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The basic object is a Coxeter system. To one of these, we can
associate various cell complexes: the Davis-Moussong
complex, the Deligne complex of an Artin group, and the
“standard realization” of any building whose type is the Coxeter
system. These are described in

Chapter 4 of my new book
Infinite group actions on polyhedra, to appear in Springer, 2024.
(Most recent information for publication date: July 22, 2024).
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Geometric reflection groups

A classical topic is: groups generated by reflections on spaces
of constant curvature, Sn, En, Hn. Let W be such a reflection
group.

There is a strict fundamental domain K for the W -action on the
manifold M, where M = Sn, En or Hn. K is the closure of a
connected component of complement of fixed sets of the
reflections,

K = closure of

(
M −

⋃
reflections r

Mr

)
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Properties

Let S = {reflections across the “walls” of K}.
Then S is a set of generators for W .
For each (s, t) ∈ S × S, let m(s, t) = order of st . All relations in
W are consequences of relations of the form (st)m(s,t) = 1. In
other words, W has a presentation of the form W = 〈S |R〉,
where R = {(st)m(s,t)}(s,t)∈S×S}. The pair (W ,S) is called a
“Coxeter system.”

We will show how to reconstruct the fundamental chamber K
from this presentation. K has a codimension-one face (or
“mirror”),Ks, for each s ∈ S and a codimension-two face (or
“corner”), Ks,t = Ks ∩ Kt , whenever s 6= t and m(s, t) 6=∞.
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Coxeter systems
S = a set (of generators).
M = m(s, t)(s,t)∈S×S is a Coxeter matrix, ie, an
(S × S)-symmetric matrix with entries in N ∪ {∞}, 1 s on the
diagonal and off-diagonal entries ≥ 2. The Coxeter group W is
defined by the presentation 〈S | R〉, where

R = {(st)m(s,t)}(s,t)∈S×S.

In other words, W = F (S)/N(R)), where F (S) is free group on
S and N(R) is the normal subgroup generated by R.
(W ,S) is called a Coxeter system.
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Alternate method for encoding this data

Graph L1 with Vert L1 = S and edges corresponding to
unordered pairs {s, t} with m(s, t) 6=∞ and with labeling of
edges m : Edge L1 → {2,3, . . . }, where edge {s, t} is labeled
m(s, t).

A third method: Coxeter diagrams
Leave out edges labeled 2 but put in edges labeled∞.
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Spherical Diagrams Euclidean Diagrams
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The following definition is due to Tits.

Coxeter groups

Any group with a presentation of this form is called a Coxeter
group. The graph L1 and the labeling m : Edge L1 → {2,3, . . . }
are arbitrary. (The point is that if W is the group defined by the
presentation, then m(s, t) = order of st .) W could also be
called a “abstract reflection group.”

Special subgroups

For any T ≤ S, put WT = 〈T 〉. When WT is finite, it is called a
spherical subgroup and T is a spherical subset.
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Poset of spherical subsets

S = {spherical subsets of S}. Sop is the opposite poset.
L(W ,S) is the simplicial complex with vertex set S and
{nonempty simplices} = {T ∈ S | T 6= ∅}. L(W ,S) is called
nerve of (W ,S).
K (W ,S) = |S|, the cone on the barycentric subdivision of L.
Called the standard fundamental chamber.

Geometric realization of a poset P
This means the simpicial complex |P| with one k -simplex for
each chain p0 < p1 < · · · < pk .
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Example
W is generated by reflections across the edges of a hyperbolic
pentagon. Then the midpoint of each edge is labeled by an
element of S. The center of the pentagon is labeled by ∅ and
each vertex is labeled by an unordered pair {s, t}.
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Strict fundamental domains

There are two possibilities:

A simplex ∆

The codimension-one faces of ∆ are indexed by S. Faces are
indexed by proper subsets T < S.The face ∆T =

⋂
s∈T ∆s has

codimension Card T .

The chamber K (W ,S)

K (W ,S) is the geometric realization of S (or Sop). Its
k -simplices are chains T0 < · · · < Tk . These can be assembled
into faces: KT = |S≥T | =

⋂
s∈T Ks.
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For x ∈ K , put S(x) be the smallest T where x ∈ KT − ∂KT
(Here ∂KT = |S>T |.)

