Coxeter groups, Artin groups, buildings

Mike Davis

University of Oklahoma, February 29, 2024 The basic object is a Coxeter system. To this one can associate various cell complexes: the Davis-Moussong complex, the Deligne complex of an Artin group, and the "standard realization" of any building whose type is the Coxeter system.

Chapter 4 of new book

Infinite group actions on polyhedra, to appear in Springer, 2024.

Outline

- Coxeter groups
- Artin groups
- Buildings
- Nonpositive curvature
- **5** The $K(\pi, 1)$ problem

Coxeter systems

S = a set (of generators).

 $M=m(s,t)_{s,t\in S}$ is a *Coxeter matrix*, ie, an $S\times S$ symmetric matrix with entries in $\mathbb{N}\cup\{\infty\}$, 1 s on the diagonal and off-diagonal entries \geq 2. The *Coxeter group W* is defined by the presentation:

$$W = \langle S \mid (st)^{m(s,t)} = 1 \rangle_{(s,t) \in S \times S}$$

(W, S) is a Coxeter system

Alternate encoding of data

Graph L^1 with Vert $L^1 = S$ and labelling of edges $m : \text{Edge } L^1 \to \{2, 3, ...\}$, where edge $\{s, t\}$ is labelled m(s, t).

Special subgroups

For any $T \leq S$, put $W_T = \langle T \rangle$. When W_T is finite, it is called a *spherical subgroup* and T is a *spherical subset*.

Poset of spherical subsets

 $\mathcal{S} = \{ \text{spherical subsets of } \mathcal{S} \}.$ \mathcal{S}^{op} is the opposite poset. $\mathcal{L}(\mathcal{W}, \mathcal{S})$ is the simplicial complex with vertex set \mathcal{S} and $\{ \text{nonempty simplices} \} = \{ \mathcal{T} \in \mathcal{S} \mid \mathcal{T} \neq \emptyset \}.$ It is called *nerve* of $(\mathcal{W}, \mathcal{S})$.

K(W, S) = |S|, the cone on the barycentric subdivision of L. Called the standard *fundamental chamber*.

A simple complex of groups

$$WS^{op} = (W_T)_{T \in \mathcal{S}}$$

A simple complex of groups is associated to group action with a strict fundamental domain.

Poset of spherical cosets of W

Coset(
$$W$$
) = $\coprod_{T \in \mathcal{S}} W/W_T$, called the *development* of $W\mathcal{S}^{op}$

Strict fundamental domains

Two possibilities:

A simplex Δ

The codimension-one faces of Δ are indexed by S. Faces are indexed by subsets T < S. The face $\Delta_T = \cap_{s \in T} \Delta_s$ has codimension Card T.

The chamber K(W, S)

K(W,S) is the geometric realization of S (or S^{op}). Its k-simplices are chains $T_0 < \cdots < T_k$. These can be assembled into faces or dual cells.

$$K_T = |\mathcal{S}_{\geq T}|$$
 $K(T) = |\mathcal{S}_{\leq T}|$

K(T) is a combinatorial cube of dimension Card T.

For $x \in K$, put S(x) be the smallest T where $x \in K_T - \partial K_T$ (Here $\partial K_T = |S_{>T}|$.)

Davis-Moussong complex $\Sigma(W, S)$

$$\Sigma(W,S) = (W \times K)/\sim$$
, also denoted by $D(W,K)$, where

$$(w,x) \sim (w',x') \iff x = x' \text{ and } wW_{S(x)} = w'W_{S(x)}.$$

The subspace $W_TK(T) \subset \Sigma(W, S)$ is a cell called a *Coxeter zonotope*. The poset of such zonotopes is $\cong \mathsf{Coset}(W)$

Coxeter complex

$$D(W, \Delta) = (W \times \Delta) / \sim$$
, where \sim is defined as above.

