Lecture 3

Mike Davis

July 5, 2006

2 Amenable groups

- The Følner Condition
- The Cheeger–Gromov Theorem

\bigcirc L^2 de Rham Theory

- Hyperbolic manifolds
- Kähler hyperbolic manifolds

Last time

$$L^2C_i(X) := \{ \varphi : \{i \text{-cells} \} \to \mathbf{R} \mid \sum \varphi(e)^2 < \infty \}$$

$$L^2\mathcal{H}^i(X) := Z^i(X)/\overline{B^i}(X).$$

The *i*th L^2 -Betti number of X is:

$$L^2 b_i(X; \Gamma) := \dim_{\Gamma} L^2 \mathcal{H}^i(X).$$

If X is contractible (and the Γ -action is proper and cocompact), then

$$L^2b_i(\Gamma):=L^2b_i(X;\Gamma).$$

Bundles over S^1

Suppose $F \to M \to S^1$ is a fiber bundle with fiber F. \widetilde{M} is the universal cover, $\Gamma = \pi_1(M)$.

Question

(Gromov). Is it true that
$$L^2b_i(\widetilde{M};\Gamma) = 0, \forall i$$
?

It turns out it's easier to answer a more general question about mapping tori. Suppose F a CW complex and $f : F \to F$ a self map.

Definition

 $T_f := (F \times [0,1]) / \sim$ is called the *mapping torus of f*, where \sim is defined by $(x,0) \sim (f(x),1)$.

Lück's Theorem

- There is a canonical map $T_f \to S^1$.
- If f is a homeomorphism, $T_f \rightarrow S^1$ is a fiber bundle.
- If f is a homotopy equivalence, $T_f \rightarrow S^1$ is a fibration with fiber F.

Suppose canonical epimorphism $\pi_1(T_f) \to \mathbb{Z}$ factors as $\varphi \circ \psi$ where $\psi : \pi_1(T_f) \to \Gamma$ and $\varphi : \Gamma \to \mathbb{Z}$ are both onto (e.g. Γ could $= \pi_1(T_f)$). Let $\widetilde{T}_f \to T_f$ be the covering space corresponding to ψ .

Theorem

$$L^2 b_i(\widetilde{T_f}; \Gamma) = 0, \forall i.$$

Observations

- By Cellular Approx Theorem, f is homotopic to a cellular map (i.e., f(Fⁱ) ⊂ Fⁱ). So, let us assume this.
- Denote number of *i*-cells in *F* by $c_i(F)$. Then T_f has a CW structure with

$$c_i(T_f)=c_{i-1}(F)+c_i(F).$$

- Let Γ_n := φ⁻¹(nZ) ⊂ Γ. So, T̃_f/Γ_n → T_f is an n-fold covering.
- Exercise: There is a homotopy equivalence $T_{f^n} \rightarrow \widetilde{T}_f / \Gamma_n$.

Proof of Lück's Theorem

Desired formula

$$L^2 b_i(\widetilde{T}_f;\Gamma)=0$$

Proof.

$$L^{2}b_{i}(\widetilde{T}_{f};\Gamma_{n}) \leq \dim_{\Gamma_{n}}(L^{2}C_{i}(\widetilde{T}_{f})) = c_{i}(T_{f_{n}}) = c_{i-1}(F) + c_{i}(F).$$

By multiplicativity of the $L^{2}b_{i}, \quad L^{2}b_{i}(\widetilde{T}_{f};\Gamma) = \frac{1}{n}L^{2}b_{i}(\widetilde{T}_{f};\Gamma_{n}).$ So,
$$L^{2}b_{i}(\widetilde{T}_{f};\Gamma) \leq \frac{c_{i-1}(F) + c_{i}(F)}{n}$$

Taking the limit as $n \to \infty$, we get $L^2 b_i(\widetilde{T}_f; \Gamma) = 0$.

Amenable groups

A mean on a gp G is a linear map, $M: L^{\infty}(G) \rightarrow \mathbf{R}$, s.t.

- M(1) = 1 (where $1: G \rightarrow \mathbf{R}$ is the constant function 1).
- *M* is *G*-invariant (i.e., $M(g\varphi) = M(\varphi)$, $\forall g \in G$).

•
$$\varphi \ge 0 \implies M(\varphi) \ge 0.$$

Definition

G is amenable if it admits a mean.

