Coxeter groups, Artin groups, buildings

Mike Davis

Chongqing Normal University, May 14, 2024

Mike Davis Coxeter groups, Artin groups, buildings

Introduction

- Geometric reflection groups
- Coxeter systems
- Artin groups
- Buildings

2 The $K(\pi, 1)$ -question

- Nonpositive curvature
- The $K(\pi, 1)$ -problem

1 Introduction

- Geometric reflection groups
- Coxeter systems
- Artin groups
- Buildings

2 The $K(\pi, 1)$ -question

- Nonpositive curvature
- The $K(\pi, 1)$ -problem

The basic object is a Coxeter system. To one of these, we can associate various cell complexes: the Davis-Moussong complex, the Deligne complex of an Artin group, and the "standard realization" of any building whose type is the Coxeter system. These are described in

Chapter 4 of my new book

Infinite group actions on polyhedra, to appear in Springer, 2024. (Most recent information for publication date: July 22, 2024).

Geometric reflection groups Coxeter systems Artin groups Buildings

Geometric reflection groups

A classical topic is: groups generated by reflections on spaces of constant curvature, \mathbb{S}^n , \mathbb{E}^n , \mathbb{H}^n . Let *W* be such a reflection group.

There is a strict fundamental domain *K* for the *W*-action on the manifold *M*, where $M = \mathbb{S}^n$, \mathbb{E}^n or \mathbb{H}^n . *K* is the closure of a connected component of complement of fixed sets of the reflections,

$$K = \text{closure of } \left(M - \bigcup_{\text{reflections } r} M_r \right)$$

Geometric reflection groups Coxeter systems Artin groups Buildings

Properties

Let $S = \{\text{reflections across the "walls" of K}\}$. Then S is a set of generators for W. For each $(s, t) \in S \times S$, let m(s, t) = order of st. All relations in W are consequences of relations of the form $(st)^{m(s,t)} = 1$. In other words, W has a presentation of the form $W = \langle S | \mathcal{R} \rangle$, where $\mathcal{R} = \{(st)^{m(s,t)}\}_{(s,t) \in S \times S}\}$. The pair (W, S) is called a "Coxeter system."

We will show how to reconstruct the fundamental chamber *K* from this presentation. *K* has a codimension-one face (or "mirror"), K_s , for each $s \in S$ and a codimension-two face (or "corner"), $K_{s,t} = K_s \cap K_t$, whenever $s \neq t$ and $m(s, t) \neq \infty$.

Coxeter systems

S = a set (of generators). $M = m(s, t)_{(s,t) \in S \times S}$ is a *Coxeter matrix*, ie, an $(S \times S)$ -symmetric matrix with entries in $\mathbb{N} \cup \{\infty\}$, 1 *s* on the diagonal and off-diagonal entries ≥ 2 . The *Coxeter group W* is defined by the presentation $\langle S \mid \mathcal{R} \rangle$, where

$$\mathcal{R} = \{(st)^{m(s,t)}\}_{(s,t)\in S\times S}.$$

In other words, $W = F(S)/N(\mathcal{R})$, where F(S) is free group on S and $N(\mathcal{R})$ is the normal subgroup generated by \mathcal{R} . (W, S) is called a *Coxeter system*.

Alternate method for encoding this data

Graph L^1 with Vert $L^1 = S$ and edges corresponding to unordered pairs $\{s, t\}$ with $m(s, t) \neq \infty$ and with labeling of edges m: Edge $L^1 \rightarrow \{2, 3, ...\}$, where edge $\{s, t\}$ is labeled m(s, t).

A third method: Coxeter diagrams

Leave out edges labeled 2 but put in edges labeled ∞ .

 $\widetilde{\mathbf{A}}_1$ $\overset{\omega}{\longrightarrow}$

β₂

Ĩ,

E 8

4 4

Geometric reflection groups Coxeter systems Artin groups Buildings

The following definition is due to Tits.

Coxeter groups

Any group with a presentation of this form is called a *Coxeter* group. The graph L^1 and the labeling $m : \text{Edge } L^1 \to \{2, 3, ...\}$ are arbitrary. (The point is that if W is the group defined by the presentation, then m(s, t) = order of st.) W could also be called a "abstract reflection group."

Special subgroups

For any $T \leq S$, put $W_T = \langle T \rangle$. When W_T is finite, it is called a *spherical subgroup* and T is a *spherical subset*.