Davis-Moussong complex Σ(W ,S)

Σ(W ,S) = (W × K )/ ∼, also denoted by D(W ,K ), where

(w , x) ∼ (w ′, x ′) ⇐⇒ x = x ′ and wWS(x) = w ′WS(x).

The Coxeter complex

D(W ,∆) = (W ×∆)/ ∼, where ∼ is defined as above.
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Definition of simple complex of groups

This means a poset of groups, that is, a poset P and a system
of groups {Gp}p∈P so that whenever p < q we are given an
injective homorphism Gq → Gp. Moreover, these inclusions are
compatible with one another.

Direct limits
If {Gp}p∈P is simple complex of groups, then one can form the
direct limit: G = lim Gp. (Universal property: If {ϕp : Gp → H} is
a compatible family of homomorphisms, then ∃!
homomorphism ϕ : G→ H compatible with the ϕp.)

Associated to any group action with a strict fundamental
domain; namely, P is strata of fundamental domain and Gp is
the stabilizer of a generic point in the stratum.
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Basic example

WSop = (WT )T∈S . This is the simple complex of spherical
subgroups of W .

Poset of spherical cosets of W

Coset(W ) =
∐

T∈S W/WT , called the development of WSop

The basic construction
D(W ,K ) = (W × K )/ ∼, where K = K (W ,S) = |S|.
(D(W ,K ) ∼= |Coset(W )|)
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The point of this talk is that there are several other important
simple complexes of groups and cell complexes associated to a
Coxeter system (W ,S), namely,

Artin groups
Buildings (with a chamber transitive group of
automorphisms)

In each case, the underlying poset is the same, namely, S, and
the strict fundamental domain is K (= |S|).
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Coxeter system Artin group building
Notation (W ,S) A C
spherical S = same same
subsets {T < S |WT is finite}
fund. chamber K (W ,S) = |S| same same
cell complex Davis-Moussong cx Deligne cx realization

Σ(W ,S) Λ |C|
simple cx gps (WT )T∈S (AT )T∈S (GT )T∈S
spherical

∐
T∈S W/WT

∐
T∈S A/AT

∐
T∈S R(T )

cosets
CAT(0)? yes ? yes
contractible? yes ? yes
K (π,1) ques? yes ? yes
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Motivation

Geometric representations
If W is a finite Coxeter group, then W has a “geometric
representation” as a group generated by orthogonal reflections
on Rn, where n = Card S. So, W also acts on the unit sphere,
Sn−1 (hence, the name “spherical”). For example, the
symmetric group Sn of degree n is a reflection group on Rn−1

with reflecting hyperplanes Hij defined by xi = xj .

Braid groups

M = Cn−1 −
⋃

Hij ⊗ C. Then Sn acts freely on M. The braid
group Bn can be defined as Bn = π1(M/Sn). (Braid groups
were defined by E. Artin in 1947.)
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Spherical Artin group = generalized braid group

(W ,S) a spherical Coxeter group. W acts on Cn = Rn ⊗ C. Put

M = Cn −
⋃

(Hr ⊗ C).

The group W acts freely on M. Then A = π1(M/W ) is one
definition of the Artin group associated to (W ,S).
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Definition of Artin group

(W ,S) as before. For letters a,b and m ∈ {2,3, . . . }, put

prod(a,b; m) = ab · · ·︸ ︷︷ ︸
m terms

Let {as}s∈S be new symbols for generators. Define

A = A(W ,S) = 〈{as} | prod(as,at ; m) = prod(at ,as; m)〉,

where s ∈ S and {s, t} ∈ Edge L1. For T ⊂ S, put
AT = 〈{as}s∈T 〉.
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The simple complex of groups

ASop = {AT}T∈S , the complex of spherical subgroups. Other
possibility: the underlying poset is the set of proper subsets of
S, that is, the poset is {faces of ∆}.

Poset of spherical cosets of A

Coset(A) =
∐

T∈S(W ,S) A/AT , is the development of ASop.
The corresponding cell complex is the Deligne complex. If we
use the proper subsets, the corresponding poset of cosets is
called the Artin complex.
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Deligne complex

Λ(W ,S) = D(A,K ) = (A× K )/ ∼, as before

(a, x) ∼ (a′, x ′) ⇐⇒ x = x ′ and aAS(x) = a′AS(x).

