
Euler characteristics
Classification of 2-orbifolds

Spaces of constant curvature
Geometric reflection groups

Orbifolds 2

Mike Davis

Sao Paulo

May 14, 2014
https://people.math.osu.edu/davis.12/slides.html

Mike Davis Orbifolds 2



Euler characteristics
Classification of 2-orbifolds

Spaces of constant curvature
Geometric reflection groups

1 Euler characteristics

2 Classification of 2-orbifolds

3 Spaces of constant curvature

4 Geometric reflection groups
History and properties
Simplicial Coxeter groups

Mike Davis Orbifolds 2



Euler characteristics
Classification of 2-orbifolds

Spaces of constant curvature
Geometric reflection groups

We know what is meant by the Euler characteristic of a
closed mfld or a finite CW complex (the alternating sum of
the number of cells). A key property is that it is
multiplicative under finite covers: if M ′ → M is an m-fold
cover, then

χ(M ′) = mχ(M).

The Euler characteristic of an orbfld should be a rational
number with same multiplicative property, ie, if M → Q is
an m-fold cover and M is a mfld, then it should have
χ(M) = mχorb(Q). That is,

χorb(Q) =
1
m
χ(M).

(“m-fold cover” means Card(p−1(generic pt)) = m.)
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The Euler characteristic of an orbifold

Suppose Q is an orbfld which cellulated as a CW complex so
that the local gp is constant on each open cell c. Let G(c) be
the local gp at c and |G(c)| its order.

χorb(Q) :=
∑

cells c

(−1)dim c

|G(c)|

Exercise
Suppose Γ y M properly, cocompactly, locally linearly and
Γ′ ⊂ Γ is a subgp of index m. Show

χorb(M//Γ′) = mχorb(M//Γ).
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Alternate formula

Each stratum S of a compact orbifold Q is the interior of a
compact mfld with bdry Ŝ. Define e(S) := χ(Ŝ)− χ(∂Ŝ).

χorb(Q) =
∑

strata S

e(S)

|G(S)|

Example

Suppose |Q| = D2 and Q has k mirrors and k corner reflectors
labeled m1, . . . ,mk . Then

χorb(Q) = 1− k
2

+

(
1

2m1
+ · · ·+ 1

2mk

)
= 1− 1

2

∑
i

(
1− 1

mi

)
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Example

Suppose |Q| = S2 and Q has l cone points labeled n1, . . . ,nl .
Then

χorb(Q) = 2− l +

(
1
n1

+ · · ·+ 1
nl

)
= 2−

∑
i

(
1− 1

ni

)
(This is twice the previous example, as it should be.)

Example (The general formula)

Suppose |Q| is a surface with bdry, Q has k corner reflectors
labeled m1, . . . ,mk and l cone points labeled n1, . . . ,nl . Then

χorb(Q) = χ(|Q|)− 1
2

k∑
i=1

(
1− 1

mi

)
−

l∑
i=1

(
1− 1

ni

)
.
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Remark

χorb(Q) ≤ χ(|Q|) with equality iff there are no cone points or
corner reflectors.

Notation
If a 2-dim orbfld has k corner reflectors labeled m1, . . . ,mk and
l cone points labeled n1, . . . ,nl , we will denote this by

(n1, . . . ,nl ; m1, . . . ,mk ).

If ∂|Q| = ∅, then there can be no mirrors or corner reflectors
and we simply write (n1, . . . ,nl).
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Recall that closed surfaces are classified by orientability and
Euler characteristic:

χ(M2) > 0 =⇒ M2 = S2 or RP2 (positive curvature).
χ(M2) = 0 =⇒ M2 = T 2 or the Klein bottle (flat).
χ(M2) < 0 =⇒ arbitrary genus > 1 (negative curvature).

The idea is to classify orbflds Q2 by their Euler characteristics.
Since χorb( ) is multiplicative under finite covers, this will tell us
which mflds can finitely cover a given orbfld. For example, if
Q = S2//G, with G finite, then χorb(S2//G) > 0. Conversely, if Q
is developable and χorb(Q) > 0, then its universal cover is S2.
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Exercise

List the 2-dim orbflds Q with χorb(Q) ≥ 0.