Poset of spherical subsets

 $S = \{$ spherical subsets of $S \}$. S^{op} is the opposite poset. L(W, S) is the simplicial complex with vertex set S and $\{$ nonempty simplices $\} = \{T \in S \mid T \neq \emptyset\}$. L(W, S) is called *nerve* of (W, S). K(W, S) = |S|, the cone on the barycentric subdivision of L. Called the standard *fundamental chamber*.

Geometric realization of a poset $\ensuremath{\mathcal{P}}$

This means the simplicial complex $|\mathcal{P}|$ with one *k*-simplex for each chain $p_0 < p_1 < \cdots < p_k$.

Geometric reflection groups Coxeter systems Artin groups Buildings

Example

W is generated by reflections across the edges of a hyperbolic pentagon. Then the midpoint of each edge is labeled by an element of *S*. The center of the pentagon is labeled by \emptyset and each vertex is labeled by an unordered pair {*s*, *t*}.

Geometric reflection groups Coxeter systems Artin groups Buildings

Strict fundamental domains

There are two possibilities:

A simplex Δ

The codimension-one faces of Δ are indexed by *S*. Faces are indexed by proper subsets T < S. The face $\Delta_T = \bigcap_{s \in T} \Delta_s$ has codimension Card *T*.

The chamber K(W, S)

K(W, S) is the geometric realization of S (or S^{op}). Its *k*-simplices are chains $T_0 < \cdots < T_k$. These can be assembled into faces: $K_T = |S_{\geq T}| = \bigcap_{s \in T} K_s$.

For $x \in K$, put S(x) be the smallest T where $x \in K_T - \partial K_T$ (Here $\partial K_T = |S_{>T}|$.)

Davis-Moussong complex $\Sigma(W, S)$

 $\Sigma(W, S) = (W \times K) / \sim$, also denoted by D(W, K), where

$$(w,x)\sim (w',x')\iff x=x' ext{ and } wW_{\mathcal{S}(x)}=w'W_{\mathcal{S}(x)}.$$

The Coxeter complex

 $D(W, \Delta) = (W \times \Delta) / \sim$, where \sim is defined as above.

Geometric reflection groups Coxeter systems Artin groups Buildings

Definition of simple complex of groups

This means a poset of groups, that is, a poset \mathcal{P} and a system of groups $\{G_p\}_{p\in\mathcal{P}}$ so that whenever p < q we are given an injective homorphism $G_q \to G_p$. Moreover, these inclusions are compatible with one another.

Direct limits

If $\{G_p\}_{p\in\mathcal{P}}$ is simple complex of groups, then one can form the direct limit: $G = \lim G_p$. (Universal property: If $\{\varphi_p : G_p \to H\}$ is a compatible family of homomorphisms, then \exists ! homomorphism $\varphi : G \to H$ compatible with the φ_p .)

Associated to any group action with a strict fundamental domain; namely, \mathcal{P} is strata of fundamental domain and G_p is the stabilizer of a generic point in the stratum.

Mike Davis

Coxeter groups, Artin groups, buildings

Geometric reflection groups Coxeter systems Artin groups Buildings

Basic example

 $WS^{op} = (W_T)_{T \in S}$. This is the simple complex of spherical subgroups of W.

Poset of spherical cosets of W

 $Coset(W) = \coprod_{T \in S} W/W_T$, called the *development* of WS^{op}

The basic construction

 $D(W, K) = (W \times K) / \sim$, where K = K(W, S) = |S|. $(D(W, K) \cong | \operatorname{Coset}(W)|)$

The point of this talk is that there are several other important simple complexes of groups and cell complexes associated to a Coxeter system (W, S), namely,

- Artin groups
- Buildings (with a chamber transitive group of automorphisms)

In each case, the underlying poset is the same, namely, S, and the strict fundamental domain is K (= |S|).

Geometric reflection groups Coxeter systems Artin groups Buildings

	Coxeter system	Artin group	building
Notation	(<i>W</i> , <i>S</i>)	A	C
spherical	S =	same	same
subsets	$\{T < S \mid W_T \text{ is finite}\}$		
fund. chamber	K(W, S) = S	same	same
cell complex	Davis-Moussong cx	Deligne cx	realization
	$\Sigma(W,S)$	Λ	$ \mathcal{C} $
simple cx gps	$(W_T)_{T\in\mathcal{S}}$	$(A_T)_{T\in\mathcal{S}}$	$(G_T)_{T\in\mathcal{S}}$
spherical	$\prod_{T \in S} W/W_T$	$\coprod_{T\in\mathcal{S}} A/A_T$	$\prod_{T\in\mathcal{S}}\mathcal{R}(T)$
cosets			
CAT(0)?	yes	?	yes
contractible?	yes	?	yes
$K(\pi, 1)$ ques?	yes	?	yes

Geometric reflection groups Coxeter systems Artin groups Buildings

Motivation

Geometric representations

If *W* is a finite Coxeter group, then *W* has a "geometric representation" as a group generated by orthogonal reflections on \mathbb{R}^n , where n = Card S. So, *W* also acts on the unit sphere, \mathbb{S}^{n-1} (hence, the name "spherical"). For example, the symmetric group S_n of degree *n* is a reflection group on \mathbb{R}^{n-1} with reflecting hyperplanes H_{ij} defined by $x_i = x_j$.