When fundamental chamber is simplex ∆, define the Artin
complex to be D(A,∆). When A is spherical, Deligne proved
that D(A,∆) is homotopy equivalent to a wedge of spheres.

The Deligne cx is similar to Davis-Moussong cx except that
along each codimension 1 face, instead of 2 chambers
meeting, we have an infinite cyclic group worth of chambers.
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Buildings

Combinatorially, a “building” is a set C of “chambers” with extra
structure. In particular, each building will have an associated
Coxeter system (W ,S).

Chamber systems
A chamber system over S is a set C together with a family of
equivalence relations in indexed by S. Each s-equivalence
class must have at least 2 elements. Two s-equivalent
chambers are s-adjacent if they are not equal. A chamber
system is thick if each s-equivalence class has a least 3
elements.
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Example
The Coxeter group W is a chamber system over S. Two
elements w ,w ′ are s-equivalent if they belong to the same
coset in W/W{s}, ie, if w ′ = ws. The set of chambers is the the
group W . (This is the “thin building” of type (W ,S).)

Example

The Artin group A = A(W ,S) is a chamber system over S; it is
usually not a building.

Example

Suppose G is a group, B = G∅ is a subgroup and (Gs)s∈S is a
family of subgroups with B < Gs indexed by S. This defines a
chamber system C = G/B over S. Two elements of G/B are
s-adjacent if they determine the same coset in G/Gs.
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People who work on buildings like to use the following
terminology.

Galleries
A gallery in C is a sequence of adjacent chambers
C0,C1, . . . ,Ck . If Ci−1 is si -adjacent to Ci , then the gallery has
type (s1, s2, . . . , sk ). If each si ∈ T ⊂ S, then the gallery is a
T-gallery.

Residues
A T-residue is a T -gallery connected component. For example,
the {s}-residue containing a chamber C is the s-equivalence
class containing C (analogous to a coset).
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Examples of rank 2 buildings, S = {s, t}

Trees
The set of edges in a tree (without a terminal vertex) is a
chamber system over S = {s, t} and a building of type (D∞,S).

Generalized m-gons

Given m ∈ N, m ≥ 2, a finite bipartite graph Γ is called a
generalized m-gon if it has girth 2m and diameter m.
C = Edge Γ is a chamber system over S and a building of type
(Dm,S). A generalized 2-gon is a complete bipartite graph such
as Km,n. A generalized 3-gon is a projective plane.
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Chamber systems of type (W ,S)

Let C be a (gallery connected) chamber system over S and
M = (m(s, t)) a Coxeter matrix. Then C has type M (or type
(W ,S)) if each {s, t} residue is a generalized m(s, t)-gon. The
chamber system is thick if each s-residue has more than 2
elements.

Feit-Higman Theorem

Finite, thick generalized m-gons exist only for m ∈ {2,3,4,6,8}.

W -distance
Define δ : C × C →W as follows. Suppose C,D ∈ C and
C = C0, · · · ,Ck = D is a minimal gallery between them. Let
(s1, . . . , sk ) be its type and let w = s1 · · · sk be the associated
element of W . Then δ(C,D) = w .
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Definition of building

A chamber system C of type (W ,S) equipped with a
W -distance function δ : C → C is a building if δ satisfies certain
axioms (which we won’t state).

Geometric realization
This is a space |C| where there is a copy of K (W ,S) for each
chamber in C. In other words, |C| = (C × K (W ,S))/ ∼, where
as before,

(C, x) ∼ (C′, x ′) ⇐⇒ x = x ′ and C,C′ ∈ same S(x)-residue.

Mike Davis Coxeter groups, Artin groups, buildings



Introduction
The K (π, 1)-question

Geometric reflection groups
Coxeter systems
Artin groups
Buildings

Example (Thick spherical buildings)

Suppose G is an algebraic group over finite field F. Then G
acts on a building C = G/B with chamber stabilizer B, eg,
G = PGL(n,F), B = {upper triangular}.

Theorem (Tits’ Theorem, rough version)
If C is a spherical building of rank ≥ 3, then C comes from an
algebraic group such as the above.
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Chamber-transitive group actions

Suppose G is a chamber-transitive group of automorphisms of
C. Fix C ∈ C and let B (or G∅) denote the stabilizer of C. For
T ⊂ S, let GT = stabilizer of T -residue containing C.
Then GSop = {GT}T∈S is a simple complex of groups.
Moreover, G = lim GT .

