Topology of boundaries of (hyperbolic) groups

Palo Alto,

June 13, 2005

- I. CAT(0)-spaces and polyhedra
- II. The boundary of a CAT(0)-space
- **III.** Constructing examples
 - A. Cubical complexes with prescribed links
 - **B. Strict hyperbolization**

I. CAT(0)-spaces and polyhedra

Roughly, a space which is "nonpositively curved" and simply connected.

$$C =$$
 "Comparison" or "Cartan"

$$A =$$
 "Aleksandrov"

T = "Toponogov"

Some definitions. Let (X, d) be a metric space. A path

 $c: [a,b] \rightarrow X$ is a geodesic (or a geodesic segment) if

 $d(c(s), c(t)) = |s - t| \text{ for all } s, t \in [a, b].$

A geodesic ray $c : [0, \infty) \to X$ is similarly defined. (X, d) is a

geodesic space if any two points can be connected by a geodesic segment.

The CAT(κ)-inequality. For $\kappa \in \mathbb{R}$, \mathbb{X}_{κ}^2 is the simply connected,

complete, Riemannian 2-manifold of constant curvature κ :

• \mathbb{X}_0^2 is the Euclidean plane \mathbb{E}^2 .

• If $\kappa > 0$, then $\mathbb{X}_{\kappa}^2 = \mathbb{S}^2$ with its metric rescaled so that its curvature is κ (i.e., it is the sphere of radius $1/\sqrt{\kappa}$).

• If $\kappa < 0$, then $\mathbb{X}_{\kappa}^2 = \mathbb{H}^2$, the hyperbolic plane, with its metric rescaled.

A triangle T in X is a configuration of three geodesic segments (the "edges") connecting three points (the "vertices") in pairs. A comparison triangle for T is a triangle T^* in \mathbb{X}^2_{κ} with the same edge lengths.

A metric space X satisfies $CAT(\kappa)$ (or is a $CAT(\kappa)$ -space) if the following two conditions hold:

• If $\kappa \leq 0$, then X is a geodesic space, while if $\kappa > 0$, it

is required there be a geodesic segment between any two points $< \pi/\sqrt{\kappa}$ apart.

• (*The* CAT(κ) *inequality*). For any triangle *T* (with $l(T) < 2\pi/\sqrt{\kappa}$ if $\kappa > 0$) and any two points $x, y \in T$, we have

$$d(x,y) \le d^*(x^*,y^*),$$

where x^*, y^* are the corresponding points in the comparison triangle T^* and d^* is distance in \mathbb{X}^2_{κ} .

Definition. A metric space X has curvature $\leq \kappa$ if the CAT(κ)

inequality holds locally.

Observations.

• $CAT(0) \implies$ contractible.

• curvature $\leq 0 \implies$ aspherical.

• Γ acts properly and cocompactly on a CAT(-1)-space \implies

Γ word hyperbolic.

CAT(0)-polyhedra. Suppose X is a finite dimensional cell complex. Give it a "piecewise Euclidean metric" by declaring each cell to be a convex cell in Euclidean space and then measure the length of paths using Euclidean arc length. For example, Xmight be a cubical cell cx with each n-cell a regular Euclidean *n*-cube of edge length one. (To avoid more hypotheses assume Isom(X) acts cocompactly.) "Piecewise spherical" and "piecewise hyperbolic" metrics are defined similarly.

If v is a vertex of a convex cell, its *link* is the

{inward-pointing directions at v}. The *link*, L(v), of a vertex in X is the union of its links in the cells which contain it. L(v) is naturally a piecewise spherical cell cx. **Theorem.** (Gromov, 1987). A piecewise constant curvature polyhedron has curvature $\leq \kappa$ iff the link of each vertex is CAT(1). **Theorem.** (Gromov). A piecewise Euclidean cubical cell cx X

has curvature ≤ 0 iff the link of each vertex is a flag cx..

Definition. A simplicial cx L is a *flag cx* iff every finite set of vertices which are pairwise connected by edges spans a simplex of L.

Remark. The barycentric subdivision of any cell cx is a flag cx. So, the condition that a polyhedron L be a flag cx places no restriction on its topology.

II. The visual boundary of a CAT(0)-space

Idea: adjoin a space ∂X of "ideal points" to a complete CAT(0)space X obtaining $\overline{X} = X \cup \partial X$. When X is locally compact, \overline{X} will be a compactification of X.