There is a more workable condition.

The Følner Condition The Cheeger–Gromov Theorem

The Følner Condition

Let Γ be a finitely generated gp. Λ its Cayley graph w.r.t. some finite set of generators. Suppose $F \subset \Gamma$.

 $\partial F := \{g \in F \mid \exists \text{ an edge of } \Lambda \text{ connecting } g \text{ to an element } \notin F\}$

The Følner Condition $\forall \varepsilon > 0, \exists$ a finite subset $F \subset \Gamma$ s.t. $\frac{|\partial F|}{|F|} < \varepsilon.$

The Følner Condition The Cheeger–Gromov Theorem

Theorem

A fin gen Γ is amenable \iff Følner Condition.

Example

- \mathbb{Z} is amenable.
- Finite gps, abelian gps and solvable gps are all amenable.

The Følner Condition The Cheeger–Gromov Theorem

The Cheeger–Gromov Theorem

Since $L^2C^i(X) \subset C^i(X; \mathbf{R})$, there are canonical maps, can : $L^2H^i(X) \to H^i(X; \mathbf{R})$ and can : $L^2\mathcal{H}^i(X) \to H^i(X; \mathbf{R})$. (The second takes a harmonic cocycle to an ordinary one.)

Theorem

Suppose Γ is an infinite amenable gp. Then can : $L^2\mathcal{H}^i(X) \to H^i(X; \mathbf{R})$ is injective.

The Følner Condition The Cheeger–Gromov Theorem

Corollary

- If X is contractible, then $L^2\mathcal{H}^i(X) = 0$, $\forall i$.
- $L^2b_i(\Gamma) = 0, \forall i. \ (\Gamma \text{ infinite amenable.})$

Corollary

 Γ infinite amenable acting (not necessarily cocompactly) on a contractible X (with uniform geoemetry). Then $L^2b_i(\Gamma) = 0$, $\forall i$.

Corollary

 Γ contains an infinite normal amenable subgp A. Then $\chi(\Gamma) = 0$ (i.e., $\chi^{orb}(X/\Gamma) = 0$).

The Følner Condition The Cheeger–Gromov Theorem

Example

Assume $S^1 \to Y \to B$ an S^1 -bundle, B aspherical, $\Gamma = \pi_1(Y)$. Then

$$1 \to \mathbb{Z} \to \Gamma \to \pi_1(B) \to 1.$$

So, $L^2 b_i(\Gamma) = 0$, $\forall i$.

Sketch of Eckmann's proof of Cheeger-Gromov Thm

- Put $K := \text{Ker}(L^2 \mathcal{H}^i(X) \to H^i(X; \mathbf{R})).$ Idea: Use Følner Condition to show dimr K = 0.
- Γ is countable. Følner Condition $\implies \exists$ an exhaustion $F_1 \subset F_2 \subset \cdots$ s.t

$$\bigcup_{j=1}^{\infty} F_j = \Gamma \quad \text{and} \quad \lim_{j \to \infty} \frac{|\partial F_j|}{|F_j|} = 0.$$

• D =fund domain = \bigcup closed cells, 1 cell in each Γ -orbit. Put

$$X_j := \bigcup F_j D$$
 and $\partial X_j :=$ its bdry in X

Let P: L²Cⁱ(X) → L²Hⁱ(X) be orthogonal proj and π_j composition of P with inclusion L²Cⁱ(X_j) → L²Cⁱ(X).

Proof

• dim_R
$$\pi_j(K) = \sum_{gc \in F_jD} \pi_j(gc) \cdot gc = |F_j| \sum_{c \in D} P(c) \cdot c = |F_j| \dim_{\Gamma} K$$
. So,

$$\dim_{\Gamma} K = \frac{\dim_{\mathbf{R}} \pi_j(K)}{|F_j|}$$

• Estimate: $\dim_{\mathbf{R}} \pi_j(K) \leq \dim_{\mathbf{R}} (C^i(\partial X_j; \mathbf{R}) \leq |\partial F_j| \alpha_i$, where $\alpha_i = \#(i$ -cells in D). So,

$$\dim_{\Gamma} K \leq \frac{|\partial F_j|}{|F_j|} \alpha_j \to 0.$$

Hyperbolic manifolds Kähler hyperbolic manifolds

Review of classical theory

- *M* a smooth closed mfld.
- $\Omega^p(M)$ the vector space of smooth *p*-forms.
- $d: \Omega^p
 ightarrow \Omega^{p+1}$, the exterior differential
- The de Rham cochain cx:

$$\cdots \rightarrow \Omega^{p}(M) \stackrel{d}{\longrightarrow} \Omega^{p+1}(M) \rightarrow \cdots$$

