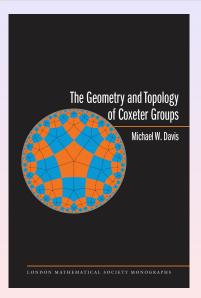
The Geometry and Topology of Coxeter Groups

Mike Davis

Invitations to Mathematics OSU

September 18, 2013 http://www.math.osu.edu/~davis.12/



Mike Davis The Geometry and Topology of Coxeter Groups

Geometric reflection groups

- Some history
- Properties

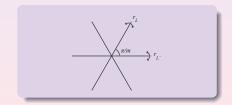
2 Abstract reflection groups

- Coxeter systems
- First realization: the Tits representation
- Second realization: the cell complex $\boldsymbol{\Sigma}$

Dihedral groups

A *dihedral group* is any group which is generated by 2 involutions, call them *s*, *t*. Such a group is determined up to isomorphism by the order *m* of *st* (*m* is an integer \geq 2 or ∞). Let **D**_{*m*} denote the dihedral group corresponding to *m*.

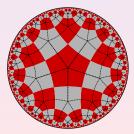
For $m \neq \infty$, \mathbf{D}_m can be represented as the subgroup of O(2) which is generated by reflections across lines *L*, *L'*, making an angle of π/m .



- In 1852 Möbius determined the finite subgroups of O(3) generated by isometric reflections on the 2-sphere.
- The fundamental domain for such a group on the 2-sphere is a spherical triangle with angles $\frac{\pi}{p}$, $\frac{\pi}{q}$, $\frac{\pi}{r}$, with *p*, *q*, *r* integers \geq 2.
- Since the sum of the angles is $> \pi$, we have $\frac{1}{p} + \frac{1}{q} + \frac{1}{r} > 1$.
- For p ≥ q ≥ r, the only possibilities are: (p, 2, 2) for any p ≥ 2 and (p, 3, 2) with p = 3, 4 or 5. The last three cases are the symmetry groups of the Platonic solids.

Some history Properties

Later work by Riemann and Schwarz showed there were discrete groups of isometries of \mathbb{E}^2 or \mathbb{H}^2 generated by reflections across the edges of triangles with angles integral submultiples of π . Poincaré and Klein: similarly for polygons in \mathbb{H}^2 .



Geometric reflection groups

Abstract reflection groups

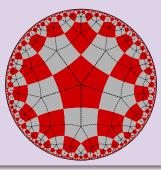
Some history Properties

In 2^{*nd*} half of the 19^{*th*} century work began on finite reflection groups on \mathbb{S}^n , n > 2, generalizing Möbius' results for n = 2. It developed along two lines.

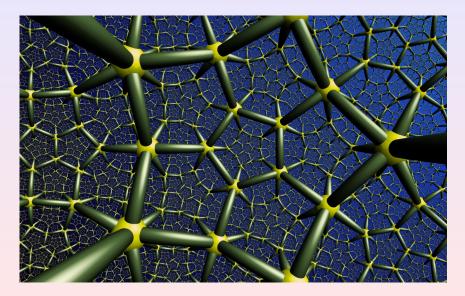
- Around 1850, Schläfli classified regular polytopes in Rⁿ⁺¹, n > 2. The symmetry group of such a polytope was a finite group generated by reflections and as in Möbius' case, the projection of a fundamental domain to Sⁿ was a spherical simplex with dihedral angles integral submultiples of π.
- Around 1890, Killing and E. Cartan classified complex semisimple Lie algebras in terms of their root systems. In 1925, Weyl showed the symmetry group of such a root system was a finite reflection group.
- These two lines were united by Coxeter in the 1930's. He classified discrete groups reflection groups on Sⁿ or Eⁿ.

Some history Properties

Let *K* be a fundamental polytope for a geometric reflection group. For \mathbb{S}^n , *K* is a simplex (= generalization of a triangle). For \mathbb{E}^n , *K* is a product of simplices. For \mathbb{H}^n there are other possibilities, eg, a right-angled pentagon in \mathbb{H}^2 or a right-angled dodecahedron in \mathbb{H}^3 .



Some history Properties



Mike Davis The Geometry and Topology of Coxeter Groups

- Conversely, given a convex polytope K in Sⁿ, Eⁿ or Hⁿ so that all dihedral angles have form π/integer, there is a discrete group W generated by isometric reflections across the codimension 1 faces of K.
- Let *S* be the set of reflections across the codim 1 faces of *K*. For *s*, $t \in S$, let m(s, t) be the order of *st*. Then *S* generates *W*. The faces corresponding to *s* and *t* intersect in a codim 2 face iff $m(s, t) \neq \infty$, and for $s \neq t$, the dihedral angle along that face is $\pi/m(s, t)$. (m(s, t) is an $S \times S$ symmetric matrix called the *Coxeter matrix*.) Moreover,

$$\langle S \mid (st)^{m(s,t)}, \text{ where } (s,t) \in S imes S
angle$$

is a presentation for W.