	Coxeter system	Artin group	building
Notation	(W, S)	Α	C
spherical	S =	same	same
subsets	$ \{T < S \mid W_T \text{ is finite} \} $		
fund. chamber	K(W,S) = S	same	same
cell cx	Davis-Moussong cx	Deligne cx	realization
	$\Sigma(W,S)$	Λ	C
simple cx gps	$(W_T)_{T \in \mathcal{S}}$	$(A_T)_{T\in\mathcal{S}}$	$(G_T)_{T\in\mathcal{S}}$
spherical	$\coprod_{T \in \mathcal{S}} W/W_T$	$\coprod_{T\in\mathcal{S}} A/A_T$	$\coprod_{T\in\mathcal{S}}\mathcal{R}(T)$
cosets			
CAT(0)?	yes	?	yes
contractible?	yes	?	yes
$K(\pi, 1)$ ques?	yes	?	yes

Definition of Artin group

(W, S) as before. For letters a, b and $m \in \{2, 3, \dots\}$, put

$$\operatorname{prod}(a, b; m) = \underbrace{ab \cdots}_{m \text{ terms}}$$

Let $\{a_s\}_{s\in S}$ be new symbols for generators. Define

$$A = A(W, S) = \langle \{a_s\} \mid \operatorname{prod}(a_s, a_t; m) = \operatorname{prod}(a_t, a_s; m) \rangle,$$

where $s \in S$ and $\{s, t\} \in \operatorname{Edge} L^1$. For $T \subset S$, put $A_T = \langle \{a_s\}_{s \in T} \rangle$.

Simple complex of groups

 $\mathcal{AS}^{op} = \{\mathcal{A}_T\}_{T \in \mathcal{S}}$. If, instead, the underlying poset is the set of proper subsets of \mathcal{S} , then $\mathcal{S}^{op} \cong \{\text{faces of } \Delta\}$.

Poset of spherical cosets of A

 $\operatorname{Coset}(A) = \coprod_{T \in \mathcal{S}(W,S)} A/A_T$, is the *development* of $A\mathcal{S}^{op}$. The corresponding cell complex is the *Deligne complex*. If we use the proper subsets, the corresponding poset of cosets is called the *Artin complex*.

Deligne complex

$$\Lambda(W,S) = D(A,K) = (A \times K)/\sim$$
, as before

$$(a,x) \sim (a',x') \iff x = x' \text{ and } aA_{S(x)} = a'A_{S(x)}.$$

When fund chamber is simplex Δ , as before, define the *Artin* complex to be $D(A, \Delta)$.

The Deligne cx is similar to Davis-Moussong cx except that along each codimension 1 face, instead of 2 chambers meeting, we have a an infinite cyclic group worth of chambers.

Buildings

Combinatorially, a "building" is a set $\mathcal C$ of "chambers" with extra structure. In particular, each building will have an associated Coxeter system (W,S).

Chamber systems

A *chamber system* over S is a set \mathcal{C} together with a family of equivalence relations in indexed by S. Each s-equivalence class must have at least 2 elements. Two s-equivalent chambers are s-adjacent if they are not equal.

Example

The Coxeter group W is a chamber system over S. Two elements are s-equivalent if they determine the same coset in $W/W_{\{s\}}$. (This is the "thin building" of type (W,S).)

Example

The Artin group A = A(W, S) is a chamber system over S; it is usually not a building.

Galleries

A *gallery* in \mathcal{C} is a sequence of adjacent chambers C_0, C_1, \ldots, C_k . If C_{i-1} is s_i -adjacent to C_i , then the gallery has $type\ (s_1, s_2, \ldots, s_k)$. If each $s_i \in \mathcal{T} \subset \mathcal{S}$, then the gallery is a T-gallery.

Residues

A T-residue is a T-gallery connected component. For example, the $\{s\}$ -residue containing a chamber C is the s-equivalence class containing C (analogous to a coset).

