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Lecture 1:

Overview



Finite reflection groups on Rn.

Example. Take two lines in R2 making an angle of π/m. The gp

Dm generated by the orthogonal reflections across these lines is

the dihedral group of order 2m.

Example. The symmetric group Sn+1 acts on Rn

(= Rn+1/{x1 = · · · = xn+1}) as a group generated by reflections.

(The reflections are the transpositions.)



Suppose W is a finite group generated by orthogonal reflections

on Rn. Let

R := {reflections}

open chamber := component of Rn −
⋃
r∈R

Hr

K := chamber

S := {reflections across codim 1 faces of K}



Main features:

• K is a simplicial cone.

• W acts simply transitively on {chambers}.

• W = 〈S〉 (i.e., S generates W .)

• Rn/W = K.



Finite reflection groups play a decisive role in

• the theories of Lie groups and algebraic groups,

• the classification of regular polytopes.



Reflections groups on En. W ⊂ Isom(En) a discrete gp gen-

erated by reflections. We have a similar picture: a fundamental

chamber K is convex and W = 〈S〉, where

S := {reflections across the codim 1 faces of K}. En/W = K.

If, in addition, K is compact, then it is a polytope. If action

does not split as a nontrivial product, then K is a simplex.



Reflections groups on Hn. Similar remarks apply, except K

need not be a product of simplices.
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Abstract reflection groups. Is there a group theoretic charac-

terization of relection groups?

First attempt: a group generated by involutions, more precisely,

a pair (W,S) with W = 〈S〉, each element of S of order 2.

J. Tits proposed two different refinements of the above. The

first hypothesis was that the Cayley graph of (W,S) had cer-

tain separation properties. (There are equivalent versions of this



hypothesis which are purely combinatorial, e.g. the “Exchange

Condition.”) The second hypothesis was that W admitted a pre-

sentation of a certain form. Incredibly these 2 hypotheses turn

out to be equivalent. This is proved in the beginning of

N. Bourbaki, Lie groups and Lie Algebras, Chapters 4–6.

It will be the focus of Lecture 2. Some details of the hypotheses:



(1) Let Ω = Cay(W,S). Then ∀s ∈ S, the fixed set, Ωs, separates

Ω. (Recall that Cay(W,S) is the graph with vertex set W and

with v, w connected by an edge iff v = ws for some s ∈ S.)

(2) For each pair (s, t) ∈ S × S, let mst := order(st). (W,S) is a

Coxeter system if it has a presentation of the form:

〈S | (st)mst〉(s,t)∈S×S

(If mst =∞, the relation is omitted.)



The equivalence of these two definitions is not obvious. The

meaning of (2) is that if we start with Cay(W,S) and fill in orbits

of 2-cells corresponding to distinct pairs {s, t} with mst 6=∞, then

the resulting 2-dim cell cx is simply connected.

Definition. A Coxeter matrix on a set S is an S × S symmetric

matrix (mst), with entries in N ∪ {∞}, with 1’s on the diagonal

and with off-diagonal entries ≥ 2.

Fact. Any Coxeter matrix is the matrix for a Coxeter system.



Representation of (W,S) by a geometric object.

Tits: ∃ a faithful representation ρ : W ↪→ GL(N,R) s.t.

• ∀s ∈ S, ρ(s) is a (not necessarily orthogonal) linear reflection.

• W acts properly on the interior I of a convex cone in RN .

(Basically, “proper” means finite stabilizers.)

• Hyperplanes corresponding to S bound a “chamber” K ⊂ I.



For many purposes this representation is completely satisfactory.

Corollary.W is virtually torsion-free (i.e., it contains a torsion-

free subgp of finite index).

Proof. Selberg’s Lemma asserts that any finitely generated subgp

of GL(N,R) has this property.

Disadvantage: K is not compact.



The cell complex Σ. In Lecture 4, I will describe a cell cx Σ

with a proper W -action.

Properties:

• ∃ a compact fundamental chamber K with Σ/W ∼= K.

• S = {“reflections across faces” of K}.

• Σ is contractible.



• (The barycentric subdivision of) Σ is the “cocompact core”

of the Tits’ cone I.

• Suppose Σk denotes the k-skeleton (:=
⋃

all cells of dim ≤ k).

Then Σ1 = Cay(W,S) and Σ2 is the “Cayley 2-complex.”

• More generally, ∃ an orbit of k-dimensional cells for each

T ⊂ S with Card(T ) = k and 〈T 〉 finite.



Definition. For T ⊂ S, WT := 〈T 〉. It is called a special subgroup

of W .

Fact. (WT , T ) is a Coxeter system.

T ⊂ S is a spherical subset if WT is finite. Let

S := {T ⊂ S | T is spherical}.

In other words, Σ has one orbit of cells for each element of S.



Therefore, the poset of cells in Σ is the poset of spherical cosets:

WS :=
∐
T∈S

W/WT .

Note: Σ is not the same as the “Coxeter complex.” When W

comes from an (irreducible) Euclidean reflection gp, they are the

same; moreover, both = En, tessellated by simplices.

Metric properties of Σ. In the late 1940 s Aleksandrov and

others defined what it means for a singular metric space (i.e.,



6= Riem mfld) to be nonpositively curved – or in today’s termi-

nology, to be “locally CAT(0).” Gromov (circa 1986) recalled

this definition and gave many constructions of CAT(0) polyhe-

dra, i.e., of spaces with piecewise Euclidean metrics which are

(globally) CAT(0). Perhaps, the nicest such examples are the

complexes Σ which we are discussing.

Theorem. (Gromov, Moussong). For any Coxeter system, the

natural PE metric on the associated cell cx Σ is CAT(0).



Remark. A corollary is that Σ is contractible (as is any CAT(0)

space). I will give a different argument for this in Lecture 5.

Remark. I don’t plan to say much more about CAT(0) spaces.

Coxeter groups as a source of examples. Any 2 vertices

of Σ have isomorphic nbhds (because W acts transitively on

Vert(Σ)). Such a nbhd is ∼= to Cone(L), where L is a certain

finite simplicial cx called the “link” of the vertex. For example,



if L is homeomorphic to Sn−1, then Σ is an n-mfld. L = L(W,S)

can be defined in terms of the spherical subsets of S. In fact,

Vert(L) := S and a subset T of S spans a simplex σT of L iff

T ∈ S.

The reason Coxeter groups provide such a potent source of ex-

amples is that the simplicial cx L is essentially arbitrary. (Its

topology is arbitrary!)



Definition. Suppose X is a space which is homotopy equivalent

to a CW complex. X is aspherical if its universal cover is con-

tractible. This is equivalent to the condition that πi(X) = 0,

∀i > 1, (since πi(X) = πi(X̃) for i > 1).

If Γ ⊂W is a torsion-free subgp of finite index, then

• Γ acts freely on Σ (since stabilizers are finite subgps of W ).



• Σ/Γ is an aspherical cx (the universal cover Σ is contractible).

• Σ/Γ is a finite cx (since Σ/W is compact).

(W,S) is right-angled if each mst = 2 or ∞. When this is the

case, Σ turns out to be a cubical cx.

A more concrete version of Σ in the right-angled case. Let

L be an arbitrary finite simplicial cx. Put S := VertL and



S(L) := {T ⊆ S | T is the vertex set of a simplex}. �S := [−1,1]S.

Let XL ⊆ �S be the union of all faces which are parallel to �T

for some T ∈ S(L).

The group (Z/2)S acts as a reflection group on �S. XL is (Z/2)S-

stable. VertXL = Vert�S = {±1}S. The link of each vertex of

XL is ∼= L. Let p : X̃L → XL be the universal cover. Let W

be the group of all lifts of elements of (Z/2)S to X̃L. Then W



acts as a reflection group on X̃L. Identify an element of S with

the lift of the corresponding reflection in (Z/2)S which fixes the

appropriate face of a lifted chamber. One checks that (W,S) is

a Coxeter system where mst 6= ∞ ⇐⇒ {s, t} span an edge of

L. Moreover, Γ := π1(XL) is a torsion-free subgp of W (it is the

commutator subgp). If L satisfies the condition of being a “flag

cx” (to be defined in Lecture 4) then X̃L = Σ. (This condition

is always satisfied if L is a barycentric subdivision). So, if this



is the case, XL = Σ/Γ is aspherical. So, we have a machine

for a converting simplicial complex L (with possibly interesting

topology) into a finite aspherical cx XL and gp W acting nicely

on its universal cover. In Lecture 6 I will use this construction

to give examples of

• a torsion-free group having different cohomological dimen-

sion over Z than over Q,



• a closed aspherical mfld with universal cover 6= Rn,

Calculation of the (co)homology of Σ. This is the main

theme of these lectures. We have 4 different types of cohomol-

ogy in mind:

• ordinary: H∗(Σ)

• compact supports: H∗c (Σ)



• L2 (reduced): L2H∗(Σ)

• weighted L2 : L2
qH∗(Σ), depending on a positive real multi-

parameter q.

The last item is fairly new work. Let’s discuss each of the 4

types in turn.

Ordinary (co)homology. The result is that Σ is acyclic. In



other words, H∗(Σ) and H∗(Σ) are concentrated in dim 0. The

reason for proving this is that showing Σ is contractible is equiv-

alent to showing that it is both acyclic and simply connected.

Cohomology with compact supports. There is the following

explicit formula:

H∗c (Σ) ∼=
⊕
T∈S

H∗(K,KS−T )⊗ Z(WT ),

where K is a fundamental chamber, KS−T is the union of mirrors



(= “codim 1 faces”) of K which are indexed by elements of S−T ,

where WT ⊂ W , W is the disjoint union of the WT and where

Z(WT ) means the free abelian gp on WT . One application of this

formula is that we can characterize when W is a virtual Poincaré

duality group.

L2-(co)homology. Here we are concerned with ordinary real-

valued cellular cochains but with square summable coefficients.



The resulting (reduced) cohomology groups are usually infinite

dimensional Hilbert spaces. Using the group action, it is pos-

sible to associate a nonnegative real number to such a Hilbert

space. This number is called an “L2- Betti number.” Atiyah’s

Formula is that the alternating sum of the L2- Betti numbers is

= χorb(Σ/W ). Not much else is known about these L2- Betti

numbers; however, there is the following special case of a well-

known conjecture of Dodziuk and Singer.



Conjecture. If Σ is an n-mfld, then the L2- Betti numbers,

L2bk(Σ), vanish ∀k 6= n
2.

Because of Atiyah’s Formula the Singer Conjecture implies an-

other well-known conjecture.

Conjecture. (The Euler Characteristic Conjecture). Suppose

M2n is a closed aspherical mfld. Then (−1)nχ(M2n) ≥ 0.

Weighted L2-cohomology. This is a further refinement. Let



I := {conjugacy classes in S} and let t be an I-tuple of indeter-

minates. One can define W (t), a power series in t, called the

“growth series.” (It generalizes W (t) :=
∑
tl(w).) It is a rational

function. Given q ∈ (0,∞)I, there is an algebra RqW , called

the “Hecke algebra.” It is a deformation of the group algebra.

It is possible to define an inner product on finitely supported

cochains which differs from the standard one by a weight func-

tion involving the multiparameter q and word length. As before



one has square summable cochains, the resulting cohomology

groups, L2
qH∗(Σ), and their associated von Neumann dimensions

(w.r.t. the Hecke algebra) the “weighted L2- Betti numbers,

bkq(Σ). The groups L2
qH∗(Σ) interpolate between ordinary coho-

mology and cohomology with compact supports in a very precise

sense. Let R be the region of convergence of W (t). Then



• If q ∈ R, then L2
qH∗(Σ) is concentrated in dim 0.

• If q ∈ R−1, then there is a formula for L2
qH∗(Σ) similar to

the formula for H∗c (Σ).

Relationship with buildings. One of the principal reasons for

studying weighted L2-cohomology groups is that they compute

the ordinary L2-cohomology groups of Tits buildings. Buildings



come in different flavors or “types,” where the type is a Coxeter

system (W,S). The correct definition of the geometric realiza-

tion of a bldg should be such that each “apartment” is ∼= Σ.

The difference between a bldg and Σ is that in a bldg more than

two chambers (= copies of K) can meet along a given mirror.

It turns out that the weighted L2- Betti numbers of Σ compute

the L2- Betti numbers of the bldg. More precisely, if the bldg



admits a chamber transitive automorphism group G and it has

thickness q, then the L2- Betti numbers of the bldg (w.r.t. G)

are given by the bkq. So, for bldgs only integral values of the

multiparameter q matter!



Lecture 2:

The combinatorial theory of Coxeter groups



The Cayley graph and the word metric

Suppose G is a gp and G = 〈S〉 (S is a set of generators for G).

Suppose 1 /∈ S.

Definition. The Cayley graph, Cay(G,S), is the graph with ver-

tex set G s.t. a two element subset of G is an edge iff it has the

form {g, gs} for some g ∈ G, s ∈ S. Label the edge {g, gs} by s.



An edge path γ in the graph Ω := Cay(G,S) is a sequence of

vertices γ = (g0, g1, . . . , gk) s.t. two successive vertices are con-

nected by an edge. Associated to γ, we get a word s in S ∪ S−1

defined by

s = ((s1)
ε1, . . . , (sk)

εk),

where si is the label on the edge between gi−1 and gi and where

εi ∈ {±1} is defined to be +1 if the edge is directed from gi−1 to



gi (i.e., if gi = gi−1si) and to be −1 if it is oppositely directed.

Given such a word s define an element g(s) ∈ G by

g(s) = (s1)
ε1 . . . (sk)

εk

and call it the value of the word s. Clearly, gk = g0g(s). In

other words, there is a one-to-one correspondence between edge

paths from g0 to gk and words s such that gk = g0g(s). Since S

generates G, Ω is connected.



Example. Suppose S is a set and G = FS, the free group on S.

The Cayley graph Cay(FS, S) is a tree. (Each vertex has valence

2|S|.)

Word length. We define a metric on Ω = Cay(G,S). Each edge

has length 1. The length of any path in Ω is then defined in the

obvious manner. Define a“path metric” d : Ω ×Ω → [0,∞), by

letting d(x, y) be the length of the shortest path from x to y.



Restricting the metric to the vertex set of Ω, we get the word

metric d : G × G → Z, i.e., d(h, g) is the smallest integer k such

that g = hg(s) for some s, a word of length k in S ∪ S−1. The

distance from g to the identity element 1 is called its word length

and is denoted l(g).

Dihedral groups

Definition. A dihedral group is a group which is generated by



two distinct elements of order 2. If {s, t} = {generators}, put

mst := order of st.

Exercise. Two dihedral groups are isomorphic iff they have the

same mst (= m). Both are isomorphic to

Dm := 〈s, t|s2, t2, (st)m〉.

Moreover, |Dm| = 2m.

Example. L a line in R2. rL = orthogonal reflection across L.



θ = angle between L and L′. rL ◦ rL′ = rotation through 2θ. So,

if θ = π/m, m ∈ N, then rL ◦ rL′ is rotation through 2π/m and

consequently, is of order m. So, the subgroup of O(2) generated

by rL and rL′ is
∼= Dm.

