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A a collection of affine hyperplanes in Cn

Definition
rk(A), the rank, of A is the maximum codimension of a
nonempty intersection of hyperplanes in A. Usually we denote
rk(A) by l .
A is essential if rk(A) = n.

Σ(A) :=
⋃

H∈A
H

M(A) := Cn − Σ(A)
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Fact
H∗(Cn,Σ) vanishes except in dimension l (= rk(A)). In fact,
Σ ∼

∨
Sl−1.

The number α(A)

α(A) := dim Hl(Cn,Σ)

:= bl(Cn,Σ)

= the number of spheres in the wedge
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Example

Suppose AR is an essential hyperplane arrangement in Rn. It
divides Rn into convex regions.

dim Hn(Rn,Σ(AR)) is the number of bounded components
of Rn − Σ(AR).
If A is complexification of AR, then

(Cn,Σ(A)) ∼ (Rn,Σ(AR)).

So α(A) is the number of bounded components of
Rn −AR.
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Main Theorem
Suppose A is an arrangement of a finite number of affine
hyperplanes in Cn with rk(A) = l . Then the L2-Betti numbers of
M(A) (the complement of the hyperplanes) are all 0, except in
dimension l, where

βl(M(A)) = α(A).

Here βi( ) denotes the i th L2-Betti number (to be defined later).
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Theorem
Suppose L is a “generic” flat complex line bundle over M(A).
Then H∗(M(A); L) vanishes except in dimension l and

dimC H l(M(A); L) = α(A).

Basic idea

If L is a flat line bundle over S1 giving a nonconstant local
coefficient system, then H∗(S1; L) = 0 for ∗ = 0, 1.

Similarly, the basic idea for the Main Theorem is that the
L2-Betti numbers of S1 vanish.
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L2-Betti numbers

The regular representation
π is a countable discrete gp.

L2π := {f : π → C |
∑

|f (x)|2 < ∞},

where the sum is over all x ∈ π.
L2π is a Hilbert space with Hermitian inner product:

f · f ′ :=
∑
x∈π

f (x)f ′(x).

There are unitary π-actions on L2π by left or right
translation.
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von Neumann dimension
Using the von Neumann algebra Nπ is of π-equivariant
bounded linear operators on L2π, it is possible to attach a
“dimension” to any π-stable closed subspace of

⊕
L2π.

dimπ V is a nonnegative real number.
It is = 0 iff V = 0.
Also, dimπ L2π = 1.
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(Co)homology with local coefficients

X a CW complex X̃ its universal cover
Ci(X̃ ) the cellular i-chains on X̃
π = π1(X ). Suppose M is a π-module.

Ci(X ; M) := Ci(X̃ )⊗π M

C i(X ; M) := Homπ(Ci(X̃ ), M)

are the (co)chains with local coefficients in M,
H∗(X ; M) and H∗(X ; M) are the corresponding
(co)homology groups.
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L2-(co)homology
To fix ideas, let’s stick to cohomology.
At first approximation L2-cohomology means local
coefficients in L2π, i.e., H∗(X ; L2π).
C∗(X ; L2π) is a Hilbert space but H∗(X ; L2π) need not be.
Ker δ is a closed subspace but Im δ need not be.
Define

H∗(X ; L2π) := Ker δ/Im δ.

H∗(X ; L2π) is a closed, π-stable subspace of C∗(X ; L2π).
(It is = Ker δ ∩ (Im δ)⊥.)
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If X is a finite complex, then C i(X ; L2π) is a direct sum of
finitely many copies of L2π (one for each i-cell of X ).
So the closed, π-stable subspace Hi(X ; L2π) has a
well-defined von Neumann dimension called the i th L2-Betti
number

βi(X ) := dimπ Hi(X ; L2π).

If X is a finite complex then C∗(X ; L2π) can be identified with
the square summable cochains on X̃ (denoted by L2C∗(X̃ )).
The corresponding (reduced) cohomology groups are denoted
L2H∗(X̃ ).
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Lemma

The L2-Betti numbers of S1 vanish.

Corollary

All L2-Betti numbers of S1 × B vanish.

Proof.
Künneth Formula.
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Rough idea of proof of theorems

Suppose U = {Ui} is a cover of X by connected open subsets
and V is a subcover s.t.

V = {Ui ∈ U | π1(Ui) 6= 1}.
∀σ ∈ N(U), π1(Uσ) → π1(X ) (= π) is injective.
(Here N(U) denotes the nerve of U and
Uσ = Ui1 ∩ · · · ∩ Uik , where σ = {i1, . . . ik}.)
∀σ ∈ N(U)− N(V), Uσ is contractible.
∀σ ∈ N(V), Uσ = S1 × (something).
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There is a Mayer-Vietoris spectral sequence converging to
H∗(X ; L2π) with E2-term

Ep,q
2 = Hp(N(U); Hq(Uσ; L2(π1(Uσ)),

where the coefficient system is the functor
σ → Hq(Uσ; L2(π1(Uσ)).

Hypotheses =⇒ Ep,q
2 is concentrated on the bottom row q = 0

and
Ep,0

2 = Hp(N(U), N(V))⊗ L2π.

(We are ignoring terms with vanishing L2-Betti numbers.) So,
βp(X ) = bp(N(U), N(V)).
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More on hyperplane arrangements

A is a hyperplane arrangement in Cn and Σ is the union of
hyperplanes.
A subspace of A is a nonempty intersection of hyperplanes
in A.
L(A) is the poset of subspaces of A.
A is central if the intersection of all hyperplanes in A is
nonempty.
Given G ∈ L(A), we have a central subarrangement

AG := {H ∈ A | G ⊂ H}.
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Definition
An open convex subset U ⊂ Cn is small (wrt A) if

{G ∈ L(A) | G ∩ U 6= ∅} has a minimum element Umin.
Given H ∈ A, H ∩ U 6= ∅ ⇐⇒ H ⊃ Umin.

Given a small U, put Û := U − Σ.

So, Û ∼= M(AUmin), the complement of a central
arrangement.
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Choose a cover U of Cn by small open sets. For each
σ ∈ N(U), Aσ is the corresponding central arrangement.
V := {U ∈ U | Aσ is not trivial}. V is an open cover of a
nbhd of Σ homotopy equiv to Σ.
Since each element of U is convex,

H∗(N(U), N(V)) = H∗(Cn,Σ).
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Similarly, we have open covers Û := {Û}U∈U and V̂ := {Û}U∈V .
(Û is an open cover of M(A).)

Key point

N(V̂) = N(V) and N(Û) = N(U).

Lemma
Suppose A is a nonempty central arrangement. Then

M(A) = S1 × (something).
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Main Theorem

The L2-Betti numbers of M(A) are all 0, except in dimension l,
where βl(M(A)) = α(A).

Proof.

Û is open cover of M(A).
∀σ ⊂ N(Û)− N(V̂), Uσ ∼ ∗.
∀σ ⊂ N(V̂), Uσ = S1 × (something).
Use spectral sequence and fact that
H∗(N(Û), N(V̂)) = H∗(Cn,Σ) to complete the proof.
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