Braid groups

 $M = \mathbb{C}^{n-1} - \bigcup H_{ij} \otimes \mathbb{C}$. Then S_n acts freely on M. The braid group B_n can be defined as $B_n = \pi_1(M/S_n)$. (Braid groups were defined by E. Artin in 1947.)

Spherical Artin group = generalized braid group

(W, S) a spherical Coxeter group. W acts on $\mathbb{C}^n = \mathbb{R}^n \otimes \mathbb{C}$. Put

$$M=\mathbb{C}^n-\bigcup(H_r\otimes\mathbb{C}).$$

The group *W* acts freely on *M*. Then $A = \pi_1(M/W)$ is one definition of the Artin group associated to (W, S).

Definition of Artin group

(W, S) as before. For letters a, b and $m \in \{2, 3, \dots\}$, put

$$prod(a, b; m) = \underbrace{ab \cdots}_{m \text{ terms}}$$

Let $\{a_s\}_{s \in S}$ be new symbols for generators. Define

 $A = A(W, S) = \langle \{a_s\} \mid \mathsf{prod}(a_s, a_t; m) = \mathsf{prod}(a_t, a_s; m) \rangle,$

where $s \in S$ and $\{s, t\} \in Edge L^1$. For $T \subset S$, put $A_T = \langle \{a_s\}_{s \in T} \rangle$.

The simple complex of groups

 $AS^{op} = \{A_T\}_{T \in S}$, the *complex of spherical subgroups*. Other possibility: the underlying poset is the set of proper subsets of *S*, that is, the poset is {faces of Δ }.

Poset of spherical cosets of A

 $Coset(A) = \coprod_{T \in S(W,S)} A/A_T$, is the *development* of AS^{op} . The corresponding cell complex is the *Deligne complex*. If we use the proper subsets, the corresponding poset of cosets is called the *Artin complex*.

Deligne complex

$$\Lambda(W, S) = D(A, K) = (A \times K) / \sim$$
, as before

$$(a,x) \sim (a',x') \iff x = x' \text{ and } aA_{S(x)} = a'A_{S(x)}.$$

When fundamental chamber is simplex Δ , define the *Artin complex* to be $D(A, \Delta)$. When *A* is spherical, Deligne proved that $D(A, \Delta)$ is homotopy equivalent to a wedge of spheres.

The Deligne cx is similar to Davis-Moussong cx except that along each codimension 1 face, instead of 2 chambers meeting, we have an infinite cyclic group worth of chambers.
 Geometric reflection groups

 Introduction
 Coxeter systems

 The $K(\pi, 1)$ -question
 Artin groups

 Buildings
 Buildings

Buildings

Combinatorially, a "building" is a set C of "chambers" with extra structure. In particular, each building will have an associated Coxeter system (W, S).

Chamber systems

A *chamber system* over *S* is a set C together with a family of equivalence relations in indexed by *S*. Each *s*-equivalence class must have at least 2 elements. Two *s*-equivalent chambers are *s*-adjacent if they are not equal. A chamber system is *thick* if each *s*-equivalence class has a least 3 elements.

Example

The Coxeter group *W* is a chamber system over *S*. Two elements *w*, *w*' are *s*-equivalent if they belong to the same coset in $W/W_{\{s\}}$, ie, if w' = ws. The set of chambers is the the group *W*. (This is the "thin building" of type (*W*, *S*).)

Example

The Artin group A = A(W, S) is a chamber system over S; it is usually not a building.

Example

Suppose *G* is a group, $B = G_{\emptyset}$ is a subgroup and $(G_s)_{s \in S}$ is a family of subgroups with $B < G_s$ indexed by *S*. This defines a chamber system C = G/B over *S*. Two elements of G/B are *s*-adjacent if they determine the same coset in G/G_s .

People who work on buildings like to use the following terminology.

Galleries

A gallery in C is a sequence of adjacent chambers C_0, C_1, \ldots, C_k . If C_{i-1} is s_i -adjacent to C_i , then the gallery has type (s_1, s_2, \ldots, s_k) . If each $s_i \in T \subset S$, then the gallery is a *T*-gallery.

