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ABSTRACT. For warped products with harmonic curvature, nonconstant warp-
ing functions ¢, and compact two-dimensional bases (M, h), we establish a di-
chotomy: either the Gaussian curvature K of the metric g = ¢~ 2h is constant
and negative, or ¢ equals a specific elementary function of K, also depending
on the dimension p and Einstein constant ¢ of the fibre. In both cases the
fibre must be an Einstein manifold with p > 1 and € > 0, while the func-
tion f = ¢P/2 satisfies a Yamabe-type second-order differential equation on
(M, g). We prove that both possibilities are realized on every closed orientable
surface of genus greater than 1, and in the latter case — which also occurs
on the 2-sphere and real projective plane — the metrics in question constitute
uncountably many distinct homothety types.

Introduction

One says that a Riemannian manifold with the curvature tensor R has har-
monic curvature [4, Sect. 16.33] if div R =0 or, in local coordinates, Rijl’“,,f =0.
This condition amounts to the Codazzi equation (1.3) imposed on the Ricci tensor,
and it implies constancy of the scalar curvature [4, Sect. 16.4(ii)]. A compact Rie-
mannian manifold has harmonic curvature if and only if its Levi-Civita connection
is a critical point of its Yang-Mills functional [4, Sect. 16.34].

The known examples of Riemannian manifolds with harmonic curvature include
five non-disjoint classes, consisting of: FEinstein manifolds, conformally flat man-
ifolds of constant scalar curvature, locally reducible manifolds having div R = 0,
certain nontrivial warped products of dimensions n > 4 with Finstein fibres and
one-dimensional or hyperbolic bases, and some four-manifolds that are, locally or
globally, nontrivial warped products of surfaces. See [4, Sect. 16.34, 16.40], [9,
Sect. 4]. Every known compact example belongs to one of these five classes.

In the construction of the last two classes of the preceding paragraph, except
for the case of hyperbolic bases, the (local) warped-product structure, rather than
being an Ansatz, follows from a purely geometric assumption, namely, that a certain
tensor field B should have no more than two distinct eigenvalues at each point.
Specifically, in the fourth (or, fifth) class, B is the Ricci tensor [4, Sect. 16.38]
or, respectively, the self-dual Weyl tensor acting on self-dual bivectors [9, p. 145].
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Warped products with harmonic curvature were studied by Kim, Cho and Hwang
[15], and there are interesting results on Einstein warped products [14, 16].
It is therefore natural to consider the following problem.

QUESTION 0.1. Which compact warped-product Riemannian manifolds of di-
mensions greater than 3 have harmonic curvature, without belonging to the first
three classes italicized above?

Question 0.1 remains open in general, and its complexity clearly increases with
the dimension m of the base. For m = 1 the answer is well known [7, Lemma
1(ii) and Theorem 1]. The present paper deals with the case m = 2.

We begin by proving a dichotomy result (Theorem 3.1): if a warped product
has harmonic curvature, a compact-surface base (M, h), and a nonconstant warping
function ¢, while K denotes the Gaussian curvature of the conformally-related
metric g = ¢~2h on M, then
the fibre must be an Einstein manifold of some

(0.1) dimension p > 1 with an Einstein constant ¢ > 0

(for compact bases of all dimensions; see Remark 2.2), the function f = HP/?
satisfies a Yamabe-type second-order differential equation (6.2.iii) on (M, g), and

(0.2)

Conversely, these conditions imply harmonic curvature for the warped product.
Theorem 3.1 is a the first step toward answering Question 0.1 for m = 2, and
the two cases of (0.2) amount to two very different problems.
The first one concerns finding, for p,e fixed as in (0.1), nonconstant positive
solutions f to the quasilinear elliptic equation

(0.3) Af—af = —cf*P with constants a = p(p —2)e/[4(p —1)] and ¢ >0
on a given closed surface of negative constant Gaussian curvature K= —¢/(p —1).
(This is equation (6.2.iii), with 7 =0 < ¢ due to (6.3) — (6.4.1).) Yamabe [22] has
shown — cf. Lemma 13.1 below — that such f exist, on any compact Riemannian
surface, if the parameters a,p satisfy a specific inequality, which here reads

either K is the negative constant —e/(p —1), or ¢ equals a positive
constant times |(p — 1)K+ ¢|'/(0=P) with K (necessarily) nonconstant.

