Topology of boundaries of (hyperbolic) groups

Palo Alto,
June 13, 2005

I. CAT(0)-spaces and polyhedra
II. The boundary of a $\operatorname{CAT}(0)$-space

III. Constructing examples

A. Cubical complexes with prescribed links
B. Strict hyperbolization

I. CAT(0)-spaces and polyhedra

Roughly, a space which is "nonpositively curved" and simply
connected.

$$
\begin{aligned}
& \mathrm{C}=\text { "Comparison" or "Cartan" } \\
& \mathrm{A}=\text { "Aleksandrov" } \\
& \mathrm{T}=\text { "Toponogov" }
\end{aligned}
$$

Some definitions. Let (X, d) be a metric space. A path
$c:[a, b] \rightarrow X$ is a geodesic (or a geodesic segment) if
$d(c(s), c(t))=|s-t|$ for all $s, t \in[a, b]$.
A geodesic ray $c:[0, \infty) \rightarrow X$ is similarly defined. (X, d) is a
geodesic space if any two points can be connected by a geodesic
segment.

The CAT (κ)-inequality. For $\kappa \in \mathbb{R}, \mathbb{X}_{\kappa}^{2}$ is the simply connected,
complete, Riemannian 2-manifold of constant curvature κ :

- \mathbb{X}_{0}^{2} is the Euclidean plane \mathbb{E}^{2}.
- If $\kappa>0$, then $\mathbb{X}_{\kappa}^{2}=\mathbb{S}^{2}$ with its metric rescaled so that its curvature is κ (i.e., it is the sphere of radius $1 / \sqrt{\kappa}$).
- If $\kappa<0$, then $\mathbb{X}_{\kappa}^{2}=\mathbb{H}^{2}$, the hyperbolic plane, with its metric rescaled.

A triangle T in X is a configuration of three geodesic segments (the "edges") connecting three points (the "vertices") in pairs.

A comparison triangle for T is a triangle T^{*} in \mathbb{X}_{κ}^{2} with the same edge lengths.

A metric space X satisfies CAT (κ) (or is a CAT (κ)-space) if the following two conditions hold:

- If $\kappa \leq 0$, then X is a geodesic space, while if $\kappa>0$, it
is required there be a geodesic segment between any two points $<\pi / \sqrt{\kappa}$ apart.
- (The CAT (κ) inequality). For any triangle T (with $l(T)<$ $2 \pi / \sqrt{\kappa}$ if $\kappa>0$) and any two points $x, y \in T$, we have

$$
d(x, y) \leq d^{*}\left(x^{*}, y^{*}\right)
$$

where x^{*}, y^{*} are the corresponding points in the comparison triangle T^{*} and d^{*} is distance in \mathbb{X}_{κ}^{2}.

T

T^{*}

Definition. A metric space X has curvature $\leq \kappa$ if the CAT (κ)
inequality holds locally.

Observations.

- CAT(0) \Longrightarrow contractible.
- curvature $\leq 0 \Longrightarrow$ aspherical.
- Γ acts properly and cocompactly on a CAT(-1)-space \Longrightarrow

「 word hyperbolic.

CAT(0)-polyhedra. Suppose X is a finite dimensional cell complex. Give it a "piecewise Euclidean metric" by declaring each cell to be a convex cell in Euclidean space and then measure the length of paths using Euclidean arc length. For example, X might be a cubical cell cx with each n-cell a regular Euclidean n-cube of edge length one. (To avoid more hypotheses assume Isom(X) acts cocompactly.) "Piecewise spherical" and "piecewise hyperbolic" metrics are defined similarly.

If v is a vertex of a convex cell, its link is the
\{inward-pointing directions at $v\}$. The link, $L(v)$, of a vertex in
X is the union of its links in the cells which contain it. $L(v)$ is naturally a piecewise spherical cell cx.

Theorem. (Gromov, 1987). A piecewise constant curvature polyhedron has curvature $\leq \kappa$ iff the link of each vertex is CAT(1).

Theorem. (Gromov). A piecewise Euclidean cubical cell cx X
has curvature ≤ 0 iff the link of each vertex is a flag cx..

Definition. A simplicial $c x L$ is a flag $c x$ iff every finite set of vertices which are pairwise connected by edges spans a simplex of L.

Remark. The barycentric subdivision of any cell cx is a flag cx .
So, the condition that a polyhedron L be a flag cx places no
restriction on its topology.

II. The visual boundary of a CAT(0)-space

Idea: adjoin a space ∂X of "ideal points" to a complete CAT(0)space X obtaining $\bar{X}=X \cup \partial X$. When X is locally compact, \bar{X}
will be a compactification of X.