Coxeter diagrams

Associated to (W, S), there is a labeled graph Γ called its "Coxeter diagram."

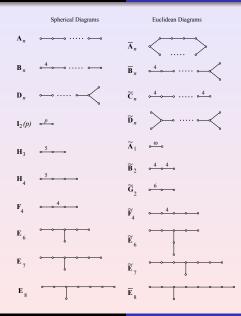
 $Vert(\Gamma) := S.$

Connect distinct elements *s*, *t* by an edge iff $m(s, t) \neq 2$. Label the edge by m(s, t) if this is > 3 or $= \infty$ and leave it unlabeled if it is = 3. (*W*, *S*) is *irreducible* if Γ is connected. (The components of Γ give the irreducible factors of *W*.) The next slide shows Coxeter's classification of irreducible spherical and cocompact Euclidean reflection groups.

Geometric reflection groups

Abstract reflection groups

Some history Properties



Mike Davis The Geometry and Topology of Coxeter Groups

Question

Given a group W and a set S of involutions which generates it, when should (W, S) be called an "abstract reflection group"?

Two answers

- Let Cay(W, S) be the Cayley graph (ie, its vertex set is W and {w, v} spans an edge iff v = ws for some s ∈ S)).
 First answer: for each s ∈ S, the fixed set of s separates Cay(W, S).
- Second answer: W has a presentation of the form:

$$\langle S \mid (st)^{m(s,t)}, \text{ where } (s,t) \in S \times S \rangle.$$

These two answers are equivalent!

Explanations of the terms

Cayley graphs

Given a group *G* and a set of generators *S*, let Cay(G, S) be the graph with vertex set *G* which has a (directed) edge from *g* to *gs*, $\forall g \in G$ and $\forall s \in S$. The group *G* acts on Cay(G, S)(written $G \frown Cay(G, S)$), the action is simply transitive on the vertex set and the edges starting at a given vertex can be labelled by the elements of *S* or S^{-1} .

Presentations

Suppose *S* is a set of letters and \mathcal{R} is a set of words in *S*. Let F_S be the free group on *S* and let *N* be the smallest normal subgroup containing \mathcal{R} . Then put $G := F_S/N$ and write $G = \langle S | \mathcal{R} \rangle$. It is a *presentation* for *G*.

If either of the two answers holds, (W, S) is a *Coxeter system* and *W* a *Coxeter group*. The second answer is usually taken as the official definition: *W* has a presentation of the form:

 $\langle S \mid (st)^{m(s,t)}, \text{ where } (s,t) \in S \times S \rangle.$

where m(s, t) is a *Coxeter matrix*.

Question

Does every Coxeter system have a geometric realization?

Answer

Yes. In fact, there are two different ways to do this:

- the Tits representation
- the cell complex Σ .

Both realizations use the following construction.

The basic construction

A *mirror structure* on a space X is a family of closed subspaces $\{X_s\}_{s \in S}$. For $x \in X$, put $S(x) = \{s \in S \mid x \in X_s\}$. Define

 $\mathcal{U}(W, X) := (W \times X) / \sim ,$

where \sim is the equivalence relation: $(w, x) \sim (w', x') \iff x = x'$ and $w^{-1}w' \in W_{S(x)}$ (the subgroup generated by S(x)). $\mathcal{U}(W, X)$ is formed by gluing together copies of X (the *chambers*). $W \curvearrowright \mathcal{U}(W, X)$. (Think of X as the fundamental polytope and the X_s as its codimension 1 faces.)

Properties a geometric realization should have

It should be an action of W on a space \mathcal{U} so that

- *W* acts as a reflection group, i.e., U = U(W, X).
- The stabilizer of each $x \in U$ should be a finite group.
- \mathcal{U} should be contractible.
- \mathcal{U}/W (= X) should be compact.

Coxeter systems First realization: the Tits representation Second realization: the cell complex Σ

The Tits representation

Linear reflections

Two pieces of data determine a (not necessarily orthogonal) reflection on \mathbb{R}^n :

- linear form $\alpha \in (\mathbb{R}^n)^*$ (the fixed hyperplane is $\alpha^{-1}(0)$).
- a (-1)-eigenvector $h \in \mathbb{R}^n$ (normalized so that $\alpha(h) = 2$).