Example. (The infinite dihedral group D∞). This group is gen-

erated by two isometric affine transformations of the real line.

Let r and r′ denote the reflections about the points 0 and 1,

respectively (that is, r(t) = −t and r′(t) = 2 − t). Then r′ ◦ r is



translation by 2 (and hence, is of infinite order).

Coxeter systems

Definition. A pair (W,S), with W a gp and S ⊂ W , is a pre-

Coxeter system if W = 〈S〉 and each element of S is an involution.

mst := order of st.



Definition. (Tits). A pre-Coxeter system (W,S) is a Coxeter

system if

〈S | (st)mst〉(s,t)∈S×S

is a presentation for W .

Definition. A pre-Coxeter system (W,S) is a reflection system if

the fixed point set of each s ∈ S separates Cay(W,S).



Theorem. Coxeter system ⇐⇒ reflection system.

Definition. Suppose (W,S) is a pre-Coxeter system. An element

r ∈W is a reflection if it is a conjugate of an element of S. Let

R := {reflections}.

Suppose s := (s1, . . . , sk) is a word in S. Put w(s) := s1 · · · sk.

We say s is a reduced expression for w(s) if k = l(w(s)).



Conditions (D), (E) and (F)

(D) If s = (s1, . . . , sk) is a word in S for w := w(s) and k > l(w),

then there are indices i < j so that the subword

s′ = (s1, . . . , ŝi, . . . , ŝj, . . . sk)

is another expression for w.



(E) Given a reduced expression s = (s1, . . . , sk) for an element

w ∈ W and an element s ∈ S, either l(sw) = k + 1 or else there

is an index i such that

w = ss1 · · · ŝi · · · sk.

(F) Suppose w ∈ W and s, t ∈ S are s.t. l(sw) = l(w) + 1 and

l(wt) = l(w) + 1. Then either l(swt) = l(w) + 2 or swt = w.

Exercise. Conditions (D), (E) and (F) are equivalent.



Lemma. Reflection system ⇐⇒ (D)

Suppose s = (s1, . . . , sk) is a word in S. For 0 ≤ i ≤ k, set

wi : = s1 · · · si

ri := wi−1siw
−1
i−1

Φ(s) := (r1, . . . , rk).

Then ri . . . r1 = wi = s1 · · · si and (w0, . . . , wk) is an edge path.

Let n(r, s) := the number of occurrences of r in Φ(s).



The implication: Coxeter system =⇒ reflection system.

If (W,S) is a reflection system, then the set of “half-spaces” can

be identified with R×{±1}. (For each r ∈ R, its fixed set divides

the Cayley graph into two components. The “positive” one

corresponding to +1 is the component containing the identity

element.) Given that (W,S) is a Coxeter system, the trick is to

define an action on its putative set of half-spaces.



Lemma. Suppose (W,S) is a Coxeter system.

(i) For any word s with w = w(s) and any element r ∈ R, the

number (−1)n(r,s) depends only on the endpoint w. We

denote this number by η(r, w) ∈ {±1}.

(ii) There is a homomorphism, w → φw from W to the group of

permutations of the set R × {±1}, where the permutation



φw is defined by the formula

φw(r, ε) = (wrw−1, η(r, w−1)ε).

Sketch of Proof. Note (ii) =⇒ (i). So, consider (ii). For each

s ∈ S, define φs ∈ Perm(R× {±1}) by

φs(r, ε) = (srs, ε(−1)δ(s,r) ,



where δ(s, r) is the Kronecker delta. If s = (s1, . . . , sk), put

v := w(s)−1 = sk · · · s1 and

φs := φsk ◦ · · · ◦ φs1.

Claims:

• φs(r, ε) = (vrv−1, ε(−1)n(s,r)).

• s→ φs descends to a homomorphism W → Perm(R× {±1}).



Corollary. Coxeter system =⇒ reflection system.

Idea of proof. The previous lemma =⇒ (W,S) is a reflection

system. Let Ω = Cay(W,S). Must show that for each r ∈ R, Ωr

separates Ω. Indeed, a vertex w belongs to the same component

of Ω−Ωr iff η(r, w) = +1.



The word problem: Given a word s in S, is there an algorithm

for determining if its value w(s) is = 1 ∈W?

We give Tits’ solution to the word problem for reflection systems.

Suppose (W,S) is a pre-Coxeter system and M = (mst). Suppose

further that (W,S) satisfies (E) (i.e., it is a reflection system).



Definition. An elementary M-operation on a word in S is one of

the following two types of operations:

(I) Delete a subword of the form (s, s)

(II) Replace an alternating subword of the form (s, t, . . . ) of

length mst by the alternating word (t, s, . . . ), of length mst.

A word is M-reduced if it cannot be shortened by a sequence of



elementary M-operations.

Theorem. (Tits ). Suppose (W,S) satisfies (E).

(i) A word s is a reduced expression iff it is M-reduced.

(ii) Two reduced expresions s and t represent the same element

of W iff one can be transformed into the other by a sequence

of elementary M-operations of type (II).



The proof is by induction on l(w).

Corollary. Reflection system =⇒ Coxeter system.

Proof. Suppose (W,S) is a pre-Coxeter system, (mst) the asso-

ciated Coxeter matrix. (W̃ , S̃) is the Coxeter system given by

the presentation associated to (mst). p : W̃ → W the natural

surjection. Show that p is injective. Let w̃ ∈ Ker(p) and let

s̃ = (s̃1, . . . , s̃k) be reduced expression for w̃. Then s̃ is



M-reduced. Let s = (s1, . . . , sk) be the corresponding word in

S. Since (W,S) and (W̃ , S̃) have the same Coxeter matrices,

the notion of M-operations coincide and so, s is also M-reduced.

But since s represents the identity element in W , it must be

the empty word. Consequently, s̃ is also the empty word and so

w̃ = 1.



Special subgroups

A simple consequence of the solution to the word problem: for

any w ∈ W , the set of letters which can occur in a reduced

expression of w does not change as we vary the choice of reduced

expression.

Proposition. For each w ∈W , there is a subset S(w) ⊂ S so that

for any reduced expression (s1, . . . , sk) for w, S(w) = {s1, . . . , sk}.



For each T ⊂ S, let

WT := 〈T 〉

be the subgroup generated by T . WT is called a special subgroup

of W .

Corollary.WT consists of those w ∈W such that S(w) ⊂ T .

Corollary. (WT , T ) is a Coxeter system.

Lecture 3:



Geometric reflection groups



The spherical case. W ⊂ O(n+1), a finite group generated by

reflections. W acts on Rn+1 and on Sn. Assume the action is

essential, i.e.,

(Rn+1)W = {0}.

{Hr} = {hyperplanes of reflection}. Let P be the closure of a

component of Sn − ⋃
Hr. P is a spherical polytope. Let {Pi} =

{codim 1 faces of P}, si the reflection across Pi and S = {si}.



Some facts:

• P = ∆, a spherical n-simplex.

• (W,S) is a Coxeter system.

• ∆ is a strict fundamental domain.

• If mij = order(sisj), then ](∆i,∆j) = π/mij.



Corollary. Suppose W ⊂ O(n + 1) is finite reflection group on

Rn+1. Then a fundamental domain (= “chamber”) is a simplicial

cone.



The Euclidean case. W ⊂ Isom(En) a discrete subgroup gen-

erated by reflections. Assume the W -action on En is cocompact.

• If W is irreducible, then P = ∆, a Euclidean n-simplex.

• In general, P is a product of simplices.

• As before, (W,S) is a Coxeter system and P is a fundamental

domain.



In the spherical case, why is P a simplex?

Lemma. Suppose P ⊂ Sn is spherical polytope with all dihedral

angles ≤ π/2. Then P is a simplex.

Proof. Linear algebra.

Similarly in the Euclidean case.



Definition. Suppose that M = (mij) is a Coxeter matrix on a

set I. We associate to M a graph Γ (= ΓM) called its Coxeter

graph. The vertex set of Γ is I. Distinct vertices i and j are

connected by an edge if and only if mij ≥ 3. The edge {i, j} is

labeled by mij if mij ≥ 4. (If mij = 3, the edge is left unlabeled.)

The graph Γ together with the labeling of its edges is called the

Coxeter diagram asssociated to M .



Theorem. (Coxeter). The Coxeter diagrams of the irreducible

spherical and Euclidean Coxeter groups are given in the tables.
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The basic construction. A mirror structure on a space X con-

sists of an index set S and a family of closed subspaces (Xs)s∈S.

The subspaces Xs are the mirrors of X. For each x ∈ X, let

S(x) = {s ∈ S | x ∈ Xs}.

For each nonempty subset T ⊂ S, let XT (resp. XT ) denote the



intersection (resp. union) of the mirrors indexed by T , that is,

XT =
⋂
t∈T

Xt, and

XT =
⋃
t∈T

Xt.

Also, for T = ∅, put X∅ = X and X∅ = ∅. We shall sometimes

call a subspace XT a coface of X.



Suppose (W,S) is a pre-Coxeter system. Define an equivalence

relation ∼ on W ×X by (w, x) ∼ (w′, x′) if and only if x = x′ and

w−1w ∈WS(x). Let U(W,X) denote the quotient space:

U(W,X) = (W ×X)/ ∼ .

Let [w, x] denote the equivalence class of (w, x).

W acts on U via w · [w′, x] := [ww′, x].



Exercise. (i) The map x → [1, x] is an embedding of X as a

closed subspace of U.

(ii) X is a strict fundamental domain, in the sense that it in-

tersects each W -orbit in exactly one point.

(iii) The map U → X defined by [w, x] → x induces a homeo-

morphism U/W ∼= X.



The image of w ×X in U is denoted wX and called a chamber

(for W on U).



Spaces of constant curvature. Rn,1 is Rn+1 equipped with the

indefinite quadratic form −x20+x21+ · · ·+x2n. Hyperbolic n-space

Hn is one sheet of the “sphere of radius i,”

−x20 + x21 + · · ·+ x2n = −1.
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Xn stands for Sn, En or Hn. Pn ⊂ Xn is a convex polytope.

{Fi}i∈I = {codim 1 faces}.

For i ∈ I, let si be the isometric reflection of Xn across the

hyperplane supported by Fi. W := 〈{si}i∈I〉 ⊂ Isom(Xn). When

is W a discrete subgroup Isom(Xn)? When is Pn a fundamental

domain for the W -action on Xn? A necessary condition: if the

hyperplanes supported by Fi and Fj intersect, then the dihedral

subgroup W ij generated by si and sj must be finite and the



sector bounded by these hyperplanes and containing Pn must be

a fundamental domain for the W ij-action. So, the dihedral angle

between Fi and Fj must be an integral submultiple of π. This

forces all the dihedral angles of Pn to be ≤ π/2.

Pn ⊂ Xn is simple if exactly n codim 1 faces meet at each vertex

(i.e., ∂P is dual to a simplicial complex).

Lemma. If all dihedral angles of Pn are ≤ π/2, then Pn is simple.



Proof. Follows from spherical case.

So, suppose Pn is simple and that whenever Fi ∩ Fj 6= ∅, the

dihedral angle along Fij is of the form π/mij, for some integer

mij ≥ 2. If Fi ∩ Fj = ∅, set mij =∞.

(mij) is a Coxeter matrix. Let (W,S) be the corresponding Cox-

eter system, with generating set S = {si}i∈I. Since order(sisj) =

mij, si → si extends to a homomorphism φ : W → W . There is



a tautological mirror structure on Pn: the mirror corresponding

to i is Fi. The inclusion ι : Pn → Xn induces a φ-equivariant map

ι̃ : U(W,Pn)→ Xn, given by [w, x]→ φ(w)x.

Theorem. ι̃ is a homeomorphism.

Sketch of proof. Induction on n. Spherical case in dimension

n − 1 =⇒ ι̃ is a local homeomorphism. Complete metric on

U(W,Pn) =⇒ ι̃ is a covering map. Since Xn ( 6= S1) is simply



connected, we are done.

Corollary. φ : W →W is an isomorphism (hence, W is a Coxeter

group).

Corollary. Pn is a strict fundamental domain for W on Xn.

Polygon groups. The exterior angles in a Euclidean polygon

sum to 2π. So, if P2 is an m-gon in E2 with interior angles



α1, . . . , αm, then
∑

(π − αi) = 2π or equivalently;

m∑
i=1

αi = (m− 2)π .

Suppose

X2
ε =


S2, if ε = 1;

E2, if ε = 0;

H2, if ε = 1.

If P2 ⊂ X2
ε is an m-gon, then the Gauss–Bonnet Theorem asserts

εArea(P2) +
∑

(π − αi) = 2π.

Hence,
∑
αi is >, = or < (m− 2)π, as X2

ε is, respectively, S2, E2



or H2.

Consider convex m-gon P2 ⊂ Xnε with vertices v1, . . . , vm where

the angle αi at vi is of the form αi = π/mi, for an integer mi ≥ 2.

Example. (Spherical triangle groups). Suppose ε = 1. Since

αi ≤ π/2, the condition
∑
αi > (m − 2)π forces m < 4, i.e., P2

is a triangle. What are the possibilities for αi? The inequality



π/m1 + π/m2 + π/m3 > π can be rewritten as

1

m1
+

1

m2
+

1

m3
> 1.

Exercise. Supposing m1 ≤ m2 ≤ m3, show that the only triples

(m1,m2,m3) of integers ≥ 2 satisfying the above are: (2,3,3),

(2,3,4), (2,3,5) and (2,2, n) for any integer n ≥ 2.

Each such triple corresponds to a spherical reflection group. The

first 3 triples are the symmetry groups of the Platonic solids:



(2,3,3) gives the symmetry group of the tetrahedron, (2,3,4)

the symmetry group of the cube (or octahedron) and (2,3,5)

the symmetry group of the dodecahedron (or icosahedron).

Example. (2-dimensional Euclidean groups).
∑
αi = (m − 2)π

forces m ≤ 4; moreover, if m = 4, there is only one possibility

for the mi, namely, m1 = m2 = m3 = m4 = 2. Thus, in this

case, P2 is a rectangle and we get a standard rectangular tiling

of E2. The corresponding Coxeter group is D∞×D∞. If m = 3,



the relevant equation is

1

m1
+

1

m2
+

1

m3
= 1.

As before, it is easy to see that there are only three such triples:

(2,3,6), (2,4,4) and (3,3,3).

Example. (Hyperbolic polygon groups). Given any assignment

of angles of the form π/mi to the vertices of a combinatorial



m-gon such that

m∑
i=1

1

mi
< m− 2 ,

we can find a convex realization of it in H2. This yields a corre-

sponding reflection group on H2. If m > 3, there is a continuous

family (moduli) of hyperbolic polygons with the same angles and

hence, a moduli space of representations of the Coxeter group.

The conclusion to be drawn from these examples is that any



assignment of angles of the form π/mi to the vertices of an m-

gon can be realized by a convex polygon in a 2-dimensional space

X2 of constant curvature; moreover, apart from a few exceptional

cases, the space is H2.



