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Lecture 3: Vanishing theorems

o Mapping tori

© Amenable groups
@ The Fglner Condition
@ The Cheeger—Gromov Theorem

© (2 de Rham Theory
@ Hyperbolic manifolds
@ Kahler hyperbolic manifolds
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Lecture 3: Vanishing theorems

L2Gi(X) = {p: {i-cells} = R| > ¢p(e)? < oo}

LPHI(X) := Z(X)/Bi(X).
The ith [2-Betti number of X is:
L2b;(X;T) := dimr L2H/(X).

If X is contractible (and the -action is proper and cocompact),
then
L2b;(T) := L2bi(X;T).

Mike Davis Lecture 3



Mapping tori

Bundles over S!

Suppose F — M — S is a fiber bundle with fiber F. M is the
universal cover, [ = m1(M).

romov). Is it true that ,-N; =0, Vi:
G Is i hat L2b;(M; T 0, Vi?

It turns out it's easier to answer a more general question about
mapping tori. Suppose F a CW complex and f : F — F a self map.

Definition

Tr = (F x [0,1])/ ~ is called the mapping torus of f, where ~ is
defined by (x,0) ~ (f(x),1).
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Mapping tori

Luck's Theorem

@ There is a canonical map Tf — St

o If f is a homeomorphism, Tr — S! is a fiber bundle.

o If f is a homotopy equivalence, Tf — S is a fibration with
fiber F.

Suppose canonical epimorphism 71(T¢) — Z factors as ¢ o ¢
where ¢ : 71(T¢) — I and ¢ : I — Z are both onto (e.g. I' could
=m1(Tf) ). Let T — T¢ be the covering space corresponding to

0.

L2b;(T¢;T) =0, Vi.
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Mapping tori

@ By Cellular Approx Theorem, f is homotopic to a cellular map
(i.e., f(F") C F'). So, let us assume this.

@ Denote number of i-cells in F by ¢;j(F). Then T¢ has a CW
structure with

ci(Tr) = ci—1(F) + ci(F).

o Let I, := ¢ 1(nZ) CT. So, ﬂ/rn — T¢ is an n-fold
covering.

@ Exercise: There is a homotopy equivalence T¢n — ?f/r,,.
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Mapping tori

Proof of Luck's Theorem

Desired formula

L2b;(T¢;T) =0

L2bi(Tf; Tp) < dimp, (L2Ci(T¢)) = ci(T¢,) = cie1(F) + ci(F).

By multiplicativity of the L2b;,  L2bi(T¢;T) = L12b;(T¢; ). So,

Lzbi(?f; r) < C,',l(F) I C,'(F)

Taking the limit as n — oo, we get [2b;(T¢;T) = 0. O
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The Fglner Condition
Amenable groups The Cheeger—Gromov Theorem

Amenable groups

A meanon a gp G is a linear map, M : L*°(G) — R, s.t.
@ M(1) =1 (where 1: G — R is the constant function 1).
e M is G-invariant (i.e., M(gy) = M(y), Vg € G).
e >0 = M(p)>0.

Definition
G is amenable if it admits a mean.

There is a more workable condition.
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The Fglner Condition
Amenable groups The Cheeger—Gromov Theorem

The Fglner Condition

Let I' be a finitely generated gp. A its Cayley graph w.r.t. some
finite set of generators.
Suppose F C T.

OF :={g € F | 3 an edge of A connecting g to an element ¢ F}

The Fglner Condition
Ve > 0, 3 a finite subset F C I s.t.
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The Fglner Condition
Amenable groups The Cheeger—Gromov Theorem

A fin gen I is amenable <= Fglner Condition.

@ Z is amenable.

o Finite gps, abelian gps and solvable gps are all amenable.
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The Fglner Condition
Amenable groups The Cheeger—Gromov Theorem

The Cheeger—Gromov Theorem

Since L2C'(X) C C'(X;R), there are canonical maps,
can : L2H(X) — H(X;R) and can : L°H'(X) — H'(X;R).
(The second takes a harmonic cocycle to an ordinary one.)

Suppose I is an infinite amenable gp. Then
can : L2H'(X) — H'(X;R) is injective.
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The Fglner Condition
Amenable groups The Cheeger—Gromov Theorem

Corollary

o If X is contractible, then L2H'(X) = 0, Vi.
o L2b;i(T) = 0,Yi. (T infinite amenable.)

