L²-cohomology of hyperplane complements

Mike Davis

(work with Tadeusz Januskiewicz and Ian Leary)

Oxford, Ohio March 17, 2007

Mike Davis *L*²-cohomology of hyperplane complements

1 Introduction

2 L²-Betti numbers

- The regular representation
- L²-(co)homology
- Idea of the proof

Hyperplane arrangements

- Open covers
- Proof of the Main Theorem

Hyperplane arrangements Statement of Main Theorem

 \mathcal{A} a collection of affine hyperplanes in \mathbf{C}^n

Definition

rk(A), the *rank*, of A is the maximum codimension of a nonempty intersection of hyperplanes in A. Usually we denote rk(A) by *l*. A is *essential* if rk(A) = n.

$$\Sigma(\mathcal{A}) := \bigcup_{H \in \mathcal{A}} H$$

 $M(\mathcal{A}) := \mathbf{C}^n - \Sigma(\mathcal{A})$

Hyperplane arrangements Statement of Main Theorem

Fact

 $H^*(\mathbf{C}^n, \Sigma)$ vanishes except in dimension $I (= \mathsf{rk}(\mathcal{A}))$. In fact, $\Sigma \sim \bigvee S^{l-1}$.

The number $\alpha(\mathcal{A})$

$$\begin{split} \alpha(\mathcal{A}) &:= \dim H_l(\mathbf{C}^n, \Sigma) \\ &:= b_l(\mathbf{C}^n, \Sigma) \\ &= \text{the number of spheres in the wedge} \end{split}$$

Example

Suppose $A_{\mathbf{R}}$ is an essential hyperplane arrangement in \mathbf{R}^{n} . It divides \mathbf{R}^{n} into convex regions.

- dim H_n(**R**ⁿ, Σ(A_{**R**})) is the number of bounded components of **R**ⁿ Σ(A_{**R**}).
- If \mathcal{A} is complexification of $\mathcal{A}_{\textbf{R}}$, then

$$(\mathbf{C}^n, \Sigma(\mathcal{A})) \sim (\mathbf{R}^n, \Sigma(\mathcal{A}_{\mathbf{R}})).$$

 So α(A) is the number of bounded components of Rⁿ – A_R.

Hyperplane arrangements Statement of Main Theorem

Main Theorem

Suppose A is an arrangement of a finite number of affine hyperplanes in \mathbf{C}^n with $\operatorname{rk}(A) = I$. Then the L^2 -Betti numbers of M(A) (the complement of the hyperplanes) are all 0, except in dimension I, where

 $\beta_l(M(\mathcal{A})) = \alpha(\mathcal{A}).$

Here β_i () denotes the *i*th *L*²-Betti number (to be defined later).

Theorem

Suppose L is a "generic" flat complex line bundle over M(A). Then $H^*(M(A); L)$ vanishes except in dimension I and

 $\dim_{\mathbf{C}} H^{l}(M(\mathcal{A}); L) = \alpha(\mathcal{A}).$

Basic idea

If *L* is a flat line bundle over S^1 giving a nonconstant local coefficient system, then $H^*(S^1; L) = 0$ for * = 0, 1.

Similarly, the basic idea for the Main Theorem is that the L^2 -Betti numbers of S^1 vanish.

The regular representation L^2 -(co)homology Idea of the proof

L²-Betti numbers

The regular representation

 π is a countable discrete gp.

•

$$L^2\pi:=\{f:\pi
ightarrow{\bf C}\mid\sum|f(x)|^2<\infty\},$$

where the sum is over all $x \in \pi$.

• $L^2\pi$ is a Hilbert space with Hermitian inner product:

$$f \cdot f' := \sum_{x \in \pi} f(x) \overline{f'(x)}.$$

• There are unitary π -actions on $L^2\pi$ by left or right translation.

von Neumann dimension

Using the *von Neumann algebra* $N\pi$ is of π -equivariant bounded linear operators on $L^2\pi$, it is possible to attach a "dimension" to any π -stable closed subspace of $\bigoplus L^2\pi$.

- dim $_{\pi}$ V is a nonnegative real number.
- It is = 0 iff V = 0.
- Also, dim $_{\pi} L^2 \pi = 1$.

IntroductionThe regular representation L^2 -Betti numbers L^2 -(co)homologyHyperplane arrangementsIdea of the proof

(Co)homology with local coefficients

- X a CW complex \widetilde{X} its universal cover
- $C_i(\widetilde{X})$ the cellular *i*-chains on \widetilde{X}

۲

• $\pi = \pi_1(X)$. Suppose *M* is a π -module.

 $egin{aligned} & C_i(X;M) := C_i(\widetilde{X}) \otimes_\pi M \ & C^i(X;M) := \operatorname{Hom}_\pi(C_i(\widetilde{X}),M) \end{aligned}$

- are the (co)chains with *local coefficients in M*,
- *H*_{*}(*X*; *M*) and *H*^{*}(*X*; *M*) are the corresponding (co)homology groups.

L^2 -(co)homology

- To fix ideas, let's stick to cohomology.
- At first approximation L²-cohomology means local coefficients in L²π, i.e., H^{*}(X; L²π).
- C*(X; L²π) is a Hilbert space but H*(X; L²π) need not be.
 Ker δ is a closed subspace but Im δ need not be.

Define

$$\mathcal{H}^*(X; L^2\pi) := \operatorname{Ker} \delta / \overline{\operatorname{Im} \delta}.$$

H^{*}(X; L²π) is a closed, π-stable subspace of C^{*}(X; L²π). (It is = Ker δ ∩ (Im δ)[⊥].)