Fix a base point $x_{0} \in X$. Rough idea: \bar{X} is formed by adding
an "endpoint" $c(\infty)$ to each geodesic ray $c:[0, \infty) \rightarrow X$, which begins at $x_{0} . \partial X$ is the set of such endpoints.
\bar{X} has the "inverse limit topology." Consider the system of closed balls centered at $x_{0},\left\{\bar{B}\left(x_{0}, r\right)\right\}_{r \in[0, \infty)}$. For each $s>r$, there is a retraction $p_{s, r}: \bar{B}\left(x_{0}, s\right) \rightarrow \bar{B}\left(x_{0}, r\right)$, defined as the "nearest point projection." In other words, if c is a geodesic segment starting from x_{0}, then $p_{s, r}$ takes $c(t)$ to itself when $0 \leq t \leq r$ and to $c(r)$ when $r<t \leq s$.

$$
\bar{X}:=\varliminf_{\bigwedge}^{\lim } \bar{B}\left(x_{0}, r\right) .
$$

$$
X \subset \bar{X} \quad \text { and } \quad \partial X:=\bar{X}-X .
$$

Example. If $X=\mathbb{E}^{n}$ or \mathbb{H}^{n}, then $(\bar{X}, \partial X)=\left(D^{n}, S^{n-1}\right)$. Same is true for X the universal cover of any nonpositively curved, complete Riemannian n-mfld.

Example. If X is a regular tree (valence >2), then ∂X is a Cantor set.

Example. If X is the universal cover of a compact hyperbolic

3-mfld with totally geodesic bdry, then ∂X is a Sierpinski curve.

The definition of ∂X can be made to be independent of the choice of basepoint x_{0}. Define two geodesic rays (with different initial points) to be parallel (or "asymptotic") if they remain a bounded distance apart. We could have defined

$$
\partial X=\{\text { parallel classes of geodesic rays }\} .
$$

Problem. ∂X is not a quasi-isometry invariant. So, even if
$\Gamma \subset \operatorname{Isom}(X)$ acts cocompactly, ∂X is not an invariant of Γ.

However, if X is CAT(-1) so that (Γ is word hyperbolic), then
it is: $\partial X=\partial \Gamma$, where $\partial \Gamma$ is defined below.

Boundary of a word hyperbolic group Γ. Here is one possible
definition. Let Ω be its Cayley graph. Then

$$
\partial \Gamma:=\{\text { parallel classes of geodesic rays in } \Omega\} .
$$

Z-sets. A closed subset Y of a compact ANR \bar{X} is a Z-set if for every open subset $U \subset \bar{X}$, the inclusion $U-Y \hookrightarrow U$ is a homotopy equivalence. Standard example: \bar{X} is a compact manifold with boundary and Y is a closed subset of its boundary.

Theorem. Suppose X is a complete, locally compact, CAT(0)space. Then ∂X is a Z-set in \bar{X}.

Theorem. (Bestvina-Mess, 1991). If Γ is word hyperbolic, then
there is a Z-set compactification of its Rips complex X with
$\bar{X}-X=\partial \Gamma$.

So, if Γ is word hyperbolic or if it acts cocompactly on a CAT(0)space X, then

$$
H_{c}^{*}(X) \cong H^{*}(\bar{X}, \partial X) \cong \breve{H}^{*-1}(\partial X) \quad\left(=\breve{H}^{*-1}(\partial\ulcorner))\right.
$$

where $\breve{H}^{*}()$ means reduced Cěch-cohomology.

CAT(0)-polyhedra with isolated PL singularities. Let X be
a CAT(0) or CAT(-1)-polyhedron.

Theorem. (D. Stone, 1976). If X is a $P L$ n-manifold, then $(\bar{X}, \partial X) \cong\left(D^{n}, S^{n-1}\right)$.

Suppose that the link of each vertex is a PL $(n-1)$-manifold.
Choose a base point $x_{0} \notin \operatorname{Vert}(X)$. In the next theorem we consider the inverse system of metric spheres $\left\{\partial B\left(x_{0}, r\right)\right\}_{r \in[0, \infty)}$
centered at x_{0}.

Theorem. (D. -Januszkiewicz, 1991). Suppose v_{1}, \ldots, v_{m} are the vertices of X which lie in $B\left(x_{0}, r\right)$. Then
(i) $\partial B\left(x_{0}, r\right)=L\left(v_{1}\right) \sharp \cdots \sharp L\left(v_{m}\right)$, where \sharp means connected sum.
(ii) The inverse system of metric spheres is equivalent to the inverse system $\left\{L\left(v_{1}\right) \sharp \cdots \sharp L\left(v_{m}\right)\right\}$, where the bonding maps are the obvious ones. This gives $\partial X=\underset{\longleftrightarrow}{\lim }\left(L\left(v_{1}\right) \sharp \cdots \sharp L\left(v_{m}\right)\right)$.

Key point in the proof. The link L of any vertex is piecewise spherical and CAT(1). A metric ball of radius $<\pi$ in such an L is contractible. If L is a PL mfld, then such a metric ball is a PL disk.

Later I will explain how to construct a nonpositively curved, cubical cell complex Y such that the link of any vertex is any given
finite simplicial complex. The construction can be modified to
make the curvature ≤-1.

