# Groups up to quasi-isometry

Mike Davis

Invitation to Mathematics OSU September 11, 2013

- Introduction
- Quasi-isometry
  - Metrics on groups
  - Hyperbolic *n*-space
  - Some answers
- Growth

- Groups should be studied as symmetry groups of geometric objects.
- In other words, the group should act on something.

# Example

The group is  $\mathbb{Z}$ . It acts on  $\mathbb{R}$  by translation. The orbit space  $\mathbb{R}/\mathbb{Z}$  is  $=S^1$  (the circle).

#### Problem

Given the group  $\Gamma$ , can we produce a geometric object?

Introduction Quasi-isometry Growth



Figure : Group is  $\mathbb{Z}+\mathbb{Z}$ 



Figure: The infinite dihedral group

# Two methods

## Cayley graphs

Given a group  $\Gamma$  and set of generators S one can produce a graph  $Cay(\Gamma, S)$  together with a  $\Gamma$ -action,  $\Gamma \curvearrowright Cay(\Gamma, S)$ .

### Fundamental group and the universal cover

Given a connected topological space X there is a group  $\pi_1(X)$  called its *fundamental group*. There is also another space  $\widetilde{X}$ , together a projection  $p:\widetilde{X}\to X$ , called the *universal cover* and an action of  $\pi=\pi_1(X)$  on  $\widetilde{X}$ , written  $\pi\curvearrowright\widetilde{X}$  with  $\widetilde{X}/\pi=X$ 

### Example

If 
$$X = S^1$$
, then  $\widetilde{X} = \mathbb{R}$  and  $\pi = \mathbb{Z}$ .

# Realization of group via $\pi_1$

group theory ⊂ topology

via the fundamental group.

- $\forall$  group  $\Gamma$ ,  $\exists$  a topological space X with  $\pi_1(X) = \Gamma$ .
- $\Gamma$  acts on the universal cover  $\widetilde{X}$  with  $\widetilde{X}/\Gamma = X$ .
- X is not unique. We can choose it to be 2-dimensional, or so that  $\widetilde{X}$  is contractible. If  $\Gamma$  is finitely presented, then we can choose X to be compact.
- Properties of  $\Gamma$  are reflected in properties of X or of  $\widetilde{X}$

# Geometric group theory

The field of geometric group theory has grown enormously in the last thirty years - largely because of work of Gromov. In this field we are concerned with actions of groups on metric spaces via isometries (i.e., the gp action preserves distances).

#### The word metric

- Γ: a finitely generated group
- S: a finite set of generators (closed under taking inverses)
- Given  $g \in \Gamma$ , its *length*, I(g) is the minimum integer k s.t.  $g = s_1 \cdots s_k$ , with  $s_i \in S$ .
- Define  $d : \Gamma \times \Gamma \to \mathbb{N} \subset \mathbb{R}$  by  $d(g,h) := l(g^{-1}h)$ . (d is the word metric.)

Of course, d depends on the choice of generating set S.

# Another description of d

# Definitions (The Cayley graph of $(\Gamma, S)$ )

Cay( $\Gamma$ , S) is graph with vertex set  $\Gamma$  and Vertices g,h are connected by an edge  $\iff h = gs$  or  $gs^{-1}$ , for some  $s \in S$ .

There is a natural metric d on Cay( $\Gamma$ , S).

Declare each edge to have length 1 and define d(x, y) to be the length of the shortest path from x to y.

The restriction of this metric to the vertex set is the original word metric on  $\Gamma$ .

# Cayley graph of the free group, $F_2$



 $Cay(F_2, S)$  is a regular 4-valent tree.

#### Definition

A (not necessarily continuous) map  $f: X \to Y$  between metric spaces is a (L, A)-quasi-isometry if  $\exists$  constants L, A so that  $\forall x_1, x_2 \in X$  and  $y \in Y$ 

$$\frac{1}{L}d(x_1,x_2) - A \le d(f(x_1),f(x_2)) \le Ld(x_1,x_2) + A$$
and  $d(y,f(X)) \le A$ .

#### **Notation**

 $X \sim_{qi} Y$  means X and Y are q.i.

