The canonical cell complex $\Sigma(W, S)$ CAT(0)-spaces

Reflection groups 5

Mike Davis

Sao Paulo

May 21, 2014 https://people.math.osu.edu/davis.12/slides.html

There are two constructions of Σ .

Geometric realization of a poset

Given a poset \mathcal{P} , let $\mathsf{Flag}(\mathcal{P})$ denote the abstract simplicial complex with vertex set \mathcal{P} and with simplices all finite, totally ordered subsets of \mathcal{P} . The geometric realization of $\mathsf{Flag}(\mathcal{P})$ is denoted $|\mathcal{P}|$.

First construction of Σ

- Recall S is the poset of spherical subsets of S. The fundamental chamber K is defined by K := |S|. (K is the cone on the barycentric subdivision of L.)
- Mirror structure: $K_s := |S_{\geq \{s\}}|$.
- $\Sigma := \mathcal{U}(W, K)$.

Another way to understand K

Start with a simplex Δ , with one facet Δ_s , for each $s \in S$. Let $\Delta_T = \bigcap_{s \in T} \Delta_s$. Take the barycetric subdivision of Δ . Then *K* is the full subcomplex spanned by the barycenters of the Δ_T , for all spherical *T* spherical (ie for all *T* with W_T finite). The barycenter of Δ corresponds to $T = \emptyset$. (This description works whenever *W* is infinite.)

Second construction

Let WS denote the disjoint union of all spherical cosets (partially ordered by inclusion:

$$WS := \prod_{T \in S} W/W_T$$
 and $\Sigma := |WS|$.

Coxeter polytopes

Suppose W_T is finite reflection gp on \mathbf{R}^T . Choose a point *x* in the interior of fundamental simplicial cone and let P_T be convex hull of $W_T x$. P_T is determined up to isometry once we specify the distance of *x* from each bounding hyperplane.

The canonical cell complex $\Sigma(W, S)$ CAT(0)-spaces

There is a cell structure on Σ with {cells} = WS.

This follows from fact that poset of cells in P_T is $\cong W_T S_{\leq T}$. The cells of Σ are defined as follows: the geometric realization of subposet of cosets $\leq wW_T$ is \cong barycentric subdiv of P_T .

Properties of this cell structure on $\boldsymbol{\Sigma}$

- W acts cellularly on Σ .
- Σ has one *W*-orbit of cells for each spherical subset $T \in S$ and dim(cell) = Card(*T*).
- The 0-skeleton of Σ is W
- The 1-skeleton of Σ is Cay(W, S).
- The 2-skeleton of Σ is the Cayley 2 complex of the presentation.
- If *W* is right-angled, then each Coxeter cell is a cube and we have the cubical cell structure on \tilde{P}_L discussed in the last lecture.
- Moussong: the induced piecewise Euclidean metric on Σ is $\mathrm{CAT}(0).$

More properties

- Σ is contractible. (This follows from the fact it is CAT(0).
- The *W*-action is proper (by construction each isotropy subgp is conjugate to some finite W_T).
- $\Sigma/W = K$, which is compact (so the action is cocompact)
- If W is finite, then Σ is a Coxeter polytope

If *W* is a geometric reflection gp on $\mathbb{X}^n = \mathbb{E}^n$ or \mathbb{H}^n , then *K* can be identified with the fundamental polytope, Σ with \mathbb{X}^n and the cell structure is dual to the tessellation of Σ by translates of *K*.

"CAT(0)-space" is a term invented by Gromov. Also, called "Hadamard space." Roughly, a space which is "nonpositively curved" and simply connected.

- C = "Comparison" or "Cartan"
- A = "Aleksandrov"
- T = "Toponogov"

In the 1940's and 50's Aleksandrov introduced the notion of a "length space" and the idea of curvature bounds on length space. He was primarily interested in lower curvature bounds (defined by reversing the $CAT(\kappa)$ inequality). He proved that a length metric on S^2 has nonnegative curvature iff it is isometric to the boundary of a convex body in \mathbb{E}^3 . First Aleksandrov proved this result for nonnegatively curved piecewise Euclidean metrics on S^2 , i.e., any such metric was isometric to the boundary of a convex polytope. By using approximation techniques, he then deduced the general result (including the smooth case) from this.

One of the first papers on nonpositively curved spaces was a 1948 paper of Busemann. The recent surge of interest in nonpositively curved polyhedral metrics was initiated by Gromov's seminal 1987 paper.

Some definitions

Let (X, d) be a metric space. A path $c : [a, b] \to X$ is a *geodesic* (or a *geodesic segment*) if d(c(s), c(t)) = |s - t| for all $s, t \in [a, b]$. (X, d) is a *geodesic space* if any two points can be connected by a geodesic segment.

