Orbifolds 2

Mike Davis

Sao Paulo

May 14, 2014
https://people.math.osu.edu/davis.12/slides.html
(1) Euler characteristics
(2) Classification of 2-orbifolds
(3) Spaces of constant curvature

4 Geometric reflection groups

- History and properties
- Simplicial Coxeter groups
- We know what is meant by the Euler characteristic of a closed mfld or a finite CW complex (the alternating sum of the number of cells). A key property is that it is multiplicative under finite covers: if $M^{\prime} \rightarrow M$ is an m-fold cover, then

$$
\chi\left(M^{\prime}\right)=m \chi(M)
$$

- The Euler characteristic of an orbfld should be a rational number with same multiplicative property, ie, if $M \rightarrow Q$ is an m-fold cover and M is a mfld, then it should have $\chi(M)=m \chi^{\text {orb }}(Q)$. That is,

$$
\chi^{\text {orb }}(Q)=\frac{1}{m} \chi(M)
$$

(" m-fold cover" means $\operatorname{Card}\left(p^{-1}(\right.$ generic $\left.p t)\right)=m$.)

The Euler characteristic of an orbifold

Suppose Q is an orbfld which cellulated as a CW complex so that the local gp is constant on each open cell c. Let $G(c)$ be the local gp at c and $|G(c)|$ its order.

$$
\chi^{\text {orb }}(Q):=\sum_{\text {cells } c} \frac{(-1)^{\operatorname{dim} c}}{|G(c)|}
$$

Exercise

Suppose $\Gamma \curvearrowright M$ properly, cocompactly, locally linearly and $\Gamma^{\prime} \subset \Gamma$ is a subgp of index m. Show

$$
\chi^{\text {orb }}\left(M / / \Gamma^{\prime}\right)=m \chi^{\text {orb }}(M / / \Gamma)
$$

Alternate formula

Each stratum S of a compact orbifold Q is the interior of a compact mfld with bdry \hat{S}. Define $e(S):=\chi(\hat{S})-\chi(\partial \hat{S})$.

$$
\chi^{\text {orb }}(Q)=\sum_{\text {strata } S} \frac{e(S)}{|G(S)|}
$$

Example

Suppose $|Q|=D^{2}$ and Q has k mirrors and k corner reflectors labeled m_{1}, \ldots, m_{k}. Then

$$
\chi^{\text {orb }}(Q)=1-\frac{k}{2}+\left(\frac{1}{2 m_{1}}+\cdots+\frac{1}{2 m_{k}}\right)=1-\frac{1}{2} \sum_{i}\left(1-\frac{1}{m_{i}}\right)
$$

Example

Suppose $|Q|=S^{2}$ and Q has / cone points labeled n_{1}, \ldots, n_{l}. Then

$$
\chi^{\text {orb }}(Q)=2-I+\left(\frac{1}{n_{1}}+\cdots+\frac{1}{n_{l}}\right)=2-\sum_{i}\left(1-\frac{1}{n_{i}}\right)
$$

(This is twice the previous example, as it should be.)

Example (The general formula)

Suppose $|Q|$ is a surface with bdry, Q has k corner reflectors labeled m_{1}, \ldots, m_{k} and $/$ cone points labeled n_{1}, \ldots, n_{l}. Then

$$
\chi^{\text {orb }}(Q)=\chi(|Q|)-\frac{1}{2} \sum_{i=1}^{k}\left(1-\frac{1}{m_{i}}\right)-\sum_{i=1}^{1}\left(1-\frac{1}{n_{i}}\right) .
$$

Remark

$\chi^{\text {orb }}(Q) \leq \chi(|Q|)$ with equality iff there are no cone points or corner reflectors.

