L^2-cohomology of hyperplane complements

Mike Davis

(work with Tadeusz Januszkiewicz and Ian Leary)

Morelia
January 8, 2007
\(\mathcal{A} \) a collection of affine hyperplanes in \(\mathbb{C}^n \)

Definition

\(\text{rk}(\mathcal{A}) \), the *rank*, of \(\mathcal{A} \) is the maximal codimension of a nonempty intersection of hyperplanes in \(\mathcal{A} \). Usually denote \(\text{rk}(\mathcal{A}) \) by \(l \). \(\mathcal{A} \) is *essential* if \(\text{rk}(\mathcal{A}) = n \).

\[
\Sigma(\mathcal{A}) := \bigcup_{H \in \mathcal{A}} H \\
M(\mathcal{A}) := \mathbb{C}^n - \Sigma(\mathcal{A})
\]
Fact

\(H^*(\mathbb{C}^n, \Sigma) \) vanishes except in dimension \(l (= \text{rk}(A)) \).
In fact, \(\Sigma \sim \bigvee S^{l-1} \).

The number \(\alpha(A) \)

\[
\alpha(A) := \dim H_i(\mathbb{C}^n, \Sigma) := b_i(\mathbb{C}^n, \Sigma)
= \text{the number of spheres in the wedge}
\]
Example

Suppose \mathcal{A}_R is an essential hyperplane arrangement in \mathbb{R}^n. It divides \mathbb{R}^n into convex regions.

- $\dim H_n(\mathbb{R}^n, \Sigma(\mathcal{A}_R))$ is the number of bounded components of $\mathbb{R}^n - \Sigma(\mathcal{A}_R)$.
- If \mathcal{A} is complexification of \mathcal{A}_R, then

$$\left(\mathbb{C}^n, \Sigma(\mathcal{A})\right) \sim \left(\mathbb{R}^n, \Sigma(\mathcal{A}_R)\right).$$

- So $\alpha(\mathcal{A})$ is the number of bounded components of $\mathbb{R}^n - \mathcal{A}_R$.

\mathcal{A}_R - essential hyperplane arrangement in \mathbb{R}^n. It divides \mathbb{R}^n into convex regions.

$\dim H_n(\mathbb{R}^n, \Sigma(\mathcal{A}_R))$ is the number of bounded components of $\mathbb{R}^n - \Sigma(\mathcal{A}_R)$.

If \mathcal{A} is complexification of \mathcal{A}_R, then

$$\left(\mathbb{C}^n, \Sigma(\mathcal{A})\right) \sim \left(\mathbb{R}^n, \Sigma(\mathcal{A}_R)\right).$$

So $\alpha(\mathcal{A})$ is the number of bounded components of $\mathbb{R}^n - \mathcal{A}_R$.
Main Theorem

Suppose \mathcal{A} is an arrangement of a finite number of affine hyperplanes in \mathbb{C}^n with $\text{rk}(\mathcal{A}) = l$. Then the L^2-Betti numbers of $M(\mathcal{A})$ (the complement of the hyperplanes) are all 0, except in dimension l, where

$$\beta_i(M(\mathcal{A})) = \alpha(\mathcal{A}).$$

Here $\beta_i(\)$ denotes the i^{th} L^2-Betti number (to be defined later).
A similar theorem

The following is well-known.

Theorem

Suppose L is a “generic” flat complex line bundle over $M(\mathcal{A})$. Then $H^*(M(\mathcal{A}); L)$ vanishes except in dimension l and

$$\dim_{\mathbb{C}} H^l(M(\mathcal{A}); L) = \alpha(\mathcal{A}).$$

Basic idea

If L is a flat line bundle over S^1 giving a nonconstant local coefficient system, then $H^*(S^1; L) = 0$ for $* = 0, 1$.

Similarly, the basic idea for the Main Theorem is that the L^2-Betti numbers of S^1 vanish.
\(L^2 \)-Betti numbers

The regular representation

\(\pi \) is a countable discrete gp.

\[
L^2_\pi := \{ f : \pi \to \mathbb{C} \mid \sum_{x \in \pi} |f(x)|^2 < \infty \},
\]

where the sum is over all \(x \in \pi \).