- If X is a finite complex, then Cⁱ(X; L²π) is a direct sum of finitely many copies of L²π (one for each *i*-cell of X).
- So the closed, π-stable subspace Hⁱ(X; L²π) has a well-defined von Neumann dimension called the ith L²-Betti number

$$\beta_i(X) := \dim_{\pi} \mathcal{H}^i(X; L^2\pi).$$

If X is a finite complex then $C^*(X; L^2\pi)$ can be identified with the square summable cochains on \widetilde{X} (denoted by $L^2C^*(\widetilde{X})$). The corresponding (reduced) cohomology groups are denoted $L^2\mathcal{H}^*(\widetilde{X})$. Introduction L^2 -Betti numbers L^2 -(co)homology Idea of the proof

Lemma

The L²-Betti numbers of S¹ vanish.

Corollary

All L^2 -Betti numbers of $S^1 \times B$ vanish.

Proof.

Künneth Formula.

Mike Davis L²-cohomology of hyperplane complements

Rough idea of proof of theorems

Suppose $U = \{U_i\}$ is a cover of X by connected open subsets and V is a subcover s.t.

•
$$\mathcal{V} = \{ U_i \in \mathcal{U} \mid \pi_1(U_i) \neq 1 \}.$$

• $\forall \sigma \in N(\mathcal{U}), \pi_1(U_{\sigma}) \rightarrow \pi_1(X) \ (=\pi)$ is injective. (Here $N(\mathcal{U})$ denotes the nerve of \mathcal{U} and $U_{\sigma} = U_{i_1} \cap \cdots \cap U_{i_k}$, where $\sigma = \{i_1, \dots, i_k\}$.)

•
$$\forall \sigma \in N(U) - N(V), U_{\sigma}$$
 is contractible.

•
$$\forall \sigma \in N(\mathcal{V}), U_{\sigma} = S^1 \times (\text{something}).$$

IntroductionThe regular representation L^2 -Betti numbers L^2 -(co)homologyHyperplane arrangementsIdea of the proof

There is a Mayer-Vietoris spectral sequence converging to $H^*(X; L^2\pi)$ with E_2 -term

$$E_2^{p,q} = H^p(N(\mathcal{U}); H^q(U_\sigma; L^2(\pi_1(U_\sigma)),$$

where the coefficient system is the functor $\sigma \rightarrow H^q(U_\sigma; L^2(\pi_1(U_\sigma))).$

Hypotheses $\implies E_2^{p,q}$ is concentrated on the bottom row q = 0and

$$E_2^{p,0} = H^p(N(\mathcal{U}), N(\mathcal{V})) \otimes L^2 \pi.$$

(We are ignoring terms with vanishing L^2 -Betti numbers.) So, $\beta_p(X) = b_p(N(U), N(V)).$

Open covers Proof of the Main Theorem

More on hyperplane arrangements

- A is a hyperplane arrangement in Cⁿ and Σ is the union of hyperplanes.
- A *subspace of* A is a nonempty intersection of hyperplanes in A.
- *L*(*A*) is the poset of subspaces of *A*.
- *A* is *central* if the intersection of all hyperplanes in *A* is nonempty.
- Given $G \in L(A)$, we have a central subarrangement

$$\mathcal{A}_{\boldsymbol{G}} := \{ \boldsymbol{H} \in \mathcal{A} \mid \boldsymbol{G} \subset \boldsymbol{H} \}.$$

Open covers Proof of the Main Theorem

Definition

An open convex subset $U \subset \mathbf{C}^n$ is *small* (wrt \mathcal{A}) if

- $\{G \in L(\mathcal{A}) \mid G \cap U \neq \emptyset\}$ has a minimum element U_{min} .
- Given $H \in \mathcal{A}$, $H \cap U \neq \emptyset \iff H \supset U_{min}$.
- Given a small U, put $\widehat{U} := U \Sigma$.
- So, $\widehat{U} \cong M(\mathcal{A}_{U_{min}})$, the complement of a central arrangement.

- Choose a cover U of Cⁿ by small open sets. For each σ ∈ N(U), A_σ is the corresponding central arrangement.
- V := {U ∈ U | A_σ is not trivial}. V is an open cover of a nbhd of Σ homotopy equiv to Σ.
- Since each element of \mathcal{U} is convex,

$$H^*(N(\mathcal{U}), N(\mathcal{V})) = H^*(\mathbf{C}^n, \Sigma).$$

Open covers Proof of the Main Theorem

Similarly, we have open covers $\widehat{\mathcal{U}} := {\{\widehat{U}\}_{U \in \mathcal{U}} \text{ and } \widehat{\mathcal{V}} := {\{\widehat{U}\}_{U \in \mathcal{V}}.}$ $(\widehat{\mathcal{U}} \text{ is an open cover of } M(\mathcal{A}).)$

Key point

$$N(\widehat{\mathcal{V}}) = N(\mathcal{V})$$
 and $N(\widehat{\mathcal{U}}) = N(\mathcal{U})$.

Lemma

Suppose \mathcal{A} is a nonempty central arrangement. Then

 $M(\mathcal{A}) = S^1 \times (something).$

Open covers Proof of the Main Theorem

Main Theorem

The L²-Betti numbers of M(A) are all 0, except in dimension I, where $\beta_l(M(A)) = \alpha(A)$.

Proof.

• $\widehat{\mathcal{U}}$ is open cover of $M(\mathcal{A})$.

•
$$\forall \sigma \subset N(\widehat{\mathcal{U}}) - N(\widehat{\mathcal{V}}), \ U_{\sigma} \sim *$$

- $\forall \sigma \subset N(\widehat{\mathcal{V}}), U_{\sigma} = S^1 \times (\text{something}).$
- Use spectral sequence and fact that H^{*}(N(Û), N(V)) = H^{*}(Cⁿ, Σ) to complete the proof.