Notation

If a 2-dim orbfld has k corner reflectors labeled m_{1}, \ldots, m_{k} and I cone points labeled n_{1}, \ldots, n_{l}, we will denote this by

$$
\left(n_{1}, \ldots, n_{l} ; m_{1}, \ldots, m_{k}\right)
$$

If $\partial|Q|=\emptyset$, then there can be no mirrors or corner reflectors and we simply write $\left(n_{1}, \ldots, n_{l}\right)$.

Recall that closed surfaces are classified by orientability and Euler characteristic:

- $\chi\left(M^{2}\right)>0 \Longrightarrow M^{2}=S^{2}$ or $\mathbf{R} P^{2}$ (positive curvature).
- $\chi\left(M^{2}\right)=0 \Longrightarrow M^{2}=T^{2}$ or the Klein bottle (flat).
- $\chi\left(M^{2}\right)<0 \Longrightarrow$ arbitrary genus >1 (negative curvature).

The idea is to classify orbflds Q^{2} by their Euler characteristics. Since $\chi^{\text {orb }()}$) is multiplicative under finite covers, this will tell us which mflds can finitely cover a given orbfld. For example, if $Q=S^{2} / / G$, with G finite, then $\chi^{\text {orb }}\left(S^{2} / / G\right)>0$. Conversely, if Q is developable and $\chi^{\text {orb }}(Q)>0$, then its universal cover is S^{2}.

Exercise

List the 2 -dim orbflds Q with $\chi^{\text {orb }}(Q) \geq 0$.

Sample calculation

Suppose $|Q|=D^{2}$ with $\left(; m_{1}, \ldots, m_{k}\right)$. Recall

$$
\chi^{o r b}(Q)=1-\frac{1}{2} \sum_{i=1}^{k}\left(1-\left(m_{i}\right)^{-1}\right)
$$

Since $1-\left(m_{i}\right)^{-1} \geq 1 / 2$, we see that if $k \geq 4$, then $\chi^{\text {orb }}(Q) \leq 0$ with equality iff $k=4$ and all $m_{i}=2$. Hence, if $\chi^{\text {orb }}(Q)>0$ then $k \leq 3$.

More calculations

Suppose $|Q|=D^{2}$ and $k=3$ (st Q is a triangle). Then

$$
\chi^{\text {orb }}(Q)=\frac{1}{2}\left(-1+\left(m_{1}\right)^{-1}+\left(m_{2}\right)^{-1}+\left(m_{3}\right)^{-1}\right)
$$

So, as $\left(\pi / m_{1}+\pi / m_{2}+\pi / m_{3}\right)$ is $>,=$ or $<\pi, \chi^{\text {orb }}(Q)$ is, respectively, $>,=$ or <0. For $\chi^{\text {orb }}>0$ we see the only possibilities are: $(; 2,2, m),(; 2,3,3),(; 2,3,4),(; 2,3,5)$. The last 3 correspond to the symmetry gps of the Platonic solids.
For $\chi^{\text {orb }}=0$, the only possibilities are: $(; 2,3,6),(; 2,4,4)$ (;3,3,3).

$\chi^{\text {orb }}(Q)>0$

- Nondevelopable orbifolds:
$-|Q|=D^{2}:(; m),\left(; m_{1}, m_{2}\right)$ with $m_{1} \neq m_{2}$.
- $|Q|=S^{2}:(n),\left(n_{1}, n_{2}\right)$ with $n_{1} \neq n_{2}$.
- Spherical orbifolds:

$$
\begin{aligned}
& -|Q|=D^{2}:(;),(; m, m),(; 2,2, m),(; 2,3,3),(; 2,3,4), \\
& (; 2,3,5),(2 ; m),(3 ; 2) . \\
& -|Q|=S^{2}:(),(n, n),(2,2, n),(2,3,3),(2,3,4),(2,3,5) . \\
& -|Q|=\mathbf{R} P^{2}:(),(n)
\end{aligned}
$$

Implications for 3-dim orbflds

- The list of 2-dim spherical orbflds is the list of finite subgps of $O(3)$.
- Every 3-dim orbfld is locally isomorphic to the cone on one of the spherical 2-orbflds.
- For example, if $|Q|=S^{2}$ with 3 cone points, $\left(n_{1}, n_{2}, n_{3}\right)$, then Cone (Q) has underlying space an open 3-disk. The 3 cone points yield 3 codim 2 strata labeled m_{1}, m_{2}, m_{3} and the origin is labeled by the corresponding fintie subgp of $O(3)$.

