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The basic object is a Coxeter system. To this one can associate
various cell complexes: the Davis-Moussong complex, the
Deligne complex of an Artin group, and the “standard
realization” of any building whose type is the Coxeter system.

Chapter 4 of new book
Infinite group actions on polyhedra, to appear in Springer, 2024.
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Coxeter systems
S = a set (of generators).
M = m(s, t)s,t∈S is a Coxeter matrix, ie, an S × S symmetric
matrix with entries in N ∪ {∞}, 1 s on the diagonal and
off-diagonal entries ≥ 2. The Coxeter group W is defined by
the presentation:

W = 〈S | (st)m(s,t) = 1〉(s,t)∈S×S

(W ,S) is a Coxeter system

Alternate encoding of data

Graph L1 with Vert L1 = S and labelling of edges
m : Edge L1 → {2,3, . . . }, where edge {s, t} is labelled m(s, t).
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Special subgroups

For any T ≤ S, put WT = 〈T 〉. When WT is finite, it is called a
spherical subgroup and T is a spherical subset.

Poset of spherical subsets

S = {spherical subsets of S}. Sop is the opposite poset.
L(W ,S) is the simplicial complex with vertex set S and
{nonempty simplices} = {T ∈ S | T 6= ∅}. It is called nerve of
(W ,S).
K (W ,S) = |S|, the cone on the barycentric subdivision of L.
Called the standard fundamental chamber.
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A simple complex of groups

WSop = (WT )T∈S

A simple complex of groups is associated to group action with a
strict fundamental domain.

Poset of spherical cosets of W

Coset(W ) =
∐

T∈S W/WT ,
called the development of WSop
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Strict fundamental domains

Two possibilities:

A simplex ∆

The codimension-one faces of ∆ are indexed by S. Faces are
indexed by subsets T < S.The face ∆T = ∩s∈T ∆s has
codimension Card T .

The chamber K (W ,S)

K (W ,S) is the geometric realization of S (or Sop). Its
k -simplices are chains T0 < · · · < Tk . These can be assembled
into faces or dual cells.

KT = |S≥T | K (T ) = |S≤T |

K (T ) is a combinatorial cube of dimension Card T .
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For x ∈ K , put S(x) be the smallest T where x ∈ KT − ∂KT
(Here ∂KT = |S>T |.)

Davis-Moussong complex Σ(W ,S)

Σ(W ,S) = (W × K )/ ∼, also denoted by D(W ,K ), where

(w , x) ∼ (w ′, x ′) ⇐⇒ x = x ′ and wWS(x) = w ′WS(x).

The subspace WT K (T ) ⊂ Σ(W ,S) is a cell called a Coxeter
zonotope. The poset of such zonotopes is ∼= Coset(W )

Coxeter complex

D(W ,∆) = (W ×∆)/ ∼, where ∼ is defined as above.

Mike Davis Coxeter groups, Artin groups, buildings



Mike Davis Coxeter groups, Artin groups, buildings



Coxeter system Artin group building
Notation (W ,S) A C
spherical S = same same
subsets {T < S |WT is finite}
fund. chamber K (W ,S) = |S| same same
cell cx Davis-Moussong cx Deligne cx realization

Σ(W ,S) Λ |C|
simple cx gps (WT )T∈S (AT )T∈S (GT )T∈S
spherical

∐
T∈S W/WT

∐
T∈S A/AT

∐
T∈S R(T )

cosets
CAT(0)? yes ? yes
contractible? yes ? yes
K (π,1) ques? yes ? yes
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Definition of Artin group

(W ,S) as before. For letters a,b and m ∈ {2,3, . . . }, put

prod(a,b; m) = ab · · ·︸ ︷︷ ︸
m terms

Let {as}s∈S be new symbols for generators. Define

A = A(W ,S) = 〈{as} | prod(as,at ; m) = prod(at ,as; m)〉,

where s ∈ S and {s, t} ∈ Edge L1. For T ⊂ S, put
AT = 〈{as}s∈T 〉.
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Simple complex of groups

ASop = {AT}T∈S . If, instead, the underlying poset is the set of
proper subsets of S, then Sop ∼= {faces of ∆}.

