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There are two constructions of Σ.

Geometric realization of a poset

Given a poset P, let Flag(P) denote the abstract simplicial
complex with vertex set P and with simplices all finite, totally
ordered subsets of P. The geometric realization of Flag(P) is
denoted |P|.

First construction of Σ

Recall S is the poset of spherical subsets of S. The
fundamental chamber K is defined by K := |S|. (K is the
cone on the barycentric subdivision of L.)
Mirror structure: Ks := |S≥{s}|.
Σ := U(W ,K ).

Mike Davis Reflection groups 5



The canonical cell complex Σ(W , S)

CAT(0)-spaces

Another way to understand K
Start with a simplex ∆, with one facet ∆s, for each s ∈ S. Let
∆T =

⋂
s∈T

∆s. Take the barycetric subdivision of ∆. Then K is

the full subcomplex spanned by the barycenters of the ∆T , for
all spherical T spherical (ie for all T with WT finite). The
barycenter of ∆ corresponds to T = ∅. (This description works
whenever W is infinite.)
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Second construction
Let WS denote the disjoint union of all spherical cosets
(partially ordered by inclusion:

WS :=
∐
T∈S

W/WT and Σ := |WS|.

Coxeter polytopes

Suppose WT is finite reflection gp on RT . Choose a point x in
the interior of fundamental simplicial cone and let PT be convex
hull of WT x . PT is determined up to isometry once we specify
the distance of x from each bounding hyperplane.
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There is a cell structure on Σ with {cells} = WS.

This follows from fact that poset of cells in PT is ∼= WTS≤T .
The cells of Σ are defined as follows: the geometric realization
of subposet of cosets ≤ wWT is ∼= barycentric subdiv of PT .
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Properties of this cell structure on Σ

- W acts cellularly on Σ.
- Σ has one W -orbit of cells for each spherical subset T ∈ S

and dim(cell) = Card(T ).
- The 0-skeleton of Σ is W
- The 1-skeleton of Σ is Cay(W ,S).
- The 2-skeleton of Σ is the Cayley 2 complex of the

presentation.
- If W is right-angled, then each Coxeter cell is a cube and

we have the cubical cell structure on P̃L discussed in the
last lecture.

- Moussong: the induced piecewise Euclidean metric on Σ is
CAT(0).
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More properties

- Σ is contractible. (This follows from the fact it is CAT(0).
- The W -action is proper (by construction each isotropy

subgp is conjugate to some finite WT ).
- Σ/W = K , which is compact (so the action is cocompact)
- If W is finite, then Σ is a Coxeter polytope

If W is a geometric reflection
gp on Xn = En or Hn, then K
can be identified with the
fundamental polytope, Σ with
Xn and the cell structure is
dual to the tessellation of Σ
by translates of K .
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“CAT(0)-space” is a term invented by Gromov.
Also, called “Hadamard space.” Roughly, a space which is
“nonpositively curved” and simply connected.

C = “Comparison” or “Cartan”
A = “Aleksandrov”
T = “Toponogov”
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In the 1940’s and 50’s Aleksandrov introduced the notion of a
“length space” and the idea of curvature bounds on length
space. He was primarily interested in lower curvature bounds
(defined by reversing the CAT(κ) inequality). He proved that a
length metric on S2 has nonnegative curvature iff it is isometric
to the boundary of a convex body in E3. First Aleksandrov
proved this result for nonnegatively curved piecewise Euclidean
metrics on S2, i.e., any such metric was isometric to the
boundary of a convex polytope. By using approximation
techniques, he then deduced the general result (including the
smooth case) from this.
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One of the first papers on nonpositively curved spaces was a
1948 paper of Busemann. The recent surge of interest in
nonpositively curved polyhedral metrics was initiated by
Gromov’s seminal 1987 paper.
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Some definitions
Let (X ,d) be a metric space. A path
c : [a,b]→ X is a geodesic (or a geodesic segment) if
d(c(s), c(t)) = |s − t | for all s, t ∈ [a,b]. (X ,d) is a geodesic
space if any two points can be connected by a geodesic
segment.
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Given a path c : [a,b]→ X , its length, l(c), is defined by

l(c) := sup{
n∑

i=1

d(c(ti−1, ti)},

where a = t0 < t1 < · · · tn = b runs over all possible
subdivisions. The metric space (X ,d) is a length space if

d(x , y) = inf{l(c) | c is a path from x to y}.