The 17 wallpaper groups

Flat orbifolds: $\chi^{\text {orb }}(Q)=0$
$-|Q|=D^{2}:(; 2,3,6),(; 2,4,4),(; 3,3,3),(; 2,2,2,2)$, (2;2,2), (3;3), (4;2), (2,2;).
$-|Q|=S^{2}:(2,3,6),(2,4,4),(3,3,3),(2,2,2,2)$.

- $|Q|=\mathbf{R} P^{2}:(2,2)$,
$-|Q|=T^{2}:()$.
$-|Q|=$ Klein bottle: ().
- $|Q|=$ annulus: (;).
- $|Q|=$ Möbius band: (;).

$\chi^{\text {orb }}(Q)<0$

It turns out that all remaining 2-dim orbflds are developable and can be given a hyperbolic structure.
The triangular orbifolds (ie, $|Q|=D^{2} ;\left(; m_{1}, m_{2}, m_{3}\right)$ have a unique hyperbolic structure. The others have a positive dimensional moduli space.

In each dimension n, there are 3 simply connected spaces of constant curvature: \mathbb{S}^{n} (the sphere), \mathbb{E}^{n} (Euclidean space) and \mathbb{H}^{n} (hyperbolic space).

Minkowski space

Let $\mathbf{R}^{n, 1}$ denote \mathbf{R}^{n+1} equipped with the indefinite symmetric bilinear form:

$$
\langle x, y\rangle:=x_{1} y_{1}+\cdots+x_{n} y_{n}-x_{n+1} y_{n+1} .
$$

The hypersurface defined by $\langle x, x\rangle=-1$ is a hyperboloid of two sheets. The component with $x_{n+1}>0$ is \mathbb{H}^{n}.

Riemannian metric on $\mathbb{H} \mathbb{I}^{n}$

As in the case of a sphere, given $x \in \mathbb{H}^{n}, T_{x} \mathbb{H}^{n}=x^{\perp}$. Since $\langle x, x\rangle<0$, the restriction of \langle,$\rangle to T_{x}$ is positive definite. So this defines a Riem metric on \mathbb{H}^{n}. It turns out this metric has constant curvature -1 .

Geometric structures on orbifolds

- Suppose G is a gp of isometries acting real analytically on a mfld \mathbb{X}. (The only examples we will be concerned with are $\mathbb{X}^{n}=\mathbb{S}^{n}, \mathbb{E}^{n}$ or \mathbb{H}^{n} and G the full isometry group.)
- By a (G, \mathbb{X})-structure we mean that each of the charts (\widetilde{U}, H, U, π) has $\widetilde{U} \subset \mathbb{X}$, that H is a finite subgp of G and the overlap maps (= compatibility maps) are required to be restrictions of isometries in G.

Convex polytopes in \mathbb{X}^{n}

- A hyperplane or half-space in \mathbb{S}^{n} or \mathbb{H}^{n} is the intersection of a linear hyperplane or half-space with the hypersurface. The unit normal vector u to a hyperplane means that the hyperplane is the orthogonal complement, u^{\perp}, of u (orthogonal wrt the standard bilinear form, in the case of \mathbb{S}^{n}, or the form \langle,$\rangle , in the case of \mathbb{H}^{n}$).
- A half-space in \mathbb{H}^{n} bounded by the hyperplane u^{\perp} is a set of the form $\left\{x \in \mathbb{H}^{n} \mid\langle u, x\rangle \geq 0\right\}$ and similarly, for \mathbb{S}^{n}.
- A convex polytope in \mathbb{S}^{n} or \mathbb{H}^{n} is a compact intersection of a finite number of half-spaces.

