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Last time

L2Ci (X ) := {ϕ : {i-cells} → R |
∑

ϕ(e)2 <∞}

L2Hi (X ) := Z i (X )/B i (X ).

The i th L2-Betti number of X is:

L2bi (X ; Γ) := dimΓ L2Hi (X ).

If X is contractible (and the Γ-action is proper and cocompact),
then

L2bi (Γ) := L2bi (X ; Γ).
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Bundles over S1

Suppose F → M → S1 is a fiber bundle with fiber F . M̃ is the
universal cover, Γ = π1(M).

Question

(Gromov). Is it true that L2bi (M̃; Γ) = 0, ∀i?

It turns out it’s easier to answer a more general question about
mapping tori. Suppose F a CW complex and f : F → F a self map.

Definition

Tf := (F × [0, 1])/ ∼ is called the mapping torus of f , where ∼ is
defined by (x , 0) ∼ (f (x), 1).
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Lück’s Theorem

There is a canonical map Tf → S1.

If f is a homeomorphism, Tf → S1 is a fiber bundle.

If f is a homotopy equivalence, Tf → S1 is a fibration with
fiber F .

Suppose canonical epimorphism π1(Tf ) → Z factors as ϕ ◦ ψ
where ψ : π1(Tf ) → Γ and ϕ : Γ → Z are both onto (e.g. Γ could
= π1(Tf ) ). Let T̃f → Tf be the covering space corresponding to
ψ.

Theorem

L2bi (T̃f ; Γ) = 0, ∀i .
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Observations

By Cellular Approx Theorem, f is homotopic to a cellular map
(i.e., f (F i ) ⊂ F i ). So, let us assume this.

Denote number of i-cells in F by ci (F ). Then Tf has a CW
structure with

ci (Tf ) = ci−1(F ) + ci (F ).

Let Γn := ϕ−1(nZ) ⊂ Γ. So, T̃f /Γn → Tf is an n-fold
covering.

Exercise: There is a homotopy equivalence Tf n → T̃f /Γn.
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Proof of Lück’s Theorem

Desired formula

L2bi (T̃f ; Γ) = 0

Proof.

L2bi (T̃f ; Γn) ≤ dimΓn(L
2Ci (T̃f )) = ci (Tfn) = ci−1(F ) + ci (F ).

By multiplicativity of the L2bi , L2bi (T̃f ; Γ) = 1
nL2bi (T̃f ; Γn). So,

L2bi (T̃f ; Γ) ≤ ci−1(F ) + ci (F )

n

Taking the limit as n →∞, we get L2bi (T̃f ; Γ) = 0.
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The Følner Condition
The Cheeger–Gromov Theorem

Amenable groups

A mean on a gp G is a linear map, M : L∞(G ) → R, s.t.

M(1) = 1 (where 1 : G → R is the constant function 1).

M is G -invariant (i.e., M(gϕ) = M(ϕ), ∀g ∈ G ).

ϕ ≥ 0 =⇒ M(ϕ) ≥ 0.

Definition

G is amenable if it admits a mean.

There is a more workable condition.
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The Følner Condition

Let Γ be a finitely generated gp. Λ its Cayley graph w.r.t. some
finite set of generators.
Suppose F ⊂ Γ.

∂F := {g ∈ F | ∃ an edge of Λ connecting g to an element /∈ F}

The Følner Condition

∀ε > 0, ∃ a finite subset F ⊂ Γ s.t.

|∂F |
|F |

< ε.
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Theorem

A fin gen Γ is amenable ⇐⇒ Følner Condition.

Example

Z is amenable.

Finite gps, abelian gps and solvable gps are all amenable.
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The Cheeger–Gromov Theorem

Since L2C i (X ) ⊂ C i (X ;R), there are canonical maps,

can : L2H i (X ) → H i (X ;R) and can : L2Hi
(X ) → H i (X ;R).

(The second takes a harmonic cocycle to an ordinary one.)

Theorem

Suppose Γ is an infinite amenable gp. Then

can : L2Hi
(X ) → H i (X ;R) is injective.
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Corollary

If X is contractible, then L2Hi
(X ) = 0, ∀i .