(Here we allow∞ as a possible value of d .) Thus, a length
space is a geodesic space iff the above infimum is always
realized and is 6=∞.
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The CAT(κ)-inequality

For κ ∈ R, X2
κ is the simply connected, complete, Riemannian

2-manifold of constant curvature κ:
X2

0 is the Euclidean plane E2.
If κ > 0, then X2

κ = S2 with its metric rescaled so that its
curvature is κ (i.e., it is the sphere of radius 1/

√
κ).

If κ < 0, then X2
κ = H2, the hyperbolic plane, with its metric

rescaled.
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A triangle T in a metric space X is a configuration of three
geodesic segments (the “edges”) connecting three points (the
“vertices”) in pairs. A comparison triangle for T is a triangle T ∗

in X2
κ with the same edge lengths. When κ ≤ 0, a comparison

triangle always exists. When κ > 0, a comparison triangle
exists ⇐⇒ l(T ) ≤ 2π/

√
κ, where l(T ) denotes the sum of the

lengths of the edges. (The number 2π/
√
κ is the length of the

equator in a 2-sphere of curvature κ.)
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If T ∗ is a comparison triangle for T , then for each edge of T
there is a well-defined isometry, denoted x → x∗, which takes
the given edge of T onto the corresponding edge of T ∗. A
metric space X satisfies CAT(κ) (or is a CAT(κ)-space) if the
following two conditions hold:
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If κ ≤ 0, then X is a geodesic space, while if κ > 0, it is
required there be a geodesic segment between any two
points < π/

√
κ apart.

(The CAT(κ) inequality). For any triangle T (with
l(T ) < 2π/

√
κ if κ > 0) and any two points x , y ∈ T , we

have
d(x , y) ≤ d∗(x∗, y∗),

where x∗, y∗ are the corresponding points in the
comparison triangle T ∗ and d∗ is distance in X2

κ.
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Definition
A metric space X has curvature ≤ κ if the CAT(κ) inequality
holds locally.
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Observations
If κ′ < κ, then CAT(κ′) =⇒ CAT(κ).
CAT(0) =⇒ contractible.
curvature ≤ 0 =⇒ aspherical.

Theorem (Aleksandrov and Toponogov)

Riemannian mfld has sectional curvature ≤ κ iff CAT(κ) holds
locally.
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The cone on a CAT(1)-space

The cone on X , denoted Cone(X ), is the quotient space of
X × [0,∞) by the equivalence relation ∼ defined by
(x , s) ∼ (y , t) if and only if (x , s) = (y , t) or s = t = 0. The
image of (x , s) in Cone(X ) is denoted [x , s]. The cone of radius
r , denoted Cone(X , r), is the image of X × [0, r ].
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Given a metric space X and κ ∈ R, we will define a metric dκ
on Cone(X ). (When κ > 0, the definition will only make sense
on the open cone of radius π/

√
κ.) The idea: when X = Sn−1,

by using “polar coordinates” and the exponential map,
Cone(Sn−1) can be identified with (an open subset of) Xn

κ.
Transporting the constant curvature metric on Xn

κ to
Cone(Sn−1), gives a formula for dκ on Cone(Sn−1). The same
formula defines a metric on Cone(X ) for any metric space X .
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To write this formula recall the Law of Cosines in X2
κ. Suppose

we have a triangle in X2
κ with edge lengths s, t and d and angle

θ between the first two sides

θ

s

t

d
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The Law of Cosines

in E2:
d2 = s2 + t2 − 2st cos θ

in S2
κ:

cos
√
κd = cos

√
κs cos

√
κt + sin

√
κs sin

√
κt cos θ

in H2
κ:

cosh
√
−κd = cosh

√
−κs cosh

√
−κt+sinh

√
−κs sinh

√
−κt cos θ
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Given x , y ∈ X , put θ(x , y) := min{π,d(x , y)}. Define the
metric d0 on Cone(X ) by

d0([x , s], [y , t ]) := (s2 + t2 − 2st cos θ(x , y))1/2.