- The corresponding cohomology gps: $H^*_{dR}(M)$.
- If *M* has a smooth triangulation, integration of *p* -forms over *p*-simplices gives an iso:

$$H^p_{d\mathbf{R}}(M) \to H^p(M; \mathbf{R}) \text{ (or } H^p_{sing}(M; \mathbf{R})).$$

Inner product

Suppose dim M = n.

- \exists iso, $\Lambda^{p}(\mathbf{R}^{n}) \xrightarrow{\cong} \Lambda^{n-p}(\mathbf{R}^{n})$.
- inducing Hodge star operator * : Ω^p(M) → Ω^{n-p}(M), (ignoring the ± signs).
- Define inner product on $\Omega^p(M)$ by

$$\omega\cdot\eta:=\int_M\omega\wedge*\eta.$$

- $d^*: \Omega^p(M) \to \Omega^{p-1}(M)$, the adjoint of d.
- The Laplacian, $\Delta := dd^* + d^*d : \Omega^p \to \Omega^p$.

L^2 version

- Suppose \widetilde{M} is smooth mfld with proper, cocompact, smooth Γ -action (e.g. $\widetilde{M} \to M$ is regular covering with deck transformations = Γ).
- $L^2\Omega^p(\widetilde{M})$ the Hilbert space completion of $\Omega^p_c(\widetilde{M})$.
- As before, we get reduced cohomology gps:

$$L^2\mathcal{H}^p_{\mathsf{dR}}(\widetilde{M}) := \mathsf{Ker}(d)/\overline{\mathsf{Im}(d)}$$

It is a Hilbert space with orthogonal Γ-action.

L²H^p_{dR}(M̃) is ≅ the space of square integrable harmonic p-forms.

Hyperbolic manifolds Kähler hyperbolic manifolds

Dodziuk's Theorem

Theorem (Dodziuk)

$L^2\mathcal{H}^p_{dR}(\widetilde{M})\cong L^2\mathcal{H}^p(\widetilde{M}).$

Hyperbolic manifolds Kähler hyperbolic manifolds

Singer Conj for \mathbb{H}^n

Theorem

 $L^2\mathcal{H}^q(\mathbb{H}^n)=0, \quad \forall q\neq \frac{n}{2}.$

- We will sketch Dodziuk's proof of this.
- All that it uses is that we have a "rotationally symmetric" metric on a mfld Mⁿ diffeomorphic to Rⁿ.
- This means that in polar coordinates metric has the form

$$ds^2 = dr^2 + f(r)^2 d\theta^2$$

where $d\theta$ is the standard round metric on S^{n-1} , r is the Euclidean distance to origin and f(r) satisfies:

$$f(0)=0, \quad f'(0)=1, \quad f(r)>0, \quad \lim_{r\to\infty}f(r)=\infty.$$

Hyperbolic manifolds Kähler hyperbolic manifolds

Sketch of proof.

- Start with harmonic *q*-form. Write it in terms of functions of (*r*, θ). Do some work to conclude:
- $L^2\mathcal{H}^q(M) \neq 0 \implies \int_1^\infty f^{n-2q-1}(r)dr < \infty.$
- By Poincaré duality, $L^2 \mathcal{H}^q(M) \cong L^2 \mathcal{H}^{n-q}(M)$. So, $L^2 \mathcal{H}^{n-q}(M) \neq 0 \implies \int_1^\infty f^{-n+2q-1}(r) dr < \infty$.
- So, both exponents must give convergent integrals. If n = 2q, both exponents = −1 and we get the condition
 ∫₁[∞] 1/(f(r)) dr < ∞.

- (n-2q-1)(-n+2q-1) = 1 (n-2q)². So, if n-2q = ±1, one exponent is 0 and integral diverges.
 Otherwise, exponents have different signs, so one integral diverges.