Poset of spherical cosets of A

Coset(A) =
∐

T∈S(W ,S) A/AT , is the development of ASop.
The corresponding cell complex is the Deligne complex. If we
use the proper subsets, the corresponding poset of cosets is
called the Artin complex.
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Deligne complex

Λ(W ,S) = D(A,K ) = (A× K )/ ∼, as before

(a, x) ∼ (a′, x ′) ⇐⇒ x = x ′ and aAS(x) = a′AS(x).

When fund chamber is simplex ∆, as before, define the Artin
complex to be D(A,∆).

The Deligne cx is similar to Davis-Moussong cx except that
along each codimension 1 face, instead of 2 chambers
meeting, we have a an infinite cyclic group worth of chambers.
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Buildings

Combinatorially, a “building” is a set C of “chambers” with extra
structure. In particular, each building will have an associated
Coxeter system (W ,S).

Chamber systems
A chamber system over S is a set C together with a family of
equivalence relations in indexed by S. Each s-equivalence
class must have at least 2 elements. Two s-equivalent
chambers are s-adjacent if they are not equal.

Example
The Coxeter group W is a chamber system over S. Two
elements are s-equivalent if they determine the same coset in
W/W{s}. (This is the “thin building” of type (W ,S).)

Mike Davis Coxeter groups, Artin groups, buildings



Example

The Artin group A = A(W ,S) is a chamber system over S; it is
usually not a building.

Galleries
A gallery in C is a sequence of adjacent chambers
C0,C1, . . . ,Ck . If Ci−1 is si -adjacent to Ci , then the gallery has
type (s1, s2, . . . , sk ). If each si ∈ T ⊂ S, then the gallery is a
T-gallery.

Residues
A T-residue is a T -gallery connected component. For example,
the {s}-residue containing a chamber C is the s-equivalence
class containing C (analogous to a coset).
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Examples of rank 2 buildings, S = {s, t}

Trees
The set of edges in a tree (without a terminal vertex) is a
building of type S = {s, t} and a building of type (D∞,S).

Generalized m-gons

Given m ∈ N, m ≥ 2, a finite bipartite graph Γ is called a
generalized m-gon if it has girth 2m and diameter m. C = Edge Γ
is a chamber system over S and a building of type (Dm,S).
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Chamber systems of type (W ,S)

Let C be a (gallery connected) chamber system over S and
m(s, t) a Coxeter matrix. Then C has type m(s, t) (or type
(W ,S)) if each {s, t} residue is a generalized m(s, t)-gon. The
chamber system is thick if each s-residue has more than 2
elements.

Feit-Higman Theorem

Finite, thick generalized m-gons exist only for m ∈ {2,3,4,6,8}.

W -distance
Define δ : C × C →W as follows. Suppose C,D ∈ C and
C = C0, · · · ,Ck = D is a minimal gallery between them. Let
(s1, . . . , sk ) be its type and let w = s1 · · · sk be the associated
element of W . Then δ(C,D) = w .
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Definition of building

A chamber system C of type (W ,S) equipped with a
W -distance function δ : C → C is a building if δ satisfies certain
axioms (which we won’t state).

Geometric realization
This is a space |C| where there is a copy of K (W ,S) for each
chamber in C. In other words, |C| = (C × K (W ,S))/ ∼, where
as before,

(C, x) ∼ (C′, x ′) ⇐⇒ x = x ′ and C,C′ ∈ same S(x)-residue.
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Chamber-transitive group actions

Suppose G is a chamber-transitive group of automorphisms of
C. Fix C ∈ C and let B (or G∅) denote the stabilizer of C. For
T ⊂ S, let GT = stabilizer of T -residue containing C.
Then GSop = {GT}T∈S is a simple complex of groups.
Moreover, G = lim GT .