Simplicial Coxeter groups. Suppose the fundamental polytope

is a simplex ∆n ⊂ Xn and that dihedral angle between ∆i and ∆j

is π/mij. The cosine matrix (associated to the Coxeter matrix

(mij) is the matrix (cij) defined by

cij := − cos(π/mij)

(where mii := 1 so that cii = − cos(π) = 1). Let ui be the



outward pointing unit normal vector to ∆i. Then

ui · uj = cij.

The matrix (ui · uj) is the Gram matrix of ∆.



Proposition. Suppose ∆n ⊂ Xnε .

• If Xn = Sn, then (cij) is positive definite.

• If Xn = En, then (cij) is positive semidefinite of rank n.

• If Xn = Hn, then (cij) is indefinite of type (n,1).

In the 3 respective cases, let us say (cij) is type ε = 1,0 or −1.



In 1950 Lannér classified those Coxeter groups W which can act

as proper reflection groups on a simply connected space with

fundamental chamber a simplex. In other words, he determined

which W act properly on U(W,∆n). We call such a (W,S),

S = {si}i∈I, a simplicial Coxeter group. It turns out that any

such W is a geometric reflection group generated by reflections

across the faces of an n-simplex in either Sn, En or Hn.



Suppose the Coxeter group W is defined by an I × I Coxeter

matrix (mij), I := {0, . . . , n}. Let (cij) be the associated cosine

matrix. W acts properly on U(W,∆n) if and only if the isotropy

subgroup at each vertex is finite and this is the case if and

only if each principal submatrix of (cij) is positive definite. So,

the problem is reduced to finding all Coxeter diagrams with the

property that every proper subdiagram is positive definite. We

note that if a diagram has this property and if it not connected,



then each of its components is positive definite. It follows that

there are only three possibilities depending on the determinant

of the cosine matrix C = (cij):

• If detC > 0, then C is positive definite.

• If detC = 0, then the diagram is connected and C is positive

semidefinite of corank 1.



• If detC < 0, then the diagram is connected and C is type

(n,1)

Proposition. (Lannér). Any simplicial Coxeter group can be

represented as a geometric reflection group with fundamental

chamber an n-simplex in either Sn, En or Hn.

Proposition. (Lannér). Hyperbolic simplicial Coxeter groups oc-

cur only in dimensions ≤ 4. On H2 we have the hyperbolic tri-



angle groups. There are 9 tetrahedral groups on H3 and 5 more

on H4.

Remark. In the exercises of Bourbaki, a hyperbolic simplicial

Coxeter group is called a Coxeter group of “compact hyperbolic

type.” If its fundamental simplex is not required to be com-

pact but is still required to have finite volume (possibly with

ideal vertices), then it is said to be of“hyperbolic type.” Similar

terminology is still widely used. It is very misleading. It gives



the false impression that the fundamental chamber of a hyper-

bolic reflection group is always a simplex, completely ignoring the

polygonal reflection groups well as the 3-dimensional examples

discussed below.



Dimension 3. Let us review. A geometric reflection group on

Sn, En or Hn is determined by its fundamental chamber. This

chamber is a convex polytope with dihedral angles integral sub-

multiples of π and any such polytope gives a reflection group. In

the spherical case the fundamental polytope must be a simplex

and in the Euclidean case it must be a a product of simplices. In

the hyperbolic case all we know so far is that the polytope must

be simple. In the converse direction if the fundamental chamber



is a simplex (i.e., if the reflection group is simplicial), then we

have a complete classification in all three cases. So, there is

nothing more to said in the spherical and Euclidean cases. In

the hyperbolic case we know what happens in dimension 2: the

fundamental polygon can be an m-gon for any m ≥ 3 and almost

any assignment of angles can be realized by a hyperbolic polygon

(there are a few restrictions when m = 3 or 4).



What happens in dimension n ≥ 3?

Andreev’s Theorem. There is a beautiful theorem, due to An-

dreev, which gives a complete answer in dimension 3. Roughly,

it says that for a simple polytope P3 to be the fundamental poly-

tope of a hyperbolic reflection group, (a) there is no restriction

on its combinatorial type and (b) subject to the condition that

the isotropy group at each vertex be finite, almost any assign-



ment of dihedral angles to the edges of P3 can occur (provided

a few simple inequalities hold). Moreover, in contrast to the

picture in dimension 2, the 3-dimensional hyperbolic polytope is

uniquely determined, up to isometry, by its dihedral angles – the

moduli space is a point.

This situation reflects the nature of the relationship between ge-

ometry and topology in dimensions 2 and 3. A closed 2-manifold



admits a hyperbolic structure if and only if its Euler characteristic

is < 0 and there is a moduli space of such hyperbolic structures.

In dimension 3 there is Thurston’s Geometrization Conjecture

(now Perelman’s Theorem?). Roughly, it says that a closed 3-

manifold M3 admits a hyperbolic structure if and only if it satis-

fies certain simple topological conditions. Moreover, in contrast

to the situation in dimension 2, the hyperbolic structure on M3

is uniquely determined, up to isometry, by π1(M
3). (This is a



consequence of the Mostow Rigidity Theorem, which is not true

in dimension 2.)

Andreev’s inequalities on the dihedral angles of P3 precisely cor-

respond to the topological restrictions on M3 in Thurston’s Con-

jecture. Thus, Andreev’s Theorem is a special case of (an orb-

ifoldal version of) Thurston’s Conjecture.

Conjecture. (Thurston’s Geometrization Conjecture). A closed



3-manifold M3 admits a hyperbolic structure if and only if it

satisfies the following two conditions:

(a) Every embedded 2-sphere bounds a 3-ball in M3.

(b) There is no incompressible torus in M3 (i.e., M3 is atoroidal).

(An incompressible torus is an embedded T2 in M3 such that the

inclusion induces an injection π1(T2)→ π1(M
3).)



Theorem. (Andreev). Suppose that P3 is the combinatorial type

of a simple polytope, different from a tetrahedron. Let E be its

edge set and θ : E → (0, π/2] any function. Then (P3, θ) can

be realized as a convex polytope in H3 with dihedral angles as

prescribed by θ if and only if the following conditions hold:

(i) At each vertex, the angles at the three edges e1, e2, e3 which

meet there satisfy θ(e1) + θ(e2) + θ(e3) > π.



(ii) If three faces intersect pairwise but do not have a common

vertex, then the angles at the three edges of intersection

satisfy θ(e1) + θ(e2) + θ(e3) < π.

(iii) Four faces cannot intersect cyclically with all four angles

= π/2 unless two of the opposite faces also intersect.

(iv) If P3 is a triangular prism, then the angles along the base



and top cannot all be π/2.

Moreover, when the (P3, θ) is realizable, it is unique up to an

isometry of H3.

Corollary. Suppose P3 is the combinatorial type of a simple poly-

tope, different from a tetrahedron and {Fi}i∈I its set of codimen-

sion one faces. Let eij be the edge Fi ∩ Fj (when Fi ∩ Fj 6= ∅)

and let E := {eij}. Given an angle assignment θ : E → (0, π/2],



with θ(eij) = π/mij where mij is an integer ≥ 2, then (P3, θ)

is the fundamental polytope of a hyperbolic reflection group

W ⊂ Isom(H3) if and only if the θ(eij) satisfy Andreev’s con-

ditions. Moreover, W is unique up to conjugation in Isom(H3).



Lecture 4:

The cell complex Σ



We will define a cell complex Σ with the following:

Properties:

• W acts on Σ as a reflection group with finite isotropy sub-

groups and compact fundamental chamber.

• Vert(Σ) = W , the 1-skeleton, Σ1, is Cay(W,S) and Σ2 is the

Cayley 2-complex of the presentation.



• Σ is contractible.

• If (W,S) is spherical (i.e., if W is finite), then Σ is a convex

polytope and ∂Σ is the dual cell complex to the canonical

triangulation of Sn into chambers.

• If (W,S) can be realized as a geometric reflection group on

En or Hn, then Σ is the dual cell complex to the subdivision



into chambers.

• Σ has a canonical piecewise Euclidean (= “PE”) cell struc-

ture which is CAT (0) (= nonpositively curved).

Coxeter polytopes. For the next several slides, suppose W is

finite. Consider the canonical representation of W on RS (RS ∼=

Rn, where n = Card(S)). Choose a point x in the interior of a



fundamental chamber.

Definition. The Coxeter polytope (or the Coxeter cell) associ-

ated to (W,S) is the convex hull of Wx (a generic W -orbit).

Examples. • If W = C2, the cyclic group of order 2, then C is

the interval [−x, x].

• If W = Dm is the dihedral group of order 2m, then C is a

2m-gon.



• If (W,S) is reducible and decomposes as W = W1 × W2,

then CW decomposes as the product CW = CW1
× CW2

. In

particular, if W = (C2)
n, then C is a product of intervals (C

is a combinatorial n-cube).

• If W is the symmetric group on n + 1 letters (the group

associated to the Coxeter diagram An), then C is called the

n-dimensional permutahedron.





The nerve of a Coxeter system (W,S).

Definition. A subset T of S is spherical if WT is a finite subgroup

of W .

Denote by S(W,S) (or simply by S) the set of all spherical subsets

of S. It is a poset: the partial order is inclusion. Let S(k) denote

the set of spherical subsets of cardinality k.

The poset S>∅ of all nonempty spherical subsets is an abstract



simplicial complex. (This just means that if T ∈ S>∅ and if T ′

is a nonempty subset of T , then T ′ ∈ S>∅.) We will also denote

this simplicial complex by L(W,S) (or simply by L) and call it

the nerve of (W,S). Thus, VertL = S and a nonempty subset T

of S spans a simplex if and only if T is spherical. S(k) is the set

of (k − 1)-simplices in L

Example. If W is finite, then S(W,S) is the power set of S and

L(W,S) is the full simplex on S.



Example. If W is the infinite dihedral group D∞, then L(W,S)

is the space consisting of two points.

Example. Suppose that W is a geometric reflection group gen-

erated by the reflections across the codimension one faces of a

simple convex polytope Pn ⊂ Xn. Then S can be identified with

the set of codimension one faces of Pn. If Pn is a spherical sim-

plex, then L(W,S) is the full simplex on S. So, suppose Xn = En

or Hn. If F is a face of Pn and T (F ) ⊂ S stands for the set



of codimension one faces which contain F , then T (F ) is spheri-

cal. Conversely, if T is a spherical subset, then the finite group

WT must have a fixed point on Xn. (Since Xn is nonpositively

curved, the convex hull of any WT -orbit has a unique “center,”

which is fixed by WT .) Since Pn is a strict fundamental domain

for W , WT has a fixed point on Pn and this point lies in the

intersection F of the codimension one faces which belong to T ,

i.e., T = T (F ). So, we have just shown that there is a order



reversing isomorphism between L(W,S) and the poset of proper

faces of Pn. In other words, L(W,S) is the boundary complex of

the dual polytope of Pn. The fact that L(W,S) is a simplicial

complex corresponds to the fact that Pn is a simple polytope.

Example. Suppose the Coxeter system (W,S) decomposes as

(W,S) = (W1 ×W2, S1 ∪ S2)

where the elements of S1 commute with those of S2. A subset



T = T1∪T2, with Ti ⊂ Si, is spherical if and only if T1 and T2 are

both spherical. Hence,

S(W,S) ∼= S(W1, S1)× S(W2, S2) .

Similarly, the simplicial complex L(W,S) decomposes as the join

L(W,S) = L(W1, S1) ∗ L(W2, S2) .

The poset of spherical cosets. A spherical coset is a coset of

a spherical special subgroup in W . The set of all spherical cosets



is denoted WS, i.e.,

WS :=
⋃
T∈S

W/WT .

It is partially ordered by inclusion.

Exercise. wWT = w′WT ′ iff T = T ′ and w−1w′ ∈WT ′.

It follows that the union in is a disjoint union. It also follows that

there is well-defined projection map WS → S given by wWT → T

and a natural section of this projection S ↪→ WS defined by



T → WT . Moreover, W acts naturally on the poset WS and the

quotient poset is S.



The geometric realization of a poset. P a poset. A flag (or

“chain”) in P is a finite, nonempty, totally ordered subset.

Flag(P) := {chains in P.

Flag(P) is an abstract simplicial complex. The corresponding

cell complex (= topological space) is denoted |P| and called the

geometric realization of P.

Exercise.Suppose W is finite and that C is its associated Coxeter

polytope. Let F(C) denote its set of faces (partially ordered



by inclusion). Then the correspondence w → wx induces an

isomorphism of posets, WS ∼= F(C). (In other words, a subset

of W corresponds to the vertex set of a face of C if and only

if it is a coset of a special subgroup of W .) It follows that the

simplicial complex |WS| is the barycentric subdivision of C.

Remark. It follows that the combinatorial type of C doesn’t de-

pend on the choice of the generic point x.



Three definitions of Σ.

1) Σ := |WS|.

2) (WS)≤wWT
∼= WTS(WT , T ). By the Exercise, the subcomplex

|(WS)≤wWT
| of |WS| can be identified with a Coxeter polytope

of type WT . This defines a cell structure on Σ where each cell

is a Coxeter polytope.



3) Σ := U(W,K), where K := |S| and where the mirror structure

on K is defined by Ks := |S≥{s}|.

Remarks. • If (W,S) can be realized as a group generated by

reflections across the codim 1 faces of a polytope Pn in En or

Hn, then K is combinatorially isomorphic to Pn (i.e., {Ks} ∼=

{codim 1 faces}). Also, the simplicial complex L(W,S) is the

the dual of ∂P .



• In the Coxeter cell (or “cc”) structure on Σ, the link of each

vertex is L(W,S). (A consequence is that if L(W,S) is a

triangulation of Sn−1, then Σ is an n-manifold.)

• The cc structure defines a PE metric on Σ (and this metric

is CAT(0)).



Flag complexes

Definition. A simplicial complex L is a flag complex if for any

finite, nonempty T ⊆ VertL the following holds: T is the vertex

set of a simplex in L ⇐⇒ any two vertices of T are connected

by an edge.

Example. The boundary complex of an m-gon is a flag complex

iff m > 3.

Exercise. If P is any poset, then Flag(P) is a flag complex.



In particular, the barycentric subdivision of any (regular) cell

complex is a flag complex.

Corollary. The condition of being a flag complex does not re-

strict the topological type of L: it can be any polyhedron.

Definition. A Coxeter system (W,S) is right-angled if mst = 2

or ∞ for any two distinct elements s, t ∈ S.

Exercise. If (W,S) is right-angled, then L(W,S) is a flag complex.

Conversely suppose L is a flag complex and that S := VertL.



Define

mst :=


1, if s = t;

2, if {s, t} ∈ EdgeL;

∞, if {s, t} /∈ EdgeL.

The corresponding presentation gives a right-angled Coxeter sys-

tem (W,S) with L(W,S) = L.

My favorite construction. Suppose L is a flag complex and

S := VertL. Put

�S := [−1,1]S.