\(L^2_\pi \) is a Hilbert space with Hermitian inner product:

\[
f \cdot f' := \sum_{x \in \pi} f(x) \overline{f'(x)}.\]

There are unitary \(\pi \)-actions on \(L^2_\pi \) by left or right translation.
Definition

\mathcal{N}_π is the von Neumann algebra on π-equivariant bounded linear operators on $L^2\pi$. If $\varphi \in \mathcal{N}_\pi$, then

$$\text{tr}(\varphi) := \varphi(1) \cdot 1.$$

If $\Phi = (\varphi_{ij})$ is a $n \times n$ matrix with entries in \mathcal{N}_π, then

$$\text{tr}(\Phi) := \sum \text{tr}(\varphi_{ii}).$$

Similarly, if F is a π-equivariant, bounded linear endomorphism on the direct sum of n copies of $L^2\pi$, then $\text{tr}(F) := \text{tr}(\Phi)$ where Φ is any matrix representing F.
Definition (von Neumann dimension)

Suppose V is a π-stable closed subspace of $\bigoplus L^2\pi$ and $p_V : \bigoplus L^2\pi \to \bigoplus L^2\pi$ is orthogonal projection onto V. Put

$$\dim_\pi V := \text{tr}(p_V).$$

- $\dim_\pi V$ is a nonnegative real number.
- It is $= 0$ iff $V = 0$.
- Also, $\dim_\pi L^2\pi = 1$.
(Co)homology with local coefficients

- X a CW complex
- \tilde{X} its universal cover
- $C_i(\tilde{X})$ the cellular i-chains on \tilde{X}
- $\pi = \pi_1(X)$. Suppose M is a π-module.

\[
C_i(X; M) := C_i(\tilde{X}) \otimes_{\pi} M
\]
\[
C^i(X; M) := \text{Hom}_{\pi}(C_i(\tilde{X}), M)
\]

are the (co)chains with *local coefficients in M,*

$H_*(X; M)$ and $H^*(X; M)$ are the corresponding (co)homology groups.
To fix ideas, let’s stick to cohomology.

At first approximation L^2-cohomology means local coefficients in $L^2\pi$, i.e., $H^*(X; L^2\pi)$.

$C^*(X; L^2\pi)$ is a Hilbert space but $H^*(X; L^2\pi)$ need not be. Ker δ is a closed subspace but Im δ need not be.

Define

$$H^*(X; L^2\pi) := \text{Ker } \delta / \text{Im } \delta.$$

$H^*(X; L^2\pi)$ is a closed, π-stable subspace of $C^*(X; L^2\pi)$. (It is $= \text{Ker } \delta \cap (\text{Im } \delta)\perp$.)
If X is a finite complex, then $C^i(X; L^2\pi)$ is a direct sum of finitely many copies of $L^2\pi$ (one for each i-cell of X).

So the closed, π-stable subspace $\mathcal{H}^i(X; L^2\pi)$ has a well-defined von Neumann dimension called the i^{th} L^2-Betti number

$$\beta_i(X) := \dim_{\pi} \mathcal{H}^i(X; L^2\pi).$$

If X is a finite complex then $C^*(X; L^2\pi)$ can be identified with the square summable cochains on \tilde{X} (denoted by $L^2 C^*(\tilde{X})$). The corresponding (reduced) cohomology groups are denoted $L^2\mathcal{H}^*(\tilde{X})$.
Example (The L^2-Betti numbers of S^1 vanish.)

$X = S^1$, $\tilde{X} = \mathbb{R}^1$, $\pi = \mathbb{Z}$.

A 0-cochain is a function on $\text{Vert}(\mathbb{R}^1)$ (=\mathbb{Z}); it is a cocycle iff it is constant. It is L^2 \iff (constant $= 0$). Hence,

$H^0(S^1; L^2\mathbb{Z}) = 0 \implies H^0(X; L^2\pi) = 0 \implies \beta_0(S^1) = 0$.

A 1-chain is a function on $\text{Edge}(\mathbb{R}^1)$; it is a cycle iff it is constant. It is L^2 \iff (constant $= 0$). Hence,

$H_1(S^1; L^2\mathbb{Z}) = 0 \implies H_1(X; L^2\pi) = 0 \implies \beta_1(S^1) = 0$.