Residues

A *T*-residue is a *T*-gallery connected component. For example, the $\{s\}$ -residue containing a chamber *C* is the *s*-equivalence class containing *C* (analogous to a coset).

Geometric reflection groups Coxeter systems Artin groups Buildings

Examples of rank 2 buildings, $S = \{s, t\}$

Trees

The set of edges in a tree (without a terminal vertex) is a chamber system over $S = \{s, t\}$ and a building of type (D_{∞}, S) .

Generalized *m*-gons

Given $m \in \mathbb{N}$, $m \ge 2$, a finite bipartite graph Γ is called a *generalized m-gon* if it has girth 2m and diameter m. $\mathcal{C} = \text{Edge }\Gamma$ is a chamber system over S and a building of type (D_m, S) . A generalized 2-gon is a complete bipartite graph such as $K_{m,n}$. A generalized 3-gon is a *projective plane*.

Geometric reflection groups Coxeter systems Artin groups Buildings

Chamber systems of type (W, S)

Let C be a (gallery connected) chamber system over S and M = (m(s, t)) a Coxeter matrix. Then C has *type* M (or type (W, S)) if each $\{s, t\}$ residue is a generalized m(s, t)-gon. The chamber system is *thick* if each *s*-residue has more than 2 elements.

Feit-Higman Theorem

Finite, thick generalized *m*-gons exist only for $m \in \{2, 3, 4, 6, 8\}$.

W-distance

Define $\delta : C \times C \to W$ as follows. Suppose $C, D \in C$ and $C = C_0, \cdots, C_k = D$ is a minimal gallery between them. Let (s_1, \ldots, s_k) be its type and let $w = s_1 \cdots s_k$ be the associated element of W. Then $\delta(C, D) = w$.

Definition of building

A chamber system C of type (W, S) equipped with a W-distance function $\delta : C \to C$ is a *building* if δ satisfies certain axioms (which we won't state).

Geometric realization

This is a space |C| where there is a copy of K(W, S) for each chamber in C. In other words, $|C| = (C \times K(W, S)) / \sim$, where as before,

 $(C, x) \sim (C', x') \iff x = x' \text{ and } C, C' \in \text{same } S(x) \text{-residue.}$

Example (Thick spherical buildings)

Suppose *G* is an algebraic group over finite field \mathbb{F} . Then *G* acts on a building C = G/B with chamber stabilizer *B*, eg, $G = PGL(n, \mathbb{F}), B = \{\text{upper triangular}\}.$

Theorem (Tits' Theorem, rough version)

If C is a spherical building of rank \geq 3, then C comes from an algebraic group such as the above.

Chamber-transitive group actions

Suppose *G* is a chamber-transitive group of automorphisms of *C*. Fix $C \in C$ and let *B* (or G_{\emptyset}) denote the stabilizer of *C*. For $T \subset S$, let G_T = stabilizer of *T*-residue containing *C*. Then $GS^{op} = \{G_T\}_{T \in S}$ is a simple complex of groups. Moreover, $G = \lim G_T$.

Recovering the building

C = G/B. Coset(G) = $\prod_{T \in S} G/G_T$ is the poset of spherical cosets in GS^{op} . A coset of G_T is the same thing as a *T*-residue. We can recover the building from the simple complex of groups: $D(G, K) = (G \times K)/ \sim . (= |C|)$.

Geometric reflection groups Coxeter systems Artin groups Buildings

Right-angled buildings

RABs

Suppose (W, S) is right-angled. Let $(G_s)_{s \in S}$ be any family of groups indexed by S. For each $T \in S$, let G_T be the direct product of the G_s , $s \in T$. The direct limit G of the G_T is the graph product and $GS^{op} = \{G_T\}_{T \in S}$ defines a *right-angled building* with $D(G, K) = (G \times K) / \sim$.

Example (RAAGs)

If $G_s \cong \mathbb{Z}$, then the graph product is a *right-angled Artin group* (or RAAG).

