Introduction

L^2-Betti numbers

Hyperplane arrangements

L^2-cohomology of hyperplane complements

Mike Davis

(work with Tadeusz Januszkiewicz and Ian Leary)

Oxford, Ohio

March 17, 2007
1 Introduction

2 \(L^2 \)-Betti numbers
 - The regular representation
 - \(L^2 \)-(co)homology
 - Idea of the proof

3 Hyperplane arrangements
 - Open covers
 - Proof of the Main Theorem
A a collection of affine hyperplanes in \(\mathbb{C}^n \)

Definition

\(\text{rk}(A) \), the *rank*, of \(A \) is the maximum codimension of a nonempty intersection of hyperplanes in \(A \). Usually we denote \(\text{rk}(A) \) by \(l \).

\(A \) is *essential* if \(\text{rk}(A) = n \).

\[Σ(A) := ∪_{H ∈ A} H \]

\[M(A) := \mathbb{C}^n - Σ(A) \]
Fact

$H^*(\mathbb{C}^n, \Sigma)$ vanishes except in dimension $l (= \text{rk}(\mathcal{A}))$. In fact, $\Sigma \sim \bigvee S^{l-1}$.

The number $\alpha(\mathcal{A})$

\[
\alpha(\mathcal{A}) := \dim H_l(\mathbb{C}^n, \Sigma) := b_l(\mathbb{C}^n, \Sigma)
\]

= the number of spheres in the wedge
Example

Suppose \mathcal{A}_R is an essential hyperplane arrangement in \mathbb{R}^n. It divides \mathbb{R}^n into convex regions.

- $\dim H_n(\mathbb{R}^n, \Sigma(\mathcal{A}_R))$ is the number of bounded components of $\mathbb{R}^n - \Sigma(\mathcal{A}_R)$.

- If \mathcal{A} is complexification of \mathcal{A}_R, then

$$\left(\mathbb{C}^n, \Sigma(\mathcal{A})\right) \sim \left(\mathbb{R}^n, \Sigma(\mathcal{A}_R)\right).$$

- So $\alpha(\mathcal{A})$ is the number of bounded components of $\mathbb{R}^n - \mathcal{A}_R$.
Main Theorem

Suppose \mathcal{A} is an arrangement of a finite number of affine hyperplanes in \mathbb{C}^n with $\text{rk}(\mathcal{A}) = l$. Then the L^2-Betti numbers of $M(\mathcal{A})$ (the complement of the hyperplanes) are all 0, except in dimension l, where

$$\beta_l(M(\mathcal{A})) = \alpha(\mathcal{A}).$$

Here $\beta_i(\)$ denotes the i^{th} L^2-Betti number (to be defined later).
Theorem

Suppose L is a “generic” flat complex line bundle over $M(\mathcal{A})$. Then $H^*(M(\mathcal{A}); L)$ vanishes except in dimension l and

$$\dim_{\mathbb{C}} H^l(M(\mathcal{A}); L) = \alpha(\mathcal{A}).$$

Basic idea

If L is a flat line bundle over S^1 giving a nonconstant local coefficient system, then $H^*(S^1; L) = 0$ for $* = 0, 1$.

Similarly, the basic idea for the Main Theorem is that the L^2-Betti numbers of S^1 vanish.
L^2-Betti numbers

The regular representation

π is a countable discrete gp.

\[L^2_\pi := \{ f : \pi \to \mathbb{C} \mid \sum |f(x)|^2 < \infty \}, \]

where the sum is over all $x \in \pi$.

L^2_π is a Hilbert space with Hermitian inner product:

\[f \cdot f' := \sum_{x \in \pi} f(x)f'(x). \]

There are unitary π-actions on L^2_π by left or right translation.
Introduction

L₂-Betti numbers

Hyperplane arrangements

The regular representation

L₂-(co)homology

Idea of the proof

von Neumann dimension

Using the von Neumann algebra \(\mathcal{N}_\pi \) is of \(\pi \)-equivariant bounded linear operators on \(L^2_\pi \), it is possible to attach a “dimension” to any \(\pi \)-stable closed subspace of \(\bigoplus L^2_\pi \).

- \(\dim_\pi V \) is a nonnegative real number.
- It is \(= 0 \) iff \(V = 0 \).
- Also, \(\dim_\pi L^2_\pi = 1 \).
(Co)homology with local coefficients

- X a CW complex
- \tilde{X} its universal cover
- $C_i(\tilde{X})$ the cellular i-chains on \tilde{X}
- $\pi = \pi_1(X)$. Suppose M is a π-module.

$$C_i(X; M) := C_i(\tilde{X}) \otimes_{\pi} M$$
$$C^i(X; M) := \text{Hom}_\pi(C_i(\tilde{X}), M)$$

are the (co)chains with local coefficients in M,

$H_*(X; M)$ and $H^*(X; M)$ are the corresponding (co)homology groups.
To fix ideas, let’s stick to cohomology.

At first approximation L^2-cohomology means local coefficients in $L^2\pi$, i.e., $H^*(X; L^2\pi)$.

$C^*(X; L^2\pi)$ is a Hilbert space but $H^*(X; L^2\pi)$ need not be. $\text{Ker} \, \delta$ is a closed subspace but $\text{Im} \, \delta$ need not be.

Define

$$\mathcal{H}^*(X; L^2\pi) := \text{Ker} \, \delta / \text{Im} \, \delta.$$

$\mathcal{H}^*(X; L^2\pi)$ is a closed, π-stable subspace of $C^*(X; L^2\pi)$. (It is $= \text{Ker} \, \delta \cap (\text{Im} \, \delta)^\perp$.)
If X is a finite complex, then $C^i(X; L^2\pi)$ is a direct sum of finitely many copies of $L^2\pi$ (one for each i-cell of X).