Corollary

All L^2-Betti numbers of $S^1 \times B$ vanish.

Proof.

K"unneth Formula.

Remark

Same is true for any S^1-bundle where $\pi_1(\text{fiber})$ goes injectively into $\pi_1(\text{total space})$. Also true for any mapping torus.
Rough idea of proof of theorems

Suppose $\mathcal{U} = \{U_i\}$ is a cover of X by connected open subsets and \mathcal{V} is a subcover s.t.

- $\mathcal{V} = \{U_i \in \mathcal{U} \mid \pi_1(U_i) \neq 1\}$.
- $\forall \sigma \in N(\mathcal{U}), \pi_1(U_{\sigma}) \to \pi_1(X) (= \pi)$ is injective.
 (Here $N(\mathcal{U})$ denotes the nerve of \mathcal{U} and $U_{\sigma} = U_{i_1} \cap \cdots \cap U_{i_k}$, where $\sigma = \{i_1, \ldots, i_k\}$.)
- $\forall \sigma \in N(\mathcal{U}) - N(\mathcal{V}), U_{\sigma}$ is contractible.
- $\forall \sigma \in N(\mathcal{V}), U_{\sigma} = S^1 \times$ (something).
There is a Mayer-Vietoris spectral sequence converging to $H^*(X; L^2\pi)$ with E_2-term

$$E_2^{p,q} = H^p(N(U); H^q(U_\sigma; L^2(\pi_1(U_\sigma))),$$

where the coefficient system is the functor

$$\sigma \mapsto H^q(U_\sigma; L^2(\pi_1(U_\sigma))).$$

Hypotheses $\implies E_2^{p,q}$ is concentrated on the bottom row $q = 0$ and

$$E_2^{p,0} = H^p(N(U), N(V)) \otimes L^2\pi.$$

(Here we are ignoring terms with vanishing L^2-Betti numbers.)

So, $\beta_p(X) = b_p(N(U), N(V)).$
More on hyperplane arrangements

- \mathcal{A} is a hyperplane arrangement in \mathbb{C}^n and Σ is the union of hyperplanes.
- A *subspace of* \mathcal{A} is a nonempty intersection of hyperplanes in \mathcal{A}.
- $L(\mathcal{A})$ (= L) is the poset of subspaces of \mathcal{A}.
- \mathcal{A} is *central* if $L(\mathcal{A})$ has a minimum.
- Given $G \in L$, $\mathcal{A}_G := \{H \in \mathcal{A} \mid G \subset H\}$.
- A *small neighborhood* of a subspace G is a convex tubular neighborhood V s.t. $V \cap H = \emptyset$ for $H \in \mathcal{A} - \mathcal{A}_G$. (So, \mathcal{A}_G is a central hyperplane arrangement in V.)
Choose a small neighborhood V_H for each $H \in \mathcal{A}$. Put $\mathcal{V} := \{V_H\}_{H \in \mathcal{A}}$ and $\mathcal{V} := \bigcup V_H$.

Proposition

The spaces Σ, \mathcal{V} and $|L|$ are homotopy equivalent. Each is homotopy equivalent to a wedge of $(l - 1)$-spheres (where $l = \text{rk}(\mathcal{A})$).

$\alpha(\mathcal{A})$ = the number of spheres.

Proof of 1$^{\text{st}}$ sentence

For each simplex σ of $N(\mathcal{V})$, V_{σ} is convex, hence contractible. So, $\Sigma \sim \mathcal{V} \sim N(\mathcal{V})$. $|L|$ is the geometric realization of poset L. It has an open cover with same nerve as \mathcal{V} and with contractible intersections. So, $|L| \sim N(\mathcal{V})$.
Proof of 2nd sentence.

The proof is by induction on \(l \) and on Card(\(\mathcal{A} \)) using the “usual deletion-restriction argument.”

Choose \(H \in \mathcal{A} \). Put \(\mathcal{A}' := \mathcal{A} - \{H\} \), \(\mathcal{A}'' := \mathcal{A}|_H \).

\(\Sigma = \Sigma' \cup H \) and \(\Sigma' \cap H = \Sigma'' \).