Hyperbolic manifolds Kähler hyperbolic manifolds

Kähler manifolds

- *M* a complex *n*-mfld $(\dim_{\mathbf{R}}(M) = 2n)$ with Hermitian metric.
- The imaginary part of Hermitian metric is a nondegenerate 2-form $\omega.$
- *M* is a *Kähler mfld* if ω is closed.

Example

 $\mathbb{C}P^N$ is a Kähler mfld. A smooth projective variety $M \subset \mathbb{C}P^N$ is a closed Kähler mfld.

Hyperbolic manifolds Kähler hyperbolic manifolds

The Hard Lefschetz Theorem

M a Kähler mfld with Kähler 2-form ω . Put

$$L = \land \omega : \Omega^p(M) \to \Omega^{p+2}(M).$$

Theorem

Suppose *M* is a closed Kähler n-mfld with Kähler class $\alpha := [\omega] \in H^2(M)$. Put $\ell := \wedge \alpha : H^*(M) \to H^{*+2}(M)$. Then

$$\ell^{n-i} := \ell \circ \cdots \circ \ell : H^p(M) \to H^{2n-p}(M)$$

is an isomorphism.

Hyperbolic manifolds Kähler hyperbolic manifolds

Sketch of proof

 $L^{n-p}: \Omega^p \to \Omega^{2n-p}$ is an iso (because this holds pointwise, i.e., $\bigwedge^p(T_x M) \to \bigwedge^{2n-p}(T_x M)$ is iso.)

Key Fact: L takes harmonic forms to harmonic forms:

Suppose $\mathcal{H}^{p}(M) \subset \Omega^{p}(M)$ denotes the harmonic *p*-forms, i.e., $\mathcal{H}^{p}(M) := \text{Ker } \Delta$, then *L* takes $\mathcal{H}^{p}(M)$ to $\mathcal{H}^{p+2}(M)$.

Hodge theory $\implies \mathcal{H}^p(M) = H^p(M)$.

Hyperbolic manifolds Kähler hyperbolic manifolds

The L^2 Lefschetz Theorem

Theorem

M a Kähler n-mfld, then $L^{n-p} : L^2\Omega^p(M) \to L^2\Omega^{2n-p}(M)$ is iso and takes $L^2\mathcal{H}^p(M)$ to $L^2\mathcal{H}^{2n-p}(M)$.

Definition

Suppose (M, ω) is a closed Kahler mfld, $(\tilde{M}, \tilde{\omega})$ its univ cover. M is Kähler hyperbolic if $\tilde{\omega} = d$ (bounded), i.e., \exists a bounded 1-form η s.t. $\tilde{\omega} = d(\eta)$.

Hyperbolic manifolds Kähler hyperbolic manifolds

Gromov's Theorem

Theorem (Gromov)

Suppose *M* is Kähler hyperbolic; $\pi = \pi_1(M)$. Then • $\forall p \neq n, L^2 \mathcal{H}^p(\widetilde{M}) = 0$ and $L^2 b_p(\widetilde{M}; \pi) = 0$. • $L^2 \mathcal{H}^n(\widetilde{M}) \neq 0$ and $L^2 b_n(\widetilde{M}; \pi) \neq 0$

•
$$(-1)^n \chi(M) > 0.$$

Proof (of first part).

Suppose $\lambda \in L^2\Omega^p(\widetilde{M})$ is closed. We show $L^{n-p}(\lambda)$ represents 0 in cohomology. Note $\lambda \wedge (\text{bounded})$ is also L^2 . We have:

$$d(\lambda \wedge \eta) = (\lambda \wedge d\eta) \pm (d\lambda \wedge \eta) = \lambda \wedge ilde{\omega} = L(\lambda)$$

So, $L(\lambda)$ represents 0 in cohomology.

Hyperbolic manifolds Kähler hyperbolic manifolds

Theorem (Gromov)

M a closed Kähler mfld which is negatively curved as Riem mfld $\implies M$ is Kähler hyperbolic.

Example

Here are some other examples of Kähler mflds which are Kähler hyperbolic:

- $\pi_1(M)$ is word hyperbolic and $\pi_2(M) = 0$.
- *M* is a submfld of a Kähler hyperbolic mfld.
- \widetilde{M} is a Hermitian symmetric space of noncompact type with no Euclidean factor.