Sample calculation

Suppose |Q| = D2 with ( ; m1, . . . ,mk ). Recall

χorb(Q) = 1− 1
2

k∑
i=1

(1− (mi)
−1)

Since 1− (mi)
−1 ≥ 1/2, we see that if k ≥ 4, then χorb(Q) ≤ 0

with equality iff k = 4 and all mi = 2. Hence, if χorb(Q) > 0 then
k ≤ 3.
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More calculations

Suppose |Q| = D2 and k = 3 (st Q is a triangle). Then

χorb(Q) =
1
2

(−1 + (m1)−1 + (m2)−1 + (m3)−1)

So, as (π/m1 + π/m2 + π/m3) is >, = or < π, χorb(Q) is,
respectively, >, = or < 0. For χorb > 0 we see the only
possibilities are: ( ; 2,2,m), ( ; 2,3,3), ( ; 2,3,4), ( ; 2,3,5). The
last 3 correspond to the symmetry gps of the Platonic solids.
For χorb = 0, the only possibilities are: ( ; 2,3,6), ( ; 2,4,4)
( ; 3,3,3).
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χorb(Q) > 0

Nondevelopable orbifolds:
- |Q| = D2: ( ; m), ( ; m1,m2) with m1 6= m2.
- |Q| = S2: (n), (n1,n2) with n1 6= n2.

Spherical orbifolds:
- |Q| = D2: ( ; ), ( ; m,m), ( ; 2,2,m), ( ; 2,3,3), ( ; 2,3,4),

( ; 2,3,5), (2; m), (3; 2).
- |Q| = S2: ( ), (n,n), (2,2,n), (2,3,3), (2,3,4), (2,3,5).
- |Q| = RP2: ( ), (n)
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Implications for 3-dim orbflds
The list of 2-dim spherical orbflds is the list of finite subgps
of O(3).
Every 3-dim orbfld is locally isomorphic to the cone on one
of the spherical 2-orbflds.
For example, if |Q| = S2 with 3 cone points, (n1,n2,n3),
then Cone(Q) has underlying space an open 3-disk. The 3
cone points yield 3 codim 2 strata labeled m1, m2, m3 and
the origin is labeled by the corresponding fintie subgp of
O(3).
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The 17 wallpaper groups

Flat orbifolds: χorb(Q) = 0

- |Q| = D2: ( ; 2,3,6), ( ; 2,4,4), ( ; 3,3,3), ( ; 2,2,2,2),
(2; 2,2), (3; 3), (4; 2), (2,2; ).

- |Q| = S2: (2,3,6), (2,4,4), (3,3,3), (2,2,2,2).
- |Q| = RP2: (2,2),
- |Q| = T 2: ( ).
- |Q| = Klein bottle: ( ).
- |Q| = annulus: ( ; ).
- |Q| = Möbius band: ( ; ).
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χorb(Q) < 0

It turns out that all remaining 2-dim orbflds are developable and
can be given a hyperbolic structure.
The triangular orbifolds (ie, |Q| = D2; ( ; m1,m2,m3) have a
unique hyperbolic structure. The others have a positive
dimensional moduli space.

Mike Davis Orbifolds 2



Euler characteristics
Classification of 2-orbifolds

Spaces of constant curvature
Geometric reflection groups

In each dimension n, there are 3 simply connected spaces of
constant curvature: Sn (the sphere), En (Euclidean space) and
Hn (hyperbolic space).

Minkowski space

Let Rn,1 denote Rn+1 equipped with the indefinite symmetric
bilinear form:

〈x , y〉 := x1y1 + · · ·+ xnyn − xn+1yn+1.

The hypersurface defined by 〈x , x〉 = −1 is a hyperboloid of two
sheets. The component with xn+1 > 0 is Hn.
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xn+1

Riemannian metric on Hn

As in the case of a sphere, given x ∈ Hn, TxHn = x⊥. Since
〈x , x〉 < 0, the restriction of 〈 , 〉 to Tx is positive definite. So
this defines a Riem metric on Hn. It turns out this metric has
constant curvature −1.
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Geometric structures on orbifolds
Suppose G is a gp of isometries acting real analytically on
a mfld X. (The only examples we will be concerned with
are Xn = Sn, En or Hn and G the full isometry group.)
By a (G,X)-structure we mean that each of the charts
(Ũ,H,U, π) has Ũ ⊂ X, that H is a finite subgp of G and
the overlap maps (= compatibility maps) are required to be
restrictions of isometries in G.
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Convex polytopes in Xn

A hyperplane or half-space in Sn or Hn is the intersection of
a linear hyperplane or half-space with the hypersurface.
The unit normal vector u to a hyperplane means that the
hyperplane is the orthogonal complement, u⊥, of u
(orthogonal wrt the standard bilinear form, in the case of
Sn, or the form 〈 , 〉, in the case of Hn).
A half-space in Hn bounded by the hyperplane u⊥ is a set
of the form {x ∈ Hn | 〈u, x〉 ≥ 0} and similarly, for Sn.
A convex polytope in Sn or Hn is a compact intersection of
a finite number of half-spaces.
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Reflections in Sn and Hn

Suppose u is unit vector in Rn+1. Reflection across the
hyperplane u⊥ (either in Rn+1 or Sn) is given by

x 7→ x − 2(x · u)u.