Fix a base point $x_0 \in X$. Rough idea: \overline{X} is formed by adding an "endpoint" $c(\infty)$ to each geodesic ray $c : [0, \infty) \to X$, which begins at x_0 . ∂X is the set of such endpoints. X has the "inverse limit topology." Consider the system of closed balls centered at x_0 , $\{\overline{B}(x_0,r)\}_{r\in[0,\infty)}$. For each s > r, there is a retraction $p_{s,r} : \overline{B}(x_0,s) \to \overline{B}(x_0,r)$, defined as the "nearest point projection." In other words, if c is a geodesic segment starting from x_0 , then $p_{s,r}$ takes c(t) to itself when $0 \le t \le r$ and to c(r)when $r < t \le s$.

$$\overline{X} := \varprojlim \overline{B}(x_0, r).$$

$X \subset \overline{X}$ and $\partial X := \overline{X} - X$.

Example. If $X = \mathbb{E}^n$ or \mathbb{H}^n , then $(\overline{X}, \partial X) = (D^n, S^{n-1})$. Same

is true for X the universal cover of any nonpositively curved, complete Riemannian n-mfld.

Example. If X is a regular tree (valence > 2), then ∂X is a Cantor set.

Example. If X is the universal cover of a compact hyperbolic

3-mfld with totally geodesic bdry, then ∂X is a Sierpinski curve.

The definition of ∂X can be made to be independent of the choice of basepoint x_0 . Define two geodesic rays (with different initial points) to be *parallel* (or "asymptotic") if they remain a bounded distance apart. We could have defined

 $\partial X = \{ \text{parallel classes of geodesic rays} \}.$

Problem. ∂X is not a quasi-isometry invariant. So, even if

 $\Gamma \subset \text{Isom}(X)$ acts cocompactly, ∂X is not an invariant of Γ .

However, if X is CAT(-1) so that (Γ is word hyperbolic), then

it is: $\partial X = \partial \Gamma$, where $\partial \Gamma$ is defined below.

Boundary of a word hyperbolic group Γ . Here is one possible

definition. Let Ω be its Cayley graph. Then

 $\partial \Gamma := \{ \text{parallel classes of geodesic rays in } \Omega \}.$

Z-sets. A closed subset Y of a compact ANR \overline{X} is a Z-set if for every open subset $U \subset \overline{X}$, the inclusion $U - Y \hookrightarrow U$ is a homotopy equivalence. Standard example: \overline{X} is a compact manifold with boundary and Y is a closed subset of its boundary. **Theorem.** Suppose X is a complete, locally compact, CAT(0)space. Then ∂X is a Z-set in \overline{X} .

Theorem. (Bestvina–Mess, 1991). If Γ is word hyperbolic, then

there is a Z-set compactification of its Rips complex X with

 $\overline{X} - X = \partial \Gamma.$

So, if Γ is word hyperbolic or if it acts cocompactly on a CAT(0)space X, then

$$H_c^*(X) \cong H^*(\overline{X}, \partial X) \cong \check{H}^{*-1}(\partial X) \quad (=\check{H}^{*-1}(\partial \Gamma)),$$

where $\check{H}^*()$ means reduced Cěch-cohomology.

CAT(0)-polyhedra with isolated PL singularities. Let X be a CAT(0) or CAT(-1)-polyhedron. **Theorem.** (D. Stone, 1976). If X is a PL n-manifold, then $(\overline{X}, \partial X) \cong (D^n, S^{n-1}).$

Suppose that the link of each vertex is a PL (n-1)-manifold. Choose a base point $x_0 \notin \text{Vert}(X)$. In the next theorem we consider the inverse system of metric spheres $\{\partial B(x_0, r)\}_{r \in [0,\infty)}$ centered at x_0 . **Theorem.** (D. - Januszkiewicz, 1991). Suppose v_1, \ldots, v_m are the vertices of X which lie in $B(x_0, r)$. Then

(i) $\partial B(x_0, r) = L(v_1) \sharp \cdots \sharp L(v_m)$, where \sharp means connected sum.

(ii) The inverse system of metric spheres is equivalent to the inverse system $\{L(v_1) \sharp \cdots \sharp L(v_m)\}$, where the bonding maps are the obvious ones. This gives $\partial X = \varprojlim (L(v_1) \sharp \cdots \sharp L(v_m))$. Key point in the proof. The link L of any vertex is piecewise spherical and CAT(1). A metric ball of radius $< \pi$ in such an Lis contractible. If L is a PL mfld, then such a metric ball is a PL disk.

Later I will explain how to construct a nonpositively curved, cubical cell complex Y such that the link of any vertex is any given finite simplicial complex. The construction can be modified to make the curvature ≤ -1 .

