Cohomology of relatives to Coxeter groups

Mike Davis

(joint work with Boris Okun)

Oberwolfach
April 30, 2010
1 Introduction
 - Coxeter groups
 - Some previous results

2 Computations
 - Graph products
 - A spectral sequence
 - Artin groups and Bestvina-Brady groups
We want to compute
\[H^* (G; \mathbb{Z}_G) \] or \[H^* (G; L^2(G)) \] or possibly \[H^*_G(X; M), \] where \(X \) is a \(G \)-space and \(M \) a \(G \)-module.

For \(G = \)
- Coxeter group
- Artin group
- Bestvina-Brady group
- graph product of groups, all of which are infinite or else all are finite.
Coxeter groups

(W, S) a Coxeter system

$$S := \{ T \subset S \mid |W_T| < \infty \}$$

$= \text{the poset of spherical subsets}$

$L = L(W, S)$ is the \textit{nerve} of (W, S), ie, the simplicial complex with vertex set S and simplices the nonempty elements of S. $K = \text{geometric realization of } S = \text{the cone on } L$. $K_s = \text{Cone}(L_s)$, where L_s denotes the link of s in L.

$$K^{S-T} := \bigcup_{s \in S-T} K_s, \quad \partial K := K^S, \quad K_T := \bigcap_{s \in T} K_s$$
Theorem (D)

\[H^* (W; \mathbb{Z}W) = \bigoplus_{T \in S} H^* (K, K^{S-T}) \otimes \hat{A}^T, \text{ for a certain free abelian gp } \hat{A}^T. \]

Remarks

- (DDJMO) A similar formula holds for any locally finite bldg of type \((W, S)\).
- In particular since a graph product of finite groups is a locally finite \(RAB\), a similar formula holds for such graph products.
Theorem (D - Leary)

A the Artin gp associated to \((W, S)\) and \(X\) its Salvetti cx. Then

\[
H^*(X; \mathbb{Z} A) = H^*(K, \partial K) \otimes L^2(A)
\]

If \(K(A, 1)\) Conjecture holds, we can replace the left hand side by \(H^*(A; \mathbb{Z} A)\).

I should be saying “reduced” \(L^2\)-cohomology.
Theorem (Jensen-Meier)

If A is a RAAG, then

\[H^*(A; \mathbb{Z}A) = \bigoplus_{T \in S} H^{|T|}(K_T, \partial K_T) \otimes \text{free abelian gp} \]

Remark

\(\partial K_T = \text{Lk}(T) \), the link of the simplex corresponding to \(T \) in \(L \). On the other hand, \(K^{S-T} \) is the complement of this simplex in \(L \).

This theorem was originally proved by using the first theorem and result of DJ that any RAAG is commensurable with RACG.
The setup

Γ a graph with Vert(Γ) = S; L the flag cx determined by the graph and (W, S) the RACS with nerve L.
Let \{G_s\}_{s \in S} be a family of groups. For each \(T \in S \) put \(G_T := \prod_{s \in T} G_s \) and let

\[
G = \prod_{\Gamma} G_s
\]

denote their graph product.

Theorem

Suppose \(G = \prod_{\Gamma} G_s \), where each \(G_s \) is infinite. Then

\[
H^n(G; \mathbb{Z}G) = \bigoplus_{T \in S} \bigoplus_{p+q=n} H^p(K_T, \partial K_T; H^q(G_T; \mathbb{Z}G))
\]
Here G_T is the direct product $\prod_{s \in T} G_s$. So, neglecting torsion

$$H^*(G_T; \mathbb{Z}G_T) = \bigotimes \sum_{i_s = *} H^{i_s}(G_s; \mathbb{Z}G_T)$$

I should be putting a Gr in front of the LHS for “associated graded”.
Idea of proof

Suppose \mathcal{P} is a poset and $\{X_a\}_{a \in \mathcal{P}}$ is a poset of spaces and
$$X = \bigcup_{a \in \mathcal{P}} X_a$$

There is a spectral sequence with
$$E_1^{p,q} = C^p(\text{Flag}(\mathcal{P}); \mathcal{H}^q(\mathcal{V}))$$

converging to $H^*(X)$ where the (nonconstant) coefficient system $\mathcal{H}^q(\mathcal{V})$ associates to a simplex $\sigma \in \text{Flag}(\mathcal{P})$ the abelian gp $H^q(X_{\text{min} a})$

Want conditions to insure a decomposition:
$$E_2^{p,q} = E_\infty^{p,q} = \bigoplus_{a \in \mathcal{P}} H^p(\text{Flag}(\mathcal{P}_{\leq a}), \text{Flag}(\mathcal{P}_{< a}) : H^q(X_a))$$
Put $X_{<a} := \bigcup_{b < a} X_b$.

Main Lemma

The condition we need for this decomposition to hold is that $H^*(X_a) \rightarrow H^*(X_{<a})$ is the 0-map, $\forall a \in P$

In all situations in which we will apply this lemma, $P = S$ so that $\text{Flag}(P) = K$ and $\forall T \in S$,

$$(\text{Flag}(P_{\leq T}), \text{Flag}(P_{< T})) = (K_T, \partial K_T).$$

The key point

for applying this to graph products is that when each G_s is infinite, $H^0(G_s; \mathbb{Z}G_s) = 0$, so by K"unneth Formula,

$H^*(G_T; \mathbb{Z}G_T) \rightarrow H^*(G_U; \mathbb{Z}G_T)$ is the 0-map whenever $U < T$.

Suppose

- \(A = A_L \) is the Artin group associated to \((W, S)\), \(X_L \) the associated Salvetti complex.
- For each \(T \subset S \), \(A_T \) is the subgp generated by \(T \). When \(T \) is spherical \(H^*(A_T; \mathbb{Z} A_T) \) is free abelian and concentrated in degree \(|T| \) (ie \(A_T \) is a duality gp)

Theorem

\[
H^n(X_L; \mathbb{Z} A_L) = \bigoplus_{T \in S} H^{n-|T|}(K_T, \partial K_T) \otimes H^{|T|}(A_T; \mathbb{Z} A_L)
\]
Let A_L be the RAAG associated to the RACS (W, S), where $L = \text{nerve of } (W, S)$ (ie A_L is a graph product of \mathbb{Z}’s).

$BB_L = \text{kernel of } A_L \to \mathbb{Z}$ which sends each generator to 1.

If L is acyclic, then BB_L is called a Bestvina-Brady group.

Theorem

Suppose BB_L is Bestvina-Brady. Then the cohomology of BB_L with group ring coefficients is isomorphic to that of A_L shifted up in degree by 1:

$$H^n(BB_L; \mathbb{Z}BB_L) = \bigoplus_{T \in S} H^{n-|T|+1}(K_T, \partial K_T) \otimes \mathbb{Z}(BB_L/BB_L \cap A_T).$$
Let $L^2 b^k(BB_L)$ be the k^{th} L^2-Betti number of BB_L.

Theorem

Suppose BB_L is Betvina-Brady. Then

$$L^2 b^k(BB_L) = \sum_{s \in S} b^k(K_s, \partial K_s)$$

where $b^k(K_s, \partial K_s) = \overline{b}^{k-1}(L_s)$ is the ordinary Betti number.