WEIGHTED L²-COHOMOLOGY OF COXETER GROUPS

Mobile February 7, 2004

work with Jan Dymara, Tadeusz Januszkiewicz and Boris Okun

Definitions

Coxeter systems, the parameter \mathbf{q} ,

Hecke algebras,

Hecke -von Neumann algebras,

the growth series $W(\mathbf{q})$, spaces \mathcal{U} and Σ ,

 $L^2_{\mathbf{q}}$ cellular cochains, $L^2_{\mathbf{q}}$ -cohomology,

 $L^2_{\mathbf{q}}$ -Euler characteristics and

 $L^2_{\mathbf{q}}$ -Betti numbers.

Results

 $\chi_{\mathbf{q}}(\Sigma) = 1/W(\mathbf{q}),$ L^2 -cohomology of buildings, Calculations of $b_{\mathbf{q}}^k(\Sigma)$ A Decomposition Theorem Interpolating between cohomology and cohomology with compact supports A version of the Singer Conjecture

Coxeter groups

S a finite set (m_{st}) a Coxeter matrix, i.e., a symmetric $S \times S$ matrix with entries in $\mathbb{N} \cup \{\infty\}$ such that

 $m_{st} = \begin{cases} 1, & \text{if } s = t; \\ \ge 2, & \text{otherwise.} \end{cases}$ $W := \langle S \mid s^2 = 1, \ (st)^{m_{st}} = 1 \rangle.$ $(W, S) \text{ is a } Coxeter \ system.}$ $l : W \to \mathbb{N} \text{ is word length.}$ For $T \subset S$,

$$W_T := \langle \{s\}_{s \in T} \rangle.$$

If W_T is finite, T is a *spherical* subset.

 $S := \{T \subset S \mid W_T \text{ is finite}\}$ $= \{\text{spherical subsets}\}$ The *nerve* of (W, S) is the simplicial complex L, where

 $\operatorname{Vert}(L) = S, \quad \text{and}$ $\operatorname{Simp}(L) = \mathcal{S}_{> \emptyset}$

The parameter q

I an index set

 $i: S \to I$ a function s.t.

i(s) = i(s') whenever s and s' are conjugate.

$$\mathbf{q} := (q_i)_{i \in I} \in (0, \infty)^I$$

Write q_s instead of $q_{i(s)}$. If $w = s_1 \dots s_l$ is a reduced expression, set

$$q_w := q_{s_1} \dots q_{s_l}.$$

It is independent of the reduced expression.

 $\mathbf{R}^{(W)} := \{ \text{finitely supported } W \to \mathbf{R} \}$

An inner product on $\mathbf{R}^{(W)}$

$$\langle e_v, e_w \rangle_{\mathbf{q}} := q_w \delta_{vw}.$$

$$L_{\mathbf{q}}^2(W) := \text{completion of } \mathbf{R}^{(W)}.$$
Hecke algebra
$$\mathbf{R}_{\mathbf{q}}[W] \quad \text{deformed group algebra}$$

$$e_s e_w = \begin{cases} e_{sw}, & l(sw) > l(w); \\ q_s e_{sw} + (q_s - 1)e_w, & l(sw) < l(w). \end{cases}$$

Hecke-von Neumann algebra

 $\mathcal{N}_{\mathbf{q}} = \text{a completion of } \mathbf{R}_{\mathbf{q}}(W)$ $:= \{ \mathbf{R}_{\mathbf{q}}(W) \text{-equivariant bounded linear} \\ \text{operators } L^2_{\mathbf{q}}(W) \to L^2_{\mathbf{q}}(W) \}$

von Neumann dimension For $\phi \in \mathcal{N}_{\mathbf{q}}$, $\operatorname{tr}_{\mathcal{N}_{\mathbf{q}}}(\phi) = \langle \phi(e_1), e_1 \rangle \rangle_{\mathbf{q}}$. For $\Phi = (\phi_{ij}) \in M_m(\mathcal{N}_{\mathbf{q}})$, $\operatorname{tr}_{\mathcal{N}_{\mathbf{q}}}(\Phi) = \sum \operatorname{tr}_{\mathcal{N}_{\mathbf{q}}}(\phi_{ii})$.

