Lecture 4: Weighted  $\mathcal{L}^2$  cohomology Hecke – von Neumann algebras  $\mathcal{L}^2_q$ -cohomology

# Lecture 5

Mike Davis

July 7, 2006

Lecture 4: Weighted  $L^2$  cohomology Hecke – von Neumann algebras  $L^2_q$ -cohomology

- 1 Hecke von Neumann algebras
  - Hecke algebras
  - von Neumann algebra version
  - Idempotents

2  $L_q^2$ -cohomology

joint work with
Jan Dymara, Tadeusz Januszkiewicz and Boris Okun

### Recall

(W, S) is a Coxeter system,  $\Sigma$  the associated cx. W(t) = the growth series,  $\rho =$  its radius of convergence

#### Goal

Define  $L_q^2 \mathcal{H}^*(\Sigma)$ ,  $q \in (0, \infty)$ .

- Change the definition of the inner product. W will no longer act orthogonally.
- Change the von Neumann algebra.

Mike Davis

# Properties of $L_q^2 \mathcal{H}^*(\Sigma)$

- When q=1, it is ordinary  $L^2\mathcal{H}^*(\Sigma)$ .
- There are "weighted  $L^2$ -Betti numbers,"  $L_q^2 b_i(\Sigma)$  (= "von Neumann dim of  $L_a^2 \mathcal{H}^i(\Sigma)$  w.r.t. a Hecke algebra").
- The "weighted  $L^2$ -Euler characteristic,"  $\chi_q(\Sigma)$  is =1/W(q).
- If  $\Phi$  is a bldg with chamber transitive automorphism gp G and "thickness" q, then the  $L_q^2b_i(\Sigma)$  are the  $L^2$ -Betti numbers of  $\Phi$  w.r.t. G.
- If  $q < \rho$ , then  $L_q^2 \mathcal{H}^*(\Sigma)$  vanishes except in dimension 0 (like ordinary cohomology).
- If  $q > \rho^{-1}$ , then  $L_q^2 \mathcal{H}^*(\Sigma)$  "looks like" cohomology with compact supports.

#### **Definitions**

 $\mathbf{R}^{(W)} := \{ \text{finitely supported functions } \mathbf{R} \to W \}$ 

:= the **R**-vector space on W with basis  $(e_w)_{w \in W}$ 

 $\mathbf{R}W := \mathbf{R}^{(W)}$  with its structure as the gp algebra

A "Hecke algebra" is a deformation of RW depending on q.

# Proposition (Exercise in Bourbaki)

 $\exists$ ! algebra structure on  $\mathbf{R}^{(W)}$  s.t.

$$e_s e_w = egin{cases} e_{sw}, & ext{if } I(sw) > I(w); \ qe_{sw} + (q-1)e_w, & ext{if } I(sw) < I(w), \end{cases}$$

 $\forall s \in S \text{ and } w \in W.$ 

#### Definition

We denote this algebra  $\mathbf{R}_q W$  and call it the *Hecke algebra* of W associated to the *parameter q*.

#### Remark

Given  $i: S \to I$  s.t. i(s) = i(s') whenever s, s' are conjugate and I-tuple  $\mathbf{q}$ , one can define the Hecke algebra with multiparameter  $\mathbf{q}$ . Similarly, given an I-tuple  $\mathbf{t}$  of indeterminates there is a well-defined growth series  $W(\mathbf{t})$ .

# An inner product on $\mathbf{R}^{(W)}$

On the standard basis define

$$\langle e_v, e_w \rangle_q := egin{cases} q^{l(w)}, & \text{if } v = w, \\ 0, & \text{if } v \neq w. \end{cases}$$

 $L_q^2(W) := \text{completion of } \mathbf{R}^{(W)}.$ 

### The anti-involution \*

 $e_w 
ightarrow e_{w^{-1}}$  extends to a linear endomorphism \* of  $\mathbf{R}_q W$ , i.e.,

$$\left(\sum a_w e_w\right)^* := \sum a_{w^{-1}} e_w.$$

Mike Davis

 $\mathbf{R}_q W$  is an algebra of operators on  $L_q^2(W)$ . (Actually, there are two algebras – multiplication on left or right.)

The next proposition shows that it satisfies the necessary conditions to be completable to a von Neumann algebra of operators. ( $\mathbf{R}_q W$  is a  $C^*$  algebra.) The proof is a straightforward series of computations.

# Proposition (Dymara)

The inner product defined above and the involution \* give  $\mathbf{R}_qW$  the structure of a "Hilbert algebra," i.e., the following properties hold:

- $(xy)^* = y^*x^*$ ,

- for any  $x \in \mathbf{R}_q W$ , left translation by x,  $L_x : \mathbf{R}_q W \to \mathbf{R}_q W$ , defined by  $L_x(y) = xy$ , is continuous,
- the products xy over all  $x, y \in \mathbf{R}_q W$  are dense in  $\mathbf{R}_q W$ .

