Reflection groups 4

Mike Davis

Sao Paulo

May 19, 2014
https://people.math.osu.edu/davis.12/slides.html
1 Reflectofolds
 - The nerve of a Coxeter system
 - Review
 - Aspherical reflectofolds

2 The reflection group trick
 - Exotic fundamental gps
 - Nonsmoothable aspherical manifolds

3 The canonical cell complex $\Sigma(W, S)$
Let \((W, S)\) be a Coxeter system. \(S\) is the poset of spherical subsets of \(S\). We want to see that \(S\) is the poset of simplicices of a simplicial cx, \(L(W, S)\), (or simply \(L\)), called the nerve of \((W, S)\).

- The vertex set of \(L\) is \(S\).
- A subset \(T \subseteq S\) spans a simplex \(\iff T\) is spherical (ie \(W_T\) is finite).
Question

Given a simplicial complex L', when is $L' = L(W, S)$ for some Coxeter system (W, S)?

This should remind us of the dual form of Andreev’s Theorem. It says that the simplicies of L' are completely determined by (W, S), ie, by the $m(s, t)$.
Definition (Flag complexes)

A simplicial complex L' is a *flag cx* if given any finite collection of vertices which are pairwise connected by edges span a simplex. In other words, any complete subgraph of L' is the 1-skeleton of a simplex in L'. (There are no empty triangles in L'. Gromov calls this the “no Δ condition.”)

Example

The barycentric subdivision of any cell cx is a flag cx.
Proposition

Given any flag cx L, there is a right-angled Coxeter system (W, S) with $L(W, S) = L$.

“Right-angled” means all $m(s, t)$, for $s \neq t$, are $= 2$ or ∞.

Define the $m(s, t)$ and hence, (W, S) by

$$m(s, t) = \begin{cases} 2, & \text{if } \{s, t\} \text{ is an edge of } L; \\ \infty, & \text{if not.} \end{cases}$$
X is a space with mirror structure. \(X_T = \bigcap_{s \in T} X_s \).

\(\mathcal{U}(W, X) = (W \times X) / \sim \). Recall \(W \) acts properly on \(\mathcal{U} \) \(\iff \) the mirror structure is proper, i.e., \(\iff X_T = \emptyset \) whenever \(T \notin S \).

If \(\mathcal{U} \) is contractible, then \(X_T \neq \emptyset \) (and \(X_T \) is acyclic) whenever \(T \in S \).

So, if \(\mathcal{U} \) is contractible and the action is proper, the pattern of nonempty intersections is completely determined by the nerve \(L(W, S) \).
Since $\mathcal{U} (= \mathcal{U}(W, X))$ is a mfld with locally linear W-action, X must be an orbifold, ie, X is a mfld with corners.

Since \mathcal{U} is contractible, X is a contractible mfld with bdry.

A stratum of codimension k has the form X_T, where $T \in S$ and $\# T = k$. Each such stratum is an acyclic manifold with boundary (contained in ∂X).

In other words, X looks a like a simple convex polytope up to homology. (X is a contractible “manifold with faces” and each face is acyclic.)
Suppose, as above, X is a compact manifold with corners, $\mathcal{U}(W, X)$ is a contractible n-manifold.

Theorem

Let $L = L(W, S)$, where (W, S) is the Coxeter system associated to X. Then

- $H_*(L) \cong H_*(S^{n-1})$.
- L is a polyhedral homology $(n-1)$-manifold, i.e., for each $\sigma \in L$,
 $$H_*(Lk(\sigma)) \cong H_*(S^{\text{codim } \sigma - 1}).$$

Definition

A simplicial complex with the above two properties is a *generalized homology $(n-1)$-sphere* (abbreviated a GHS^{n-1}).
Sketch of Proof.

∂X is covered by the faces X_s. The nerve of the cover is L. Since each face and each intersection of faces is acyclic, it follows that L and ∂X have the same homology, ie, the homology of S^{n-1}.