Examples of rank 2 buildings, $S = \{s, t\}$

Trees

The set of edges in a tree (without a terminal vertex) is a building of type $S = \{s, t\}$ and a building of type (D_{∞}, S) .

Generalized *m*-gons

Given $m \in \mathbb{N}$, $m \geq 2$, a finite bipartite graph Γ is called a *generalized m-gon* if it has girth 2m and diameter m. $\mathcal{C} = \operatorname{Edge} \Gamma$ is a chamber system over S and a building of type (D_m, S) .

Chamber systems of type (W, S)

Let $\mathcal C$ be a (gallery connected) chamber system over S and m(s,t) a Coxeter matrix. Then $\mathcal C$ has $type\ m(s,t)$ (or type (W,S)) if each $\{s,t\}$ residue is a generalized m(s,t)-gon. The chamber system is thick if each s-residue has more than 2 elements.

Feit-Higman Theorem

Finite, thick generalized *m*-gons exist only for $m \in \{2, 3, 4, 6, 8\}$.

W-distance

Define $\delta: \mathcal{C} \times \mathcal{C} \to W$ as follows. Suppose $C, D \in \mathcal{C}$ and $C = C_0, \cdots, C_k = D$ is a minimal gallery between them. Let (s_1, \ldots, s_k) be its type and let $w = s_1 \cdots s_k$ be the associated element of W. Then $\delta(C, D) = w$.

Definition of building

A chamber system $\mathcal C$ of type (W,S) equipped with a W-distance function $\delta:\mathcal C\to\mathcal C$ is a *building* if δ satisfies certain axioms (which we won't state).

Geometric realization

This is a space $|\mathcal{C}|$ where there is a copy of K(W,S) for each chamber in \mathcal{C} . In other words, $|\mathcal{C}| = (\mathcal{C} \times K(W,S))/\sim$, where as before,

$$(C, x) \sim (C', x') \iff x = x' \text{ and } C, C' \in \text{same } S(x) \text{-residue.}$$

Chamber-transitive group actions

Suppose G is a chamber-transitive group of automorphisms of \mathcal{C} . Fix $C \in \mathcal{C}$ and let B (or G_{\emptyset}) denote the stabilizer of C. For $T \subset S$, let $G_T =$ stabilizer of T-residue containing C. Then $GS^{op} = \{G_T\}_{T \in \mathcal{S}}$ is a simple complex of groups. Moreover, $G = \lim_{T \to \infty} G_T$.

Recovering the building

 $\mathcal{C}=G/B$. Coset $(G)=\coprod_{T\in\mathcal{S}}G/G_T$ is the poset of spherical cosets in $G\mathcal{S}^{op}$. A coset of G_T is the same thing as a T-residue. The development Coset(G) is $D(G,K)=(G\times K)/\sim$. $(=|\mathcal{C}|)$.

Right-angled buildings

RABs

Suppose (W,S) is right-angled. $(G_s)_{s\in S}$ for each $T\in \mathcal{S}$, let G_T be the direct product of the G_s , $s\in T$. The direct limit G is the graph product and $G\mathcal{S}^{op}=\{G_T\}_{T\in \mathcal{S}}$ defines a right-angled building with $D(G,K)=(G\times K)/\sim$.

	Coxeter system	Artin group	building
Notation	(W,S)	Α	C
spherical	S =	same	same
subsets	$\{T < S \mid W_T \text{ is finite}\}$		
fund. chamber	K(W,S) = S	same	same
cell cx	Davis-Moussong cx	Deligne cx	realization
	$\Sigma(W,S)$	Λ	C
simple cx gps	$(W_T)_{T \in \mathcal{S}}$	$(A_T)_{T\in\mathcal{S}}$	$(G_T)_{T\in\mathcal{S}}$
spherical	$\coprod_{T \in \mathcal{S}} W/W_T$	$\coprod_{T\in\mathcal{S}} A/A_T$	$\coprod_{T\in\mathcal{S}}\mathcal{R}(T)$
cosets			
CAT(0)?	yes	?	yes
contractible?	yes	?	yes
$K(\pi, 1)$ ques?	yes	?	yes

CAT(0) spaces

Gromov defined what it means for a complete geodesic metric space to be "CAT(0)" by comparing its triangles with triangles in \mathbb{R}^2 . A space is "nonpositively curved" (abbreviated NPC) if it is locally CAT(0).