S(L) := {T ⊆ S | T is the vertex set of a simplex}.

Let XL ⊆ �S be the union of all faces which are parallel to �T

for some T ∈ S(L).

Examples. If L = S0, then XL = ∂�2 = ∂(4-gon) ∼= S1. If

L = ∂(4-gon), then XL = T2 ⊂ ∂�4.

The group (Z/2)S acts as a reflection group on �S. [0,1]S is

a fundamental chamber. The subcomplex XL is (Z/2)S-stable



and K := XL ∩ [0,1]S is a fundamental chamber for XL. Then

VertXL = Vert�S = {±1}S and the link of each vertex of XL

is ∼= L. Let p : X̃L → XL be the universal cover. Let W be the

group of all lifts of elements of (Z/2)S to X̃L. Then W acts as a

reflection group on X̃L with fundamental chamber a component

of p−1(K) (∼= K). Identify an element of S with the lift of the

corresponding reflection in (Z/2)S fixing the appropriate face of



K. One checks that this K is the same as before and that

X̃L
∼= U(W,K) = Σ.



Lecture 5:

Algebraic toplogy of Σ and U



Let X be a space and {Xs}s∈S a family of closed subspaces.

Recall that for any T ⊂ S,

XT :=
⋂
s∈T

Xs and XT :=
⋃
s∈T

Xs.

(W,S) a Coxeter system and

U = U(W,X) := (W ×X)/ ∼ .

Also, assume XT = ∅ whenever T /∈ S. Our goal:



Theorem. The following are equivalent:

• U is contractible.

• X is contractible and XT is acyclic for all T ∈ S>∅.

Corollary. Σ (= U(W,K)) is contractible.

Proof. KT := |S≥{T}| is a cone.



The element of longest length

Exercise. The following conditions on an element w0 ∈ W are

equivalent.

(a) For each u ∈W , l(w0) = l(u) + l(u−1w0).

(b) For each r ∈ R, l(w0) > l(rw0).

Moreover, if w0 satisfies either condition, then



(i) w0 is unique,

(ii) w0 exists if and only if W is finite,

(iii) l(w0) = Card(R),

(iv) w0 is an involution and

(v) w0Sw0 = S.



Exercise. Suppose there is an element w0 ∈ W so that l(sw0) <

l(w0) for all s ∈ S. Then W is finite and w0 is the element

of longest length. (Hint: use the Exchange Condition to show

that for w0 begins with any given reduced expression s1 · · · sn and

hence, that w0 satisfies condition (a) in the previous exercise).



The set of letters with which an element can end.

Definition. Given w ∈W , let In(w) := {s ∈ S | l(ws) < l(w)}

(= {letters of S with which a reduced expression for w can end}).

Lemma. For any w ∈W , In(w) ∈ S.

Proof. w can be written uniquely in the form w = aw0, where a is

the shortest element in wWIn(w). It follows that w0 is the element

of longest length in WIn(w). In particular, WIn(w) is finite.



An increasing union of chambers. Order the elements of W :

1 = w1, . . . , wn, . . . in such a fashion that l(wn) ≤ l(wn+1). Set

Xn := wnX and Un :=
n⋃
i=1

Xi.

Lemma.Xn ∩ Un−1 = XIn(wn).

Theorem.

H∗(U) ∼=
⊕
w∈W

H∗(X,XIn(w)) ∼=
⊕
T∈S

H∗(X,XT )⊗ Z(WT )

where WT := {w ∈W | In(w) = T} and Z(WT ) is the free abelian



group on WT .

Since H∗(U) = lim−→H∗(Un), the theorem follows from the next

lemma.

Lemma.

H∗(Un) ∼=
n⊕
i=1

H∗(X,XIn(wi)).

Proof. Use the exact sequence in homology of the pair (Un, Un−1),



n ≥ 1. By excision,

H∗(Un, Un−1)
∼= H∗(Xn, X

In(w)
n ),

where w = wn and we have excised the open subset Un−Xn. The

right hand side is isomorphic to H∗(X,XT ), where T = In(w). So,

the sequence of the pair (Un, Un−1) can be rewritten as

−→ H∗(Un−1) −→ H∗(Un)
f−→ H∗(X,XT ) −→

where the map f is the composition of the excision isomorphism



and the map induced by translation by w−1. We want to split f .

Define an element hT ∈ ZWT by

hT :=
∑

u∈WT

ε(u)u

where ε(u) := (−1)l(u). Then hT induces a chain map C∗(X,XT )→

C∗(WTX). Similarly, whT ∈ ZW induces a map from C∗(X,XT ) to

C∗(wWTX). Since w is the longest element in wWT , wWTX ⊆ Un.

Hence, whT induces H∗(X,XT )→ H∗(Un) and this map obviously



splits f . Thus,

H∗(Un) ∼= H∗(Un−1)⊕H∗(X,XIn(wn)).

For n = 1, we have w1 = 1, In(w1) = ∅ and XIn(w1) = ∅. Hence,

the above formula becomes

H∗(U1) = H∗(X, ∅) = H∗(X,XIn(w1)).

Combining these equations we get the formula of the lemma.



Corollary. TFAE

• U is acyclic.

• ∀T ∈ S, H∗(X,XT ) = 0.

• X is acyclic and ∀T ∈ S>∅, XT is acyclic.

• ∀T ∈ S, XT is acyclic.



Definition. Given an integer m ≥ −1, a space Y is called

m-acyclic if Hi(Y ) = 0 for −1 ≤ i ≤ m. (N.B. The reduced

homology of ∅ is defined to be Z in degree −1 and 0 in degrees

≥ 0.)



Corollary. TFAE

• U is m-acyclic.

• ∀T ∈ S, Hi(X,X
T ) = 0, ∀i ≤ m.

• ∀T ∈ S, XT is (m−Card(T ))-acyclic.



Corollary. U is 1-acyclic ⇐⇒

• X is 1-acyclic.

• ∀s ∈ S, Xs is nonempty and path connected.

• ∀{s, t} ∈ S(2), Xs ∩Xt 6= ∅.



Simple connectivity

Theorem. U is simply connected ⇐⇒

• X is simply connected.

• For each s ∈ S, Xs is nonempty and path connected.

• ∀{s, t} ∈ S(2), Xs ∩Xt 6= ∅.



Proof. ( =⇒ ) Suppose U is simply connected. Since p : U → X

is a retraction, the first condition holds. Since U is 1-acyclic so

do the other two.

(⇐=) Let π : Ũ → U be the universal covering . We will show

that if the 3 conditions hold, then π is a homeomorphism and

hence, that U is simply connected. As usual, identify X with a

subspace of U. Since X is simply connected, π maps each path



component of π−1(X) homeomorphically onto X. Choose such

a component and call it X̃. Define c : X → U to be the inverse

of the homeomorphism π|
X̃
. We want to lift the W -action to

Ũ. First we lift the generators. Each s ∈ S has a unique lift

s̃ : Ũ → Ũ fixing a given basepoint in c(X̃s). Since s̃2 covers

idU and fixes a basepoint, it must be the identity on Ũ, i.e.,

(s̃)2 = 1. Next, suppose {s, t} ∈ S(2) (i.e., m(s, t) 6=∞). By the

third condition, X{s,t} (= Xs∩Xt) is nonempty, so we can choose



the basepoint in X{s,t}. Then s̃t̃ is the unique lift of st fixing the

basepoint. If m = m(s, t), then (s̃t̃)m is a lift of the identity which

fixes the basepoint; hence, (s̃t̃)m must be the identity map of Ũ.

This shows that the W -action on U lifts to a W -action on Ũ (so

that the projection map π is W -equivariant). (By the universal

property of U) the map c : X → Ũ extends to a W -equivariant

map c̃ : U → Ũ. Since c is a section of π|
X̃
, it is easy to see that c̃

is a section of q. Therefore, c̃ is a homeomorphism, π : Ũ → U is



the trivial covering and consequently, U is simply connected.

Corollary. U is contractible ⇐⇒

• X is contractible.

• ∀T ∈ S>∅, XT is acyclic.

Corollary. Σ is contractible.



Cohomology with compact supports.

Wn := {w1, . . . , wn} ⊂W . Set

Ǔn := (W −Wn)X =
⋃

w/∈Wn

wX.

So, Ǔn = U − int(Un).

Theorem.

H∗c (U) ∼=
⊕
w∈W

H∗(X,XS−In(w)) ∼=
⊕
T∈S

H∗(X,XS−T )⊗ Z(WT ).



Proof. We have the inverse sequence Ǔ1 ⊃ · · · ⊃ Ǔn ⊃ · · · and

H∗c (U) = lim−→H∗(U , Ǔn)

Consider the exact sequence in cohomology of the triple (U , Ǔn−1, Ǔn):

→ H∗(U , Ǔn−1)→ H∗(U , Ǔn)→ H∗(Ǔn−1, Ǔn)→ .

By excision:

H∗(Ǔn−1, Ǔn)
∼= H∗(wX,wXS−In(w)).

where w := wn. We will show that the sequence of the triple



splits so that

H∗(U , Ǔn) ∼= H∗(U , Ǔn−1)⊕H∗(X,XS−In(w))

and from this

H∗(U , ǓnX) ∼=
i=n⊕
i=1

H∗(X,XS−In(wi)) ,

which implies the theorem.

It remains to show that the map H∗(U , Ǔn)→ H∗(wX,wXS−In(w))



splits. For each T ⊂ S,

AT := {w | w is shortest element in WTw}

Then ATX
∼= U/WT . The splitting is defined via the projec-

tion map U → ATX, T = In(w), together with the inclusion

(wATX,w(AT − 1)X) → (U , Ǔn). Combining these maps we get

the splitting

H∗(X,XT ) ∼= H∗(wATX,w(AT − 1)X)→ H∗(U , Ǔn).



Corollary.

H∗c (Σ) ∼=
⊕
T∈S

H∗(K,KS−T )⊗ Z(WT ).

Corollary.

H∗(W ;ZW ) ∼=
⊕
T∈S

H∗(K,KS−T )⊗ Z(WT ).

Lecture 6:

Examples for cohomology of groups and



for aspherical manifolds



Classifying spaces. For any group π there is a connected CW

complex Bπ with the property that π1(Bπ) = π and πi(Bπ) = 0

for i > 1. It follows that its universal cover Eπ is contractible.

(Bπ is said to be “aspherical.”) The CW complex Bπ is unique

up to homotopy equivalence.

Group cohomology. For any π-module M ,

H∗(π;M) := H∗(Bπ;M)



and similarly for homology.

Cohomological dimension and geometric dimension

The geometric dimension of a group π, denoted gdπ, is the

smallest integer n so that there is an n-dimensional CW model for

Bπ. Its cohomological dimension, denoted cdπ, is the projective

dimension of Z over Zπ. In other words, it is the smallest integer



n such that Z admits a projective resolution:

0−→ Pn−→· · ·−→ P0−→ 0

(or ∞ if there is no such integer). This is equivalent to the

following:

cdπ = sup{n | Hn(π;M) 6= 0 for some π-module M}.

If Bπ has a model which is a finite CW complex, then

cdπ = sup{n | Hn(π;Zπ) 6= 0}.



A group π virtually has some property if it has a subgroup π′ of

finite index with that property. For example, π is virtually torsion-

free if it has a torsion-free subgroup of finite index. Given a vir-

tually torsion-free group π, its virtual cohomological dimension,

denoted vcdπ is the cohomological dimension of any torsion-

free subgroup of finite index. It is not hard to see that vcdπ is

well-defined.

Remark. Note that if the group π has torsion, then cdπ = ∞.



The reason is that the cyclic group Cm of order m, for m > 1,

has nontrivial cohomology (with coefficients in Z) in arbitrarily

high degrees. So, if Cm ⊆ π, then cdπ =∞.

Lemma. (Selberg’s Lemma) Any finitely generated subgroup of

GL(n,C) is virtually torsion-free.

Corollary.Any finitely generated Coxeter group is virtually torsion-

free.



Let (W,S) be a Coxeter system. Recall S = {spherical subsets of S}

and K := |S|. Last time:

H∗(W ;ZW ) ∼= H∗c (Σ) ∼=
⊕
T∈S

H∗(K,KS−T )⊗ Z(WT ).

The nerve L of (W,S) is the simplicial complex corresponding to

S>∅. For T ∈ S, let σT be the simplex of L with Vert(σT ) = T .



Observations. • Since K is contractible,

H∗(K,KS−T ) ∼= H
∗−1(KS−T ).

• KS (:= ∂K) is the barycentric subdivision of L and ∀T ∈ S,

KS−T ∼ L− σT (where ∼ means homotopy equivalent).

Theorem. vcdW = max{n | Hn−1(L−σT ) 6= 0, for some T ∈ S}.

Theorem. (Stallings and Swan). If cdπ = 1, then π is a free

group.



Corollary.An infinite Coxeter group W is virtually free iff ∀T ∈ S,

H∗(L− σT ) is concentrated in dimension 0.

The chain complex of an n-dimensional model for Eπ is a free

resolution of Z. Hence, cdπ ≤ gdπ. When cdπ 6= 2, this inequal-

ity is an equality.

Theorem. (Eilenberg–Ganea, 1957). If cdπ > 2, then

cdπ = gdπ. If cdπ = 2, then gdπ ≤ 3.



A nontrivial free group F obviously satisfies cdF = gdF = 1

(since we can take BF to be a wedge of circles). So, the case

cdπ = 1 is taken care of by the Stallings–Swan Theorem. The

question of whether or not there exist groups of cohomolog-

ical dimension 2 and geometric dimension 3 is known as the

Eilenberg–Ganea Problem.



Constructing examples with Coxeter groups.

Given simplicial complex L, In Lecture 4 we saw how to use

a right-angled Coxeter group to construct an aspherical cubi-

cal complex so that the link of each vertex is identified with

L. Properties of L can then be translated back into proper-

ties of the Coxeter group W and its torsion-free subgroup Γ (=

π1(cubical complex)). Recall that given a flag complex L, we set

S := VertL. and S(L) := {T ⊆ S | T is the vertex set of a simplex}.



If �S := [−1,1]S, then XL ⊆ �S the union of all faces which are

parallel to �T for some T ∈ S(L).

Possible counterexamples to Eilenberg–Ganea. Suppose L

is a flag cx s.t.

dimL = 2, L is acyclic and π1(L) 6= 1.

Claim. Such L exist.

Let Γ := π1(XL) ⊂ WL. Then cdΓ = 2 (because the num-



ber max{n | Hn−1(L − σT ) 6= 0} is 1) and gdΓ ≤ 3 (because

dim X̃L = 3). In fact, Γ acts freely on an acyclic 2-complex,

namely, U(W,∂K) ⊂ X̃L; however this 2-complex is not simply

connected. So, it seems likely that gd = 3.

Proof of Claim. Let G := the binary dodecahedral gp. Poincaré’s

homology sphere is the 3-manifold M3 := S3/G. M3 is formed

by identifying opposite faces of a dodecahedron. Let L be the 2-



skeleton of M3, i.e., the image of ∂(dodecahedron). By passing

to the barycentric subdivision we can assume L is a flag cx.

