1. Polyhedral Products

(a)
$$x_{A} = *A$$
 for all but

finitely many A

(b) $\{x \in S \mid x_{A} \notin B_{A}\}$ is

a simplex of L

Examples.

(a)
$$(A_{A}, B_{A}) = ([0, i], 0)$$

(1)
$$(A_2, B_2) = ([-1,1], \{\pm 1\})$$

 $A^L = P_L$

(2)
$$(A_{A}, B_{A}) = (Cone E_{A}, E_{A})$$

 $E_{A} = Cliscrete Set$
 $A^{L} = Z_{E}$

(3)
$$(A_{a}, B_{a}) = (5', *)$$

 $A_{L} = TL$

NPC
To set CAT(o) examples

L should be a flag cx

TTA, is a cube IS 15 cubical sub cx
of TS Fundamental domain is Ky PL (5 NPC = L 15 flag (by Gronov's Lemna)

aniversal cover P (0) Let M/ = gp of all lifts
of (Cz) saction to Pi Claim W, 15 RACC. Pf na = reflection on I D= lift to Pl which
fixes appropriete face (xz0)
of a lift of K , FA, A) = pein

$$(st)^2 = 1 \iff T^{(s,n)}$$
 is a $2-c-be$ in P_1

$$\iff \{s,t\} = \sigma^1 \in L.$$

Presentation: generators = 5 Relations

 $(2t)^2 = 1$ $\forall x$ $(2t)^2 = 1$ $\exists x, t \in Edse L.$

Remarks

1) If $L = S^{n-1}$, then P_L 15 an n-manifold.

2) Suppose $L = Y - gon, then W_L = D_D \times D_D$ and P_L is the standard flat T^2 embedded in $S^3 = \partial T^4$,

Suppose L = m-gon then P_L is a surface with $X(P_L) = 4(1-\frac{1}{2}m + \frac{1}{4}m) = 4-m$ (This example is due to Coxeter)

 $\frac{Z_{L}: RAB's}{(A_{A}, B_{A}) = (Come E_{A}, E_{A})}$ $E_{A} = discrete set. |E_{A}| > 1$ $Z_{L} = A^{L} = Cone E$ $Cone E_{A} = V$

Since TI Come En 1s clube complex, Z_L 1s a cube ex.

Lemma If L is flag cx, then Z, 15 NPC Pf: Based on 3-feets: · L flag cx => Lk(o) 13 flag cx · Links in Z, have foran Lh(o) & KE2. · Join of flag complexes Remark: If each Ez 13 a discrete gp G2, Then G= +Gn acts on ZL and Ky is

fundamental domain.

Universal Covers: Z = univ. cover

Thm. Z L is standard realization

of a RAB associated to

Coxeter gp W L with fund

chamber K L. Each apartment

15 = P L.

Graph Products of a family

a gps (Graph Ses a.r. t

a simple graph L., Form

polyhedral product

Z_ = Cone G. achere

Cone G = S(Cone Graph Ses

As before & Gra 12 G_ = gpotall lifts of PGs action to Z. Presentation: G 15 quotient of free product & C2 by relations: if gaely, gaely [gA, gx]=1 and 3 s. A3 E Edge L Examples ?

If each $C_{\Delta} = C_{2}$, then GL= WL, the RACG. · If each Gz = Z, then GL = AL the RAAG

Ti : The classifying space of A Put each (A2, B2) = (5, 1) T_ = A < TS=TT 51 5' is a cube cx with vertex and 1-edge. Therefore, the product To 13 also e cube cr. The the link of vertex in S' 15 SO. For NE Vert (TS) Lk(n) = & 50 = octahedron on Similarly

Lk[N, T_L) = OL octahedron

= U O(σ) $\sigma \in L$ Exercise
Lemma L a flag cx = 0

OL is flag cx.

So The is (AT(O),
Obviously, The (The) = A

So, The BA

Polyhedral Products of Classifying Spaces

Let [Ga] ses be collection

of ans. (A. R) = (R(r. *)

- UN -. (A.) - NI (-- NI) and X C TT BGs corresponding polyhedral product Thm i) Th (XL) = C, , the graph product of the BGz. 2) X, ~ BG, Pf Both statements follow by induction over subcomplexes of L 7, (X) = lim Go = G A defferent proof of 2) is as follows: X1.= [(E(-, C-,))]

" L (- - 12) U 13 1-11 Then X' Is a covering space. Also, since f: (EGs, Gs) -> (Cone Gs, Gs)

15 a Gs-equiverient
homotopy equivalence it induces a homotopy equiv. $X_1 \longrightarrow Z_1$ Taking universal covers that X_ -> Z, is i. \widehat{X}_1 is confractible.

Addifferent description of
$$P_L$$
 (= Σ_L)

 $K = K_L$ (= $P_L \wedge (o, 1)^S$)

For $a \in S$, put
 $K_A = K \wedge St_A = oS$

For $a \in L$,

For
$$\sigma \in L$$
,
$$K_{\sigma} = \bigwedge_{\alpha \in \sigma} K_{\alpha}$$

The stabilizer of Kir is Co = WA = (AEO). Ky is "dual cone" of the simplex of EL 2 3K=UK = L

Ex 1f L 15 a PL-triangulation of 5h-1 then Kir is duel cell to or, & K = Cone(dK) = D" We think of L bdry cx of a simplicial polytope and K as the dual simple polytope.

For any XEK o(x) = largest or

s.t $x \in K_{\sigma}$ ($\sigma = \{a \mid x_{a} = 0\}$)

Alternate Description of $\sum_{k} \mathcal{U} = (\mathcal{W}_{x} \times K) / \mathcal{U} = (\mathcal{W}_{x} \times K) / \mathcal{U}$ where $(w, x) \sim (w', x') \approx 1$ x = x' and $w W_{\sigma(x)} = w' W_{\sigma(x)}$.

Then WM U as a reflection group.

with strict fundamental domain

K.

Note: If $\Gamma = ken(W-2C_2)$ Then Γ acts freely on M $+ M/\Gamma = P_1$.

The Reflection Group Trick. Suppose G 15 a group of type F. This means I a finite CW complex X s.t X~ BG. · Thicken X to e mfld with bdry N. · Triangulate 2N a flag simplicial ex L Put dual cell structure on 3N s.t. No = dual cell to orel.

· W= W1 = associated RACC. · As before, put 21= (W × N) /~ Then U is a spherical mfld and if [= ken W-r C, Then U/ = M a closed aspherical mfld Moreover, N 15 a struct funde mental domain for C2 action on M the quotient map M-7N-BC a retraction.

Cor. Given any gp G
of type F, there is
a closed aspherical mfld
M which retracts onto
BG. (In particular G
18 a retract of MM.)