.
Corollary

[ infinite amenable acting (not necessarily cocompactly) on a
contractible X (with uniform geoemetry). Then L2b;(T') = 0, Vi.

I" contains an infinite normal amenable subgp A. Then x(I') =0
(i.e., x°P(X/T) =0).
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The Fglner Condition
Amenable groups The Cheeger—Gromov Theorem

Assume S' — Y — B an Sl-bundle, B aspherical, [ = 71(Y).
Then
1-Z2Z—-T—-m(B)—1.

So, L?b;(F) =0, Vi.
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The Fglner Condition
Amenable groups The Cheeger—Gromov Theorem

Sketch of Eckmann’s proof of Cheeger—Gromov Thm

o Put K := Ker(L2H'(X) — H/(X;R)).
Idea: Use Fglner Condition to show dimpr K = 0.
@ [ is countable. Fglner Condition = 3 an exhaustion

FRLCFC--- st
= OF;
JF=r and im 951 _ g,

e D = fund domain = Jclosed cells, 1 cell in each I-orbit. Put

Xj:=|JFD and 0X;:=its bdryin X

o Let P: [2C/(X) — LzHi(X) be orthogonal proj and ;
composition of P with inclusion L2C/(X;) — L2C/(X).
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The Fglner Condition
Amenable groups The Cheeger—Gromov Theorem

o dimgp 7Tj(K) = chCFjD 7Tj(gc) - 8C = ‘FJ’ chD 'D(C) 6=
|Fj|dimr K. So,
di (K
i ¢ = L)
|Fjl

o Estimate: dimg 7;(K) < dimg(C/(0X;; R) < |0Fj|a;,
where a; = #(i-cells in D). So,

F:
dimrK < ’8 J‘Oé,‘ — 0.
|l

0J
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Lecture 3: Vanishin, s
M g i Hyperbolic manifolds
. Amenc g ps Kahler hyperbolic manifolds
L* de Rham Theory

Review of classical theory

M a smooth closed mfld.

d: QP — QPTL the exterior differential

°
e QP(M) the vector space of smooth p-forms.
°
@ The de Rham cochain cx:

= QP(M)-L QPTE(M) — -

@ The corresponding cohomology gps: Hjz(M).

@ If M has a smooth triangulation, integration of p -forms over
p-simplices gives an iso:

HE(M) — HP(M:R) (or H?._(M:R)).

sing
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Lecture 3: Vanis
Hyperbolic manifolds
. Amenable groups Kahler hyperbolic manifolds
L* de Rham Theory

Inner product

Suppose dim M = n.

o Jiso, AP(R")—s A"P(R").

@ inducing Hodge star operator * : QP(M)i Q"P(M),
(ignoring the =+ signs).

@ Define inner product on QP(M) by

w-n::/ w A *1.
M

o d* : QP(M) — QP~1(M), the adjoint of d.
@ The Laplacian, A := dd* + d*d : QP — QP.
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Lecture 3: Vanishing s
Mapping i Hyperbolic manifolds
. Amenable g S Kahler hyperbolic manifolds
L* de Rham Theory

L2 version

@ Suppose M is smooth mfld with proper, cocompact, smooth
-action (e.g. M — M is regular covering with deck
transformations = I').

o L2QP(M) the Hilbert space completion of Q2(M).

@ As before, we get reduced cohomology gps:
L2HER (M) := Ker(d)/Im(d)

It is a Hilbert space with orthogonal I-action.

° LzHgR(/Tﬂ) is = the space of square integrable harmonic
p-forms.
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Hyperbolic manifolds
. Kahler hyperbolic manifolds
L* de Rham Theory

Dodziuk's Theorem

Theorem (Dodziuk)

LPHER(M) = [2HP(M).
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Hyperbolic manifolds
. Kahler hyperbolic manifolds
L* de Rham Theory

Singer Conj for H"

[2H(H") =0, Vq#32.

@ We will sketch Dodziuk’'s proof of this.

@ All that it uses is that we have a “rotationally symmetric”
metric on a mfld M" diffeomorphic to R".