In fact, Brady, Leary and Nucinkis showed that for L as above,

the groups WL are counterexamples to the natural generalization

of the Eilenberg–Ganea Problem for groups with torsion.

Example. (Bestvina, as well as, Dicks–Leary and Dranishnikov).

Suppose L is a flag triangulation of RP2 and Γ ⊂ WL is the



torsion-free subgroup. The formula

H∗(W ;ZW ) ∼= H∗c (Σ) ∼=
⊕
T∈S

H∗(K,KS−T )⊗ Z(WT ).

shows that H3
c (Σ;Z) = Z/2 while H∗c (Σ;Q) = 0 for ∗ > 2. Hence,

cdZ Γ = 3 while cdQ Γ = 2.

Example. (Nonadditivity of cohomological dimnsion). Let L1,

W1, Σ1 and Γ1 be the L, W , Σ and Γ1 of the previous example.

Let L2 be a 2-dimensional Moore space for Z/3 (i.e., H∗ is con-



centrated in dim2 and is = Z/3 there). Γ2 ⊂W2 the resulting gps

and Σ2 the cx for W2. Then H3
c (Σ2;Z) = Z/3; so, cdZ Γ2 = 3.

By the Künneth Formula, H6
c (Σ1×Σ2;Z) = Z/2⊗ Z/3 = 0. So,

cdZ(Γ1 × Γ2) = 5 6= cdZ(Γ1) + cdZ(Γ2).

Topological background: homology spheres, homology

manifolds, etc. If you aren’t a topologist, you can’t think of a

closed n-manifold with the same homology as Sn but which is



not homeomorphic to Sn. Similarly, you don’t know an example

of a compact manifold with boundary which is contractible and

6= Dn or an open contractible manifold 6= Rn. But many such

examples exist!

Definition. A closed manifold Mn is a homology n-sphere if

H∗(Mn) ∼= H∗(Sn).

If Mn is a homology n-sphere (n > 1), then H1(M
n) = 0, i.e.,



the abelianization of π := π1(M
n) is = 0. Also, by a theorem of

Hopf, H2(π) = 0. Conversely, Kervaire proved that if π is any

finitely presented group satisfying the above two conditions and

n ≥ 5, then ∃ a homology n-sphere with π1 = π.

Theorem. (Generalized Poincaré Conjecture, Smale, Freedman

and Perelman). Given a homology n-sphere Mn (n > 1). Then

Mn ∼= Sn ⇐⇒ π1(M
n) = 1.



If Cn is a compact, contractible n-manifold, then it follows from

the exact sequence of (C, ∂C) and Poincaré duality that ∂C is a

homology (n− 1)-sphere.

Corollary. Suppose Cn is a compact, contractible n-manifold

(n > 2). Then

Cn ∼= Dn ⇐⇒ π1(∂C) = 1.

Proposition. Suppose Mn is a homology n-sphere. Then Mn is



(topologically) the boundary of a compact, contractible (n+1)-

manifold.

Proof. Surgery theory for n > 3. Freedman for n = 3.

Corollary. For each n ≥ 4, ∃ compact, contractible manifold Cn

s.t. Cn 6= Dn.

Corollary. For each n ≥ 4, ∃ open contractible manifold Mn s.t.

Mn 6= Rn.



Simple connectivity at ∞. Suppose Y is a “reasonable” space

(e.g. locally compact, locally path connected, second countable,

Hausdorff) and suppose it is not compact. A nbhd of ∞ is the

complement of a compact set. Y is 1-ended if every nbhd of ∞

contains a connected nbhd of ∞. It is simply connected at ∞ if,

in addition, every nbhd of ∞ contains a smaller nbhd of ∞ s.t.

any loop in the smaller nbhd is null-homotopic in the larger. For

example, Rn is 1-ended for n ≥ 2 and is simply connected at ∞



for n ≥ 3.

Suppose C1 ⊂ C2 ⊂ · · · is an exhaustive sequence of compact

sets in Y . This gives an inverse sequence of fundamental groups

π1(Y − C1) ← π1(Y − C2) ← · · · . An inverse sequence of groups

G1 ← G2 ← · · · is semistable if ∃f : N → N s.t. the image

of Gk in Gn is the same ∀k ≥ f(n). Y is semistable if ∃ such a

semistable inverse sequence of fundamental groups. (If this holds



for one exhaustive sequence then it holds for all.) So, when Y is

semistable define π∞1 (Y ) := lim←−π1(Y − Ck).

Fact. Suppose Y is semistable. Then

it is simply connected at ∞ ⇐⇒ π∞1 (Y ) = 1.

Theorem. (Stallings, Freedman, Perelman). Let Mn be an open

contractible n-mfld (n ≥ 3). Then Mn is homeomorphic to Rn

iff it is simply connected at ∞.



Aspherical manifolds not covered by Rn. Suppose L is a

homology (n − 1)-sphere, n ≥ 4, triangulated as a flag cx and

that XL ⊂ �S and Σ = X̃L are as before.

Theorem. Σ is semistable. π∞1 (Σ) = 1 ⇐⇒ π1(L) = 1.

If π1(L) 6= 1, then Σ is not quite a manifold (it is a homology

manifold as defined below). However, it is easy to modify the

situation to make it a mfld.



Proof of Theorem. As in Lecture 5, order the elements of W :

1 = w1, . . . , wm, . . . so that l(wm) ≤ l(wm+1). Set

Km := wmK and Um :=
m⋃
i=1

Ki.

Since Km ∩ ∂Um−1 is an (n− 1)-disk in ∂Km (= L),

Σ− intUm ∼ ∂Um and ∂Um = ∂K1] · · · ]∂Km.

Hence, for π = π1(L) = π1(∂Ki),

π1(Σ− intUm) = π1(∂Um) = π ∗ · · · ∗ π︸ ︷︷ ︸
m terms

.



The map π1(Σ − intUm) → π1(Σ − intUm−1) is the natural pro-

jection on the first m − 1 factors. Since this projection is onto,

Σ is semistable and π∞1 = lim←−(π ∗ · · · ∗ π) is the “projective free

product” of an infinite number of copies of π. In particular,

π∞1 6= 1.

Modifying Σ to be a mfld. We have Σ = U(W,K), where

K = Cone(∂K) and ∂K = L. The homology sphere ∂K bounds



a contractible n-mfld C. Idea: “hollow out” each copy of K

and replace it with a copy of C. Since ∂C := ∂K, we can define

Cs := Ks. Then U(W,C) is a mfld (since there are no longer cone

points), it is contractible and π∞1 (U(W,C)) = π∞1 (Σ) (since they

are proper homotopy equivalent). Moreover, Mn := U(W,C)/Γ

is an aspherical mfld with universal cover U(W,C).

Theorem. For each n ≥ 4, ∃ closed aspherical n-mflds with uni-

versal cover 6= Rn.



Polyhedral homology manifolds.

Definition. A space X is a homology n-manifold (also called a

“generalized manifold”) if it has the same local homology groups

as Rn, i.e., if ∀x ∈ X,

Hi(X,X − x) =

Z, if i = n;

0, otherwise.

X is a generalized homology n-sphere (for short, a “GHSn ”) if

it is a homology n-manifold with the same homology as Sn.



Example. If Mn−1 is a homology sphere, then its suspension

S0 ∗ Mn−1 is a GHSn. If π1(M
n) 6= 1 (and n ≥ 4), then the

suspension is not a mfld.

Lemma. Given an n-dimensional cell complex Λ, TFAE:

• Λ is a homology n-manifold.

• For each cell σ in Λ, Lk(σ,Λ) is a GHSn−dimσ−1.



• For each vertex v, Lk(v,Λ) is a GHSn−1.

Theorem. (The Double Suspension Theorem, Cannon, Edwards).

Given a (PL) homology sphere Mn, its double suspension S1∗Mn

is a topological manifold (hence, ∼= Sn+2).

Theorem. (Edwards, Freedman). A polyhedral homology n-

mfld, n ≥ 3, is a topological mfld iff the link of each vertex

is simply connected.



By choosing L to be a suitable GHSn−1, we get:

Corollary. (D. & Januszkiewicz). For each n ≥ 5, ∃ examples

where Σ is a topological mfld 6= Rn. (In particular, ∃ CAT(0)-

mflds 6= Rn.)



Poincaré duality groups. A group π is type F if Bπ has a

model which is a finite complex. If π satisfies the cohomological

version of this it is type FP.

Definition.A group π is an n-dimensional Poincaré duality group

(a “PDn-group” for short) if it is type FP and

Hi(π;Zπ) ∼=

0, if i 6= n,

Z, if i = n.

A virtually torsion-free group G is said to be a virtual Poincaré



duality group (for short, a “V PDn-group”) if it contains a finite

index subgroup which is a PDn-group.

Definition. (W,S) is type HMn if L is a GHSn−1. (This is equiv-

alent to the condition that Σ be a homology n-manifold.)

Of course, if (W,S) is type HMn, then it is a VPDn-group. We

will see below that the converse is essentially true. First, recall



our formula:

H∗(Γ;ZΓ) ∼= H∗c (Σ) ∼=
⊕
T∈S

H∗(K,KS−T )⊗ Z(WT ),

where Γ ⊂ W is a torsion-free subgroup of finite index. If the

homology on the RHS is concentrated in dimension n and is ∼= Z

in that dimension, then two things must happen:



• WT is a singleton, for some T ∈ S and

• Hn(K,KS−T ) ∼= Z and is 0 elsewhere and ∀T ′ ∈ S, T ′ 6= T ,

H∗(K,KS−T ′) = 0.

Exercise.WT = {w0} ⇐⇒

(a) w0 is the longest element in WT and (b) W = WT ×WS−T .



Theorem. Suppose W does not split off a nontrivial finite factor.

Then TFAE

• W is a VPDn-group.

• L has the same cohomology as Sn−1 and ∀T ∈ S, T 6= ∅,

L− σT is acyclic.

• L is a GHSn−1 (i.e., (W,S) is type HMn).



Corollary. The condition that (W,S) is type HMn does not de-

pend on the choice of fundamental generating set S

From this we eventually get the following:

Corollary. (Charney & D.) Coxeter groups of type HMn are rigid,

i.e., if S and S′ are two subsets of W such that (W,S) and (W,S′)

are both Coxeter systems, then S′ is conjugate to S.



Lecture 7:

The reflection group trick,

the Euler Characteristic Conjecture



The reflection group trick. The main consequence of this

trick is the following:

Theorem. Given a group π of type F , ∃ a closed aspherical mfld

M such that π1(M) retracts onto π.

The construction in a nutshell. Assume, as we may, that Bπ is

a finite polyhedron. “Thicken” Bπ to X, a compact PL manifold

with boundary. (For example, if n > 2(dimBπ), piecewise linearly



embed Bπ in some triangulation of Rn and then take X to be a

regular neighborhood of Bπ in Rn.) X is homotopy equivalent

to Bπ (it collapses onto it). Let (W,S) be a Coxeter system

whose nerve L is a triangulation of ∂X. (We could take L to be

a flag triangulation of ∂X as a flag complex and (W,S) to be the

associated right-angled Coxeter system.) For each s ∈ S, let Xs

denote the geometric realization of S≥{s} (regarded as a subset

of ∂X). In other words, Xs is the closed star of the vertex s of



L in the barycentric subdivision of L. As usual, U := U(W,X).

Since L is a PL triangulation of ∂X, it is easy to see that U is

a manifold with a proper, locally linear W -action. Let Γ ⊂W be

any torsion-free subgroup of finite index. Define M to be the

quotient space

M := U/Γ.

Since Γ acts properly and freely on U, the quotient map U →M



is a covering projection; hence, M is a mfld.

Lemma. U is aspherical.

Proof. Order W as before and set

Xm := wmX and Um :=
m⋃
k=1

Xk.

Since Km ∩ ∂Um−1 is an (n − 1)-disk in ∂Xm (= L), Um ∼
∨
Xk,

which is aspherical. Since πi(U) = lim−→πi(Um), U is aspherical (&

π1(U) = free product of an infinite number of copies of π).



Theorem. Given a group π of type F , the mfld M satisfies:

• M is a closed apherical manifold and

• M retracts onto Bπ.

Proof. M is aspherical since it is covered by U. M is compact

since X = U/W is compact and since Γ is finite index in W .



Since X can be identified with a subspace of M , the orbit map

U → X induces the retraction M → X ∼ Bπ.

Fundamental groups of aspherical manifolds. For a long

time almost all examples of closed aspherical mflds came from

Lie groups, so it was thought that the class of their fundamental

groups was fairly restrictive. On the other hand, it was known

that there were many interesting aspherical complexes not re-



lated to Lie groups.

Given a pair of integers (p, q), define the Baumslag–Solitar group

BS(p, q) to be the 1-relator group defined by the presentation:

BS(p, q) := 〈a, b | abpa−1 = bq〉.

Theorem. (Lyndon). If Γ is a 1-relator gp and the relation is

not a proper power, then the presentation 2-cx for Γ is a BΓ.

Corollary. The presentation complex for BS(p, q) is aspherical



(i.e., BS(p, q) is type F and its gd = 2).

Every 2-dimensional polyhedron can be embedded in R5. Al-

though it is not true that every 2-complex can be embedded in

R4, every finite 2-dimensional CW complex can be thickened to

a compact 4-manifold. Thus, for each Baumslag–Solitar group

π = BS(p, q), Bπ can be thickened to a compact aspherical n-

mfld with boundary for any n ≥ 4.



Recall that π is residually finite if ∀ two elements g1, g2 ∈ π, ∃ a

homomorphism ϕ to some finite group F s. t. ϕ(g1) 6= ϕ(g2).

Example. (Not residually finite, Mess). The Baumslag–Solitar

group π = BS(2,3) is not residually finite. Since π is not resid-

ually finite, neither is any group which retracts onto it. Hence,

for each n ≥ 4, there are closed aspherical n-mflds whose funda-

mental groups are not residually finite.

Example. (Infinitely divisible abelian subgroups, Mess). This



time π := BS(1,2). The centralizer of b in this group is isomor-

phic to a copy of the dyadic rationals. Hence, for each n ≥ 4,

there are closed aspherical n-manifold whose fundamental groups

contain an infinitely divisible abelian group.

Example. (Unsolvable word probem, Weinberger). There are

examples of finitely presented groups π with unsolvable word

problem such that Bπ is a finite 2-complex. Any group which

retracts onto such a group also has unsolvable word problem.



So, for each n ≥ 4, there are closed aspherical n-mflds whose

fundamental group have unsolvable word problem.

Nonsmoothable aspherical manifolds.

Theorem. (D. & Hausmann). In each dimension ≥ 13, there are

closed aspherical mflds not homotopy equivalent to a smooth

mflds.