Metrics dκ, κ 6= 0 are defined similarly. Denote Cone(X )
equipped with the metric dκ by Coneκ(X ).

Remark
If X is a (n− 1)-dimensional spherical polytope, then Coneκ(X )
is isometric to a convex polyhedral cone in Xn

κ.
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Proposition
Suppose X is a complete and that any two points of distance
≤ π can be joined by a geodesic. Then

Coneκ(X ) is a complete geodesic space.
Coneκ(X ) is CAT(κ) if and only if X is CAT(1).
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Polyhedra of piecewise constant curvature

We call a convex polytope in Xn
κ an Xκ-polytope when we don’t

want to specify n.

Definition
Suppose F is the poset of faces of a cell complex. An Xκ-cell
structure on F is a family (CF )F∈F of Xκ-polytopes s.t.
whenever F ′ < F , CF ′ is isometric to the corresponding face of
CF .
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Example
Piecewise Euclidean cell complexes Suppose a collection of
convex polytopes in En is a convex cell cx in the classical
sense. Then the union Λ of these polytopes is a X0-polyhedral
complex.

Piecewise spherical (= PS) polyhedra play a distinguished role
in this theory. In any Xκ-polyhedral cx each “link” naturally has
a PS structure.
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Geometric links
Suppose P is an n-dimensional Xκ-polytope and x ∈ P. The
geometric link, Lk(x ,P), (or “space of directions”) of x in P is
the set of all inward-pointing unit tangent vectors at x . It is an
intersection of a finite number of half-spaces in Sn−1. If x lies in
the interior of P, then Lk(x ,P) ∼= Sn−1, while if x is a vertex of
P, then Lk(x ,P) is a spherical polytope. Similarly, if F ⊂ P is a
face of P, then Lk(F ,P) is the set of inward-pointing unit
vectors in the normal space to F (in the tangent space of P). If
Λ is an Xκ-polyhedral complex and x ∈ Λ, define

Lk(x ,Λ) :=
⋃
x∈P

Lk(x ,P).

Lk(x ,P) is a PS length space. Similarly, Lk(F ,Λ) :=
⋃

Lk(F ,P).
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Theorem (Gromov)
Let Λ be an Xκ-polyhedral complex. TFAE

curv(Λ) ≤ κ.
∀x ∈ Λ, Lk(x ,Λ) is CAT(1).
∀cells P of Λ, Lk(P,Λ) is CAT(1).
∀v ∈ Vert Λ, Lk(v ,Λ) is CAT(1).

Proof.
Any x ∈ Λ has a nbhd isometric to Coneκ(Lk(x ,Λ), ε).
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Lemma (Gromov)
Let L be an all right PS simplicial cx. Then

L is CAT(1) ⇐⇒ flag cx.

Corollary

A cubical cx is CAT(0) ⇐⇒ the link of each vertex is a flag cx.

Corollary

For any right-angled Coxeter system (W ,S), Σ(W ,S) is
CAT(0).
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Metric flag complexes

Suppose L is a PS simplicial complex st each edge has length
≥ π/2 (eg. the edge lengths might have the form π − π/m,
where m = m(s, t). L is a metric flag complex if every time the
edge lengths of a complete subgraph are the edge length of a
spherical simplex, then this simplex is filled in (ie is in L). For
example, with its natural PS metric, L(W ,S) is a metric flag cx.
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Lemma (Moussong)

A metric flag cx is CAT(1).

Corollary (Moussong)

For any Coxeter system (W ,S), Σ(W ,S) is CAT(0).
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