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Dihedral groups
A dihedral group is any group which is generated by 2
involutions, call them s, t . Such a group is determined up to
isomorphism by the order m of st (m is an integer ≥ 2 or∞).
Let Dm denote the dihedral group corresponding to m.

For m 6=∞, Dm can be
represented as the subgroup
of O(2) which is generated
by reflections across lines L,
L′, making an angle of π/m.

r
L

r
L´

π/m
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- In 1852 Möbius determined the finite subgroups of O(3)
generated by isometric reflections on the 2-sphere.

- The fundamental domain for such a group on the 2-sphere
is a spherical triangle with angles π

p , πq , πr , with p, q, r
integers ≥ 2.

- Since the sum of the angles is > π, we have 1
p + 1

q + 1
r > 1.

- For p ≥ q ≥ r , the only possibilities are: (p,2,2) for any
p ≥ 2 and (p,3,2) with p = 3, 4 or 5. The last three cases
are the symmetry groups of the Platonic solids.
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Later work by Riemann and Schwarz showed there were
discrete groups of isometries of E2 or H2 generated by
reflections across the edges of triangles with angles integral
submultiples of π. Poincaré and Klein: similarly for polygons in
H2.
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In 2nd half of the 19th century work began on finite reflection
groups on Sn, n > 2, generalizing Möbius’ results for n = 2. It
developed along two lines.

- Around 1850, Schläfli classified regular polytopes in Rn+1,
n > 2. The symmetry group of such a polytope was a finite
group generated by reflections and as in Möbius’ case, the
projection of a fundamental domain to Sn was a spherical
simplex with dihedral angles integral submultiples of π.

- Around 1890, Killing and E. Cartan classified complex
semisimple Lie algebras in terms of their root systems. In
1925, Weyl showed the symmetry group of such a root
system was a finite reflection group.

- These two lines were united by Coxeter in the 1930’s. He
classified discrete groups reflection groups on Sn or En.
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Let K be a fundamental polytope for a geometric reflection
group. For Sn, K is a simplex (= generalization of a triangle).
For En, K is a product of simplices. For Hn there are other
possibilities, eg, a right-angled pentagon in H2 or a right-angled
dodecahedron in H3.
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Conversely, given a convex polytope K in Sn, En or Hn so
that all dihedral angles have form π/integer, there is a
discrete group W generated by isometric reflections across
the codimension 1 faces of K .
Let S be the set of reflections across the codim 1 faces of
K . For s, t ∈ S, let m(s, t) be the order of st . Then S
generates W . The faces corresponding to s and t intersect
in a codim 2 face iff m(s, t) 6=∞, and for s 6= t , the dihedral
angle along that face is π/m(s, t). ( m(s, t) is an S × S
symmetric matrix called the Coxeter matrix.) Moreover,

〈S | (st)m(s,t), where (s, t) ∈ S × S〉

is a presentation for W .
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Coxeter diagrams

Associated to (W ,S), there is a labeled graph Γ called its
“Coxeter diagram.”

Vert(Γ) := S.

Connect distinct elements s, t by an edge iff m(s, t) 6= 2. Label
the edge by m(s, t) if this is > 3 or =∞ and leave it unlabeled if
it is = 3. (W ,S) is irreducible if Γ is connected. (The
components of Γ give the irreducible factors of W .)
The next slide shows Coxeter’s classification of irreducible
spherical and cocompact Euclidean reflection groups.
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Spherical Diagrams Euclidean Diagrams
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Question
Given a group W and a set S of involutions which generates it,
when should (W ,S) be called an “abstract reflection group”?
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Two answers
Let Cay(W ,S) be the Cayley graph (ie, its vertex set is W
and {w , v} spans an edge iff v = ws for some s ∈ S)).
First answer: for each s ∈ S, the fixed set of s separates
Cay(W ,S).
Second answer: W has a presentation of the form:

〈S | (st)m(s,t), where (s, t) ∈ S × S〉.

These two answers are equivalent!
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Explanations of the terms

Cayley graphs

Given a group G and a set of generators S, let Cay(G,S) be
the graph with vertex set G which has a (directed) edge from g
to gs, ∀g ∈ G and ∀s ∈ S. The group G acts on Cay(G,S)
(written G y Cay(G,S)), the action is simply transitive on the
vertex set and the edges starting at a given vertex can be
labelled by the elements of S or S−1.