Similarly, suppose u ∈ Rn,1 satisfies 〈u,u〉 = 1. Reflection
across the hyperplane u⊥ in Hn is given by

x 7→ x − 2〈x ,u〉u.
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Suppose K is a convex polytope in Xn (= Sn, En or Hn) such
that if two codim 1 faces have nonempty intersection, then the
dihedral angle between them has form π/m for some integer
m ≥ 2. (This condition is familiar: it means that each codim 2
face has the structure of a codim 2 corner reflector.) Let W be
the subgp of Isom(Xn) generated by reflections across the
codim 1 faces of K .

Some basic facts
W is discrete and acts properly on Xn

K is a strict fundamental domain in the sense that the
restriction to K of the orbit map, p : Xn → Xn/W , is a
homeomorphism. It follows that Xn//W ∼= K and hence, K
is an orbifold with an Xn-structure.

(Neither fact is obvious.)
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- In 1852 Möbius determined the finite subgroups of O(3)
generated by isometric reflections on the 2-sphere.

- The fundamental domain for such a group on the 2-sphere
was a spherical triangle with angles π

p , πq , πr , with p, q, r
integers ≥ 2.

- Since the sum of the angles is > π, we have 1
p + 1

q + 1
r > 1.

- For p ≥ q ≥ r , the only possibilities are: (p,2,2) for any
p ≥ 2 and (p,3,2) with p = 3, 4 or 5. The last three cases
are the symmetry groups of the Platonic solids.

- Later work by Riemann and Schwarz showed there were
discrete gps of isometries of E2 or H2 generated by
reflections across the edges of triangles with angles
integral submultiples of π. Poincaré and Klein: a similar
result for polygons in H2.
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In 2nd half of the 19th century work began on finite reflection
gps on Sn, n > 2, generalizing Möbius’ results for n = 2. It
developed along two lines.

- Around 1850, Schläfli classified regular polytopes in Rn+1,
n > 2. The symmetry group of such a polytope was a finite
gp generated by reflections and as in Möbius’ case, the
projection of a fundamental domain to Sn was a spherical
simplex with dihedral angles integral submultiples of π.

- Around 1890, Killing and E. Cartan classified complex
semisimple Lie algebras in terms of their root systems. In
1925, Weyl showed the symmetry gp of such a root system
was a finite reflection gp.

- These two lines were united by Coxeter in the 1930’s. He
classified discrete groups reflection gps on Sn or En.
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Let K be a fundamental polytope for a geometric reflection gp.
For Sn, K is a simplex. For En, K is a product of simplices. For
Hn there are other possibilities, eg, a right-angled pentagon in
H2 or a right-angled dodecahedron in H3.
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Conversely, given a convex polytope K in Sn, En or Hn st all
dihedral angles have form π/integer, there is a discrete gp
W generated by isometric reflections across the codim 1
faces of K .
Let S be the set of reflections across the codim 1 faces of
K . For s, t ∈ S, let m(s, t) be the order of st . Then S
generates W , the faces corresponding to s and t intersect
in a codim 2 face iff m(s, t) 6=∞, and for s 6= t , the dihedral
angle along that face is π/m(s, t). Moreover,

〈S | (st)m(s,t), where (s, t) ∈ S × S〉

is a presentation for W .
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Polytopes with nonobtuse dihedral angles

Lemma (Coxeter)

Suppose K ⊂ Sn is an n-dim convex polytope which is “proper”
(meaning that it does not contain any pair of antipodal points).
Further suppose that whenever two codim 1 faces intersect
along a codim 2 face, the dihedral angle is ≤ π/2. Then K is a
simplex.

A similar result holds for a polytope K ⊂ En which is not a
product.
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Corollary
The fundamental polytope for a spherical reflection gp is a
simplex.

Proof.
For m an integer ≥ 2, we have π/m ≤ π/2.

Corollary

The fund domain for a finite linear reflection gp on Rn is a
simplicial cone.
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Corollary

Suppose that a convex polytope K ⊂ Xn is fund domain for
reflection gp in Isom(Xn) (where Xn = Sn, En or Hn). Then K is
a simple polytope. (This means that exactly n facets meet at
each vertex.)

Corollary
Suppose Q is an n-orbifold with all the local groups ∼= finite
reflection gps on Rn. Then the underlying space of Q is
naturally a mfld with corners (meaning that it is locally modeled
on the simplicial cone [0,∞)n).