Similarly, if $\sigma = T$ is a simplex of L, then ∂X_T has the homology of a sphere of dim $= \text{codim}\sigma - 1$; it is covered by faces of the form $X_{T \cup \{s\}}$ and the nerve of this cover is $\text{Lk}(\sigma)$. This proves the first statement.
If L is a GHS$^{n-1}$ then it is possible to “dualize” it (or resolve it) to a contractible mfld with faces. Because of 4-dim problems it may only be possible to do this topologically; however, if each 3-dim link smoothly bounds a contractible 4 mfld, then one can find a smooth contractible n-mfld dual to L.
For example suppose that L is a PL manifold with the same homology as S^{n-1} (ie, L is a homology sphere). We can find a contractible manifold X with $\partial X = L$. Triangulate L and use the dual cells to give X the structure of a manifold with faces in which each face is a disk. Thus, X looks like a simple polytope except that its boundary need not be homeo to S^{n-1}, eg, when $n \geq 2$, it need not be simply connected.

Continuing along this line, after replacing L by its barycentric subdivision, we can assume L is a flag complex. Let (W, S) be the associated right-angled Coxeter system and $\mathcal{U}(W, X)$ the associated contractible n-manifold.
Theorem

Suppose L and X are as on the previous page and that

\[\pi_1(L) \neq 1. \]

Then $U(W, X)$ is a contractible mfld not homeo to $R^n \ (n \geq 4)$.

The reason is that $U(W, X)$ is not simply connected at ∞.

Remark

Suppose $\Gamma \subset W$ is a torsion-free subgp of finite index (such Γ exist). Then Γ acts freely on U and $M = U/\Gamma$ is a closed aspherical mfld not covered by R^n.
Definition

An n-dim orbifold Q is a *reflectofold* if it is locally modeled on finite linear reflection groups $\sim \mathbb{R}^n$.

If $\mathcal{W} \sim \mathbb{R}^n$ as a finite reflection group, then \mathbb{R}^n/\mathcal{W} is a simplicial cone, i.e., up to linear isomorphism it looks like $[0, \infty)^n$. It follows that the underlying space of a reflectofold Q is a manifold with corners. Conversely, to give a manifold with corners the structure of a reflectofold, essentially all we need to do is label its codim 2 strata by integers ≥ 2 in such a way that the strata of higher codim correspond to *finite* Coxeter groups.
If $|Q|$ is simply connected and Q is developable, then any codim 2 stratum is contained in the closures of 2 distinct codim 1 strata. Otherwise we would have a nondevelopable suborbifold pictured to the right.

Similarly, developable \implies if intersection of 2 codim 1 strata contains 2 distinct codim 1 strata, then they are labeled by the same integer.
Definition

An orbifold is *aspherical* if its universal cover is a contractible manifold.

Question

Is it true that a contractible orbifold is automatically a manifold?

This was recently answered by Lytchak.
Remark

A 2-dim orbifold Q^2 is aspherical $\iff \chi^{orb}(Q^2) \leq 0$.

Conjecture (Hopf, Chern, Thurston)

Suppose Q^{2n} is a closed aspherical orbifold. Then $(-1)^n \chi^{orb}(Q^{2n}) \geq 0$.

My favorite conjecture
Idea

Let X be a compact aspherical manifold with boundary. Proceed as before: triangulate ∂X as a flag complex L and then take the dual cellulation to give X the structure of a reflectofold. For example, X could be a 2-dimensional orbifold with mirrors and corner reflectors on ∂X, but no cone points. Then $\mathcal{U}(W, X)$ should be aspherical and X should be an aspherical reflectofold.

We will prove this later.
For a long time there we have known examples of groups π with $B\pi$ a finite complex – such a π is said to be type F. For example, many finite 2-complexes are known to be aspherical. On the other hand, some years ago must examples of aspherical mflds came from differential geometry or Lie gps. For example, the Cartan-Hadmard Thm asserts that the universal cover of a complete Riem mfld of nonpositive curvature is diffeo to \mathbb{R}^n.