The formula for the reflection is then

$$\mathbf{v} \mapsto \mathbf{v} - \alpha(\mathbf{v})\mathbf{h}.$$

Symmetric bilinear form

Let $(e_s)_{s \in S}$ be the standard basis for $(\mathbb{R}^S)^*$. Given a Coxeter matrix m(s, t) define a symmetric bilinear form B on $(\mathbb{R}^S)^*$ by $B(e_s, e_t) = -2\cos(\pi/m(s, t))$.

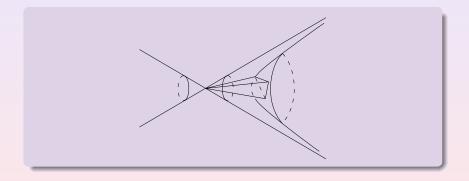
For each $s \in S$, we have a linear reflection $r_s : v \mapsto v - B(e_s, v)e_s$. Tits showed this defines a linear action $W \curvearrowright (\mathbb{R}^S)^*$. We are interested in the dual representation $\rho : W \to GL(\mathbb{R}^S)$ defined by $s \mapsto \rho_s := (r_s)^*$.

Properties of Tits representation $W \to GL(\mathbb{R}^S)$

- The ρ_s are reflections across the faces of the standard simplicial cone C ⊂ ℝ^S.
- $\rho: W \hookrightarrow GL(\mathbb{R}^S)$, that is, ρ is injective.
- WC (= ∪_{w∈W} wC) is a convex cone and if I denotes the interior of the cone, then
- \$\mathcal{I} = \mathcal{U}(W, C^f)\$, where \$C^f\$ denotes the complement of the nonspherical faces of \$C\$ (a face is *spherical* if its stabilizer is finite).
- So, W is a "discrete reflection group" on \mathcal{I} .

Coxeter systems First realization: the Tits representation Second realization: the cell complex Σ

A hyperbolic triangle group



Mike Davis The Geometry and Topology of Coxeter Groups

One consequence

W is virtually torsion-free. (This is true for any finitely generated linear group.)

Advantages

 \mathcal{I} is contractible (since it is convex) and W acts properly (ie, with finite stabilizers) on it.

Disadvantage

 \mathcal{I}/W is not compact (since C^{f} is not compact).

Remark

By dividing by scalar matrices, we get a representation $W \to PGL(\mathbb{R}^S)$. So, $W \curvearrowright P\mathcal{I}$, the image of \mathcal{I} in projective space. When W is infinite and irreducible, this is a proper convex subset of $\mathbb{R}P^n$, n + 1 = #S. Vinberg showed one can get linear representations across the faces of more general polyhedral cones. As before, $W \curvearrowright \mathcal{I}$, where \mathcal{I} is a convex cone; $P\mathcal{I}$ is a open convex subset of $\mathbb{R}P^n$. The fundamental chamber is a convex polytope with some faces deleted. Sometimes it can be a compact polytope, for example, a pentagon.

Question

For (W, S) to have a a reflection representation into $PGL(n + 1, \mathbb{R})$ with fundamental chamber a compact convex polytope P^n there is a necessary condition: the simplicial complex *L* given by the spherical subsets of *S* must be dual to ∂P^n for some polytope P^n . Is this sufficient? (Probably not.)

Question

Are there irreducible, non-affine examples of such $W \subset PGL(n+1, \mathbb{R})$ and $P^n \subset \mathbb{R}P^n$ for *n* arbitrarily large?

The cell complex Σ

The second answer is to construct of contractible cell complex Σ on which W acts properly and cocompactly as a group generated by reflections. Its advantage is that Σ/W will be compact.

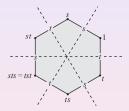
There are two dual constructions of Σ .

- Build the correct fundamental chamber K with mirrors K_s, then apply the basic construction, U(W, K).
- "Fill in" the Cayley graph of (W, S).

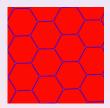
Coxeter systems First realization: the Tits representation Second realization: the cell complex Σ

Filling in the Cayley graph

The Cayley graph of a finite dihedral group



Cayley graph of an infinite Coxeter group



Let $W_{\{s,t\}}$ be the dihedral subgroup $\langle s,t \rangle$. Whenever $m(s,t) < \infty$ each coset of $W_{\{s,t\}}$ spans a polygon in Cay(W, S). If we fill in these polygons, we get a simply connected 2-dimensional complex, which is the 2-skeleton of Σ .

If we want to obtain a contractible space then we have to fill in higher dimensional polytopes ("cells").