Mike Davis Orbifolds 2



Euler characteristics
Classification of 2-orbifolds

Spaces of constant curvature
Geometric reflection groups

History and properties
Simplicial Coxeter groups

Gram matrix of a simplex in Xn

Suppose σn is a simplex in Xn. Let u0, . . .un be its inward
pointing unit normal vectors. (The ui lie in Rn+1, Rn or Rn,1 as
Xn = Sn, En or Hn.) The Gram matrix, G, of σ is the symmetric
(n + 1)× (n + 1) matrix (gij) defined by gij = ui · uj .
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A symmetric matrix G with 1’s on the diagonal is type
(1) if G > 0,
(0) if G is positive semidefinite with 1-dim kernel, each

principal submatrix is > 0, and ∃ a vector v ∈ Ker G with all
its coordinates > 0.

(-1) if G has signature (n,1) and each principal submx is > 0.

Linear algebra fact

The extra condition in type 0 (that Ker G is spanned by a vector
with positive coordinates) is automatic when G is
indecomposable and gij ≤ 0 ∀i 6= j (ie, when all dihedral angles
are nonobtuse).
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Theorem
Suppose G is a symmetric (n + 1)× (n + 1) matrix with 1’s on
the diagonal. Let ε ∈ {+1,0,−1}. Then G is the Gram matrix of
a simplex σn ⊂ Xn

ε ⇐⇒ G is type ε.

Recall Xn
ε is Sn, En, Hn as ε = +1, 0, −1.

Proof.

For Sn: we can find basis vectors u0, . . .un in Rn+1, well-defined
up to isometry, st (ui · uj) = G. (This is because G > 0.) Since
the ui form a basis, the half-spaces, ui · x ≥ 0, intersect in a
simplicial cone and the intersection of this with Sn is σn.
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Proof, continued.
The proof for Hn is similar. For En, the argument has some
additional complications.
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Suppose σn ⊂ Xn is fund simplex for a geometric reflecton gp.
Let {u0, . . .un} be the inward-pointing unit normal vectors. Then

ui · uj = − cos(π/mij)

where (mij) is a symmetric matrix of posiive integers with 1’s on
the diagonal and of-diagonal enries ≥ 2.
( (mij) is called the Coxeter matrix while the matrix (cos(π/mij))
is the associated cosine matrix.)
The formula above says: Gram matrix = cosine matrix.
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Suppose M = (mij) is a Coxeter matrix (a symmetric
(n + 1)× (n + 1) matrix with 1’s on diagonal and off-diagonals
≥ 2). Sometimes we allow the off-diagonal mij to =∞, but not
here.

Theorem
Let M be a Coxeter matrix as above and C its associated
cosine matrix (ie, cij = − cos(π/mij ). Then there is a geometric
refl gp with fund simplex σn ⊂ Xn

ε ⇐⇒ C is type ε.
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So, the problem of determining the geometric reflection gps
with fund polytope a simplex in Xn

ε becomes the problem of
determining the Coxeter matrices M whose cosine matrix is
type ε. This was done by Coxeter for ε = 1 or 0 and by Lannér
for ε = −1. The information in a Coxeter diagram is best
encoded by a “Coxeter diagram.”
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Coxeter diagrams

Associated to (W ,S), there is a labeled graph Γ called its
“Coxeter diagram.”

Vert(Γ) := S.

Connect distinct elements s, t by an edge iff m(s, t) 6= 2. Label
the edge by m(s, t) if this is > 3 or =∞ and leave it unlabeled if
it is = 3. (W ,S) is irreducible if Γ is connected. (The
components of Γ give the irreducible factors of W .)
The next slide shows Coxeter’s classification of irreducible
spherical and cocompact Euclidean reflection gps.
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Spherical Diagrams Euclidean Diagrams

I  (p) p
2

H 5
3

H 5
4

F 4
4

ωA1
∼

4 4B 2
∼

6G
2

∼

4F
4

∼

E
6

∼

E
7

∼

E
8

∼

E
6

E
7

E
8

An

B 4
n

Dn

nA∼

4B n
∼

4 4Cn
∼

Dn
∼
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The next slide shows Lannér’s classification of hyperbolic
reflection gps with fund polytope a simplex in Hn.

Exercise
Derive Lannér’s list on the next slide from Coxeter’s lists on the
previous slide.
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Hyperbolic Simplicial Diagrams

n = 2

with (p-1 + q-1 + r-1) < 1
p q

r

n = 3
5

5 4

5 5

5

4

4 5 4

5 4

5 5

n = 4

5

5

5

5

4

5 4
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