(0.4) p>2—)\/K
As we point out in Remark 1.10, a result of Schoen, Wolpert and Yau [19] yields
(0.5) A, < 2|K]|

whenever the metric of constant curvature K < 0, on any closed orientable surface
of genus g > 1, is confined to a suitable nonempty open subset of the Teichmiiller
space; (0.5) gives (0.4) for all p > 4, and the fibre dimensions p > 4 are the only
ones of interest for the “constant K case” of Question 0.1 (see Remark 3.5).

Consequently, the first possibility in (0.2) is realized, with warped products of
all relevant fibre dimensions, by a Teichmiiller-open nonempty set of metrics of
constant curvatures K < 0, on closed orientable surfaces of all genera g > 1.

In the remaining, second case of (0.2) we look for metrics g on compact sur-
faces M having nonconstant Gaussian curvatures K such that there exist positive
constants e, u € R with (p —1)K+ e # 0 everywhere in M and

2p+1)[(p — 1K+ e]AK — (3p —2)(p +1)g(VK,VK)]

(06) _ M‘(p _ 1)K+ E‘Q(P—Q)/(P—l) _ (2K+ pg) [(p — 1)K—|— 5}2.
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(Equation (0.6), that is, (3.3), requires a normalization of the warping function,
described in Section 3.) Let us emphasize that the existence of e, € (0,00)
for which (0.6) holds and |(p —1)K+¢| > 0 on M is a property of the metric
g alone. Using a bifurcation argument, we prove, in Section 12, that metrics g
with this property exist for M diffeomorphic to S2, RP? or any closed orientable
surface of genus greater than 1. More precisely, curves of such metrics, emanating
from a given metric § of (nonzero) constant Gaussian curvature K on M , are
naturally associated with certain positive eigenvalues A of —A, for the Laplaci-
an A of g. Each of the curves in question, which we call A-branches, consists of
metrics representing uncountably many distinct homothety types and, if N # A, a
metric from the A-branch, close to §, cannot be homothetic to any metric near ¢
belonging to the X-branch. Here are some further details.

If K> 0, the eigenvalues A > 0 that give rise to A-branches may be completely
arbitrary (on IRP?), or even-numbered and otherwise arbitrary (on $2). For K < 0
(that is, on any closed orientable surface of genus greater than 1) these A have to be
simple and different from (p —2)|K]|, and so, according to the theorem of Schoen,
Wolpert and Yau [19] mentioned in Remark 1.10, constant-curvature metrics §
admitting such eigenvalues A fill a nonempty open subset of the Teichmiiller space.

As a result, warped products of all fibre dimensions p > 1 realize the second
case of (0.2) with M = S% or M = IRP2 or M closed, orientable and of any
genus greater than 1, while — in the last case — the conformal types of the metrics
g form a nonempty Teichmdller-open set.

Two subcases of the second case of (0.2) need commenting on. One, charac-
terized by p = 2, has already been settled in [9]. The other, in which M = T2, is
still an open problem, even though one can easily provide examples of nontrivial
compact warped products with harmonic curvature and bases diffeomorphic to T2
that are neither Einstein nor conformally flat: namely, Riemannian products of S!
and suitably chosen harmonic-curvature warped-product manifolds having the base
S1, classified in [7, Lemma 1(ii) and Theorem 1]. However, being reducible, such
examples do not lie within the scope of Question 0.1.

1. Notations and preliminaries

Manifolds (always assumed connected), mappings and tensor fields, includ-
ing Riemannian metrics and functions, are by definition of class C°°, except in
Sections 10 — 11 where, for technical reasons, we require that, rather than being
smooth, they should belong to suitable L? Sobolev spaces. Given a Riemannian
metric g, we let V stand for the Levi-Civita connection of g as well as the g-gradi-
ent, and A, Ric,div, K for the g-Laplacian, the Ricci tensor of g, the g-divergence
and, in the case of a surface metric g, its Gaussian curvature. When a metric is
denoted by h, the analogous symbols will be D, A" Ric” div" and K™.