Geometric reflection groups Coxeter systems Artin groups Buildings

	Coxeter system	Artin group	building
Notation	(<i>W</i> , <i>S</i>)	A	C
spherical	$\mathcal{S} =$	same	same
subsets	$\{T < S \mid W_T \text{ is finite}\}$		
fund. chamber	K(W, S) = S	same	same
cell cx	Davis-Moussong cx	Deligne cx	realization
	$\Sigma(W,S)$	Λ	$ \mathcal{C} $
simple cx gps	$(W_T)_{T\in\mathcal{S}}$	$(A_T)_{T\in\mathcal{S}}$	$(G_T)_{T\in\mathcal{S}}$
spherical	$\coprod_{T\in\mathcal{S}}W/W_T$	$\coprod_{T\in\mathcal{S}} A/A_T$	$\prod_{T\in\mathcal{S}}\mathcal{R}(T)$
cosets			
CAT(0)?	yes	?	yes
contractible?	yes	?	yes
$K(\pi, 1)$ ques?	yes	?	yes

Nonpositive curvature The $K(\pi, 1)$ -problem

CAT(0) spaces

Gromov defined what it means for a complete geodesic metric space to be "CAT(0)" by comparing its triangles with triangles in \mathbb{R}^2 . A space is "nonpositively curved" (abbreviated NPC) if it is locally CAT(0).

Basic facts

- 1. Simply connected and NPC \implies CAT(0).
- 2. $CAT(0) \implies$ contractible.
- 3. A piecewise euclidean polyhedron is NPC if the link of each of each cell (a piecewise spherical polyhedron) is CAT(1).

Nonpositive curvature The $K(\pi, 1)$ -problem

Nonpositive curvature The $K(\pi, 1)$ -problem

Theorem (Moussong 1988)

 $\Sigma(W, S)$ is CAT(0).

Corollary (D.)

If C is a building of type (W, S), then |C| is CAT(0). If C is a spherical building, then $D(C, \Delta^n)$ (the link of the cone point) is CAT(1).

Spherical Coxeter groups

Suppose *W* is finite and acts as a reflection group on *S*^{*n*} with fundamental chamber a spherical simplex Δ^n . Then the Coxeter complex $D(W, \Delta^n) \cong S^n$; hence, is CAT(1).

Nonpositive curvature The $K(\pi, 1)$ -problem

Conjecture (Charney-Davis)

When (W, S) is not spherical, the Deligne complex, D(A, K), is CAT(0).

Conjecture (Charney-Davis)

When (W, S) is spherical, the Artin complex $D(A, \Delta^n)$ is CAT(1).

This implies the previous conjecture for general Artin groups. (Since the link of a cell in Λ corresponds to a spherical Artin subgroup.)

Nonpositive curvature The $K(\pi, 1)$ -problem

Suppose $GQ = \{G_T\}_{T \in Q}$ is a simple complex of groups over a poset Q. Each group G_T has a classifying space BG_T which is aspherical, i.e., is a $K(G_T, 1)$

Using the injections $G_T \rightarrow G_{T'}$ we can glue together the BG_T to form a new space BGQ, called the *aspherical realization* of GQ. Its homotopy type is well-defined. Its fundamental group is G.

 $K(\pi, 1)$ -problem

Is BGQ = BG, i.e., is BGQ aspherical?

Nonpositive curvature The $K(\pi, 1)$ -problem

Theorem

If D(G, |Q|) is contractible, then the $K(\pi, 1)$ -question for GQ has a positive answer.

Nonpositive curvature The $K(\pi, 1)$ -problem

Corollary

If *G* is a Coxeter group or a chamber transitive group on a building, then the $K(\pi, 1)$ -question for GS^{op} has a positive answer.

Theorem [Charney-D]

The answer is also positive for RAAGs and for Artin groups with $\dim K \leq 2$

The $K(\pi, 1)$ -question for general Artin groups is an important open question in geometric group theory.

Nonpositive curvature The $K(\pi, 1)$ -problem

	Coxeter system	Artin group	building
Notation	(<i>W</i> , <i>S</i>)	A	С
spherical	$\mathcal{S} =$	same	same
subsets	$\{T < S \mid W_T \text{ is finite}\}$		
fund. chamber	K(W, S) = S	same	same
cell cx	Davis-Moussong cx	Deligne cx	realization
	$\Sigma(W,S)$	Λ	$ \mathcal{C} $
simple cx gps	$(W_T)_{T\in\mathcal{S}}$	$(A_T)_{T\in\mathcal{S}}$	$(G_T)_{T\in\mathcal{S}}$
spherical	$\coprod_{T\in\mathcal{S}}W/W_T$	$\coprod_{T\in\mathcal{S}} A/A_T$	$\coprod_{T\in\mathcal{S}}\mathcal{R}(T)$
cosets			
CAT(0)?	yes	?	yes
contractible?	yes	?	yes
$K(\pi, 1)$ ques?	yes	?	yes

Nonpositive curvature The $K(\pi, 1)$ -problem

Thank you

Mike Davis Coxeter groups, Artin groups, buildings