## Examples

- If S and S' are two (finite) sets of generators for Γ, then the resulting word metrics are q.i.
- If H ⊂ Γ is a subgp of finite index, then H ~<sub>qi</sub> Γ. (A gp Γ virtually has some property if a finite index subgp H has it.)
- $\Gamma \sim_{qi} Cay(\Gamma, S)$ .
- ullet  $\mathbb{Z} \sim_{qi} \mathbb{R}$ .
- $\mathbb{Z}^n \sim_{qi} \mathbb{R}^n$ .

#### Question

When are two groups q.i?

#### **Definitions**

A *geodesic* in a metric space X is a map  $f : [a, b] \rightarrow X$  s.t.  $\forall s, t \in [a, b]$ ,

$$d(f(s),f(t))=|s-t|.$$

*X* is a *geodesic space* if any 2 points can be connected by a geodesic, or, equivalently, if the distance between any 2 points is the length of the shortest path connecting them.

X is a *proper* metric space if every closed ball is compact. An isometric action of a gp  $\Gamma$  on a metric space X is *discrete* if  $\forall x \in X$  and  $R \in [0, \infty)$ ,

$$\{g \in \Gamma \mid d(gx, x) < R\}$$

is finite. The action is *cocompact* if  $X/\Gamma$  is compact.

# Lemma (The Fundamental Lemma of Geometric Group Theory)

Suppose X, Y are proper geodesic metric spaces with  $\Gamma$ -actions which are discrete, cocompact and via isometries. Then  $X \sim_{qi} Y$ . In particular, any such X is q.i to  $Cay(\Gamma, S)$ .

## Example

The fundamental group of any closed Riemannian manifold M is q.i to its universal cover  $\widetilde{M}$ . As before, we see

$$ullet$$
  $S^1=\mathbb{R}/\mathbb{Z},\,\pi_1(S^1)=\mathbb{Z};\, ext{so }\mathbb{Z}\sim_{qi}\mathbb{R}$ 

• 
$$T^n := \mathbb{R}^n/\mathbb{Z}^n$$
,  $\pi_1(T^n) = \mathbb{Z}^n$ ; so  $\mathbb{Z}^n \sim_{\mathrm{qi}} \mathbb{R}^n$ .

# Features of hyperbolic n-space, $\mathbb{H}^n$

- The most important object in mathematics is the hyperbolic plane.
- H<sup>n</sup> is the model for (n-dimensional) non-Euclidean geometry.
- $\mathbb{H}^n$  is a Riemannian manifold of constant curvature -1. (If we also require it to be complete & simply connected, then it is the unique such n-mfld.)
- It has a large isometry gp, which, in particular, is transitive on  $\{(pt, orthonormal frame)\}$ , e.g., when n = 2,  $lsom_+(\mathbb{H}^2) = SL(2, \mathbb{R})/\{\pm id\}$ .

#### The Poincaré disk model

There are several models for  $\mathbb{H}^n$ . (For simplicity, let's say n=2.) One is the *Poincaré disk model*. The points are points in the interior of the unit 2-disk,  $D^2$ . The metric is defined by

$$ds=\frac{2}{(1-r^2)}dx,$$

where dx is the element of Euclidean arc length and r is distance from the origin. Geodesics (i.e., "lines") are circles  $\bot$  bdry.



## Non-Euclidean features of $\mathbb{H}^2$

- (Anti-Parallel Postulate). Given a line and a point not on the line, there are an infinite number of (ultra)-parallel lines through the point.
- For any triangle,  $\sum$  (angles)  $< \pi$ .

## Surface groups

Let  $S_g$  be a closed surface of genus g>1. Then  $\exists$  a discrete subgp  $\Gamma\subset \mathrm{Isom}_+(\mathbb{H}^2)$  s.t  $\mathbb{H}^2/\Gamma\cong S_g$  (i.e.,  $\Gamma\cong\pi_1(S_g)$ ). So,  $\Gamma\sim_{\mathrm{qi}}\mathbb{H}^2$ .

Similarly, if  $M^n$  is any closed Riemannian mfld of constant curvature -1, then its universal cover is isometric to  $\mathbb{H}^n$ . Consequently,  $\pi_1(M^n) \sim_{\mathfrak{q}i} \mathbb{H}^n$ .