For example, we can find such a Y with the link of each vertex
$\cong \mathbb{R} P^{2}$. Taking $\Gamma=\pi_{1}(Y)$ and $X=\tilde{Y}$, we get:
Theorem. (Bestvina-Mess). There are torsion-free, word hyperbolic groups Γ with $\mathrm{cd}_{\mathbb{Z}}(\Gamma)=3$ and $\mathrm{cd}_{\mathbb{Q}}(\Gamma)=2$.

Proof. $\partial \Gamma=\partial X$ is the inverse limit of nonorientable surfaces of increasing genus (a "Pontrjagin surface"). So, $\breve{H}^{2}(\partial\ulcorner; \mathbb{Z})=$ $\mathbb{Z} / 2$ and $\breve{H}^{2}\left(\partial\ulcorner; \mathbb{Q})=0\right.$. Then use the facts that $H^{*}(\Gamma ; \mathbb{Z} \Gamma)=$ $H_{c}^{*}(X)=\check{H}^{*-1}\left(\partial\ulcorner)\right.$ and $c d(\Gamma)=\max \left\{n \mid H^{n}(\ulcorner; \mathbb{Z}\ulcorner) \neq 0\}\right.$.

Question. Do there exist torsion free groups Γ with
$\operatorname{cd}_{\mathbb{Q}}(\Gamma) / \mathrm{cd}_{\mathbb{Z}}(\Gamma)<2 / 3 ?$

Next take Y so that the link of each vertex is a PL homology sphere M with nontrivial fundamental group π. Put $\Gamma=\pi_{1}(Y)$.

Theorem. There are word hyperbolic groups Γ such that 1) Γ is
the fundamental group of an aspherical n-manifold, $n \geq 4$, and
2) Γ is not simply connected at ∞. Moreover, $\partial \Gamma$ is a homology mfld with the same homology as S^{n-1} and it is not locally simply connected.

Proof. Y is a homology mfld, homotopy equivalent to a mfld.
Since $\pi_{1}\left(\partial B\left(x_{0}, s\right)\right) \rightarrow \pi_{1}\left(\partial B\left(x_{0}, r\right)\right)$ is onto, $\lim ^{1}\left\{\pi_{1}\left(\partial B\left(x_{0}, r\right)\right\}=\right.$
0. Since $\partial B\left(x_{o}, r\right)$ is a connected sum of copies of M, its π_{1} is a
free product of copies of π. It follows that

$$
\pi_{1}^{\infty}:=\varliminf_{\swarrow}\{\pi * \cdots * \pi\} \neq 0 .
$$

So, \bar{X} is not simply connected at ∞.

Corollary. For $n \geq 4, \exists$ aspherical n-mflds not covered by \mathbb{R}^{n}.

Remark. Fischer has studied boundaries of some of these examples with links PL manifolds. ∂X is often "homogeneous" in the sense that its homeomorphism group acts transitively.

References.

Bridson-Haefliger, Metric Spaces of Non-positive Curvature, 1999.

Bestvina-Mess, The boundary of a negatively curved group,

JAMS, 1991.

Davis-Januszkiewicz, Hyperbolization of polyhedra, JDG, 1991.

Fischer, Boundaries of right-angled Coxeter groups with mani-
fold nerves, Topology, 2003.

III. Constructing examples

A. Cubical complexes with prescribed links. Suppose L is
a flag cx with vertex set S. We will construct a (nonpositively
curved) cubical cx, Y_{L}, s.t. the link of each vertex is L. It is
a subcomplex of the cube $[-1,1]^{S}$. For each simplex σ in L (including the empty simplex), let $\square^{\sigma}:=[-1,1]^{\text {Vert }(\sigma)}$. Put

$$
Y_{L}:=\bigcup_{\sigma \subset L} \text { faces parallel to } \square^{\sigma} \text {. }
$$

B. Strict hyperbolization. Given a cubical $c x Y, R$. Charney and I showed how to convert it into a piecewise hyperbolic cx,
$h(Y)$, s.t. the link of each vertex is either one of the original links in Y or a round sphere. The key idea was the following.

Lemma. (Charney-D., 1995). For each n, \exists a compact hyperbolic mfld with corners M^{n} s.t.
(i) each stratum of M^{n} is totally geodesic and
(ii) The poset of nonempty intersections of strata is isomorphic
to the poset of faces of an n-cube.

To construct $h(Y)$ replace each n-cube of Y by a copy of M^{n}.

Corollary. Given a flag cx L (with its natural piecewise spherical
structure), \exists a piecewise hyperbolic, finite $c x$ Z s.t. the link of each vertex is L (or a round sphere). Hence, Z has curvature
≤-1 and $\pi_{1}(Z)$ is word hyperbolic.

More references

Charney-Davis, Strict hyperbolization, Topology, 1995.

Davis, Groups generated by reflections and aspherical manifolds
not covered by Euclidean space, Annals, 1983.