Basic facts

- 1. Simply connected and NPC \implies CAT(0).
- 2. $CAT(0) \implies contractible$.
- 3. A piecewise euclidean polyhedron is NPC if the link of each of each cell (a piecewise spherical polyhedron) is CAT(1).

Theorem (Moussong 1988)

 $\Sigma(W, S)$ is CAT(0).

Corollary (D.)

If C is a building of type (W, S), then |C| is CAT(0). If C is a spherical building, then the link of the cone point, $D(C, \Delta^n)$ is CAT(1).

Spherical Coxeter groups

Suppose W is finite and acts as a reflection group on S^n with fundamental chamber a spherical simplex Δ^n . Then the Coxeter complex $D(W, \Delta^n) \cong S^{n-1}$; hence, is CAT(1).

Conjecture (Charney-Davis)

When (W, S) is not spherical, the Deligne complex, D(A, K), is CAT(0). If

Conjecture (Charney-Davis)

When (W, S) is spherical, the Artin complex $D(A, \Delta^n)$ is CAT(1).

This implies the previous conjecture for general Artin groups. (Since the link of a cell in Λ corresponds to a spherical Artin subgroup.)

Suppose $GQ = \{G_T\}_{T \in Q}$ is a simple complex of groups over a poset Q. Each group G_T has a classifying space BG_T which is aspherical, i.e., is a $K(G_T, 1)$

Using the injections $G_T \to G_{T'}$ we can glue together the BG_T to form a new space BGQ, called the *aspherical realization* of GQ. Its homotopy type is well-defined. Its fundamental group is G.

$K(\pi, 1)$ -problem

Is BGQ = BG, i.e., is BGQ aspherical?

Theorem

If D(G, |Q|) is contractible, then the $K(\pi, 1)$ -question for GQ has a positive answer.

Proof

Suppose D(G,|Q|) is contractible. $D(G,|Q|) \times_G EG$ has two projections p_1 , p_2 to |Q| and BG, respectively. The fiber of p_1 over $|Q|_T$ is BG_T . So, $(D(G,|Q|) \times_G EG) \sim BGQ$. The fiber of p_2 is D(G,|Q|); so, p_2 is a homotopy equivalence.

Corollary

If G is a Coxeter group or a chamber transitive group on a building, then the $K(\pi, 1)$ -question for GS^{op} has a positive answer.

Theorem [Charney-D]

The answer is also positive for RAAGs and for Artin groups with $\dim K \le 2$

The $K(\pi, 1)$ -question for general Artin groups is an important open question in geometric group theory.

	Coxeter system	Artin group	building
Notation	(W, S)	Α	C
spherical	S =	same	same
subsets	$ \{T < S \mid W_T \text{ is finite} \} $		
fund. chamber	K(W,S) = S	same	same
cell cx	Davis-Moussong cx	Deligne cx	realization
	$\Sigma(W,S)$	Λ	C
simple cx gps	$(W_T)_{T \in \mathcal{S}}$	$(A_T)_{T\in\mathcal{S}}$	$(G_T)_{T\in\mathcal{S}}$
spherical	$\coprod_{T \in \mathcal{S}} W/W_T$	$\coprod_{T\in\mathcal{S}} A/A_T$	$\coprod_{T\in\mathcal{S}}\mathcal{R}(T)$
cosets			
CAT(0)?	yes	?	yes
contractible?	yes	?	yes
$K(\pi, 1)$ ques?	yes	?	yes