Presentations
Suppose S is a set of letters and R is a set of words in S. Let
FS be the free group on S and let N be the smallest normal
subgroup containing R. Then put G := FS/N and write
G = 〈S | R〉. It is a presentation for G.
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If either of the two answers holds, (W ,S) is a Coxeter system
and W a Coxeter group. The second answer is usually taken as
the official definition:
W has a presentation of the form:

〈S | (st)m(s,t), where (s, t) ∈ S × S〉.

where m(s, t) is a Coxeter matrix.

Mike Davis The Geometry and Topology of Coxeter Groups



Geometric reflection groups
Abstract reflection groups

Coxeter systems
First realization: the Tits representation
Second realization: the cell complex Σ

Question
Does every Coxeter system have a geometric realization?

Answer
Yes. In fact, there are two different ways to do this:

the Tits representation
the cell complex Σ.

Both realizations use the following construction.
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The basic construction
A mirror structure on a space X is a family of closed subspaces
{Xs}s∈S. For x ∈ X , put S(x) = {s ∈ S | x ∈ Xs} . Define

U(W ,X ) := (W × X )/ ∼ ,

where ∼ is the equivalence relation: (w , x) ∼ (w ′, x ′) ⇐⇒
x = x ′ and w−1w ′ ∈WS(x) (the subgroup generated by S(x)).
U(W ,X ) is formed by gluing together copies of X (the
chambers). W y U(W ,X ). (Think of X as the fundamental
polytope and the Xs as its codimension 1 faces.)
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Properties a geometric realization should have

It should be an action of W on a space U so that
W acts as a reflection group, i.e., U = U(W ,X ).
The stabilizer of each x ∈ U should be a finite group.
U should be contractible.
U/W (= X ) should be compact.
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The Tits representation

Linear reflections
Two pieces of data determine a (not necessarily orthogonal)
reflection on Rn:

linear form α ∈ (Rn)∗ (the fixed hyperplane is α−1(0)).
a (−1)-eigenvector h ∈ Rn (normalized so that α(h) = 2).

The formula for the reflection is then

v 7→ v − α(v)h.
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Symmetric bilinear form

Let (es)s∈S be the standard basis for (RS)∗. Given a Coxeter
matrix m(s, t) define a symmetric bilinear form B on (RS)∗ by
B(es,et ) = −2 cos(π/m(s, t)).

For each s ∈ S, we have a linear reflection
rs : v 7→ v − B(es, v)es. Tits showed this defines a linear action
W y (RS)∗. We are interested in the dual representation
ρ : W → GL(RS) defined by s 7→ ρs := (rs)∗.
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Properties of Tits representation W → GL(RS)

The ρs are reflections across the faces of the standard
simplicial cone C ⊂ RS.
ρ : W ↪→ GL(RS), that is, ρ is injective.
WC (=

⋃
w∈W wC) is a convex cone and if I denotes the

interior of the cone, then
I = U(W ,Cf ), where Cf denotes the complement of the
nonspherical faces of C (a face is spherical if its stabilizer
is finite).
So, W is a “discrete reflection group” on I.
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A hyperbolic triangle group
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One consequence
W is virtually torsion-free. (This is true for any finitely generated
linear group.)

Advantages
I is contractible (since it is convex) and W acts properly (ie,
with finite stabilizers) on it.

Disadvantage

I/W is not compact (since Cf is not compact).
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Remark
By dividing by scalar matrices, we get a representation
W → PGL(RS). So, W y PI, the image of I in projective
space. When W is infinite and irreducible, this is a proper
convex subset of RPn, n + 1 = #S.

Vinberg showed one can get linear
representations across the faces of more
general polyhedral cones. As before,
W y I, where I is a convex cone; PI is
a open convex subset of RPn. The
fundamental chamber is a convex
polytope with some faces deleted.
Sometimes it can be a compact
polytope, for example, a pentagon.
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Question
For (W ,S) to have a a reflection representation into
PGL(n + 1,R) with fundamental chamber a compact convex
polytope Pn there is a necessary condition: the simplicial
complex L given by the spherical subsets of S must be dual to
∂Pn for some polytope Pn. Is this sufficient? (Probably not.)

Question
Are there irreducible, non-affine examples of such
W ⊂ PGL(n + 1,R) and Pn ⊂ RPn for n arbitrarily large?
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The cell complex Σ

The second answer is to construct of contractible cell complex
Σ on which W acts properly and cocompactly as a group
generated by reflections. Its advantage is that Σ/W will be
compact.