Sketch of proof. If M := U/Γ is a smooth mfld, then its tangent



bundle, TM , restricted to X is TX. Find a thickening X of

T k such that the “Spivak normal fiber space” of X does not

lift to linear vector bundle. The existence of such follows from

calculations of homotopy groups of various classifying spaces

BO, BPL and BG.

PDn-groups which are not finitely presented. A famous ques-

tion in topology:



Question. Is every PDn-group = π1(closed aspherical mfld)?

We shall use the reflection group trick to show that the answer

is no, but for a cheap reason: PDn-groups need not be finitely

presented while fundamental groups of closed mflds are. So, we

should change the question by modifying “PDn-group” by the

phrase “finitely presented.” Here are the details:

Fact. (Kirby-Siebenmann). Any compact topological mfld is ho-



motopy equivalent to a finite cx (and hence, has finitely pre-

sented π1).

Recall that for π to be a PDn-group means that it is type FP

and

Hi(π;Zπ) ∼=

0, if i 6= n,

Z, if i = n.

The FP condition is weaker than being type F – it does not

imply that π is finitely presented. One way to prove that π is FP



is to show that it is type FH, i.e., that acts freely on an acyclic

complex with finite quotient (if we change acyclic to contractible

we have the definition of type F .) Wall showed

type FH + finitely presented ⇐⇒ type F . Bestvina–Brady

showed that nonfinitely presented groups of type FH exist.

Theorem. (Bestvina–Brady). ∃ finite 2-complex Y and a regular

covering space Ỹ → Y with gp of deck transformations π s.t.



• Ỹ is acyclic.

• π is not finitely presented.

Corollary. For each n ≥ 4, ∃ PDn-groups which are not finitely

presented.

Proof. A slight variation of the reflection group trick. As before,

thicken Y to X. Set U = U(W,X) and M = U/Γ. The covering



space Ỹ → Y corresponds to a covering space p : X̃ → X. There

is an induced (infinitely generated) Coxeter system (W̃ , S̃) with

S̃ := p−1(S) and an epimorphism ϕ : W̃ →W . Put Ũ := U(W̃ , X̃)

and Γ̃ := ϕ−1(Γ). The gp of deck transformations of Ũ → M is

Γ̃ o π. Since this gp retracts onto π, it is not finitely presented.

Using the theorem from Lecture 5, it is not difficult to show that

Ũ is an acyclic n-mfld. (W̃ acts on it with fundamental chamber

X̃.) Hence, Γ̃ o π is a PDn-group.



The Euler Characteristic Conjecture.

Conjecture. (Chern, Hopf, Thurston). Suppose M2n is a closed

aspherical 2n-dimensional mfld. Then (−1)nχ(M2n) ≥ 0. (Here

χ denotes the Euler characteristic.)

Remark. In odd dimensions, by Poincaré duality, χ(M2n+1) = 0.

Remark. Hopf and Chern conjectured this for Riemannian mflds

of nonpositive sectional curvature. It makes sense more generally

for mflds which are nonpositively curved in the sense of having



metrics which are locally CAT(0).

Suppose that Y is a cell complex and that G is a discrete group

acting properly, cellularly and cocompactly on Y . The quotient

space Y/G is an “orbihedron” (an “orbifold” when Y is a mfld.)

If H a normal subgroup of G acting freely on Y and Z = Y/H,

then Z/(G/H) and Y/G are the same orbihedron; furthermore, Z

is an “orbihedral covering space” of Y/G.



Definition. The orbihedral Euler characteristic of Y/G is the

rational number defined by the formula:

χorb(Y/G) =
∑
σ

(−1)dimσ

|Gσ|
,

where σ ranges over a set of representatives for the G-orbits of

cells.

Suppose H is a subgroup of finite index in G. The main property

of the orbihedral Euler characteristic is that it is multiplicative



with respect to coverings, i.e.,

χorb(Y/H) = [G : H] χorb(Y/G).

We can expand the Euler Characteristic Conjecture as follows:

Conjecture. Suppose X2n is a closed, aspherical orbifold of di-

mension 2n. Then (−1)nχorb(X2n) ≥ 0.

Example. Suppose G = WL, the right-angled Coxeter group with

nerve L, and that Σ is the cubical complex of Lecture 4. There is



one WL-orbit of cubes for each element T ∈ S; the dimension of

a corresponding cube is Card(T ); its stabilizer ∼= (Z/2)T . Hence,

χorb(Σ/WL) =
∑
T∈S

(−1)Card(T )

2Card(T )

= 1 +
∑
σ∈L

(
−

1

2

)dimσ+1

= 1 +
dimL∑
i=0

(
−

1

2

)i+1
fi.

where fi is the number of i-simplices in L. If L is a flag triangu-

lation S2n−1, Σ a 2n-manifold. This leads to the following:



Conjecture. (The Flag Complex Conjecture, Charney–D). If L

is a flag triangulation of S2n−1, then (−1)nκ(L) ≥ 0, where

κ(L) := 1 +
dimL∑
i=0

(
−

1

2

)i+1
fi.

Recall:

Definition. A simplicial complex L is a flag complex if for any

finite, nonempty T ⊆ VertL the following holds: T is the vertex

set of a simplex in L ⇐⇒ any two vertices of T are connected



by an edge.

The Chern-Gauss-Bonnet Theorem.

Theorem. (Chern, Gauss, Bonnet). Suppose M2n is a closed,

2n-dimensional Riemannian manifold. Then

χ(M2n) =
∫
κ

where κ is a certain 2n-form on M2n called the “Euler form”. (κ

is a constant multiple of the Pfaffian of the curvature).



The theorem was proved in dimension two by Gauss and Bonnet;

in this case κ is just the Gaussian curvature (times 1/2π). Ver-

sions of the higher dimensional result were proved by Poincaré,

Hopf and Allendoerfer–Weil. The “correct” differential geomet-

ric proof in higher dimensions is due to Chern.

Remark. The naive idea for proving the Euler Characteristic

Conjecture in the nonpositively curved case is to show that the

condition on the sectional curvature forces the Chern-Gauss-



Bonnet integrand κ to have the correct sign, i.e., (−1)nκ ≥ 0.

In dimension 2, κ is just the Gaussian curvature (up to a pos-

itive constant), so this naive idea works. As shown by Chern

(who attributes the result to Milnor) the naive idea also works in

dimension 4. Later Geroch showed that in dimensions ≥ 6 the

naive idea does not work.



Theorem. (The Combinatorial Gauss-Bonnet Theorem). If X is

a finite PE cell complex, then

χ(X) =
∑

v∈V ert(X)

κv.

where κv = κ(Lk(v,X)) is a function of the piecewise spherical

cell complex Lk(v,X).

When X is a cubical cell cx the local contribution of a link L is



given by the familiar formula:

κ(L) := 1 +
dimL∑
i=0

(
−

1

2

)i+1
fi.

Lemma. (Gromov’s Lemma). A cubical cell cx X is nonpositively

curved ⇐⇒ ∀v ∈ Vert(X), Lk(v,X) is a flag cx.

Corollary. Euler Characteristic Conj for nonposiively curved cu-

bical complexes ⇐⇒ Flag Cx Conj.

(So, the Flag Cx Conj is the local pointwise version of the Euler



Char. Conj. and, in contrast with Geroch’s result, it should hold

in all odd dimensions.)



Lecture 8:

Growth series, buildings, Hecke algebras



Growth series. Let G be a gp and S a set of generators.

l : G→ N is word length. Define a power series f(t) (the growth

series of G) by f(t) :=
∑
g∈G t

l(g). If G is finite, f(t) is a polyno-

mial. Under favorable circumstances (for example, when G is an

“automatic group”), it is known that f(t) is a rational function

of t. One of the first results along this line was the proof of the

rationality in the case of a Coxeter group W . We give the proof

below. In the case of a Coxeter gp, it is a possible to define



the growth series as a power series W (t) in a certain vector t of

indeterminates. Again, it is a rational function of t.

Rationality. As usual, (W,S) is a Coxeter system. Suppose

given an index set I and a function i : S → I s.t. i(s) = i(s′)

whenever s and s′ are conjugate in W . Let t := (ti)i∈I stand for

an I-tuple of indeterminates and let t−1 := (t−1
i )i∈I. Write ts

instead of ti(s). If s1 · · · sl is a reduced expression for w, define tw



to be the monomial tw := ts1 · · · tsl. Similarly, define a monomial

in the (ti)
−1 by t−1

w := (ts1)
−1 · · · (tsl)−1.

Lemma. tw is independent of the choice of reduced expression

for w.

Proof. This follows from Tits’ solution to the word problem.

Indeed, two reduced expressions for w differ by a sequence of

elementary M-operations of type (II). Such an operation replaces



an alternating subword ss′ · · · of length mss′ by the alternating

word s′s · · · of the same length but in the other order. If mss′ is

even, s and s′ occur the same number of times in these subwords,

so the monomial tw stays the same. If mss′ is odd, such an

operation changes the number of occurrences of s and s′ in the

reduced expression. However, when mss′ is odd, s and s′ are

conjugate in the dihedral subgroup which they generate and so,

a fortiori, are conjugate in W . Thus, i(s) = i(s′) and tw again



remains unchanged.

The growth series of W is the power series in t defined by

W (t) :=
∑
w∈W

tw.

For any subset X of W , define

X(t) :=
∑
w∈X

tw.

For any subset T of S, we have the the special subgroup WT (a



subset of W ) and its growth series WT (t). Note that if T ⊂ S is

a spherical subset, then WT (t) is a polynomial in t.

Lemma. Suppose W is finite, wS is its element of longest length

and tS := twS. Then W (t) = tSW (t−1).

Proof. For any w ∈ W , l(wSw) = l(wS) − l(w). So, concantena-

tion of a reduced expression for wSw with one for w−1 gives a

reduced expression for wS. Hence, tS = twSwtw−1. If s1 · · · sl is



a reduced expression for w, then sl · · · s1 is a reduced expression

for w−1; so, tw−1 = tw and therefore, twSw = tSt
−1
w . This gives

W (t) =
∑

wSw∈W
twSw =

∑
w∈W

tSt
−1
w = tSW (t−1).

For each T ⊂ S, let BT := {w ∈W | l(wt) = l(w) + 1, ∀t ∈ T}.

BT is a set of representatives for W/WT .

Exercise. For each T ⊂ S, W (t) = BT (t)WT (t).



Given a finite set T , define ε(T ) := (−1)|T |.

Exercise. (Möbius Inversion). Suppose f, g are two functions

from the power set of a finite set S to an abelian gp s.t. for any

T ⊆ S,

f(T ) =
∑
U⊆T

g(U).

Then for any T ⊆ S,

g(T ) =
∑
U⊆T

ε(T − U)f(U).



Recall WT := {w ∈W | In(w) = T}.

Exercise. For any T ⊆ S,

WT (t) = W (t)
∑
U⊆T

ε(T − U)

WS−U(t)
.

Corollary. • Suppose W is finite. Then

tS = W (t)
∑
T⊆S

ε(σ)

WT (t)
.



• If W is infinite, then

0 =
∑
T⊆S

ε(T )

WT (t)
.

Corollary. (Rationality of growth series). W (t) = f(t)/g(t),

where f, g ∈ Z[t].



Two more formulas:

1

W (t−1)
=

∑
T∈S

ε(T )

WT (t)
(Steinberg)

1

W (t)
=

∑
T∈S

1− χ(Lk(σT , L))

WT (t)
(Charney-D.)

Corollary. 1
W (1) = χorb(Σ/W ), where 1 denotes the constant I-

tuple with all entries = 1.

Definition.Let δ = ±1. The rational function W (t) is δ-reciprocal

if W (t−1) = δW (t).



Corollary. (Charney-D.) Suppose W is type HMn (i.e., L is a

GHSn−1). Then W (t) is (−1)n-reciprocal

Subexponential growth. If I is a singleton, write t for t. So,

W (t) is a power series in one variable. Denote its radius of

convergence by ρ.

Let G be a finitely generated gp, S a set of generators with S =

S−1. Take the word metric on G and let bn := Card(ball of radius n).



G has exponential growth if lim log bn
n 6= 0.

Definition. (The Følner Condition). ∀A ⊂ G (= Vert(Cay(G,S))),

put ∂A := {a ∈ A | ∃s ∈ S s.t. as /∈ A}. G is amenable if

∀ε > 0, ∃ a finite A ⊂ G with Card(∂A) < εCard(A).



Proposition. For (W,S), TFAE.

(i) W is amenable.

(ii) W + F2, the free group on two generators.

(iii) @ a finite index subgroup Γ and a surjection Γ � F2 (i.e.,

W does not virtually map onto F2).



(iv) W is virtually abelian.

(v) (W,S) decomposes as (W0×W1, S0∪S1) where W1 is finite

and W0 is a cocompact Euclidean reflection group.

(vi) ρ = 1.

(vii) W has subexponential growth.



Proof. (i) =⇒ (ii) is a standard fact.

(ii) =⇒ (iii) is obvious.

(iii) =⇒ (iv). (Margulis–Vinberg, Gonciulea).W is not virtually

abelian =⇒ subgroup W ⊃ Γ � F2.

(iv) =⇒ (v). Σ has a CAT (0) metric (Moussong). This implies

any abelian subgroup of W is finitely generated. So, W is vir-

tually free abelian. Suppose ∃ a rank n free abelian subgroup

of finite index. Then W is a virtual PDn-group. By Lecture 5,



W decomposes as in (v), where the complex Σ0 for (W0, S0) is

a CAT (0) homology n-manifold. By the Flat Torus Theorem,

the “min set ” of the free abelian subgroup on Σ0 is isometric

to Rn. Hence, Σ0 = Rn and W0 acts as an isometric reflection

group on it.

(v) =⇒ (vi). Since a Euclidean reflection group is virtually free

abelian, it has polynomial growth and therefore, the radius of

convergence of its growth series is 1.



(vi) =⇒ (vii) is obvious.

(vii) =⇒ (i) by the Følner condition for amenability.



Buildings. A building consists of the following data:

• a set Φ,

• a Coxeter system (W,S),

• a collection of equivalence relations on Φ indexed by S.

• a function δ : Φ×Φ→W .



This data must satisfy certain additional conditions explained

below. First condition: ∀s ∈ S, each s-equivalence class con-

tains at least two elements. The elements of Φ are chambers.

Given s ∈ S, two chambers ϕ and ϕ′ are s-equivalent if they

are equivalent via the equivalence relation corresponding to s.

If, in addition, ϕ 6= ϕ′, they are s-adjacent. A gallery is a se-

quence (ϕ0, . . . , ϕn) of adjacent chambers; its type is the word

(s1, . . . , sn) in the letters of S, where ϕi−1 and ϕi are si-adjacent.



Given T ⊂ S, (ϕ0, . . . , ϕn) is a T -gallery if each si ∈ T . The

gallery is reduced if w = s1 · · · sn is a reduced expression.

Second condition for Φ to be a building: ∃ a W -valued distance

function δ : Φ × Φ → W . This means that there is a reduced

gallery of type (s1, . . . , sn) from ϕ to ϕ′ if and only if s1 · · · sn is

a reduced expression for δ(ϕ, ϕ′).