So the closed, π-stable subspace $H^i(X; L^2\pi)$ has a well-defined von Neumann dimension called the i^{th} L^2-Betti number

$$\beta_i(X) := \dim_\pi H^i(X; L^2\pi).$$

If X is a finite complex then $C^*(X; L^2\pi)$ can be identified with the square summable cochains on \tilde{X} (denoted by $L^2 C^*(\tilde{X})$). The corresponding (reduced) cohomology groups are denoted $L^2 H^*(\tilde{X})$.
Lemma

The L^2-Betti numbers of S^1 vanish.

Corollary

All L^2-Betti numbers of $S^1 \times B$ vanish.

Proof.

Künneth Formula.
Rough idea of proof of theorems

Suppose $\mathcal{U} = \{U_i\}$ is a cover of X by connected open subsets and \mathcal{V} is a subcover s.t.

- $\mathcal{V} = \{U_i \in \mathcal{U} \mid \pi_1(U_i) \neq 1\}$.
- $\forall \sigma \in N(\mathcal{U}), \pi_1(U_\sigma) \rightarrow \pi_1(X) (= \pi)$ is injective. (Here $N(\mathcal{U})$ denotes the nerve of \mathcal{U} and $U_\sigma = U_{i_1} \cap \cdots \cap U_{i_k}$, where $\sigma = \{i_1, \ldots, i_k\}$.)
- $\forall \sigma \in N(\mathcal{U}) - N(\mathcal{V}), U_\sigma$ is contractible.
- $\forall \sigma \in N(\mathcal{V}), U_\sigma = S^1 \times (\text{something})$.

Mike Davis

L^2-cohomology of hyperplane complements
There is a Mayer-Vietoris spectral sequence converging to $H^*(X; L^2_\pi)$ with E_2-term

$$E_2^{p,q} = H^p(N(U); H^q(U_\sigma; L^2(\pi_1(U_\sigma))),$$

where the coefficient system is the functor $\sigma \rightarrow H^q(U_\sigma; L^2(\pi_1(U_\sigma))).$

Hypotheses $\implies E_2^{p,q}$ is concentrated on the bottom row $q = 0$ and

$$E_2^{p,0} = H^p(N(U), N(V)) \otimes L^2_\pi.$$

(We are ignoring terms with vanishing L^2-Betti numbers.) So, $\beta_p(X) = b_p(N(U), N(V)).$
More on hyperplane arrangements

- \mathcal{A} is a hyperplane arrangement in \mathbb{C}^n and Σ is the union of hyperplanes.
- A *subspace of* \mathcal{A} is a nonempty intersection of hyperplanes in \mathcal{A}.
- $L(\mathcal{A})$ is the poset of subspaces of \mathcal{A}.
- \mathcal{A} is *central* if the intersection of all hyperplanes in \mathcal{A} is nonempty.
- Given $G \in L(\mathcal{A})$, we have a central subarrangement
 \[\mathcal{A}_G := \{ H \in \mathcal{A} \mid G \subset H \}. \]
Definition

An open convex subset $U \subset \mathbb{C}^n$ is small (wrt A) if

- $\{ G \in L(A) \mid G \cap U \neq \emptyset \}$ has a minimum element U_{\min}.
- Given $H \in A$, $H \cap U \neq \emptyset \iff H \supset U_{\min}$.

- Given a small U, put $\hat{U} := U - \Sigma$.
- So, $\hat{U} \cong M(A_{U_{\min}})$, the complement of a central arrangement.
Choose a cover \mathcal{U} of \mathbb{C}^n by small open sets. For each $\sigma \in N(\mathcal{U})$, A_σ is the corresponding central arrangement.

$\mathcal{V} := \{ U \in \mathcal{U} \mid A_\sigma \text{ is not trivial} \}$. \mathcal{V} is an open cover of a nbhd of Σ homotopy equiv to Σ.

Since each element of \mathcal{U} is convex,

$$H^*(N(\mathcal{U}), N(\mathcal{V})) = H^*(\mathbb{C}^n, \Sigma).$$
Similarly, we have open covers $\hat{\mathcal{U}} := \{\hat{U}\}_{U \in \mathcal{U}}$ and $\hat{\mathcal{V}} := \{\hat{U}\}_{U \in \mathcal{V}}$. ($\hat{\mathcal{U}}$ is an open cover of $M(\mathcal{A})$.)

Key point

$N(\hat{\mathcal{V}}) = N(\mathcal{V})$ and $N(\hat{\mathcal{U}}) = N(\mathcal{U})$.

Lemma

Suppose \mathcal{A} is a nonempty central arrangement. Then

$$M(\mathcal{A}) = S^1 \times (\text{something}).$$
Main Theorem

The L^2-Betti numbers of $M(\mathcal{A})$ are all 0, except in dimension l, where $\beta_l(M(\mathcal{A})) = \alpha(\mathcal{A})$.

Proof.

- $\hat{\mathcal{U}}$ is open cover of $M(\mathcal{A})$.
- $\forall \sigma \subset N(\hat{\mathcal{U}}) - N(\hat{\mathcal{V}})$, $U_\sigma \sim \ast$.
- $\forall \sigma \subset N(\hat{\mathcal{V}})$, $U_\sigma = S^1 \times \text{(something)}$.
- Use spectral sequence and fact that $H^*(N(\hat{\mathcal{U}}), N(\hat{\mathcal{V}})) = H^*(\mathbb{C}^n, \Sigma)$ to complete the proof.