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The canonical cell complex (W, S)

There are two constructions of . J

Geometric realization of a poset

Given a poset P, let Flag(P) denote the abstract simplicial
complex with vertex set P and with simplices all finite, totally
ordered subsets of P. The geometric realization of Flag(P) is
denoted |P|.

First construction of

@ Recall S is the poset of spherical subsets of S. The
fundamental chamber K is defined by K := |S|. (K is the
cone on the barycentric subdivision of L.)

@ Mirror structure: Ks := |S> g l-

o Y =UW,K).
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The canonical cell complex (W, S)

Another way to understand K

Start with a simplex A, with one facet Ag, for each s € S. Let

AT = ﬂ As. Take the barycetric subdivision of A. Then K is

seT
the full subcomplex spanned by the barycenters of the A7, for

all spherical T spherical (ie for all T with W7 finite). The
barycenter of A corresponds to T = (). (This description works
whenever W is infinite.)
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Second construction

Let WS denote the disjoint union of all spherical cosets
(partially ordered by inclusion:

Ws:=[[ w/Wr and X:=|WS|
TeS

v

Coxeter polytopes

Suppose Wr is finite reflection gp on R7. Choose a point x in
the interior of fundamental simplicial cone and let Py be convex
hull of Wrx. Pr is determined up to isometry once we specify
the distance of x from each bounding hyperplane.
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The canonical cell complex (W, S)

There is a cell structure on X with {cells} = WS. |

This follows from fact that poset of cells in Pris = WrS<r.
The cells of X are defined as follows: the geometric realization
of subposet of cosets < wWr is = barycentric subdiv of Pr.
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The canonical cell complex (W, S)

CAT(0)-spaces

Properties of this cell structure on &

- W acts cellularly on .

- ¥ has one W-orbit of cells for each spherical subset T € S
and dim(cell) = Card(T).

- The 0-skeleton of X is W

- The 1-skeleton of X is Cay(W, S).

- The 2-skeleton of ¥ is the Cayley 2 complex of the
presentation.

- If W is right-angled, then each Coxeter cell is a cube and
we have the cubical cell structure on P, discussed in the
last lecture.

- Moussong: the induced piecewise Euclidean metric on ¥ is
CAT(0).
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The canonical cell complex (W, S)

More properties

- X is contractible. (This follows from the fact it is CAT(0).

- The W-action is proper (by construction each isotropy
subgp is conjugate to some finite Wr).

- Y /W = K, which is compact (so the action is cocompact)
- If W is finite, then X is a Coxeter polytope

If W is a geometric reflection
gp on X7 =E" or H", then K
can be identified with the
fundamental polytope, ¥ with
X™ and the cell structure is
dual to the tessellation of ©
by translates of K.
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CAT(0)-spaces

“CAT(0)-space” is a term invented by Gromov.
Also, called “Hadamard space.” Roughly, a space which is
“nonpositively curved” and simply connected.

C = “Comparison” or “Cartan”
A = “Aleksandrov”
T = “Toponogov”
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The canonical cell complex ~(W, S)

CAT(0)-spaces

In the 1940’s and 50’s Aleksandrov introduced the notion of a
“length space” and the idea of curvature bounds on length
space. He was primarily interested in lower curvature bounds
(defined by reversing the CAT(x) inequality). He proved that a
length metric on S? has nonnegative curvature iff it is isometric
to the boundary of a convex body in E3. First Aleksandrov
proved this result for nonnegatively curved piecewise Euclidean
metrics on S?, i.e., any such metric was isometric to the
boundary of a convex polytope. By using approximation
techniques, he then deduced the general result (including the
smooth case) from this.
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CAT(0)-spaces

One of the first papers on nonpositively curved spaces was a
1948 paper of Busemann. The recent surge of interest in
nonpositively curved polyhedral metrics was initiated by
Gromov’s seminal 1987 paper.
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CAT(0)-spaces

Some definitions

Let (X, d) be a metric space. A path

c: [a, b] — X is a geodesic (or a geodesic segment) if
d(c(s),c(t)) =|s—t|forall s, t € [a, b]. (X,d)is a geodesic
space if any two points can be connected by a geodesic
segment.
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The canonical cell complex ~(W, S)

CAT(0)-spaces

Given a path ¢ : [a, b] — X, its length, I(c), is defined by

/(C _SUp{Zd t/ 1>t/}

where a=fy < t; < --- t, = b runs over all possible
subdivisions. The metric space (X, d) is a length space if

d(x,y) =inf{l(c) | cis a path from x to y}.