The s-mirror of a chamber ϕ is the s-equivalence class containing



ϕ. More generally, given a subset T ⊂ S, the T -residue of ϕ is

the T -gallery connected component containing ϕ. Each such

T -residue is naturally a building with associated Coxeter system

(WT , T ). The residue is spherical if T is a spherical.

Example. A Coxeter gp W is itself a bldg. Put Φ := W , define

w and w′ to be s-equivalent iff they lie in the same left coset of

〈s〉 (= W{s}) and define δ(w,w′) := w−1w′.



The geometric realization of Φ is defined by:

|Φ| := (Φ×K)/ ∼,

where ∼ is the equivalence relation defined by (ϕ, x) ∼ (ϕ′, x′) ⇐⇒

x = x′ and ϕ, ϕ′ are in the same S(x)-residue. (Recall S(x) :=

{s ∈ S | x ∈ Ks}.)

Example. (Projective planes). Let k be a field with q elements.

Φ is the set of complete flags of subspaces in k3, i.e.,



Φ := {(V 1, V 2) | V 1 ⊂ V 2}. W is the dihedral gp of order 6

and S = {s1, s2}. Two flags are si-equivalent, i = 1,2, if they

share a common i-dimensional subspace. K is the cone on an

interval. The usual (spherical) geometric realization of Φ is a

certain bipartite graph obtained by gluing together copies of this

interval. . At a vertex of a given edge there are precisely q other

adjacent edges. Our version |Φ| is the cone on this graph

Example. (Trees). W is the infinite dihedral group (s.t. S =



{s1, s2}). Any tree is bipartite. Suppose T is a tree with vertices

labeled by S. Also suppose no vertex of T is of valence 1. Let

Φ := Edge(T ). For i = 1,2, call two edges si-equivalent if they

meet at a vertex of type si. An {si}-residue is the set of edges

in the star of a vertex of type si. A gallery in Φ corresponds to

an edge path in T . The type of the gallery is the word obtained

by taking the types of the vertices crossed by the corresponding

edge path. This word is reduced if and only if the edge path does



not backtrack. Given two edges ϕ, ϕ′ of T , there is a (unique)

minimal gallery connecting them. The corresponding word rep-

resents an element of w ∈W and δ(ϕ, ϕ′) := w. Not surprisingly,

the geometric realization of Φ is T .

A building Φ of type (W,S) has finite thickness if for each s ∈ S,

each s-equivalence class is finite. If Φ has finite thickness, then

it follows from the existence of a W -valued distance function



that each of its spherical residues is finite and hence, that |Φ| is

a locally finite cell cx.

Let us say that Φ is regular if for each s ∈ S, the s-equivalence

classes have constant cardinality. When finite, we denote this

number by qs+1. It can be shown that if s and s′ are conjugate

in W , then qs = qs′. Let I be the set of conjugacy classes of

elements in S. Then for any regular building Φ, the integers qs



define an I-tuple q called the thickness of Φ. For example, if

Φ = W , then q = 1.

Example. (Regular right-angled buildings). For any right-angled

Coxeter system (W,S) and any S-tuple q = (qs)s∈S of positive

integers, there is a regular building Φ of type (W,S) with thick-

ness q. In the case where W is the infinite dihedral group this

is well-known: the building is a (bipartite) tree with edge set Φ,

it is “regular” in the sense that for each s ∈ S there are exactly



qs + 1 edges meeting at each vertex of type s.

In the general case, the construction goes as follows. For each

s ∈ S, choose a finite group Γs with Card(Γs) = qs + 1 and let

Γ be the “graph product” of the (Γs)s∈S where the graph is the

1-skeleton of L. In other words, Γ is the quotient of the free

product of the (Γs)s∈S by the normal subgroup generated by all

commutators [gs, gt] with gs ∈ Γs, gt ∈ Γt and mst = 2. We get



a bldg Φ = Γ with two elements g, g′ ∈ Γ in an s-equivalent iff

they determine same coset in Γ/Γs.

Relationship to growth series.

Proposition. (Serre). Suppose Γ ⊂ Aut(Φ) is a discrete subgp

which acts transitively on Φ. Then

χorb(|Φ|/Γ) =
1

W (q)
.



Hecke algebras

R(W ) is the R-vector space onW with basis (ew)w∈W (i.e., R(W ) :=

{finitely supported functions R→W}). RW means R(W ) with its

structure as the group algebra of W . A “Hecke algebra” is a cer-

tain deformation of RW .

As before, i : S → I is a function such that i(s) = i(s′) whenever

s and s′ are conjugate and given an I-tuple q = (qi)i∈I ∈ AI,



write qs for qi(s).

Proposition. (Exercise in Bourbaki). Given q ∈ RI, ∃! algebra

structure on R(W ) s.t.

esew =

esw, if l(sw) > l(w);

qsesw + (qs − 1)ew, if l(sw) < l(w),

for all s ∈ S and w ∈W .

We will use the notation RqW to denote this algebra and call

it the Hecke algebra of W associated to the multiparameter q.



Note R1W = RW .

Exercise. The following formulas hold in RqW :

• ∀u, v ∈W with l(uv) = l(u) + l(v), euev = euv.

• ∀s ∈ S, e2s = (qs − 1)es + qs.

• (Artin relations). For any two distinct elements s, t ∈ S with



mst 6=∞, eset . . .︸ ︷︷ ︸
mst

= etes . . .︸ ︷︷ ︸
mst

.

The relationship of Hecke algebras to buildings. Suppose

a bldg Φ “comes from a (B,N)-pair.” This means that ∃ a

chamber-transitive gp G, that the stabilizer B of a given cham-

ber ϕ acts simply transitively on {“apartments” containing ϕ}.

Hence, Φ ∼= G/B and W ∼= B\G/B. Pullback G/B and B\G/B

to subalgebras L and H, respectively, of compactly supported



continuous functions on G (with multiplication given by convo-

lution). Since G/B is discrete, we can think of L as finitely

supported functions on G/B and H = LB.

Lemma. Suppose, as above, that Φ comes from a (B,N) pair.

Let q be its thickness vector. Then H ∼= RqW .

Lecture 9:

Background on L2-cohomology



Hilbert modules and von Neumann algebras. Γ a countable

discrete gp. L2(Γ) the vector space of square-summable, real-

valued functions on Γ:

L2(Γ) := {f : Γ→ R |
∑

f(γ)2 <∞},

where the sum is over all γ ∈ Γ. L2(Γ) is a Hilbert space with

inner product:

f · f ′ :=
∑
γ∈Γ

f(γ)f ′(γ).



The group algebra RΓ is identified with the dense subspace of

L2(Γ) consisting of the functions with finite support. For each

γ ∈ Γ,

eγ(γ
′) :=

1, if γ = γ′;

0, otherwise.

So, (eγ)γ∈Γ is an orthonormal basis for L2(Γ). There is an left-

action of Γ on L2(Γ) defined by left translation, i.e.,

(γ · f)(γ′) := f(γγ′).



This action is the (left) regular representation of Γ.

Suppose V and V ′ are Hilbert spaces with orthogonal Γ-actions.

A map from V to V ′ means a Γ-equivariant bounded linear map

f : V → V ′. The kernel of a map is always closed; however, the

image need not be. The map is a weak surjection if its image is

dense in V ′; it is a weak isomorphism if, in addition, it is injective.



A sequence of maps

· · · −→ V
f−→ V ′

g−→ V ′′ · · ·

is weakly exact at V ′ if Im f = Ker g.

Hilbert Γ-modules. A Hilbert space with orthogonal Γ-action

is a Hilbert Γ-module if it is isomorphic to a closed Γ-stable

subspace of a finite (orthogonal) direct sum of copies of L2(Γ)

with the diagonal Γ-action.



Example. If F is a finite subgroup of Γ, then L2(Γ/F ), the space

of square summable functions on Γ/F , can be identified with the

subspace of L2(Γ) consisting of the square summable functions

on Γ which are constant on each coset. This subspace is clearly

closed and Γ-stable; hence, L2(Γ/F ) is a Hilbert Γ-module.

Example. (Completed tensor product) Suppose Γ = Γ1×Γ2 and

that Vj is a Hilbert Γj-module, for j = 1,2. The L2-completion

of the tensor product is denoted V1⊗̂V2. It is a Hilbert Γ-module.



Lemma. If two Hilbert Γ-modules are weakly isomorphic, then

they are Γ-isometric.

Induced representations. Suppose H is a subgroup of Γ and

that V is a Hilbert H-module. The induced representation,

IndΓ
H(V ), is the completion of RΓ ⊗RH V . It is easy to see that

if V is a Hilbert H-module, then IndΓ
H(V ) is a Hilbert Γ-module.

For example, if F is a finite subgroup of Γ and R denotes the



trivial 1-dimensional representation of F , then IndΓ
F (R) can be

identified with L2(Γ/F ).

The von Neumann algebra N (Γ). L2(Γ) is an RΓ-bimodule.

Here are three equivalent definitions of the von Neumann algebra

N (Γ) associated to the group algebra RΓ.

• N (Γ) is the algebra of all maps from L2(Γ) to itself.



• N (Γ) is the double commutant of the right RΓ-action on

L2(Γ).

• N (Γ) is the weak closure of the algebra of operators R(Γ)

acting from the right on L2(Γ).

The Γ-trace. The Γ-trace of an element ϕ ∈ N (Γ) defined by

trΓ(ϕ) := ϕ(e1) · e1



(where e1 ∈ L2(Γ) is the basis element corresponding to 1 ∈ Γ).

Standard arguments show:

• trΓ(ϕ) = trΓ(ϕ∗) (where ϕ∗ is the adjoint of ϕ) and

• trΓ(ϕψ) = trΓ(ϕ) trΓ(ψ).

Given n ∈ N, let L2(Γ)n denote the orthogonal direct sum of n

copies of L2(Γ) and let Mn(N (Γ)) denote the set of n×n matrices



with coefficients in N (Γ). Given Φ = (ϕij) ∈Mn(N (Γ)), define

trΓ(Φ) :=
n∑
i=1

trΓ(ϕii).

trΓ( ) has the usual properties. Suppose Φ,Ψ ∈ Mn(N (Γ)).

Then

• trΓ(Φ) = trΓ(Φ∗).

• trΓ(Φ ◦Ψ) = trΓ(Ψ ◦Φ).



• Suppose Φ is self-adjoint and idempotent. Then trΓ(Φ) ≥ 0

with equality if and only if Φ = 0.

Similarly, given any Hilbert Γ-module V isomorphic to L2(Γ)n

and any self-map Φ of V , one can define trΓ(Φ).

von Neumann dimension. Let V be a Hilbert Γ-module. Choose

an embedding of V as a closed, Γ-stable subspace of L2(Γ)n for

some n ∈ N. Let pV : L2(Γ)n → L2(Γ)n denote orthogonal pro-



jection onto V . The von Neumann dimension of V (also called

its Γ-dimension) is denoted dimΓ(V ) and defined by

dimΓ(V ) := trΓ(pV ).

If E ⊂ L2(Γ) is a not neccessarily closed Γ-stable subspace of

L2(Γ)n, then put dimΓ(E) := dimΓ(E).

We list some standard properties of dimΓ(V ):



• dimΓ(V ) ∈ [0,∞).

• dimΓ(V ) = 0 if and only if V = 0.

• If Γ is the trivial group (so that the Hilbert space V is finite

dimensional), then dimΓ(V ) = dim(V ).

• dimΓ(L2(Γ)) = 1.



• dimΓ(V ⊕W ) = dimΓ(V ) + dimΓ(W ).

• If f : V →W is a map of Hilbert Γ-modules, then

dimΓ(V ) = dimΓ(Ker f) + dimΓ(Im f).

• If f : V → W is a map of Hilbert Γ-modules and f∗ : W → V

its adjoint, then Ker f and Im f∗ are orthogonal complements



in V . Hence,

dimΓ(V ) = dimΓ(Ker f) + dimΓ(Im f∗).

So, dimΓ(Im f) = dimΓ(Im f∗).

• If 0→ Vn → · · · → V0 → 0 is a weak exact sequence of Hilbert

Γ-modules, then

n∑
i=0

(−1)i dimΓ(Vi) = 0.



• If H is a subgroup of finite index m in Γ, then

dimH(V ) = mdimΓ(V ).

• If Γ is finite, then dimΓ(V ) = 1
|Γ| dim(V ).

• If H is a subgroup of Γ and W is a Hilbert H-module, then

dimΓ(IndΓ
H(W )) = dimH(W ).



• If F is a finite subgroup of Γ, then dimΓ(L2(Γ/F )) = 1
|F |.

• Suppose Γ = Γ1 × Γ2 and that Vj is a Hilbert Γj-module for

j = 1,2. Then

dimΓ(V1⊗̂V2) = dimΓ1
(V1) dimΓ2

(V2).

L2-chains. Suppose X is a proper Γ-CW-complex and X/Γ is

compact. This implies that there are only finitely many Γ-orbits



of cells in X.

C∗(X) := the usual cellular chain complex on X.

An element of Ci(X) (a i-chain) is a finitely supported function

ϕ from the set of oriented i-cells in X to Z satisfying ϕ(e) =

ϕ(e) (where e and e denote the same cell but with opposite

orientations). Set

L2Ci(X) := L2(Γ)⊗ZΓ Ci(X).



An element of L2Ci(X) is an L2-chain; it is an infinite chain with

square summable coefficients. The above formula means that

L2Ci(X) is the group of Γ-equivariant chains with coefficients in

the Γ-module L2(Γ). The definition of the space of L2-cochains

on X is exactly the same, i.e., L2Ci(X) := L2Ci(X).

If c is an i-cell of X, then the space of L2-chains which are

supported on the Γ-orbit of c can be identified with L2(Γ/Γc).



Since Γc is finite, L2(Γ/Γc) is a Hilbert Γ-module. Since there are

a finite number of Γ-orbits of i-cells, Ci(X) is the direct sum of a

finite number of such subspaces; hence, it is a Hilbert Γ-module.

Unreduced and reduced L2-homology. Define the boundary

∂i : L2Ci(X) → L2Ci−1(X) and the coboundary δi : L2Ci(X) →

L2Ci+1(X) by the usual formulas. They are maps of Hilbert Γ-

modules. δi and ∂i+1 are the adjoints of one another. Define



subspaces of L2Ci(X):

Zi(X) := Ker ∂i Zi(X) := Ker δi

Bi(X) := Im ∂i+1 Bi(X) := Im δi−1

the L2-cycles, -cocycles, -boundaries and -coboundaries, respec-

tively. The corresponding quotient spaces

L2Hi(X) := Zi(X)/Bi(X)

L2Hi(X) := Zi(X)/Bi(X)



are the unreduced L2-homology and -cohomology groups, re-

spectively. (In other words, L2Hi(X) is the ordinary equivari-

ant homology of X with coefficients in L2(Γ), i.e., L2Hi(X) =

HΓ
i (X;L2(Γ)).) Since the subspaces Bi(X) and Bi(X) need

not be closed, these quotient spaces need not be isomorphic

to Hilbert spaces. Let Bi(X) (resp., Bi(X)) denote the clo-

sure of Bi(X) (resp., Bi(X)). The reduced L2-homology and



-cohomology groups are defined by:

L2Hi(X) := Zi(X)/Bi(X)

L2Hi(X) := Zi(X)/Bi(X).