L2bi (Γ) = 0,∀i . (Γ infinite amenable.)

Corollary

Γ infinite amenable acting (not necessarily cocompactly) on a
contractible X (with uniform geoemetry). Then L2bi (Γ) = 0, ∀i .

Corollary

Γ contains an infinite normal amenable subgp A. Then χ(Γ) = 0
(i.e., χorb(X/Γ) = 0).
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Example

Assume S1 → Y → B an S1-bundle, B aspherical, Γ = π1(Y ).
Then

1 → Z → Γ → π1(B) → 1.

So, L2bi (Γ) = 0, ∀i .
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Sketch of Eckmann’s proof of Cheeger–Gromov Thm

Put K := Ker(L2Hi
(X ) → H i (X ;R)).

Idea: Use Følner Condition to show dimΓ K = 0.

Γ is countable. Følner Condition =⇒ ∃ an exhaustion
F1 ⊂ F2 ⊂ · · · s.t

∞⋃
j=1

Fj = Γ and lim
j→∞

|∂Fj |
|Fj |

= 0.

D = fund domain =
⋃

closed cells, 1 cell in each Γ-orbit. Put

Xj :=
⋃

FjD and ∂Xj := its bdry in X

Let P : L2C i (X ) → L2Hi
(X ) be orthogonal proj and πj

composition of P with inclusion L2C i (Xj) ↪→ L2C i (X ).
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The Følner Condition
The Cheeger–Gromov Theorem

Proof

dimR πj(K ) =
∑

gc⊂FjD
πj(gc) · gc = |Fj |

∑
c⊂D P(c) · c =

|Fj | dimΓ K . So,

dimΓ K =
dimRπj(K )

|Fj |

Estimate: dimR πj(K ) ≤ dimR(C i (∂Xj ;R) ≤ |∂Fj |αi ,
where αi = #(i-cells in D). So,

dimΓ K ≤
|∂Fj |
|Fj |

αi → 0.
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Review of classical theory

M a smooth closed mfld.

Ωp(M) the vector space of smooth p-forms.

d : Ωp → Ωp+1, the exterior differential

The de Rham cochain cx:

· · · → Ωp(M)
d−→ Ωp+1(M) → · · ·

The corresponding cohomology gps: H∗dR(M).

If M has a smooth triangulation, integration of p -forms over
p-simplices gives an iso:

Hp
dR(M) → Hp(M;R) (or Hp

sing(M;R)).
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Inner product

Suppose dim M = n.

∃ iso, Λp(Rn)
∼=−→ Λn−p(Rn).

inducing Hodge star operator ∗ : Ωp(M)
∼=−→ Ωn−p(M),

(ignoring the ± signs).

Define inner product on Ωp(M) by

ω · η :=

∫
M
ω ∧ ∗η.

d∗ : Ωp(M) → Ωp−1(M), the adjoint of d .

The Laplacian, ∆ := dd∗ + d∗d : Ωp → Ωp.
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L2 version

Suppose M̃ is smooth mfld with proper, cocompact, smooth
Γ-action (e.g. M̃ → M is regular covering with deck
transformations = Γ).

L2Ωp(M̃) the Hilbert space completion of Ωp
c (M̃).

As before, we get reduced cohomology gps:

L2Hp
dR(M̃) := Ker(d)/Im(d)

It is a Hilbert space with orthogonal Γ-action.

L2Hp
dR(M̃) is ∼= the space of square integrable harmonic

p-forms.
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Dodziuk’s Theorem

Theorem (Dodziuk)

L2Hp
dR(M̃) ∼= L2Hp

(M̃).
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Singer Conj for Hn

Theorem

L2Hq
(Hn) = 0, ∀q 6= n

2 .

We will sketch Dodziuk’s proof of this.

All that it uses is that we have a “rotationally symmetric”
metric on a mfld Mn diffeomorphic to Rn.

This means that in polar coordinates metric has the form

ds2 = dr2 + f (r)2dθ2

where dθ is the standard round metric on Sn−1, r is the
Euclidean distance to origin and f (r) satisfies:

f (0) = 0, f ′(0) = 1, f (r) > 0, lim
r→∞

f (r) = ∞.
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Sketch of proof.