(Here we allow oo as a possible value of d.) Thus, a length
space is a geodesic space iff the above infimum is always
realized and is # oc.
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CAT(0)-spaces

The CAT(k)-inequality

For x € R, X2 is the simply connected, complete, Riemannian
2-manifold of constant curvature x:

@ X3 is the Euclidean plane E?.

@ If k > 0, then X2 = S? with its metric rescaled so that its
curvature is « (i.e., it is the sphere of radius 1/+/k).

@ If k < 0, then X2 = H?, the hyperbolic plane, with its metric
rescaled.

V.
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CAT(0)-spaces

A triangle T in a metric space X is a configuration of three
geodesic segments (the “edges”) connecting three points (the
“vertices”) in pairs. A comparison triangle for T is a triangle T*
in X2 with the same edge lengths. When x < 0, a comparison
triangle always exists. When « > 0, a comparison triangle
exists <= I(T) < 2rn/./k, where /(T) denotes the sum of the
lengths of the edges. (The number 27/./k is the length of the
equator in a 2-sphere of curvature «.)
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CAT(0)-spaces

If T* is a comparison triangle for T, then for each edge of T
there is a well-defined isometry, denoted x — x*, which takes
the given edge of T onto the corresponding edge of T*. A
metric space X satisfies CAT(x) (or is a CAT(k)-space) if the
following two conditions hold:
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CAT(0)-spaces

@ If k <0, then X is a geodesic space, while if x > 0, it is
required there be a geodesic segment between any two
points < «/\/k apart.

@ (The CAT (k) inequality). For any triangle T (with
I(T) < 2 /+/k if K > 0) and any two points x,y € T, we
have

d(x,y) < d*(x*,y%),

where x*, y* are the corresponding points in the
comparison triangle T* and d* is distance in X2.

Mike Davis Reflection groups 5



y y*

Mike Davi eflection groups 5



CAT(0)-spaces

Definition

A metric space X has curvature < k if the CAT(x) inequality
holds locally.
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CAT(0)-spaces

@ If k¥ < Kk, then CAT(rk') = CAT(k).
@ CAT(0) = contractible.
@ curvature < 0 = aspherical.

Theorem (Aleksandrov and Toponogov)

Riemannian mfld has sectional curvature < « iff CAT(x) holds
locally.
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CAT(0)-spaces

The cone on a CAT(1)-space

The cone on X, denoted Cone(X), is the quotient space of

X x [0, 00) by the equivalence relation ~ defined by

(x,8) ~ (y,t)ifand only if (x,s) = (y,t)ors=t=0. The
image of (x, s) in Cone(X) is denoted [x, s]. The cone of radius
r, denoted Cone(X, r), is the image of X x [0, r].
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CAT(0)-spaces

Given a metric space X and « € R, we will define a metric d.
on Cone(X). (When k > 0, the definition will only make sense
on the open cone of radius 7/+/x.) The idea: when X = S"1,
by using “polar coordinates” and the exponential map,
Cone(S"~1) can be identified with (an open subset of) X,
Transporting the constant curvature metric on X7 to
Cone(S"~1), gives a formula for d,, on Cone(S""). The same
formula defines a metric on Cone(X) for any metric space X.
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CAT(0)-spaces

To write this formula recall the Law of Cosines in X2. Suppose
we have a triangle in X2 with edge lengths s, t and d and angle
f between the first two sides
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CAT(0)-spaces

The Law of Cosines

@ in E2:

d? = s? + 2 — 2stcos §
@ in S2:
cos v/kd = cos \/kScos /kt + sin/kssin/ktcosé
@ in H2:

cosh v —xd = cosh /—kscosh v/—kt+sinh v/—kssinh \/—mj COoS
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CAT(0)-spaces

Given x,y € X, put 6(x, y) :== min{r, d(x, y)}. Define the
metric dy on Cone(X) by

do([x, 8], [y, 1]) := (s? + t? — 2stcos O(x, y))'/2.