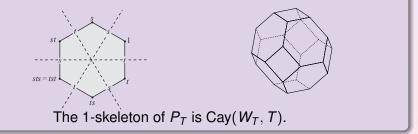
Definition

A subset $T \subset S$ is *spherical* if the subgroup W_T , which is generated by T, is finite. Let S denote the poset of spherical subsets of S.

Corresponding to a spherical subset *T* with #T = k, there is a *k*-dimensional convex polytope called a *Coxeter zonotope*. When k = 2 it is the polygon associated to the dihedral group.

Coxeter zonotopes

Suppose W_T is finite reflection group on \mathbb{R}^T . Choose a point x in the interior of fundamental simplicial cone and let P_T be convex hull of $W_T x$.



When $W_T = (\mathbb{Z}/2)^n$, then P_T is an *n*-cube.

Geometric realization of a poset

Associated to any poset \mathcal{P} there is a simplicial complex $|\mathcal{P}|$ called its *geometric realization*.

Filling in Cay(W, S)

Let WS denote the disjoint union of all spherical cosets (partially ordered by inclusion):

$$WS := \prod_{T \in S} W/W_T$$
 and $\Sigma := |WS|$.

Coxeter systems First realization: the Tits representation Second realization: the cell complex Σ

Filling in Cay(W, S)

There is a cell structure on Σ with {cells} = WS.

This follows from fact that poset of cells in P_T is $\cong W_T S_{\leq T}$. The cells of Σ are defined as follows: the geometric realization of subposet of cosets $\leq wW_T$ is \cong barycentric subdivision of P_T .

Properties of this cell structure on $\boldsymbol{\Sigma}$

- W acts cellularly on Σ .
- Σ has one *W*-orbit of cells for each spherical subset $T \in S$ and dim(cell) = Card(*T*).
- The 0-skeleton of Σ is W
- The 1-skeleton of Σ is Cay(W, S).
- The 2-skeleton of Σ is the Cayley 2 complex of the presentation.
- If *W* is right-angled (i.e., each m(s, t) is 1, 2 or ∞), then each Coxeter zonotope is a cube.
- Moussong: the induced piecewise Euclidean metric on Σ is CAT(0) (meaning that it is nonpositively curved).

More properties

- Σ is contractible. (This follows from the fact it is CAT(0)).
- The *W*-action is proper (by construction each isotropy subgroup is conjugate to some spherical W_T).
- Σ/W is compact.
- If *W* is finite, then Σ is a Coxeter zonotope.

Typical application of CAT(0)-ness

∃ nonpositively curved (polyhedral) metric on a manifold that is not homotopy equivalent to a nonpositivley curved Riemannian manifold.

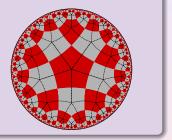
The dual construction of Σ

- Recall S is the poset of spherical subsets of S. The fundamental chamber K is defined by K := |S|. (K is the cone on the barycentric subdivision of a simplicial complex L.)
- Mirror structure: $K_s := |S_{\geq \{s\}}|$.
- $\Sigma := \mathcal{U}(W, K)$.
- So, *K* is homeomorphic to Σ/W .

The construction of Σ is very useful for constructing examples. The basic reason is that the chamber *K* is the cone over a fairly arbitrary simplicial complex (for example, *L* can be any barycentric subdivision). This means we can construct Σ with whatever local topology we want. (So *K* can be very far from a polytope.)

Relationship with geometric reflection groups

If *W* is a geometric reflection group on $\mathbb{X}^n = \mathbb{E}^n$ or \mathbb{H}^n , then *K* can be identified with the fundamental polytope, Σ with \mathbb{X}^n and the cell structure is dual to the tessellation of Σ by translates of *K*.



Relationship with Tits representation

- Suppose W is infinite. Then K is subcomplex of bΔ, the barycentric subdivision of the simplex Δ ⊂ C.
- Consider the vertices which are barycenters of spherical faces. They span a subcomplex of bΔ. This subcomplex is *K*. It is a subset of Δ^f.

• So,
$$\Sigma = \mathcal{U}(W, K) \subset \mathcal{U}(W, \Delta^{f}) \subset \mathcal{U}(W, C^{f}) = \mathcal{I}.$$

• Σ is the "cocompact core" of \mathcal{I} .

Coxeter systems First realization: the Tits representation Second realization: the cell complex Σ

M.W. Davis, *The Geometry and Topology of Coxeter Groups*, Princeton Univ. Press, 2008.

Mike Davis The Geometry and Topology of Coxeter Groups