Recovering the building

C = G/B. Coset(G) =
∐

T∈S G/GT is the poset of spherical
cosets in GSop. A coset of GT is the same thing as a
T -residue. We can recover the building from the simple
complex of groups: D(G,K ) = (G × K )/ ∼ . (= |C|).
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Right-angled buildings

RABs
Suppose (W ,S) is right-angled. Let (Gs)s∈S be any family of
groups indexed by S. For each T ∈ S, let GT be the direct
product of the Gs, s ∈ T . The direct limit G of the GT is the
graph product and GSop = {GT}T∈S defines a right-angled
building with D(G,K ) = (G × K )/ ∼.

Example (RAAGs)
If Gs ∼= Z, then the graph product is a right-angled Artin group
(or RAAG).
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Coxeter system Artin group building
Notation (W ,S) A C
spherical S = same same
subsets {T < S |WT is finite}
fund. chamber K (W ,S) = |S| same same
cell cx Davis-Moussong cx Deligne cx realization

Σ(W ,S) Λ |C|
simple cx gps (WT )T∈S (AT )T∈S (GT )T∈S
spherical

∐
T∈S W/WT

∐
T∈S A/AT

∐
T∈S R(T )

cosets
CAT(0)? yes ? yes
contractible? yes ? yes
K (π,1) ques? yes ? yes
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CAT(0) spaces

Gromov defined what it means for a complete geodesic metric
space to be “CAT(0)” by comparing its triangles with triangles in
R2. A space is “nonpositively curved” (abbreviated NPC) if it is
locally CAT(0).

Basic facts
1. Simply connected and NPC =⇒ CAT(0).
2. CAT(0) =⇒ contractible.
3. A piecewise euclidean polyhedron is NPC if the link of each
of each cell (a piecewise spherical polyhedron) is CAT(1).
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Theorem (Moussong 1988)

Σ(W ,S) is CAT(0).

Corollary (D.)

If C is a building of type (W ,S), then |C| is CAT(0). If C is a
spherical building, then D(C,∆n) (the link of the cone point) is
CAT(1).

Spherical Coxeter groups

Suppose W is finite and acts as a reflection group on Sn with
fundamental chamber a spherical simplex ∆n. Then the
Coxeter complex D(W ,∆n) ∼= Sn; hence, is CAT(1).
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Conjecture (Charney-Davis)

When (W ,S) is not spherical, the Deligne complex, D(A,K ), is
CAT(0).

Conjecture (Charney-Davis)

When (W ,S) is spherical, the Artin complex D(A,∆n) is
CAT(1).

This implies the previous conjecture for general Artin groups.
(Since the link of a cell in Λ corresponds to a spherical Artin
subgroup.)
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Suppose GQ = {GT}T∈Q is a simple complex of groups over a
poset Q. Each group GT has a classifying space BGT which is
aspherical, i.e., is a K (GT ,1)

Using the injections GT → GT ′ we can glue together the BGT to
form a new space BGQ, called the aspherical realization of GQ.
Its homotopy type is well-defined. Its fundamental group is G.

K (π,1)-problem

Is BGQ = BG, i.e., is BGQ aspherical?
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Theorem
If D(G, |Q|) is contractible, then the K (π,1)-question for GQ
has a positive answer.
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Corollary
If G is a Coxeter group or a chamber transitive group on a
building, then the K (π,1)-question for GSop has a positive
answer.

Theorem [Charney-D]
The answer is also positive for RAAGs and for Artin groups with
dim K ≤ 2

The K (π,1)-question for general Artin groups is an important
open question in geometric group theory.
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Coxeter system Artin group building
Notation (W ,S) A C
spherical S = same same
subsets {T < S |WT is finite}
fund. chamber K (W ,S) = |S| same same
cell cx Davis-Moussong cx Deligne cx realization

Σ(W ,S) Λ |C|
simple cx gps (WT )T∈S (AT )T∈S (GT )T∈S
spherical

∐
T∈S W/WT

∐
T∈S A/AT

∐
T∈S R(T )

cosets
CAT(0)? yes ? yes
contractible? yes ? yes
K (π,1) ques? yes ? yes
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Thank you
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