# Hecke - von Neumann algebra

 $\mathcal{N}_q =$  the weak completion of  $\mathbf{R}_q W$ :=  $\{\mathbf{R}_q W$ -equivariant bounded linear operators on  $L_q^2(W)\}$ 

#### von Neumann trace

• For  $\varphi \in \mathcal{N}_q$ ,

$$\operatorname{tr}_{\mathcal{N}_q}(\varphi) = \langle \varphi(e_1), e_1 \rangle_q.$$

• For  $\Phi = (\varphi_{ij}) \in M_m(\mathcal{N}_q)$ ,

$${\sf tr}_{\mathcal{N}_q}(\Phi) = \sum {\sf tr}_{\mathcal{N}_q}(\varphi_{\it ii}).$$

### von Neumann dimension

- Given a  $\mathbf{R}_qW$ -stable, closed subspace,  $V \subset \oplus L_q^2(W)$ , let  $p_V: \oplus L_q^2(W) \to \oplus L_q^2(W)$  be orthogonal projection onto V.
- Define

$$\dim_{\mathcal{N}_q}V=\operatorname{tr}_{\mathcal{N}_q}(p_V)\in [0,\infty).$$

# Some idempotents in $\mathcal{N}_q$

For  $T \subset S$ , define

$$a_T := rac{1}{W_T(q)} \sum_{w \in W_T} e_w,$$

$$h_{\mathcal{T}} := rac{1}{W_{\mathcal{T}}(q^{-1})} \sum_{w \in W_{\mathcal{T}}} (-1)^{l(w)} q^{-l(w)} e_w.$$

Mike Davis

# Sample calculations

 $\rho_T := \text{radius of convergence of } W_T(t)$ 

- $\tilde{a}_T := \sum_{w \in W} e_w$
- If  $q < \rho_T$ ,  $\langle \tilde{a}_T, \tilde{a}_T \rangle_q = W_T(q) < \infty$ .
- If  $s \in T$ ,  $\tilde{a}_T e_s = q \tilde{a}_T$ .
- If  $w \in W_T$ ,  $\tilde{a}_T e_w = q^{l(w)} \tilde{a}_T$ .
- $\tilde{a}_T$  is bounded iff  $q < \rho_T$ .
- $(\tilde{a}_T)^2 = W_T(q)\tilde{a}_T$

- $\bullet \ \widetilde{h}_T := \sum_{w \in W_T} (-1)^{l(w)} q^{-l(w)} e_w$
- If  $q>1/\rho_T$ ,  $\langle \tilde{h}_T, \tilde{h}_T \rangle_q = W_T(q^{-1}) < \infty$ .
- If  $s \in T$ ,  $\tilde{h}_T e_s = -\tilde{h}_T$ .
- If  $w \in W_T$ ,  $\tilde{h}_T e_w = (-1)^{l(w)} \tilde{h}_T$ .
- $\tilde{h}_T$  is bounded iff  $q>1/
  ho_T$
- $(\tilde{h}_T)^2 = W_T(q^{-1})\tilde{h}_T$

$$a_T = rac{1}{W_T(q)} ilde{a}_T \quad ext{and} \quad h_T = rac{1}{W_T(q^{-1})} ilde{h}_T.$$

If  $W_T$  is finite and q=1, then  $a_T$  is averaging over  $W_T$  and  $h_T$  is "alternation" over  $W_T$ .

- $a_T$  is bounded iff  $q < \rho_T$
- $a_T^* = a_T$
- $(a_T)^2 = a_T$
- $a_s = \frac{1}{1+a}(1+e_s)$

- $h_T$  is bounded iff  $q > 1/\rho_T$
- $h_T^* = h_T$
- $(h_T)^2 = h_T$
- $h_s = \frac{q}{1+q}(1-q^{-1}e_s)$

# Subspaces of $L_q^2(W)$

- $A_s := \operatorname{Im} a_s$  and  $H_s := \operatorname{Im} h_s$ .
- $A_T := \bigcap_{s \in T} A_s$  and  $H_T := \bigcap_{s \in T} H_s$ .

Mike Davis

#### Lemma

 $A_s$  and  $H_s$  are orthogonal complements.

### Proof.

$$a_s + h_s = rac{1}{1+q}(1+e_s) + rac{q}{1+q}(1-q^{-1}e_s) = 1$$

### Exercise

 $A_T = \text{Im } a_T$ , if  $q < \rho_T$  and is 0 otherwise.