For example, we can find such a Y with the link of each vertex

 $\cong \mathbb{R}P^2$. Taking $\Gamma = \pi_1(Y)$ and $X = \tilde{Y}$, we get:

Theorem. (Bestvina–Mess). There are torsion-free, word hy-

perbolic groups Γ with $cd_{\mathbb{Z}}(\Gamma) = 3$ and $cd_{\mathbb{Q}}(\Gamma) = 2$.

Proof. $\partial \Gamma = \partial X$ is the inverse limit of nonorientable surfaces of increasing genus (a "Pontrjagin surface"). So, $\check{H}^2(\partial \Gamma; \mathbb{Z}) = \mathbb{Z}/2$ and $\check{H}^2(\partial \Gamma; \mathbb{Q}) = 0$. Then use the facts that $H^*(\Gamma; \mathbb{Z}\Gamma) = H_c^*(X) = \check{H}^{*-1}(\partial \Gamma)$ and $cd(\Gamma) = max\{n \mid H^n(\Gamma; \mathbb{Z}\Gamma) \neq 0\}$.

Question. Do there exist torsion free groups Γ with

 $\operatorname{cd}_{\mathbb{Q}}(\Gamma)/\operatorname{cd}_{\mathbb{Z}}(\Gamma) < 2/3?$

Next take Y so that the link of each vertex is a PL homology sphere M with nontrivial fundamental group π . Put $\Gamma = \pi_1(Y)$. **Theorem.** There are word hyperbolic groups Γ such that 1) Γ is the fundamental group of an aspherical n-manifold, n > 4, and 2) Γ is not simply connected at ∞ . Moreover, $\partial \Gamma$ is a homology mfld with the same homology as S^{n-1} and it is not locally simply connected.

Proof. Y is a homology mfld, homotopy equivalent to a mfld. Since $\pi_1(\partial B(x_0,s)) \to \pi_1(\partial B(x_0,r))$ is onto, $\lim^1 \{\pi_1(\partial B(x_0,r)\} = 0$. Since $\partial B(x_0,r)$ is a connected sum of copies of M, its π_1 is a free product of copies of π . It follows that

$$\pi_1^{\infty} := \varprojlim \{\pi * \cdots * \pi\} \neq 0.$$

So, \overline{X} is not simply connected at ∞ .

Corollary. For $n \ge 4$, \exists aspherical *n*-mflds not covered by \mathbb{R}^n .

Remark. Fischer has studied boundaries of some of these examples with links PL manifolds. ∂X is often "homogeneous" in the sense that its homeomorphism group acts transitively.

References.

Bridson–Haefliger, *Metric Spaces of Non-positive Curvature*, 1999. Bestvina–Mess, *The boundary of a negatively curved group*, JAMS, 1991.

Davis–Januszkiewicz, Hyperbolization of polyhedra, JDG, 1991.

Fischer, Boundaries of right-angled Coxeter groups with mani-

fold nerves, Topology, 2003.

III. Constructing examples

A. Cubical complexes with prescribed links. Suppose L is a flag cx with vertex set S. We will construct a (nonpositively curved) cubical cx, Y_L , s.t. the link of each vertex is L. It is a subcomplex of the cube $[-1,1]^S$. For each simplex σ in L(including the empty simplex), let $\Box^{\sigma} := [-1,1]^{\operatorname{Vert}(\sigma)}$. Put

$$Y_L := \bigcup_{\sigma \subset L} \text{ faces parallel to } \square^{\sigma}.$$

B. Strict hyperbolization. Given a cubical cx Y, R. Charney and I showed how to convert it into a piecewise hyperbolic cx, h(Y), s.t. the link of each vertex is either one of the original links in Y or a round sphere. The key idea was the following. Lemma. (Charney–D., 1995). For each n, \exists a compact hyperbolic mfld with corners M^n s.t.

(i) each stratum of M^n is totally geodesic and

(ii) The poset of nonempty intersections of strata is isomorphic

to the poset of faces of an n-cube.

To construct h(Y) replace each *n*-cube of *Y* by a copy of M^n . **Corollary.** Given a flag cx L (with its natural piecewise spherical structure), \exists a piecewise hyperbolic, finite cx Z s.t. the link of each vertex is *L* (or a round sphere). Hence, *Z* has curvature ≤ -1 and $\pi_1(Z)$ is word hyperbolic. More references

Charney–Davis, Strict hyperbolization, Topology, 1995.

Davis, Groups generated by reflections and aspherical manifolds

not covered by Euclidean space, Annals, 1983.