The reflection gp trick gives us a method for producing many more examples of aspherical mflds. Given a gp π of type F we thicken $B\pi$ a mfld with bdry X and then apply the reflection gp trick to get an aspherical mfld, whose π_1 retracts onto π.
Notation

\[U = U(W, X), \quad \tilde{U} \text{ its universal cover.} \]
Let \(\Gamma \) be a torsion-free subgp of finite index in \(W \).
Put \(M = U/\Gamma \) and \(\tilde{\Gamma} = \pi_1(M) \).
The quotient map \(U \to X \) induces a map \(r : M \to X \), which is a retraction.

Hence, \(r_\ast : \tilde{\Gamma} = \pi_1(M) \to \pi_1(X) \) is a retraction from the fundamental gp of a closed aspherical mfld onto the gp \(\pi_1(X) \).
∃ examples of closed aspherical manifolds M such that

- $\pi_1(M)$ is not residually finite.
- $\pi_1(M)$ contains not finitely generated abelian subgroup A, e.g., $A = \mathbb{Z}[1/2]$.
- $\pi_1(M)$ has unsolvable word problem.
Theorem (D - Hausmann)

∃ examples of aspherical mflds M which not homotopy equivalent to any smooth mfld.

Sketch of Proof.

∃ example of topological aspherical n-mfld with bdry X^n st that its Spivak normal fiber space (ie its homotopy normal bundle) does not admit a reduction to a linear vector bundle. For example, X^n could be a thickening of a m-torus, eg, with $n = 13$ and $m = 4$.
Remark

With different techniques this can be improved to \(n \geq 4 \).
There are two constructions of Σ.

Geometric realization of a poset

Given a poset \mathcal{P}, let $\text{Flag}(\mathcal{P})$ denote the abstract simplicial complex with vertex set \mathcal{P} and with simplices all finite, totally ordered subsets of \mathcal{P}. The geometric realization of $\text{Flag}(\mathcal{P})$ is denoted $|\mathcal{P}|$.

First construction of Σ

- Recall \mathcal{S} is the poset of spherical subsets of S. The *fundamental chamber* K is defined by $K := |\mathcal{S}|$. (K is the cone on the barycentric subdivision of L.)
- Mirror structure: $K_s := |\mathcal{S}_{\geq \{s\}}|$.
- $\Sigma := \mathcal{U}(W, K)$.
Second construction

Let WS denote the disjoint union of all spherical cosets (partially ordered by inclusion):

$$WS := \bigsqcup_{T \in S} W/W_T$$

and $\Sigma := |WS|$.

Coxeter polytopes

Suppose W_T is finite reflection gp on \mathbb{R}^T. Choose a point x in the interior of fundamental simplicial cone and let P_T be convex hull of W_Tx. P_T is determined up to isometry once we specify the distance of x from each bounding hyperplane.
There is a cell structure on Σ with $\{\text{cells}\} = WS$.

This follows from the fact that the poset of cells in P_T is $\cong W_TS_{\leq T}$. The cells of Σ are defined as follows: the geometric realization of the subposet of cosets $\leq wW_T$ is \cong the barycentric subdiv of P_T.
Properties of this cell structure on Σ

- W acts cellularly on Σ.
- Σ has one W-orbit of cells for each spherical subset $T \in S$ and $\dim(\text{cell}) = \text{Card}(T)$.
- The 0-skeleton of Σ is W.
- The 1-skeleton of Σ is $\text{Cay}(W, S)$.
- The 2-skeleton of Σ is the Cayley 2 complex of the presentation.
- If W is right-angled, then each Coxeter cell is a cube and we have the cubical cell structure on \tilde{P}_L discussed in the last lecture.
- Moussong: the induced piecewise Euclidean metric on Σ is $\text{CAT}(0)$.
More properties

- Σ is contractible. (This follows from the fact it is CAT(0).
- The W-action is proper (by construction each isotropy subgp is conjugate to some finite W_T).
- $\Sigma/W = K$, which is compact (so the action is cocompact)
- If W is finite, then Σ is a Coxeter polytope

If W is a geometric reflection gp on $\mathbb{X}^n = \mathbb{E}^n$ or \mathbb{H}^n, then K can be identified with the fundamental polytope, Σ with \mathbb{X}^n and the cell structure is dual to the tessellation of Σ by translates of K.