Given a $\mathbf{R}_{\mathbf{q}}(W)$ -stable, closed subspace

$$V \subset \oplus L^2_{\mathbf{q}}(W), \quad \text{let}$$

 $p_V : \oplus L^2_{\mathbf{q}}(W) \to \oplus L^2_{\mathbf{q}}(W)$
be orthogonal projection onto $V.$
 $\dim_{\mathcal{N}_{\mathbf{q}}} V = \operatorname{tr}_{\mathcal{N}_{\mathbf{q}}}(p_V) \in [0, \infty).$

Growth series

 $\mathbf{t} := (t_i)_{i \in I}$ an *I*-tuple of indeterminates.

$$W(\mathbf{t}) := \sum_{w \in W} t_w \; .$$

It is a rational function in \mathbf{t} , e.g.,

$$\frac{1}{W(\mathbf{t})} = \sum_{T \in \mathcal{S}} \frac{(-1)^{\operatorname{Card}(T)}}{W_T(\mathbf{t}^{-1})},$$

where $\mathbf{t}^{-1} := (t_i^{-1}).$

 $\mathcal{R} := \text{region of convergence of } W(\mathbf{t})$ $\mathcal{R}^{-1} := \{ \mathbf{q} \mid \mathbf{q}^{-1} \in \mathcal{R} \}$

The basic construction.

X a CW complex $(X_s)_{s\in S}$ a family of subcomplexes. Define

$$\mathcal{U}(W,X):=(W\times X)/\sim$$

where \sim is the equivalence relation generated by

$$(w, x) \sim (ws, x)$$
 if $x \in X_s$.

 $K := \text{geometric realization of } \mathcal{S}$ = Cone(L)

 $K_s :=$ geom. realization of $S_{\geq \{s\}}$ K is a *chamber*. K_s is a *mirror*. The complex Σ

$$\Sigma := \mathcal{U}(W, K)$$

Cellular cochains

 $\mathcal{E}_{k} \quad \text{the set of } k\text{-cells in } \mathcal{U}$ $C^{k}(\mathcal{U}) \quad \text{the } k\text{-cochains on } \mathcal{U}$ $= \text{functions on } \mathcal{E}_{k}$ $= \{ \sum_{\text{infinite}} a_{\sigma} \sigma \mid \sigma \in \mathcal{E}_{k} \}$ $C_{c}^{k}(\mathcal{U}) = \{ \sum_{\text{finite}} a_{\sigma} \sigma \}$ How about weighted $L_{\mathbf{q}}^{2}\text{-cochains?}$ Given $\sigma \in \mathcal{E}_{k}$, let $d(\sigma)$ be the shortest $w \in W$ s.t. $w^{-1}\sigma \subset X$. Define an inner product on $C_c^k(\mathcal{U})$ $\langle \sigma, \tau \rangle_{\mathbf{q}} := q_{d(\sigma)} \delta_{\sigma \tau}$ $L_{\mathbf{q}}^2 C^k(\mathcal{U}) :=$ the completion of $C_c^k(\mathcal{U})$ $L_{\mathbf{q}}^2 C^*(\mathcal{U})$ is a $\mathcal{N}_{\mathbf{q}}$ -module and $\delta : L_{\mathbf{q}}^2 C^k(\mathcal{U}) \to L_{\mathbf{q}}^2 C^{k+1}(\mathcal{U})$ is a map of $\mathcal{N}_{\mathbf{q}}$ -modules.

$$L^{2}_{\mathbf{q}}\mathcal{H}^{k}(\mathcal{U}) \quad \text{reduced } L^{2}_{\mathbf{q}}\text{-cohomology}$$
$$:= \ker \delta / \overline{\operatorname{im}} \delta$$
$$b^{k}_{\mathbf{q}}(\mathcal{U}) := \dim L^{2}_{\mathbf{q}}\mathcal{H}^{k}(\mathcal{U})$$
$$\chi_{\mathbf{q}}(\mathcal{U}) := \sum (-1)^{k} b^{k}_{\mathbf{q}}(\mathcal{U})$$

Theorem. (Dymara)
$$\chi_{\mathbf{q}}(\Sigma) = \frac{1}{W(\mathbf{q})}$$

Theorem. (Dymara) If $\mathbf{q} \in \mathcal{R}$, then $L^2_{\mathbf{q}}\mathcal{H}^*(\Sigma)$ is concentrated in dimension 0. **Theorem.** (Dymara) Suppose Φ is a building of type (W, S) with a chamber transitive automorphism group G. Then its L^2 -Betti number (with respect to G), $b^k(\Phi; G)$, is equal to $b^k_{\mathbf{q}}(\Sigma)$.

Here \mathbf{q} is the "thickness" of the building.

Remark. For buildings only integral values of **q** matter!