There are two dual constructions of Σ.

Build the correct fundamental chamber K with mirrors Ks,
then apply the basic construction, U(W ,K ).
“Fill in” the Cayley graph of (W ,S).
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Filling in the Cayley graph

The Cayley graph of a
finite dihedral group
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Cayley graph of an infinite
Coxeter group

Let W{s,t} be the dihedral subgroup 〈s, t〉. Whenever
m(s, t) <∞ each coset of W{s,t} spans a polygon in
Cay(W ,S). If we fill in these polygons, we get a simply
connected 2-dimensional complex, which is the 2-skeleton of Σ.
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If we want to obtain a contractible space then we have to fill in
higher dimensional polytopes (”cells”).

Definition
A subset T ⊂ S is spherical if the subgroup WT , which is
generated by T , is finite. Let S denote the poset of spherical
subsets of S.

Corresponding to a spherical subset T with #T = k , there is a
k -dimensional convex polytope called a Coxeter zonotope.
When k = 2 it is the polygon associated to the dihedral group.
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Coxeter zonotopes

Suppose WT is finite reflection group on RT . Choose a point x
in the interior of fundamental simplicial cone and let PT be
convex hull of WT x .
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The 1-skeleton of PT is Cay(WT ,T ).
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When WT = (Z/2)n, then PT is an n-cube.

Geometric realization of a poset

Associated to any poset P there is a simplicial complex |P|
called its geometric realization.

Filling in Cay(W ,S)

Let WS denote the disjoint union of all spherical cosets
(partially ordered by inclusion):

WS :=
∐
T∈S

W/WT and Σ := |WS|.
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Filling in Cay(W ,S)

There is a cell structure on Σ with {cells} = WS.

This follows from fact that poset of cells in PT is ∼= WTS≤T . The
cells of Σ are defined as follows: the geometric realization of
subposet of cosets ≤ wWT is ∼= barycentric subdivision of PT .
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Properties of this cell structure on Σ

- W acts cellularly on Σ.
- Σ has one W -orbit of cells for each spherical subset T ∈ S

and dim(cell) = Card(T ).
- The 0-skeleton of Σ is W
- The 1-skeleton of Σ is Cay(W ,S).
- The 2-skeleton of Σ is the Cayley 2 complex of the

presentation.
- If W is right-angled (i.e., each m(s, t) is 1,2 or∞), then

each Coxeter zonotope is a cube.
- Moussong: the induced piecewise Euclidean metric on Σ is

CAT(0) (meaning that it is nonpositively curved).
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More properties

- Σ is contractible. (This follows from the fact it is CAT(0)).
- The W -action is proper (by construction each isotropy

subgroup is conjugate to some spherical WT ).
- Σ/W is compact.
- If W is finite, then Σ is a Coxeter zonotope.

Typical application of CAT(0)-ness

∃ nonpositively curved (polyhedral) metric on a manifold that is
not homotopy equivalent to a nonpositivley curved Riemannian
manifold.
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The dual construction of Σ

Recall S is the poset of spherical subsets of S. The
fundamental chamber K is defined by K := |S|. (K is the
cone on the barycentric subdivision of a simplicial complex
L.)
Mirror structure: Ks := |S≥{s}|.
Σ := U(W ,K ).
So, K is homeomorphic to Σ/W .
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The construction of Σ is very useful for constructing examples.
The basic reason is that the chamber K is the cone over a fairly
arbitrary simplicial complex (for example, L can be any
barycentric subdivision). This means we can construct Σ with
whatever local topology we want. (So K can be very far from a
polytope.)
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Relationship with geometric reflection groups

If W is a geometric reflection
group on Xn = En or Hn, then
K can be identified with the
fundamental polytope, Σ with
Xn and the cell structure is
dual to the tessellation of Σ
by translates of K .
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Relationship with Tits representation
Suppose W is infinite. Then K is subcomplex of b∆, the
barycentric subdivision of the simplex ∆ ⊂ C.
Consider the vertices which are barycenters of spherical
faces. They span a subcomplex of b∆. This subcomplex is
K . It is a subset of ∆f .
So, Σ = U(W ,K ) ⊂ U(W ,∆f ) ⊂ U(W ,Cf ) = I.
Σ is the “cocompact core” of I.
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Book

M.W. Davis, The Geometry and Topology of Coxeter
Groups, Princeton Univ. Press, 2008.
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