Start with harmonic q-form. Write it in terms of functions of
(r , θ). Do some work to conclude:

L2Hq
(M) 6= 0 =⇒

∫∞
1 f n−2q−1(r)dr <∞.

By Poincaré duality, L2Hq
(M) ∼= L2Hn−q

(M). So,

L2Hn−q
(M) 6= 0 =⇒

∫∞
1 f −n+2q−1(r)dr <∞.

So, both exponents must give convergent integrals. If n = 2q,
both exponents = −1 and we get the condition∫∞
1

1
f (r)dr <∞.

(n − 2q − 1)(−n + 2q − 1) = 1− (n − 2q)2. So, if
n − 2q = ±1, one exponent is 0 and integral diverges.
Otherwise, exponents have different signs, so one integral
diverges.
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Kähler manifolds

M a complex n-mfld (dimR(M) = 2n) with Hermitian metric.

The imaginary part of Hermitian metric is a nondegenerate
2-form ω.

M is a Kähler mfld if ω is closed.

Example

CPN is a Kähler mfld. A smooth projective variety M ⊂ CPN is a
closed Kähler mfld.
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The Hard Lefschetz Theorem

M a Kähler mfld with Kähler 2-form ω. Put

L = ∧ ω : Ωp(M) → Ωp+2(M).

Theorem

Suppose M is a closed Kähler n-mfld with Kähler class
α := [ω] ∈ H2(M). Put ` := ∧ α : H∗(M) → H∗+2(M). Then

`n−i := ` ◦ · · · ◦ ` : Hp(M) → H2n−p(M)

is an isomorphism.
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Sketch of proof

Ln−p : Ωp → Ω2n−p is an iso (because this holds pointwise, i.e.,∧p(TxM) →
∧2n−p(TxM) is iso.)

Key Fact: L takes harmonic forms to harmonic forms:

Suppose Hp(M) ⊂ Ωp(M) denotes the harmonic p-forms, i.e.,
Hp(M) := Ker ∆, then L takes Hp(M) to Hp+2(M).

Hodge theory =⇒ Hp(M) = Hp(M).
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The L2 Lefschetz Theorem

Theorem

M a Kähler n-mfld, then Ln−p : L2Ωp(M) → L2Ω2n−p(M) is iso
and takes L2Hp(M) to L2H2n−p(M).

Definition

Suppose (M, ω) is a closed Kahler mfld, (M̃, ω̃) its univ cover. M
is Kähler hyperbolic if ω̃ = d(bounded), i.e., ∃ a bounded 1-form η
s.t. ω̃ = d(η).
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Gromov’s Theorem

Theorem (Gromov)

Suppose M is Kähler hyperbolic; π = π1(M). Then

∀p 6= n, L2Hp(M̃) = 0 and L2bp(M̃;π) = 0.

L2Hn(M̃) 6= 0 and L2bn(M̃;π) 6= 0

(−1)nχ(M) > 0.

Proof (of first part).

Suppose λ ∈ L2Ωp(M̃) is closed. We show Ln−p(λ) represents 0 in
cohomology . Note λ ∧ (bounded) is also L2. We have:

d(λ ∧ η) = (λ ∧ dη)± (dλ ∧ η) = λ ∧ ω̃ = L(λ)

So, L(λ) represents 0 in cohomology.
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Theorem (Gromov)

M a closed Kähler mfld which is negatively curved as Riem mfld
=⇒ M is Kähler hyperbolic.

Example

Here are some other examples of Kähler mflds which are Kähler
hyperbolic:

π1(M) is word hyperbolic and π2(M) = 0.

M is a submfld of a Kähler hyperbolic mfld.

M̃ is a Hermitian symmetric space of noncompact type with
no Euclidean factor.

Mike Davis Lecture 3


	Lecture 3: Vanishing theorems
	Mapping tori
	Amenable groups
	The Følner Condition
	The Cheeger--Gromov Theorem

	L2 de Rham Theory
	Hyperbolic manifolds
	Kähler hyperbolic manifolds