 $H_T = \operatorname{Im} h_T$ , if  $q > 1/\rho_T$  and is 0 otherwise.

### **Dimensions**

$$\begin{split} \dim_{\mathcal{N}_q} A_T &= \operatorname{tr}_{\mathcal{N}_q} \mathsf{a}_T = \frac{1}{W_T(q)}, \quad \text{if } q < \rho_T \\ \dim_{\mathcal{N}_q} H_T &= \operatorname{tr}_{\mathcal{N}_q} h_T = \frac{1}{W_T(q^{-1})}, \quad \text{if } q > 1/\rho_T. \end{split}$$

#### Proof.

$$\operatorname{tr}_{\mathcal{N}_q} a_T = \langle e_1 a_T, e_1 \rangle_q = \langle a_T, e_1 \rangle_q = \frac{1}{W_T(q)}.$$
 Similarly, for  $H_T$ .



# Review from last time

### Spherical subsets and cosets

$$\mathcal{S} := \{ T \subset S \mid W_T \text{ is finite} \} = \{ \text{spherical subsets} \}$$

$$W\mathcal{S} := \coprod_{T \in \mathcal{S}} W/W_T = \{ \text{spherical cosets} \}$$

### Complexes L, K and $\Sigma$

Put

$$K := |\mathcal{S}|$$
  $\Sigma := |W\mathcal{S}|.$ 

 $S_{>\emptyset}$  is an abstract simp cx. The corresponding geometric cx is denoted L and called the *nerve* of (W,S). L is a finite simp cx.

Mike Davis

### Facts about K

- K is the cone on the barycentric subdivision of L ( $\emptyset \in S$  is a common vertex of every simplex in K).
- For each  $T \in \mathcal{S}$ , put  $K_T := |\mathcal{S}_{\geq T}|$  and for each  $s \in \mathcal{S}$ ,  $K_s := K_{\{s\}}$ .

### Facts about $\Sigma$

- $\bullet$   $\Sigma$  is contractible.
- Σ has a cell structure with one W-orbit of |T|-cells for each spherical subset T. The link of each vertex in this structure is isomorphic to L.
- So, for example, if  $L \cong S^{n-1}$ , then  $\Sigma$  is an n-mfld.

Mike Davis

# $L_q^2$ -cohomology.

- $\forall$  k-simplex  $\sigma$  in  $\Sigma$ , let  $e_{\sigma} \in C_k(\Sigma)$  be its characteristic function.
- Define an inner product on  $C_k(\Sigma)$  by

$$\langle e_\sigma, e_ au 
angle_q := egin{cases} q^{l(w(\sigma))}, & ext{if } \sigma = au, \ 0, & ext{otherwise}. \end{cases}$$

where  $w(\sigma)$  is the shortest  $w \in W$  s.t.  $w^{-1}\sigma \in K$ .

- $L_q^2 C_k(\Sigma) = L_q^2 C^k(\Sigma) := \text{ completion of } C_k(\Sigma)$
- $L_q^2C^*(\Sigma)$  is a  $\mathcal{N}_q$ -module and  $\delta: L_q^2C^k(\Sigma) \to L_q^2C^{k+1}(\Sigma)$  is a map of  $\mathcal{N}_q$ -modules.

Mike Davis

N.B. The adjoint of  $\delta$  is not the usual boundary map, rather the formula for it involves q's. Put  $\partial_q := \delta^*$ .

#### **Definitions**

$$L_q^2 \mathcal{H}^k(\Sigma) := \ker \delta / \overline{\operatorname{Im} \delta}$$
 $L_q^2 \mathcal{H}_k(\Sigma) := \mathcal{H}_k((L^2 C_*(\Sigma), \partial_q))$ 
 $L_q^2 b_k(\Sigma) := \dim L_q^2 \mathcal{H}^k(\Sigma)$ 
 $L_q^2 \chi(\Sigma) := \sum (-1)^k L_q^2 b_k(\Sigma)$ 

# Theorem (Dymara)

$$L_q^2\chi(\Sigma) = \frac{1}{W(q)}$$

### Proof.

The proof is along the line of Atiyah's formula. The space of  $L_q^2$ -chains on the orbit of a cell of type T is  $\cong$  to  $H_T$ . So,

$$\begin{split} L_q^2 \chi(\Sigma) &= \sum_{T \in \mathcal{S}} (-1)^{|T|} \dim_{\mathcal{N}_q} H_T = \sum_{T \in \mathcal{S}} \frac{(-1)^{|T|}}{W_T(q^{-1})} \\ &= \frac{1}{W(q)}. \end{split}$$

The last equality was a formula for growth series proved last time.