Metrics d;, ~ # 0 are defined similarly. Denote Cone(X)
equipped with the metric d,; by Cone,(X).

Remark

If X is a (n— 1)-dimensional spherical polytope, then Cone,(X)
is isometric to a convex polyhedral cone in X}.

Mike Davis Reflection groups 5



CAT(0)-spaces

Proposition

Suppose X is a complete and that any two points of distance
< 7 can be joined by a geodesic. Then

@ Cone,(X) is a complete geodesic space.
@ Cone(X) is CAT(x) if and only if X is CAT(1).
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CAT(0)-spaces

Polyhedra of piecewise constant curvature

We call a convex polytope in X7 an X, -polytope when we don’t
want to specify n. J

Definition

Suppose F is the poset of faces of a cell complex. An X, -cell
structure on F is a family (Cg)gc+ of X,-polytopes s.t.

whenever F' < F, Cr is isometric to the corresponding face of
Cr.
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CAT(0)-spaces

Example

Piecewise Euclidean cell complexes Suppose a collection of
convex polytopes in E” is a convex cell cx in the classical
sense. Then the union A of these polytopes is a Xy-polyhedral
complex.

Piecewise spherical (= PS) polyhedra play a distinguished role
in this theory. In any X,-polyhedral cx each “link” naturally has
a PS structure.
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The canonical cell complex ~(W, S)

CAT(0)-spaces

Geometric links

Suppose P is an n-dimensional X,;-polytope and x € P. The
geometric link, Lk(x, P), (or “space of directions”) of x in P is
the set of all inward-pointing unit tangent vectors at x. It is an
intersection of a finite number of half-spaces in S™'. If x lies in
the interior of P, then Lk(x, P) = S"~, while if x is a vertex of
P, then LKk(x, P) is a spherical polytope. Similarly, if F C Pis a
face of P, then Lk(F, P) is the set of inward-pointing unit
vectors in the normal space to F (in the tangent space of P). If
A is an X,;-polyhedral complex and x € A, define

Lk(x,A) == | ] Lk(x, P).

XeP

Lk(x, P) is a PS length space. Similarly, Lk(F,A) := |JLk(F, P).
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CAT(0)-spaces

Theorem (Gromov)
Let A be an X,;-polyhedral complex. TFAE
@ curv(A) < k.
@ Vx € A, Lk(x, A) is CAT(1).
@ Vcells P of A, Lk(P, A) is CAT(1).
@ Vv e VertA, Lk(v,A) is CAT(1).

Any x € A has a nbhd isometric to Cone,(Lk(x, A), ).
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CAT(0)-spaces

Lemma (Gromov)

Let L be an all right PS simplicial cx. Then

L is CAT(1) < flag cx.

A cubical cx is CAT(0) < the link of each vertex is a flag cx.

For any right-angled Coxeter system (W, S), (W, S) is
CAT(0).

Mike Davis Reflection groups 5



CAT(0)-spaces

Metric flag complexes

Suppose L is a PS simplicial complex st each edge has length
> /2 (eg. the edge lengths might have the form = — 7 /m,
where m = m(s, t). Lis a metric flag complex if every time the
edge lengths of a complete subgraph are the edge length of a
spherical simplex, then this simplex is filled in (ie is in L). For
example, with its natural PS metric, L(W, S) is a metric flag cx.
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CAT(0)-spaces

Lemma (Moussong)
A metric flag cx is CAT(1).

Corollary (Moussong)
For any Coxeter system (W, S), (W, S) is CAT(0).
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