@ This means that in polar coordinates metric has the form

ds? = dr® + f(r)2d6?

where df is the standard round metric on S"~1, r is the
Euclidean distance to origin and f(r) satisfies:

f(0)=0, f(0)=1, f(r)>0, lim f(r)=oc.
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Hyperbolic manifolds
Kahler hyperbolic manifolds

L2 de Rham Theory

Sketch of proof.

@ Start with harmonic g-form. Write it in terms of functions of
(r,6). Do some work to conclude:

o LPHI(M)#0 = [ 297Y(r)dr < <.

o By Poincaré duality, L>H(M) = L>H""9(M). So,
LPH™I(M)#£0 = [°f 2971 (r)dr < oco.
@ So, both exponents must give convergent integrals. If n = 2q,

both exponents = —1 and we get the condition

I %dr < 0.

o (n—2g—1)(—n+2g—1)=1-(n-29)% So, if
n —2q = £1, one exponent is 0 and integral diverges.
Otherwise, exponents have different signs, so one integral
diverges.
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Hyperbolic manifolds
. Kahler hyperbolic manifolds
L* de Rham Theory

Kahler manifolds

@ M a complex n-mfld (dimg(M) = 2n) with Hermitian metric.

@ The imaginary part of Hermitian metric is a nondegenerate
2-form w.

e M is a Kahler mfld if w is closed. )

CPN is a Kahler mfld. A smooth projective variety M ¢ CPV is a
closed Kahler mfld. )
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Hyperbolic manifolds
. Kahler hyperbolic manifolds
L* de Rham Theory

The Hard Lefschetz Theorem

M a Kahler mfld with Kahler 2-form w. Put

L=Aw:QP(M) — QPFT2(M).

Suppose M is a closed Kahler n-mfld with Kahler class
a = [w] € H*(M). Put £ := A o : H*(M) — H**2(M). Then

(" =tlo---0l: HP(M) — H*~P(M)

is an isomorphism.
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Hyperbolic manifolds
. Kahler hyperbolic manifolds
L* de Rham Theory

Sketch of proof

L"=P: QP — Q2P is an iso (because this holds pointwise, i.e.,
AP(TxM) — N*""P(T(M) is iso.)

Key Fact: L takes harmonic forms to harmonic forms:

Suppose HP(M) C QP(M) denotes the harmonic p-forms, i.e.,
HP(M) := Ker A, then L takes HP(M) to HPT2(M).

Hodge theory = HP(M) = HP(M). O
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Hyperbolic manifolds
Kahler hyperbolic manifolds

L2 de Rham Theory

The L? Lefschetz Theorem

M a Kahler n-mfld, then L"=P : [2QP(M) — L2Q?"=P(M) is iso
and takes L>HP(M) to L2H?"—P(M).

| A

Definition

Suppose (M,w) is a closed Kahler mfld, (M, &) its univ cover. M
is Kahler hyperbolic if @ = d(bounded), i.e., 3 a bounded 1-form 7
s.t. @ =d(n).

o
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Lecture 3: Vanishing S
M ori Hyperbolic manifolds
Kahler hyperbolic manifolds

uf
L2 de Rham Theory

Gromov's Theorem

Theorem (Gromov)

Suppose M is Kihler hyperbolic; m = w1(M). Then
o Vp # n, L2HP(M) = 0 and [2b,(M; ) = 0.
o L2H"(M) # 0 and L2b,(M; ) # 0
e (—1)"x(M) > 0.

Proof (of first part).

Suppose A € L2QP(M) is closed. We show L™ P()) represents 0 in
cohomology . Note A A (bounded) is also L2.  We have:

dAAn)=(ANAdn)E(dAAD)=AAD = L()N)

So, L(A) represents 0 in cohomology. O

Mike Davis Lecture 3




Hyperbolic manifolds
Kahler hyperbolic manifolds

L2 de Rham Theory

Theorem (Gromov)

M a closed Kahler mfld which is negatively curved as Riem mfld
=—> M is Kahler hyperbolic.

Example

| 5\

Here are some other examples of Kahler mflds which are Kahler
hyperbolic:

o 71(M) is word hyperbolic and m(M) = 0.
@ M is a submfld of a Kahler hyperbolic mfld.

o M is a Hermitian symmetric space of noncompact type with
no Euclidean factor.
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