Given a path $c : [a, b] \rightarrow X$, its *length*, l(c), is defined by

$$I(c) := \sup\{\sum_{i=1}^{n} d(c(t_{i-1}, t_i))\},\$$

where $a = t_0 < t_1 < \cdots t_n = b$ runs over all possible subdivisions. The metric space (*X*, *d*) is a *length space* if

 $d(x, y) = \inf\{l(c) \mid c \text{ is a path from } x \text{ to } y\}.$

(Here we allow ∞ as a possible value of *d*.) Thus, a length space is a geodesic space iff the above infimum is always realized and is $\neq \infty$.

The CAT(κ)-inequality

For $\kappa \in \mathbf{R}$, \mathbb{X}_{κ}^2 is the simply connected, complete, Riemannian 2-manifold of constant curvature κ :

- \mathbb{X}_0^2 is the Euclidean plane \mathbb{E}^2 .
- If κ > 0, then X²_κ = S² with its metric rescaled so that its curvature is κ (i.e., it is the sphere of radius 1/√κ).
- If $\kappa < 0$, then $\mathbb{X}_{\kappa}^2 = \mathbb{H}^2$, the hyperbolic plane, with its metric rescaled.

A *triangle T* in a metric space *X* is a configuration of three geodesic segments (the "edges") connecting three points (the "vertices") in pairs. A *comparison triangle* for *T* is a triangle *T*^{*} in \mathbb{X}_{κ}^2 with the same edge lengths. When $\kappa \leq 0$, a comparison triangle always exists. When $\kappa > 0$, a comparison triangle exists $\iff I(T) \leq 2\pi/\sqrt{\kappa}$, where I(T) denotes the sum of the lengths of the edges. (The number $2\pi/\sqrt{\kappa}$ is the length of the equator in a 2-sphere of curvature κ .)

If T^* is a comparison triangle for T, then for each edge of T there is a well-defined isometry, denoted $x \to x^*$, which takes the given edge of T onto the corresponding edge of T^* . A metric space X satisfies CAT(κ) (or is a CAT(κ)-space) if the following two conditions hold:

- If κ ≤ 0, then X is a geodesic space, while if κ > 0, it is required there be a geodesic segment between any two points < π/√κ apart.
- (*The* CAT(κ) *inequality*). For any triangle *T* (with *l*(*T*) < 2π/√κ if κ > 0) and any two points *x*, *y* ∈ *T*, we have

$$d(x,y) \leq d^*(x^*,y^*),$$

where x^* , y^* are the corresponding points in the comparison triangle T^* and d^* is distance in \mathbb{X}^2_{κ} .

The canonical cell complex $\Sigma(W, S)$ CAT(0)-spaces

Definition

A metric space X has curvature $\leq \kappa$ if the CAT(κ) inequality holds locally.

Observations

- If $\kappa' < \kappa$, then $CAT(\kappa') \implies CAT(\kappa)$.
- $CAT(0) \implies$ contractible.
- curvature \leq 0 \implies aspherical.

Theorem (Aleksandrov and Toponogov)

Riemannian mfld has sectional curvature $\leq \kappa$ iff CAT(κ) holds locally.

The cone on a CAT(1)-space

The *cone* on *X*, denoted Cone(*X*), is the quotient space of $X \times [0, \infty)$ by the equivalence relation \sim defined by $(x, s) \sim (y, t)$ if and only if (x, s) = (y, t) or s = t = 0. The image of (x, s) in Cone(*X*) is denoted [x, s]. The *cone of radius r*, denoted Cone(*X*, *r*), is the image of $X \times [0, r]$.

Given a metric space X and $\kappa \in \mathbf{R}$, we will define a metric d_{κ} on Cone(X). (When $\kappa > 0$, the definition will only make sense on the open cone of radius $\pi/\sqrt{\kappa}$.) The idea: when $X = \mathbb{S}^{n-1}$, by using "polar coordinates" and the exponential map, Cone(\mathbb{S}^{n-1}) can be identified with (an open subset of) \mathbb{X}_{κ}^{n} . Transporting the constant curvature metric on \mathbb{X}_{κ}^{n} to Cone(\mathbb{S}^{n-1}), gives a formula for d_{κ} on Cone(\mathbb{S}^{n-1}). The same formula defines a metric on Cone(X) for any metric space X. To write this formula recall the Law of Cosines in \mathbb{X}^2_{κ} . Suppose we have a triangle in \mathbb{X}^2_{κ} with edge lengths *s*, *t* and *d* and angle θ between the first two sides