# Remarks about "word hyperbolic" groups

- The geometry of  $\mathbb{H}^n$  imposes many conditions on discrete cocompact subgps of  $\text{Isom}(\mathbb{H}^n)$ .
- Similar properties hold for fundamental groups of negatively curved manifolds.
- Rips and independently, Cooper defined the notion of a "word hyperbolic group" in terms of the metric on the Cayley graph. This notion was popularized by Gromov. It is supposed to be a strictly group theoretic definition of negative curvature "in the large."
- Word hyperbolicity is a quasi-isometry invariant.

## **Answers**

#### Theorem

- $\mathbb{R}^n \sim_{ai} \mathbb{R}^m \iff n = m$ .
- $\mathbb{H}^n \sim_{qi} \mathbb{H}^m \iff n = m$ .
- $\mathbb{H}^n \sim_{qi} \mathbb{R}^n$  (for  $n \neq 1$ ).

### Theorem (Gromov, Pansu)

Any gp q.i with  $\mathbb{R}^n$  is virtually  $\mathbb{Z}^n$ .

# Theorem (Stallings)

If a gp is q.i with  $F_2$ , then it acts properly on some locally finite tree.

## Theorem (Sullivan, Gromov, Tukia, ...)

If  $\Gamma$  is finitely generated gp q.i to  $\mathbb{H}^n$ , then  $\exists$  a discrete, cocompact, isometric  $\Gamma$ -action on  $\mathbb{H}^n$ .

## Theorem (Kleiner-Leeb, ...)

Suppose G is a semisimple Lie gp of noncompact type and X is the corresponding symmetric space. Then  $\Gamma \sim_{\mathrm{qi}} \widetilde{X} \iff \widetilde{X}$  admits a proper , cocompact isometric  $\Gamma$ -action (hence,  $\Gamma$  is an extension of a cocompact lattice in G by a finite gp).

Introduction Quasi-isometry Growth

To show that two gps are not q.i we need to develop properties which are invariant under quasi-isometries. One such property is the rate of (volume) growth in a group.

Given a finitely generated gp  $\Gamma$ , put

$$n_{\Gamma}(r) := \#\{g \in \Gamma \mid I(g) \leq r\}.$$

 $\Gamma$  has polynomial growth if  $n_{\Gamma}(r) \leq Cr^n$  for some constant C and  $n \in \mathbb{Z}$ .

Γ has *exponential growth* if  $e^{Cr} \le n_{\Gamma}(r)$  for some positive constant C. (It's automatic that  $n_{\Gamma}(r) < e^{Dr}$ , for some D.)

These notions are obviously q.i invariants.

# **Exponential** growth

One of the first results in this area was the following result of Milnor.

### Theorem (Milnor, circa 1968)

The fundamental group of a compact, negatively curved manifold has exponential growth.

Current interest in GGT started with the following theorem of Gromov. It is still one of the best results in the field.

# Polynomial growth

### Theorem (Gromov, circa 1980)

 $\Gamma$  has polynomial growth  $\iff$  it is virtually nilpotent.

### Example (of a nilpotent gp)

$$\begin{pmatrix} 1 & m & n \\ 0 & 1 & p \\ 0 & 0 & 1 \end{pmatrix} \qquad m, n, p \in \mathbb{Z}$$

Gromov's Theorem means that any gp of polynomial growth has a subgp of finite index which is a subgp of the gp of upper triangular integral matrices with 1's on the diagonal.

## Other q.i invariant properties

- We have ∂ℍ<sup>n</sup> = S<sup>n-1</sup>. Any q.i ℍ<sup>n</sup> → ℍ<sup>n</sup> induces a homeo of the bdry.
   Similarly, for any word hyperbolic gp. (In particular, such a gp has a well-defined bdry.)
- # ends of Cay( $\Gamma$ , S).
- Other topological invariants "at ∞," in the case when Γ acts properly, cocompactly on a contractible space, X, e.g. H<sub>c</sub><sup>\*</sup>(X).

Introduction Quasi-isometry Growth

### Direction for current and future research

Pick some class of gps and then classify the gps in this class up to quasi-isometry.