2.

• If κ > 0, then X2
κ = S2 with its metric rescaled so that its

curvature is κ (i.e., it is the sphere of radius 1/
√

κ).

• If κ < 0, then X2
κ = H2, the hyperbolic plane, with its metric

rescaled.



A triangle T in X is a configuration of three geodesic segments

(the “edges”) connecting three points (the “vertices”) in pairs.

A comparison triangle for T is a triangle T ∗ in X2
κ with the same

edge lengths.

A metric space X satisfies CAT(κ) (or is a CAT(κ)-space) if the

following two conditions hold:

• If κ ≤ 0, then X is a geodesic space, while if κ > 0, it



is required there be a geodesic segment between any two

points < π/
√

κ apart.

• (The CAT(κ) inequality). For any triangle T (with l(T ) <

2π/
√

κ if κ > 0) and any two points x, y ∈ T , we have

d(x, y) ≤ d∗(x∗, y∗),

where x∗, y∗ are the corresponding points in the comparison

triangle T ∗ and d∗ is distance in X2
κ.
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Definition. A metric space X has curvature ≤ κ if the CAT(κ)

inequality holds locally.



Observations.

• CAT(0) =⇒ contractible.

• curvature ≤ 0 =⇒ aspherical.

• Γ acts properly and cocompactly on a CAT(−1)-space =⇒

Γ word hyperbolic.



CAT(0)-polyhedra. Suppose X is a finite dimensional cell com-

plex. Give it a “piecewise Euclidean metric” by declaring each

cell to be a convex cell in Euclidean space and then measure

the length of paths using Euclidean arc length. For example, X

might be a cubical cell cx with each n-cell a regular Euclidean

n-cube of edge length one. (To avoid more hypotheses assume

Isom(X) acts cocompactly.) “Piecewise spherical” and “piece-

wise hyperbolic” metrics are defined similarly.



If v is a vertex of a convex cell, its link is the

{inward-pointing directions at v}. The link, L(v), of a vertex in

X is the union of its links in the cells which contain it. L(v) is

naturally a piecewise spherical cell cx.

Theorem. (Gromov, 1987). A piecewise constant curvature

polyhedron has curvature ≤ κ iff the link of each vertex is CAT(1).

Theorem. (Gromov). A piecewise Euclidean cubical cell cx X

has curvature ≤ 0 iff the link of each vertex is a flag cx..



Definition. A simplicial cx L is a flag cx iff every finite set of

vertices which are pairwise connected by edges spans a simplex

of L.

Remark. The barycentric subdivision of any cell cx is a flag cx.

So, the condition that a polyhedron L be a flag cx places no

restriction on its topology.



II. The visual boundary of a CAT(0)-space

Idea: adjoin a space ∂X of “ideal points” to a complete CAT(0)-

space X obtaining X = X ∪ ∂X. When X is locally compact, X

will be a compactification of X.

Fix a base point x0 ∈ X. Rough idea: X is formed by adding

an “endpoint” c(∞) to each geodesic ray c : [0,∞) → X, which

begins at x0. ∂X is the set of such endpoints.



X has the “inverse limit topology.” Consider the system of closed

balls centered at x0, {B(x0, r)}r∈[0,∞). For each s > r, there is a

retraction ps,r : B(x0, s)→ B(x0, r), defined as the “nearest point

projection.” In other words, if c is a geodesic segment starting

from x0, then ps,r takes c(t) to itself when 0 ≤ t ≤ r and to c(r)

when r < t ≤ s.

X := lim←−B(x0, r).



X ⊂ X and ∂X := X −X.

Example. If X = En or Hn, then (X, ∂X) = (Dn, Sn−1). Same

is true for X the universal cover of any nonpositively curved,

complete Riemannian n-mfld.

Example. If X is a regular tree (valence > 2), then ∂X is a

Cantor set.

Example. If X is the universal cover of a compact hyperbolic



3-mfld with totally geodesic bdry, then ∂X is a Sierpinski curve.

The definition of ∂X can be made to be independent of the

choice of basepoint x0. Define two geodesic rays (with different

initial points) to be parallel (or “asymptotic”) if they remain a

bounded distance apart. We could have defined

∂X = {parallel classes of geodesic rays}.



Problem. ∂X is not a quasi-isometry invariant. So, even if

Γ ⊂ Isom(X) acts cocompactly, ∂X is not an invariant of Γ.

However, if X is CAT(−1) so that (Γ is word hyperbolic), then

it is: ∂X = ∂Γ, where ∂Γ is defined below.

Boundary of a word hyperbolic group Γ. Here is one possible

definition. Let Ω be its Cayley graph. Then

∂Γ := {parallel classes of geodesic rays in Ω}.



Z-sets. A closed subset Y of a compact ANR X is a Z-set if for

every open subset U ⊂ X, the inclusion U−Y ↪→ U is a homotopy

equivalence. Standard example: X is a compact manifold with

boundary and Y is a closed subset of its boundary.

Theorem. Suppose X is a complete, locally compact, CAT(0)-

space. Then ∂X is a Z-set in X.

Theorem. (Bestvina–Mess, 1991). If Γ is word hyperbolic, then

there is a Z-set compactification of its Rips complex X with



X −X = ∂Γ.