Reflections in \mathbb{S}^{n} and \mathbb{H}^{n}

Suppose u is unit vector in \mathbf{R}^{n+1}. Reflection across the hyperplane u^{\perp} (either in \mathbf{R}^{n+1} or \mathbb{S}^{n}) is given by

$$
x \mapsto x-2(x \cdot u) u .
$$

Similarly, suppose $u \in \mathbf{R}^{n, 1}$ satisfies $\langle u, u\rangle=1$. Reflection across the hyperplane u^{\perp} in \mathbb{H}^{n} is given by

$$
x \mapsto x-2\langle x, u\rangle u .
$$

Suppose K is a convex polytope in $\mathbb{X}^{n}\left(=\mathbb{S}^{n}, \mathbb{E}^{n}\right.$ or $\left.\mathbb{H}^{n}\right)$ such that if two codim 1 faces have nonempty intersection, then the dihedral angle between them has form π / m for some integer $m \geq 2$. (This condition is familiar: it means that each codim 2 face has the structure of a codim 2 corner reflector.) Let W be the subgp of Isom $\left(\mathbb{X}^{n}\right)$ generated by reflections across the codim 1 faces of K.

Some basic facts

- W is discrete and acts properly on \mathbb{X}^{n}
- K is a strict fundamental domain in the sense that the restriction to K of the orbit map, $p: \mathbb{X}^{n} \rightarrow \mathbb{X}^{n} / W$, is a homeomorphism. It follows that $\mathbb{X}^{n} / / W \cong K$ and hence, K is an orbifold with an \mathbb{X}^{n}-structure.
(Neither fact is obvious.)
- In 1852 Möbius determined the finite subgroups of $O(3)$ generated by isometric reflections on the 2 -sphere.
- The fundamental domain for such a group on the 2 -sphere was a spherical triangle with angles $\frac{\pi}{p}, \frac{\pi}{q}, \frac{\pi}{r}$, with p, q, r integers ≥ 2.
- Since the sum of the angles is $>\pi$, we have $\frac{1}{p}+\frac{1}{q}+\frac{1}{r}>1$.
- For $p \geq q \geq r$, the only possibilities are: $(p, 2,2)$ for any $p \geq 2$ and $(p, 3,2)$ with $p=3,4$ or 5 . The last three cases are the symmetry groups of the Platonic solids.
- Later work by Riemann and Schwarz showed there were discrete gps of isometries of \mathbb{E}^{2} or \mathbb{H}^{2} generated by reflections across the edges of triangles with angles integral submultiples of π. Poincaré and Klein: a similar result for polygons in \mathbb{H}^{2}.

In $2^{\text {nd }}$ half of the $19^{\text {th }}$ century work began on finite reflection gps on $\mathbb{S}^{n}, n>2$, generalizing Möbius' results for $n=2$. It developed along two lines.

- Around 1850, Schläfli classified regular polytopes in \mathbf{R}^{n+1}, $n>2$. The symmetry group of such a polytope was a finite gp generated by reflections and as in Möbius' case, the projection of a fundamental domain to S^{n} was a spherical simplex with dihedral angles integral submultiples of π.
- Around 1890, Killing and E. Cartan classified complex semisimple Lie algebras in terms of their root systems. In 1925, Weyl showed the symmetry gp of such a root system was a finite reflection gp.
- These two lines were united by Coxeter in the 1930's. He classified discrete groups reflection gps on \mathbb{S}^{n} or \mathbb{E}^{n}.

Let K be a fundamental polytope for a geometric reflection gp. For \mathbb{S}^{n}, K is a simplex. For \mathbb{E}^{n}, K is a product of simplices. For \mathbb{H}^{n} there are other possibilities, eg, a right-angled pentagon in \mathbb{H}^{2} or a right-angled dodecahedron in \mathbb{H}^{3}.