The Law of Cosines

• in \mathbb{E}^2 : $d^2 = s^2 + t^2 - 2st \cos \theta$ • in \mathbb{S}^2_{κ} : $\cos \sqrt{\kappa}d = \cos \sqrt{\kappa}s \cos \sqrt{\kappa}t + \sin \sqrt{\kappa}s \sin \sqrt{\kappa}t \cos \theta$ • in \mathbb{H}^2_{κ} : $\cosh \sqrt{-\kappa}d = \cosh \sqrt{-\kappa}s \cosh \sqrt{-\kappa}t + \sinh \sqrt{-\kappa}s \sinh \sqrt{-\kappa}t \cos \theta$ Given $x, y \in X$, put $\theta(x, y) := \min\{\pi, d(x, y)\}$. Define the metric d_0 on Cone(X) by

$$d_0([x,s],[y,t]) := (s^2 + t^2 - 2st\cos\theta(x,y))^{1/2}.$$

Metrics d_{κ} , $\kappa \neq 0$ are defined similarly. Denote Cone(*X*) equipped with the metric d_{κ} by Cone_{κ}(*X*).

Remark

If X is a (n-1)-dimensional spherical polytope, then $Cone_{\kappa}(X)$ is isometric to a convex polyhedral cone in \mathbb{X}_{κ}^{n} .

Proposition

Suppose *X* is a complete and that any two points of distance $\leq \pi$ can be joined by a geodesic. Then

- Cone_{κ}(*X*) is a complete geodesic space.
- Cone_{κ}(*X*) is CAT(κ) if and only if *X* is CAT(1).

Polyhedra of piecewise constant curvature

We call a convex polytope in \mathbb{X}_{κ}^{n} an \mathbb{X}_{κ} -polytope when we don't want to specify *n*.

Definition

Suppose \mathcal{F} is the poset of faces of a cell complex. An \mathbb{X}_{κ} -cell structure on \mathcal{F} is a family $(C_F)_{F \in \mathcal{F}}$ of \mathbb{X}_{κ} -polytopes s.t. whenever F' < F, $C_{F'}$ is isometric to the corresponding face of C_F .

Example

Piecewise Euclidean cell complexes Suppose a collection of convex polytopes in \mathbb{E}^n is a convex cell cx in the classical sense. Then the union Λ of these polytopes is a \mathbb{X}_0 -polyhedral complex.

Piecewise spherical (= *PS*) polyhedra play a distinguished role in this theory. In any X_{κ} -polyhedral cx each "link" naturally has a *PS* structure.

Geometric links

Suppose *P* is an *n*-dimensional \mathbb{X}_{κ} -polytope and $x \in P$. The *geometric link*, Lk(x, P), (or "space of directions") of x in *P* is the set of all inward-pointing unit tangent vectors at x. It is an intersection of a finite number of half-spaces in \mathbb{S}^{n-1} . If x lies in the interior of *P*, then Lk(x, P) $\cong \mathbb{S}^{n-1}$, while if x is a vertex of *P*, then Lk(x, P) is a spherical polytope. Similarly, if $F \subset P$ is a face of *P*, then Lk(F, P) is the set of inward-pointing unit vectors in the normal space to *F* (in the tangent space of *P*). If Λ is an \mathbb{X}_{κ} -polyhedral complex and $x \in \Lambda$, define

$$\mathsf{Lk}(x,\Lambda) := \bigcup_{x\in P} \mathsf{Lk}(x,P).$$

Lk(x, P) is a PS length space. Similarly, $Lk(F, \Lambda) := \bigcup Lk(F, P)$.

Theorem (Gromov)

Let \wedge be an \mathbb{X}_{κ} -polyhedral complex. TFAE

- $\operatorname{curv}(\Lambda) \leq \kappa$.
- $\forall x \in \Lambda$, Lk (x, Λ) is CAT(1).
- \forall cells P of Λ , Lk(P, Λ) is CAT(1).
- $\forall v \in \text{Vert } \Lambda$, $\text{Lk}(v, \Lambda)$ *is* CAT(1).

Proof.

Any $x \in \Lambda$ has a nbhd isometric to $Cone_{\kappa}(Lk(x,\Lambda), \varepsilon)$.

Lemma (Gromov)

Let L be an all right PS simplicial cx. Then

$$L \text{ is } CAT(1) \iff flag \text{ cx.}$$

Corollary

A cubical cx is $CAT(0) \iff$ the link of each vertex is a flag cx.

Corollary

For any right-angled Coxeter system (W, S), $\Sigma(W, S)$ is CAT(0).

Metric flag complexes

Suppose *L* is a PS simplicial complex st each edge has length $\geq \pi/2$ (eg. the edge lengths might have the form $\pi - \pi/m$, where m = m(s, t). *L* is a *metric flag complex* if every time the edge lengths of a complete subgraph are the edge length of a spherical simplex, then this simplex is filled in (ie is in *L*). For example, with its natural PS metric, L(W, S) is a metric flag cx.

Lemma (Moussong)

A metric flag cx is CAT(1).

Corollary (Moussong)

For any Coxeter system (W, S), $\Sigma(W, S)$ is CAT(0).