1/W(q) is a rational function of q, e.g., if W is RA

$$\frac{1}{W(q)} = \frac{h(-q)}{(1+q)^n}$$

It can change signs at the roots of the numerator. The smallest root is  $\rho$  and the largest root is  $\rho^{-1}$ .

#### Theorem

 $L_q^2 b^k(\Sigma)$  is a continuous function of q.

### Theorem (Dymara)

If  $q < \rho$ , then  $L_q^2 \mathcal{H}^*(\Sigma)$  is concentrated in dimension 0 and is  $\cong A_S$ . Conversely, if  $q > \rho$ ,  $L_q^2 \mathcal{H}^0(\Sigma) = 0$ .

# Idea for proof.

 $\Sigma$  is contractible. Show a "standard" chain contraction is a bounded operator in range  $q < \rho$ .



# Theorem (Dymara)

Suppose  $\Sigma$  is a n-dim pseudomfld and  $q > \rho^{-1}$ . Then  $L_q^2 \mathcal{H}_n(\Sigma) \cong \mathcal{H}_S$ . Conversely, if  $q < \rho^{-1}$ ,  $L_q^2 \mathcal{H}_n(\Sigma) = 0$ 

Poincaré duality has the following form

# Theorem (Dymara))

If  $L \cong S^{n-1}$  (s.t.  $\Sigma$  is an n-mfld), then

$$L_q^2 b_k(\Sigma) = L_{1/q}^2 b_{n-k}(\Sigma)$$

Mike Davis

Lecture 4: Weighted  $L^2$  cohomology Hecke – von Neumann algebras  $L_q^2$ -cohomology

## Corollary

Suppose  $L\cong S^{n-1}$  and  $q>\rho^{-1}$ . Then  $L^2_q\mathcal{H}_*(\Sigma)$  is concentrated in dim n.

### Example

If  $\Sigma$  is a 2-mfld, Then  $L_q^2\mathcal{H}^*(\Sigma)$  is concentrated in dim:

$$\begin{cases} 0, & \text{if } q \le \rho; \\ 1, & \text{if } \rho < q < \rho^{-1}; \\ 2, & \text{if } q \ge \rho^{-1}. \end{cases}$$

Suppose K is a right-angled k-gon.

$$L_q^2 \chi(\Sigma) = \frac{1}{W(q)} = \frac{q^2 + (2-k)q + 1}{(1+q)^2}$$
 so,  $ho^{\pm 1} = \frac{(k-2) \mp \sqrt{k^2 - 4k}}{2},$ 

e.g. when k = 5,  $\rho^{-1} = \frac{3+\sqrt{5}}{2}$ ,  $2 < \rho^{-1} < 3$ .

In general we can calculate  $L^2_q\mathcal{H}_*(\Sigma)$  for  $q<\rho$  and  $q>\rho^{-1}$  (but not for  $\rho< q<\rho^{-1}$ ). Recall  $A_{\mathcal{T}}:=L^2_q(W)a_{\mathcal{T}}$ . If  $U\supset \mathcal{T}$ , then  $A_U\subset A_{\mathcal{T}}$ . Put

$$A_{>T}:=\sum_{U>T}A_U,\qquad D_T:=A_T/A_{>T}.$$

### **Decomposition Theorem**

We have direct sum decompositions of  $\mathcal{N}_q$ -modules:

$$\begin{split} L_q^2 &= \overline{\bigoplus_{T \in \mathcal{S}} D_{S-T}} & \text{if } q < \rho, \\ L_q^2 &= \overline{\bigoplus_{T \in \mathcal{S}} D_T} & \text{if } q > \rho^{-1}. \end{split}$$

For 
$$q > \rho^{-1}$$
,

$$\dim_{\mathcal{N}_q} D_{\mathcal{T}} = \sum_{U \in \mathcal{S}_{\geq \mathcal{T}}} \frac{(-1)^{|U - \mathcal{T}|}}{W_U(q)} = \frac{W^{\mathcal{T}}(q^{-1})}{W(q^{-1})}.$$

Mike Davis

## Main Theorem (DDJO)

Suppose  $q > \rho^{-1}$ . Then

$$L_q^2\mathcal{H}^*(\Sigma) = \overline{\bigoplus_{T \in \mathcal{S}} H^*(K, K^{S-T}) \otimes D^T}.$$

### Corollary

- If  $q < \rho$ , then can :  $L_q^2 \mathcal{H}^k(\Sigma) \to H^k(\Sigma; \mathbf{R})$  is isomorphism.
- If  $q > \rho^{-1}$ , then  $H_c^k(\Sigma; \mathbf{R}) \to L_q^2 \mathcal{H}^k(\Sigma)$  is injective with dense image.

So,  $L_q^2\mathcal{H}^*(\ )$  interpolates between ordinary cohomology and cohomology with compact supports.

Mike Davis