- Conversely, given a convex polytope K in $\mathbb{S}^{n}, \mathbb{E}^{n}$ or \mathbb{H}^{n} st all dihedral angles have form π /integer, there is a discrete gp W generated by isometric reflections across the codim 1 faces of K.
- Let S be the set of reflections across the codim 1 faces of K. For $s, t \in S$, let $m(s, t)$ be the order of $s t$. Then S generates W, the faces corresponding to s and t intersect in a codim 2 face iff $m(s, t) \neq \infty$, and for $s \neq t$, the dihedral angle along that face is $\pi / m(s, t)$. Moreover,

0

$$
\left.\langle S|(s t)^{m(s, t)}, \quad \text { where }(s, t) \in S \times S\right\rangle
$$

is a presentation for W.

Euler characteristics
Classification of 2-orbifolds
Spaces of constant curvature
Geometric reflection groups

Polytopes with nonobtuse dihedral angles

Lemma (Coxeter)

Suppose $K \subset \mathbb{S}^{n}$ is an n-dim convex polytope which is "proper" (meaning that it does not contain any pair of antipodal points). Further suppose that whenever two codim 1 faces intersect along a codim 2 face, the dihedral angle is $\leq \pi / 2$. Then K is a simplex.

A similar result holds for a polytope $K \subset \mathbb{E}^{n}$ which is not a product.

Corollary

The fundamental polytope for a spherical reflection gp is a simplex.

Proof.

For m an integer ≥ 2, we have $\pi / m \leq \pi / 2$.

Corollary

The fund domain for a finite linear reflection gp on \mathbf{R}^{n} is a simplicial cone.

Corollary

Suppose that a convex polytope $K \subset \mathbb{X}^{n}$ is fund domain for reflection gp in Isom $\left(\mathbb{X}^{n}\right)\left(w h e r e \mathbb{X}^{n}=\mathbb{S}^{n}, \mathbb{E}^{n}\right.$ or $\left.\mathbb{H}^{n}\right)$. Then K is a simple polytope. (This means that exactly n facets meet at each vertex.)

Corollary

Suppose Q is an n-orbifold with all the local groups \cong finite reflection gps on \mathbf{R}^{n}. Then the underlying space of Q is naturally a mfld with corners (meaning that it is locally modeled on the simplicial cone $\left.[0, \infty)^{n}\right)$.

Euler characteristics
Classification of 2-orbifolds
Spaces of constant curvature
Geometric reflection groups

Gram matrix of a simplex in \mathbb{X}^{n}

Suppose σ^{n} is a simplex in \mathbb{X}^{n}. Let $u_{0}, \ldots u_{n}$ be its inward pointing unit normal vectors. (The u_{i} lie in $\mathbf{R}^{n+1}, \mathbf{R}^{n}$ or $\mathbf{R}^{n, 1}$ as $\mathbb{X}^{n}=\mathbb{S}^{n}, \mathbb{E}^{n}$ or \mathbb{H}^{n}.) The Gram matrix, G, of σ is the symmetric $(n+1) \times(n+1)$ matrix $\left(g_{i j}\right)$ defined by $g_{i j}=u_{i} \cdot u_{j}$.

A symmetric matrix G with 1's on the diagonal is type
(1) if $G>0$,
(0) if G is positive semidefinite with 1-dim kernel, each principal submatrix is >0, and \exists a vector $v \in \operatorname{Ker} G$ with all its coordinates >0.
(-1) if G has signature $(n, 1)$ and each principal submx is >0.

Linear algebra fact
The extra condition in type 0 (that Ker G is spanned by a vector with positive coordinates) is automatic when G is indecomposable and $g_{i j} \leq 0 \forall i \neq j$ (ie, when all dihedral angles are nonobtuse).