If \(\mathcal{A} = \mathcal{A}'' \times \mathbf{C} \) done by induction on \(l \). Otherwise, \(\text{rk}(\mathcal{A}') = \text{rk}(\mathcal{A}) = \text{rk}(\mathcal{A}'') + 1 \) and

\[
\begin{array}{cccccc}
\longrightarrow & H_*(\Sigma') & \longrightarrow & H_*(\Sigma) & \longrightarrow & H_*(\Sigma, \Sigma') & \longrightarrow \\
& H_*(\mathcal{H}, \Sigma'') & \parallel & & & & \\
\end{array}
\]

By induction, \(\overline{H}_*(\Sigma') \) is concentrated in \(\text{dim } l - 1 \) and \(\overline{H}_*(\Sigma'') \) in \(\text{dim } l - 2 \). So \(\overline{H}_*(\Sigma) \) is concentrated in \(\text{dim } l - 1 \).
Extend \(\mathcal{V} \) to an open cover \(\mathcal{U} \) of \(\mathbb{C}^n \) by adding open balls in \(M(\mathcal{A}) := \mathbb{C}^n - \Sigma \).

Since each element of \(\mathcal{U} \) is convex,

\[
H^\ast(N(\mathcal{U}), N(\mathcal{V})) = H^\ast(\mathbb{C}^n, \Sigma).
\]

For each \(V_H \in \mathcal{V} \), put \(\hat{V}_H := V_H - H \). Define \(\hat{\mathcal{V}} := \{ \hat{V}_H \}_{H \in \mathcal{A}} \). Then \(\hat{\mathcal{V}} \) is open cover of \(V - \Sigma \).

Extend \(\hat{\mathcal{V}} \) to open cover \(\hat{\mathcal{U}} \) of \(M(\mathcal{A}) \) by adjoining the balls.

Key point

\[N(\hat{\mathcal{V}}) = N(\mathcal{V}) \text{ and } N(\hat{\mathcal{U}}) = N(\mathcal{U}). \]
Lemma

Suppose \mathcal{A} is a nonempty central arrangement. Then

$$M(\mathcal{A}) = S^1 \times (\text{something}).$$

Proof.

Can assume \mathcal{A} is an arrangement of linear hyperplanes (through the origin). The Hopf bundle $M(\mathcal{A}) \to M(\mathcal{A})/S^1$ is trivial.
Main Theorem

The L^2-Betti numbers of $M(\mathcal{A})$ are all 0, except in dimension l, where $\beta_l(M(\mathcal{A})) = \alpha(\mathcal{A})$.

Proof.

- \hat{U} is open cover of $M(\mathcal{A})$.
- $\forall \sigma \subset N(\hat{U}) - N(\hat{V}), U_\sigma \sim \ast$.
- $\forall \sigma \subset N(\hat{V}), U_\sigma = S^1 \times (\text{something})$.
- Use spectral sequence and fact that $H^*(N(\hat{U}), N(\hat{V})) = H^*\left(\mathbb{C}^n, \Sigma\right)$ to complete the proof.
Coxeter groups

- \((W, S)\) a Coxeter system.
- \(L := \{ T \subset S \mid \langle T \rangle \text{ is finite}\}; \) it is a simplicial cx.
- \(\exists\) a representation of \(W\) as a reflection group on \(\mathbb{C}^n\) s.t. \(W\) acts on an open convex set \(\Omega\) with finite isotropy subgps and freely on \(M\), the complement of the hyperplanes in \(\Omega\).

Artin groups

- \(A := \pi_1(M/W)\) is the associated Artin group.
- Conj. \(M/W \sim K(A, 1)\).
- If \(W\) is finite, \(M\) is complement of central arrangement and so has all \(L^2\)-Betti numbers \(= 0\).
Theorem (Davis-Leary)

\[\beta_i(M/W) = b_i(\text{Cone}(L), L) \]
The pure symmetric automorphism group $P\Sigma_n$

- $P\Sigma_n \subset \text{Aut}(F_n)$.
- It acts on a contractible complex M with isotropy subgps either trivial or free abelian.

Theorem (McCammond-Meier)

$$\beta_i(P\Sigma_{n+1}) = \begin{cases}
0 & \text{if } i \neq n, \\
n^n & \text{if } i = n.
\end{cases}$$