They are Hilbert Γ-modules (since each can be identified with

the orthogonal complement of a closed Γ-stable subspace in a

closed Γ-stable subspace of Ci(X)).

Hodge decomposition. Since δi−1(x) · y = x · ∂i(y), ∀x ∈



L2Ci−1(X) and y ∈ L2Ci(X), we have orthogonal direct sum

decompositions:

L2Ci(X) = Bi(X)⊕ Zi(X)

L2Ci(X) = Bi(X)⊕ Zi(X).

Since δi−1(x) · ∂i+1(y) = x · ∂i∂i+1(y) = 0, the subspaces Bi(X)

and Bi(X) are orthogonal. This gives the Hodge decomposition:

Ci(X) = Bi(X)⊕Bi(X)⊕ (Zi(X) ∩ Zi(X)).



It follows that the reduced L2-homology and L2-cohomology

groups can both be identified with the subspace Zi(X) ∩ Zi(X).

We denote this intersection again by L2Hi(X) and call it the

subspace of harmonic i-cycles. Thus, an i-chain is harmonic if

and only if it is simultaneously a cycle and a cocycle.

The combinatorial Laplacian ∆ : Ci(X)→ Ci(X) is defined by

∆ = δi−1∂i + ∂i+1δ
i.



One checks that L2Hi(X) = Ker∆.

L2 algebraic topology. Suppose (X,Y ) is a pair of Γ-CW-

complexes. The reduced L2-(co)homology groups L2Hi(X,Y )

are defined in the usual manner. Versions of most of the Eilenberg-

Steenrod Axioms hold for L2H∗(X,Y ). We list some standard

properties.

Functoriality. For i = 1,2, suppose (Xi, Yi) is a pair of Γ-CW-



complexes and that f : (X1, Y1) → (X2, Y2) is a Γ-map. Then

there is an induced map f∗ : L2Hi(X1, Y1) → L2Hi(X2, Y2) giv-

ing a functor from pairs of Γ-complexes to Hilbert Γ-modules.

Moreover, if f ′ : (X1, Y1) → (X2, Y2) is another Γ-map which is

homotopic to f (not necessarily Γ-homotopic), then f∗ = f ′∗.

Exact sequence of a pair. The sequence of a pair (X,Y ),

→ L2Hi(Y )→ L2Hi(X)→ L2Hi(X,Y )→



is weakly exact.

Excision. Suppose that (X,Y ) is a pair of Γ-CW-complexes and

that U is a Γ-stable subset of Y such that Y − U is a subcom-

plex. Then the inclusion (X − U, Y − U) → (X,Y ) induces an

isomorphism:

L2Hi(X − U, Y − U) ∼= L2Hi(X,Y ).

Mayer-Vietoris sequences. Suppose X = X1 ∪ X2, where X1



and X2 are Γ-stable subcomplexes of X. Then X1 ∩ X2 is also

Γ-stable and the Mayer-Vietoris sequence,

→ L2Hi(X1 ∩X2)→ L2Hi(X1)⊕Hi(X2)→ L2Hi(X)→

is weakly exact.

Twisted products and the induced representation. Suppose

that H is a subgroup of Γ and that Y is a space on which H acts.

The twisted product, Γ×H Y , is the quotient space of Γ× Y by



the H-action defined by h(g, y) = (gh−1, hy). It is a left Γ-space

and a Γ-bundle over Γ/H. Since Γ/H is discrete, Γ ×H Y is a

disjoint union of copies of Y , one for each element of Γ/H. If Y

is an H-CW-complex, then Γ ×H Y is a Γ-CW-complex and the

following formula obviously holds:

L2Hi(Γ×H Y ) ∼= IndΓ
H(L2Hi(Y )).

Künneth Formula. Suppose Γ = Γ1 × Γ2 and that Xj is a Γj-



CW-complex for j = 1,2. Then X1 × X2 is a Γ-CW-complex

and

L2Hk(X1 ×X2)
∼=

∑
i+j=k

L2Hi(X1)⊗̂L2Hj(X2),

where ⊗̂ denotes the completed tensor product.

(Co)homology in dimension 0. An element of C0(X) is an L2

function on the set of vertices of X; it is a 0-cocycle if and only

if it takes the same value on the endpoints of each edge. Hence,



if X is connected, any 0-cocycle is constant. If, in addition,

Γ is infinite (so that the 1-skeleton of X is infinite), then this

constant must be 0. So, when X is connected and Γ is infinite,

L2H0(X) = L2H0
(X) = 0. Hence, L2H0(X) = 0.

The unreduced homology L2H0(X) need not be 0. For example,

if X = R, cellulated as the union of intervals [n, n + 1], and

Γ = C∞, then any vertex of R is an L2-0-cycle which is not L2-



boundary. (A vertex bounds a half-line which can be thought of

as an infinite 1-chain but this 1-chain is not square summable.)

In fact, if Γ is infinite, then L2H0(X) = 0 if and only if Γ is not

amenable.

The top-dimensional homology of a pseudomanifold. Sup-

pose that an n-dimensional, regular Γ- cell complex X is a pseu-

domanifold. This means that each (n − 1)-cell is contained in



precisely two n-cells. If a component of the complement of the

(n − 2)-skeleton is not orientable, then it does not support a

nonzero n-cycle (with coefficients in R). If such a component is

orientable, then any n-cycle supported on it is a constant multi-

ple of the n-cycle with all coefficients are +1. If the component

has an infinite number of n-cells, then this n-cycle does not have

square summable coefficients. Hence, if each component of the

complement of the (n − 2)-skeleton is either infinite or nonori-



entable, then L2Hn(X) = 0. In particular, if the complement

of the (n − 2)-skeleton is connected and if Γ is infinite, then

L2Hn(X) = 0.

L2-Betti numbers and Euler characteristics Define the ith L2-

Betti number of X by

L2bi(X; Γ) := dimΓL
2Hi(X).



The L2-Euler characteristic of X is defined by

L2χ(X; Γ) :=
∞∑
i=0

(−1)iL2bi(X; Γ).

As before,

χorb(X/Γ) :=
∑

orbits of cells

(−1)dim c

|Γc|
,

where |Γc| denotes the order of the stabilizer of the cell c. We

note that if the Γ-action is free, then χorb(X/Γ) is just the ordi-

nary Euler characteristic χ(X/Γ).



Atiyah’s Formula.

Theorem. (Atiyah). χorb(X/Γ) = L2bi(X; Γ).

Conjecture. (The Dodziuk–Singer Conjecture). Suppose X =

M̃n a contractible mfld. Then

L2bi(M̃n; Γ) = 0, ∀i 6=
n

2
.

Observation. Singer Conj. =⇒ Euler Char. Conj.

Proof. Suppose n = 2k. Singer Conj. =⇒ only L2bk 6= 0.



Atiyah’s Formula gives: (−1)kL2bi(M̃2k; Γ) = χorb(M̃2k/Γ). So,

(−1)kχorb(M̃2k/Γ) ≥ 0.

A version of Singer Conj for Coxeter groups. Suppose L is

a triangulation of a GHSn−1 as a flag cx and W the associated

right-angled Coxeter gp.



Conjecture. L2bi(Σ;W ) = 0, ∀i 6= n
2 and for n = 2k,

L2bk(Σ;W ) = (−1)kχorb(Σ/W ) := (−1)kκ(L) ≥ 0.

Recall

κ(L) := 1 +
dimL∑
i=0

(
−

1

2

)i+1
fi.
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(W,S) a Coxeter system, Σ the associated cx. Recall

i : S → I the index function

q ∈ RI the multiparameter

RqW the Hecke algebra

W (t) the growth series

εw := (−1)l(w) and qw := qs1 · · · qsk,

whenever s1 · · · sk is a reduced expression for w.



From now on assume q ∈ (0,∞)I. R is the region of

convergence of W (t) and R−1 := {q | q−1 ∈ R}.

Goal: Define L2
qH∗(Σ). It has the following

Properties:

• It q = 1, then it is ordinary L2H∗(Σ).

• There are “weighted L2-Betti numbers,” biq(Σ) (= “von Neu-



mann dim of L2Hi(Σ) w.r.t. the Hecke algebra”).

• The “weighted L2-Euler characteristic,” χq(Σ) is = 1/W (q).

• If Φ is a bldg with chamber transitive automorphism gp G

and thickness q, then the biq(Σ) are the L2-Betti numbers of

Φ w.r.t. G.

• If q ∈ R, then L2
qH∗(Σ) vanishes except in dimension 0 (like



ordinary cohomology).

• If q ∈ R−1, then L2
qH∗(Σ) “looks like” cohomology with

compact supports.



An inner product on R(W ).

R(W ) := {finitely supported functions W → R}

〈ev, ew〉q := qwδvw

L2
q(W ) := completion of R(W ).

The anti-involution ∗. ew → ew−1 extends to a linear endomor-

phism ∗ of RqW , i.e.,

(∑
awew

)∗
:=

∑
aw−1ew.



The next proposition shows that the algebra of operators RqW

on L2
q(W ) satisfies the necessary conditions to be completable

to a von Neumann algebra of operators. Its proof is a series of

straightforward computations.

Proposition. The inner product defined above and map ∗ give

RqW the structure of a “Hilbert algebra,” i.e., the following

properties hold:



• (xy)∗ = y∗x∗,

• 〈x, y〉q = 〈y∗, x∗〉q,

• 〈xy, z〉q = 〈y, x∗z〉q,

• for any x ∈ RqW , left translation by x, Lx : RqW → RqW ,

defined by Lx(y) = xy, is continuous,



• the products xy over all x, y ∈ RqW are dense in RqW .

The Hecke-von Neumann algebra.

Nq = a completion of RqW

:= {RqW -equivariant bounded linear operators on L2
q(W )}

von Neumann trace. For φ ∈ Nq, set

trNq(φ) = 〈φ(e1), e1〉q.



For Φ = (φij) ∈Mm(Nq), set

trNq(Φ) =
∑

trNq(φii).

von Neumann dimension. Given a RqW -stable, closed

subspace V ⊂ ⊕L2
q(W ), let pV : ⊕L2

q(W )→ ⊕L2
q(W ) be

orthogonal projection onto V . Define

dimNq V = trNq(pV ) ∈ [0,∞).



Idempotents in Nq. For T ⊂ S, define

aT :=
1

WT (q)

∑
w∈WT

ew,

hT :=
1

WT (q−1)

∑
w∈WT

εwq
−1
w ew.

Exercise. • aT ∈ Nq ⇐⇒ q ∈ RT and (aT )
2 = aT .

• hT ∈ Nq ⇐⇒ q ∈ R−1
T and (hT )

2 = hT ,

where RT = region of convergence of WT (t).



Some subspaces of L2
q(W ). ∀s ∈ S, define

As := Im as and Hs := Imhs.

Exercise. As and Hs are orthogonal complements.

∀T ⊂ S, define

AT :=
⋂
s∈T

As and HT :=
⋂
s∈T

Hs.

Exercise. AT = Im aT if q ∈ RT and is 0 otherwise. HT = ImhT

if q ∈ R−1
T and is 0 otherwise.



Define

DT :=

 ∑
U)T

AS−U

⊥⋂
AS−T .

Decomposition Theorem. We have the following direct sum

decompositions of Nq-modules.

• If q ∈ R, then

L2
q =

⊕
T∈S

DT .



• If q ∈ R−1, then

L2
q =

⊕
T∈S

DS−T .

Recall U = U(W,X) := (W ×X)/ ∼.



Cellular cochains.

Ek := {k-cells in U}

Ck(U) := {k-cochains on U}

:= {functions on Ek}

= {
∑

infinite

aσ σ | σ ∈ Ek}

Ckc (U) := {
∑

finite

aσ σ}

How about weighted L2
q-cochains?



Given σ ∈ Ek, let d(σ) be the shortest w ∈W s.t. w−1σ ⊂ X.

Define an inner product on Ckc (U) by 〈σ, τ〉q := qd(σ)δστ .

L2
qC

k(U) := the completion of Ckc (U)

L2
qC
∗(U) is a Nq-module and δ : L2

qC
k(U)→ L2

qC
k+1(U) is a map

of Nq-modules.



L2
qHk(U) reduced L2

q-cohomology := Ker δ/Im δ

bkq(U) := dimL2
qHk(U)

χq(U) :=
∑

(−1)kbkq(U)

Theorem. (Dymara). χq(Σ) = 1
W (q)

Theorem. (Dymara). If q ∈ R, then L2
qH∗(Σ) is concentrated in

dimension 0.



Theorem. The bkq(U) are continuous in q.

Theorem. (Dymara) Suppose Φ is a building of type (W,S) with

a chamber transitive automorphism group G. Then its L2-Betti

number (with respect to G), L2bk(Φ;G), is equal to bkq(Σ).

Here q is the “thickness” of the building. For buildings only

integral values of q matter!



Main Theorem.

• If q ∈ R, then

L2
qH∗(U) =

⊕
T∈S

H∗(X,XT )⊗DT .

• If q ∈ R−1, then

L2
qH∗(U) =

⊕
T∈S

H∗(X,XS−T )⊗DS−T .



This is almost an immediate consequence of the Decomposition

Theorem, which we recall:

Decomposition Theorem. • If q ∈ R, then

L2
q =

⊕
T∈S

DT .

• If q ∈ R−1, then

L2
q =

⊕
T∈S

DS−T .



Recall that in Lecture 5 we proved:

Hk(U) =
⊕
T∈S

Hk(X,X
T )⊗ Z(WT )

Hk
c (U) =

⊕
T∈S

Hk(X,XS−T )⊗ Z(WT )



Corollary.

• If q ∈ R, then Hk(U;R) → L2
qHk(U) is injective with dense

image.

• If q ∈ R−1, then Hk
c (U;R)→ L2

qHk(U) is injective with dense

image.



Example. Suppose W is type HMn (i.e., , L is a GHSn−1).

• If q ∈ R, then L2
qH∗(Σ) is concentrated in dimension 0.

• If q ∈ R−1, then L2
qH∗(Σ) is concentrated in dimension n.

Example. Suppose n = 2 and L is a circle. q = q ∈ (0,∞).

ρ = the radius of convergence of W (t).



Then L2
qH∗(Σ) is concentrated in dimension

0, if q ≤ ρ;
1, if ρ < q < 1/ρ;

2, if q ≥ ρ.

Question.What happens in the intermediate range, q /∈ R∪R−1?



Conjecture. (A version of the Singer Conjecture). Suppose W

is type HMn. Then for q ≤ 1,

L2
qHk(Σ) = 0 for k >

n

2
.

Similarly, for q ≥ 1,

L2
qHk(Σ) = 0 for k <

n

2
.