Theorem

Suppose G is a symmetric $(n+1) \times(n+1)$ matrix with 1 's on the diagonal. Let $\varepsilon \in\{+1,0,-1\}$. Then G is the Gram matrix of a simplex $\sigma^{n} \subset \mathbb{X}_{\varepsilon}^{n} \Longleftrightarrow G$ is type ε.

Recall $\mathbb{X}_{\varepsilon}^{n}$ is $\mathbb{S}^{n}, \mathbb{E}^{n}, \mathbb{H}^{n}$ as $\varepsilon=+1,0,-1$.

Proof.

For \mathbb{S}^{n} : we can find basis vectors $u_{0}, \ldots u_{n}$ in \mathbf{R}^{n+1}, well-defined up to isometry, st $\left(u_{i} \cdot u_{j}\right)=G$. (This is because $G>0$.) Since the u_{i} form a basis, the half-spaces, $u_{i} \cdot x \geq 0$, intersect in a simplicial cone and the intersection of this with \mathbb{S}^{n} is σ^{n}.

Proof, continued.

The proof for \mathbb{H}^{n} is similar. For \mathbb{E}^{n}, the argument has some additional complications.

Suppose $\sigma^{n} \subset \mathbb{X}^{n}$ is fund simplex for a geometric reflecton gp . Let $\left\{u_{0}, \ldots u_{n}\right\}$ be the inward-pointing unit normal vectors. Then

$$
u_{i} \cdot u_{j}=-\cos \left(\pi / m_{i j}\right)
$$

where $\left(m_{i j}\right)$ is a symmetric matrix of posiive integers with 1 's on the diagonal and of-diagonal enries ≥ 2.
($\left(m_{i j}\right)$ is called the Coxeter matrix while the matrix $\left(\cos \left(\pi / m_{i j}\right)\right)$ is the associated cosine matrix.)
The formula above says: Gram matrix = cosine matrix.

Suppose $M=\left(m_{i j}\right)$ is a Coxeter matrix (a symmetric $(n+1) \times(n+1)$ matrix with 1 's on diagonal and off-diagonals ≥ 2). Sometimes we allow the off-diagonal $m_{i j}$ to $=\infty$, but not here.

Theorem

Let M be a Coxeter matrix as above and C its associated cosine matrix (ie, $c_{i j}=-\cos \left(\pi / m_{i j}\right)$. Then there is a geometric refl gp with fund simplex $\sigma^{n} \subset \mathbb{X}_{\varepsilon}^{n} \Longleftrightarrow C$ is type ε.

So, the problem of determining the geometric reflection gps with fund polytope a simplex in $\mathbb{X}_{\varepsilon}^{n}$ becomes the problem of determining the Coxeter matrices M whose cosine matrix is type ε. This was done by Coxeter for $\varepsilon=1$ or 0 and by Lannér for $\varepsilon=-1$. The information in a Coxeter diagram is best encoded by a "Coxeter diagram."

Coxeter diagrams

Associated to (W, S), there is a labeled graph Γ called its "Coxeter diagram."

$$
\operatorname{Vert}(\Gamma):=S .
$$

Connect distinct elements s, t by an edge iff $m(s, t) \neq 2$. Label the edge by $m(s, t)$ if this is >3 or $=\infty$ and leave it unlabeled if it is $=3$. (W, S) is irreducible if Γ is connected. (The components of Γ give the irreducible factors of W.) The next slide shows Coxeter's classification of irreducible spherical and cocompact Euclidean reflection gps.

Euler characteristics
Classification of 2-orbifolds Spaces of constant curvature
Geometric reflection groups

Spherical Diagrams

The next slide shows Lannér's classification of hyperbolic reflection gps with fund polytope a simplex in \mathbb{H}^{n}.

Exercise

Derive Lannér's list on the next slide from Coxeter's lists on the previous slide.

Hyperbolic Simplicial Diagrams

$$
n=2
$$

with $\left(p^{-1}+q^{-1}+r^{-1}\right)<1$
$n=3$

$n=4$

Mike Davis
Orbifolds 2