Given $w \in W$, set $In(w) := \{ s \in S \mid l(ws) < l(w) \}$ **Key fact**: $In(w) \in \mathcal{S}$. Given $T \subset S$, set $W^T := \{ w \in W \mid \ln(w) = T \}$ $X^T := \bigcup X_s$ $s \in T$ Theorem. (D.) $H_*(\mathcal{U}) \cong \bigoplus H_*(X, X^T) \otimes \mathbf{R}^{(W^T)}.$ $T \in S$ **Corollary.** Σ is acyclic. Theorem. (D.) $H_c^*(\mathcal{U}) \cong \bigoplus H^*(X, X^{S-T}) \otimes \mathbf{R}^{(W^T)}.$ $T \in S$

Main Theorem.

• If
$$\mathbf{q} \in \mathcal{R}$$
, then
 $L^2_{\mathbf{q}}\mathcal{H}^*(\mathcal{U}) = \bigoplus_{T \in \mathcal{S}} H^*(X, X^T) \otimes D^T.$
• If $\mathbf{q} \in \mathcal{R}^{-1}$, then
 $L^2_{\mathbf{q}}\mathcal{H}^*(\mathcal{U}) = \bigoplus_{T \in \mathcal{S}} H^*(X, X^{S-T}) \otimes D^{S-T}$

Here the D^T are certain $\mathcal{N}_{\mathbf{q}}$ -submodules of $L^2_{\mathbf{q}}(W)$.

Decomposition Theorem. We have direct sum decompositions of $\mathcal{N}_{\mathbf{q}}$ -modules.

• If $\mathbf{q} \in \mathcal{R}$, then

$$L^2_{\mathbf{q}} = \bigoplus_{T \in \mathcal{S}} D^T$$

• If $\mathbf{q} \in \mathcal{R}^{-1}$, then

$$L^2_{\mathbf{q}} = \bigoplus_{T \in \mathcal{S}} D^{S-T}$$

(In the formulas of the previous two theorems, the RHS might only be a dense subspace of the LHS).

Corollary. • If $\mathbf{q} \in \mathcal{R}$, then $H_k(\mathcal{U}; \mathbf{R}) \to L^2_{\mathbf{q}} \mathcal{H}_k(\mathcal{U})$

is injective with dense image.

• If $\mathbf{q} \in \mathcal{R}^{-1}$, then

 $H^k_c(\mathcal{U}; \mathbf{R}) \to L^2_{\mathbf{q}} \mathcal{H}^k(\mathcal{U})$

is injective with dense image.

Example. Suppose Σ is an *n*-manifold (e.g., L is a triangulation of S^{n-1}).

- If $\mathbf{q} \in \mathcal{R}$, then $L^2_{\mathbf{q}}\mathcal{H}^*(\Sigma)$ is concentrated in dimension 0.
- If $\mathbf{q} \in \mathcal{R}^{-1}$, then $L^2_{\mathbf{q}}\mathcal{H}^*(\Sigma)$ is concentrated in dimension n.

Example. Suppose n = 2 and Lis a circle. $\mathbf{q} = q \in (0, \infty)$. ρ , the radius of convergence of W(t). Then $L_q^2 \mathcal{H}^*(\Sigma)$ is concentrated in dimension

$$\begin{cases} 0, & \text{if } q \leq \rho; \\ 1, & \text{if } \rho < q < 1/\rho; \\ 2, & \text{if } q \geq \rho. \end{cases}$$

Question. What happens in the intermediate range, $\mathbf{q} \notin \mathcal{R} \cup \mathcal{R}^{-1}$?

Conjecture. (A version of the Singer Conjecture). Suppose Σ is an *n*manifold. Then for $\mathbf{q} \leq \mathbf{1}$, $L^2_{\mathbf{q}} \mathcal{H}^k(\Sigma) = 0$ for $k > \frac{n}{2}$. Similarly, for $\mathbf{q} \geq \mathbf{1}$,

$$L^2_{\mathbf{q}}\mathcal{H}^k(\Sigma) = 0 \quad for \ k < \frac{n}{2}.$$

Some idempotents in $\mathcal{N}_{\mathbf{q}}$ For $\mathbf{q} \in \mathcal{R}_T$,

$$a_T := \frac{1}{W_T(\mathbf{q})} \sum_{w \in W_T} e_w.$$

For
$$\mathbf{q} \in \mathcal{R}_T^{-1}$$
,
 $h_T := \frac{1}{W_T(\mathbf{q}^{-1})} \sum_{w \in W_T} (-1)^{l(w)} q_w^{-1} e_w.$

$$A_T := \operatorname{im} a_T \quad \text{and} \quad H_T := \operatorname{im} h_T.$$
$$D_T := A_{S-T} \cap \left(\sum_{U \subsetneq T} A_{S-U}\right)^{\perp}$$