So, if Γ is word hyperbolic or if it acts cocompactly on a CAT(0)-

space X, then

H∗c (X) ∼= H∗(X, ∂X) ∼= Ȟ∗−1(∂X) (= Ȟ∗−1(∂Γ) ),

where Ȟ∗( ) means reduced Cěch-cohomology.

CAT(0)-polyhedra with isolated PL singularities. Let X be

a CAT(0) or CAT(−1)-polyhedron.



Theorem. (D. Stone, 1976). If X is a PL n-manifold, then

(X, ∂X) ∼= (Dn, Sn−1).

Suppose that the link of each vertex is a PL (n − 1)-manifold.

Choose a base point x0 /∈ Vert(X). In the next theorem we

consider the inverse system of metric spheres {∂B(x0, r)}r∈[0,∞)

centered at x0.



Theorem. (D. -Januszkiewicz, 1991). Suppose v1, . . . , vm are

the vertices of X which lie in B(x0, r). Then

(i) ∂B(x0, r) = L(v1)] · · · ]L(vm), where ] means connected sum.

(ii) The inverse system of metric spheres is equivalent to the

inverse system {L(v1)] · · · ]L(vm)}, where the bonding maps

are the obvious ones. This gives ∂X = lim←−(L(v1)] · · · ]L(vm)).



Key point in the proof. The link L of any vertex is piecewise

spherical and CAT(1). A metric ball of radius < π in such an L

is contractible. If L is a PL mfld, then such a metric ball is a PL

disk.

Later I will explain how to construct a nonpositively curved, cu-

bical cell complex Y such that the link of any vertex is any given

finite simplicial complex. The construction can be modified to



make the curvature ≤ −1.

For example, we can find such a Y with the link of each vertex

∼= RP2. Taking Γ = π1(Y ) and X = Ỹ , we get:

Theorem. (Bestvina–Mess). There are torsion-free, word hy-

perbolic groups Γ with cdZ(Γ) = 3 and cdQ(Γ) = 2.



Proof. ∂Γ = ∂X is the inverse limit of nonorientable surfaces

of increasing genus (a “Pontrjagin surface”). So, Ȟ2(∂Γ;Z) =

Z/2 and Ȟ2(∂Γ;Q) = 0. Then use the facts that H∗(Γ;ZΓ) =

H∗c (X) = Ȟ∗−1(∂Γ) and cd(Γ) = max{n | Hn(Γ;ZΓ) 6= 0}.

Question. Do there exist torsion free groups Γ with

cdQ(Γ)/ cdZ(Γ) < 2/3?



Next take Y so that the link of each vertex is a PL homology

sphere M with nontrivial fundamental group π. Put Γ = π1(Y ).

Theorem. There are word hyperbolic groups Γ such that 1) Γ is

the fundamental group of an aspherical n-manifold, n ≥ 4, and

2) Γ is not simply connected at ∞. Moreover, ∂Γ is a homology

mfld with the same homology as Sn−1 and it is not locally simply

connected.



Proof. Y is a homology mfld, homotopy equivalent to a mfld.

Since π1(∂B(x0, s))→ π1(∂B(x0, r)) is onto, lim1{π1(∂B(x0, r)} =

0. Since ∂B(xo, r) is a connected sum of copies of M , its π1 is a

free product of copies of π. It follows that

π∞1 := lim←−{π ∗ · · · ∗ π} 6= 0.

So, X is not simply connected at ∞.

Corollary. For n ≥ 4, ∃ aspherical n-mflds not covered by Rn.



Remark. Fischer has studied boundaries of some of these exam-

ples with links PL manifolds. ∂X is often “homogeneous” in the

sense that its homeomorphism group acts transitively.
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III. Constructing examples

A. Cubical complexes with prescribed links. Suppose L is

a flag cx with vertex set S. We will construct a (nonpositively

curved) cubical cx, YL, s.t. the link of each vertex is L. It is

a subcomplex of the cube [−1,1]S. For each simplex σ in L

(including the empty simplex), let �σ := [−1,1]Vert(σ). Put

YL :=
⋃

σ⊂L

faces parallel to �σ.



B. Strict hyperbolization. Given a cubical cx Y , R. Charney

and I showed how to convert it into a piecewise hyperbolic cx,

h(Y ), s.t. the link of each vertex is either one of the original

links in Y or a round sphere. The key idea was the following.

Lemma. (Charney–D., 1995). For each n, ∃ a compact hyper-

bolic mfld with corners Mn s.t.

(i) each stratum of Mn is totally geodesic and

(ii) The poset of nonempty intersections of strata is isomorphic



to the poset of faces of an n-cube.

To construct h(Y ) replace each n-cube of Y by a copy of Mn.

Corollary. Given a flag cx L (with its natural piecewise spherical

structure), ∃ a piecewise hyperbolic, finite cx Z s.t. the link of

each vertex is L (or a round sphere). Hence, Z has curvature

≤ −1 and π1(Z) is word hyperbolic.



More references

Charney–Davis, Strict hyperbolization, Topology, 1995.

Davis, Groups generated by reflections and aspherical manifolds

not covered by Euclidean space, Annals, 1983.