Recovering the building

C = G/B. Coset(G) =
∐

T∈S G/GT is the poset of spherical
cosets in GSop. A coset of GT is the same thing as a T -residue.
The development Coset(G) is D(G,K ) = (G × K )/ ∼ . (= |C|).
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Right-angled buildings

RABs
Suppose (W ,S) is right-angled. (Gs)s∈S for each T ∈ S, let GT
be the direct product of the Gs, s ∈ T . The direct limit G is the
graph product and GSop = {GT}T∈S defines a right-angled
building with D(G,K ) = (G × K )/ ∼.
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Coxeter system Artin group building
Notation (W ,S) A C
spherical S = same same
subsets {T < S |WT is finite}
fund. chamber K (W ,S) = |S| same same
cell cx Davis-Moussong cx Deligne cx realization

Σ(W ,S) Λ |C|
simple cx gps (WT )T∈S (AT )T∈S (GT )T∈S
spherical

∐
T∈S W/WT

∐
T∈S A/AT

∐
T∈S R(T )

cosets
CAT(0)? yes ? yes
contractible? yes ? yes
K (π,1) ques? yes ? yes
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CAT(0) spaces

Gromov defined what it means for a complete geodesic metric
space to be “CAT(0)” by comparing its triangles with triangles in
R2. A space is “nonpositively curved” (abbreviated NPC) if it is
locally CAT(0).

Basic facts
1. Simply connected and NPC =⇒ CAT(0).
2. CAT(0) =⇒ contractible.
3. A piecewise euclidean polyhedron is NPC if the link of each
of each cell (a piecewise spherical polyhedron) is CAT(1).
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Theorem (Moussong 1988)

Σ(W ,S) is CAT(0).

Corollary (D.)

If C is a building of type (W ,S), then |C| is CAT(0). If C is a
spherical building, then the link of the cone point, D(C,∆n) is
CAT(1).

Spherical Coxeter groups

Suppose W is finite and acts as a reflection group on Sn with
fundamental chamber a spherical simplex ∆n. Then the
Coxeter complex D(W ,∆n) ∼= Sn−1; hence, is CAT(1).
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Conjecture (Charney-Davis)

When (W ,S) is not spherical, the Deligne complex, D(A,K ), is
CAT(0). If

Conjecture (Charney-Davis)

When (W ,S) is spherical, the Artin complex D(A,∆n) is
CAT(1).

This implies the previous conjecture for general Artin groups.
(Since the link of a cell in Λ corresponds to a spherical Artin
subgroup.)
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Suppose GQ = {GT}T∈Q is a simple complex of groups over a
poset Q. Each group GT has a classifying space BGT which is
aspherical, i.e., is a K (GT ,1)

Using the injections GT → GT ′ we can glue together the BGT to
form a new space BGQ, called the aspherical realization of GQ.
Its homotopy type is well-defined. Its fundamental group is G.

K (π,1)-problem

Is BGQ = BG, i.e., is BGQ aspherical?
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Theorem
If D(G, |Q|) is contractible, then the K (π,1)-question for GQ
has a positive answer.

Proof
Suppose D(G, |Q|) is contractible. D(G, |Q|)×G EG has two
projections p1, p2 to |Q| and BG, respectively. The fiber of p1
over |Q|T is BGT . So, (D(G, |Q|)×G EG) ∼ BGQ. The fiber of
p2 is D(G, |Q|); so, p2 is a homotopy equivalence.
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Corollary
If G is a Coxeter group or a chamber transitive group on a
building, then the K (π,1)-question for GSop has a positive
answer.

Theorem [Charney-D]
The answer is also positive for RAAGs and for Artin groups with
dim K ≤ 2

The K (π,1)-question for general Artin groups is an important
open question in geometric group theory.
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Coxeter system Artin group building
Notation (W ,S) A C
spherical S = same same
subsets {T < S |WT is finite}
fund. chamber K (W ,S) = |S| same same
cell cx Davis-Moussong cx Deligne cx realization

Σ(W ,S) Λ |C|
simple cx gps (WT )T∈S (AT )T∈S (GT )T∈S
spherical

∐
T∈S W/WT

∐
T∈S A/AT

∐
T∈S R(T )

cosets
CAT(0)? yes ? yes
contractible? yes ? yes
K (π,1) ques? yes ? yes
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