One calls a function § on Riemannian manifold (M, g) isoparametric [21] if
ApB and ¢g(VpB,Vp3) are functions of 5. It is well-known that, when dim M = 2,
the existence of nonconstant isoparametric functions amounts (locally, at generic
points) to “rotational symmetry.” More precisely, for 8 : M — IR and a Killing
field v with d,6 = 0 and V3 # 0 # v everywhere, S must be isoparametric
since the flow of v leaves AB and ¢(VS3,Vf) invariant as well. Conversely, on
an oriented Riemannian surface (M, g), isoparametricity of a function 5 without
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critical points leads to an explicit construction of a Killing field v without zeros,
orthogonal to Vf. See, e.g., [9, Lemma 7], or formula (1.6.ii) below.
Here is another well-known fact, cf. [11, Remark 2.5] or the end of this section:

any Killing vector field defined on a nonempty connected open
(1.1) subset of a simply connected, real-analytic, Riemannian mani-
fold (M, h), can be uniquely extended to a Killing field on M.

LEMMA 1.1. Let a compact real-analytic Riemannian surface (M, h) have non-
constant Gaussian curvature K" and nonzero Euler characteristic x(M). Any
h-Killing vector field v defined on a nonempty connected open set U C M has
a unique extension to an h-Killing field on M, provided that, if necessary, one
replaces (M, h) by a two-fold isometric covering thereof, and U by a connected
component of the pre-image of U under the covering projection.

PROOF. Assuming v to be nontrivial and denoting by (M’ k') the Riemannian
universal covering of (M, h), we see that v gives rise to a h'-Killing field v’ on a
suitable (connected) open submanifold U’ of M, and (1.1) allows us to treat v’
as defined on all of M’. Then, push-forwards of v’ under deck transformations
are constant multiples of v’ (or else K" would be constant), and v’ has zeros (or
else it would span a tangent-direction field on M’, descending to M, even though
X(M) # 0). As the flow of v is periodic due to its obvious periodicity on a
neighborhood of a zero of v/, the push-forwards of v’ under deck transformations,
having the same flow period as v’ itself, must all equal +v’. O

For any function S on a Riemannian manifold (M, g) one clearly has
(1.2) 2[VdpB](v, -) =dQ, where v =V and Q = g(V3,Vp3).

Suppose now that we are given a 1-form ¢ and a twice-covariant symmetric tensor
field b on a Riemannian manifold (M,h). Treating b as a 1-form valued in 1-
forms, we define the exterior product £ A b and the exterior derivative db to
be the 2-forms valued in 1-forms with the local-coordinate expressions [{ Ab],,., =
Egbrs—E&bys and [db],,o = b, ,—b, . OT, in coordinate-free notation, [{AD](u,v) =
§(u)b(v, -) = &(v)b(u, -) and [db](u,v) = (D,b)(v, -) = (D,b)(u, -) for tangent
vector fields u,v and the Levi-Civita connection D of h. Then, cf. [4, Sect. 16.3],

(1.3) db =0 if and only if b is a Codazzi tensor on (M, h)
while, for any functions f,¢: M — R, with dim M =2 in (1.4.b) — (1.4.c),

L4 a) d[fb] = fdb + dfAb, b) d[Ddp] = —K"d¢ A h,
(14) ¢) K'dg = div'[Dd¢] — dA.

Namely, (1.4.b) amounts to the Ricci identity for d¢ expressed in terms of the
Gaussian curvature K", that is, the two-dimensional case of the general formula
dVE = ¢R (in coordinates: &, ;, — &, = B,;5"E,), applied here to § = dg¢, and
valid for any 1-form £ on a manifold with a torsion-free connection V having the
curvature tensor R. (The exterior derivative db of b = V& is defined, as above,
by [db],.s = b5 4 — bys» but this time the twice-covariant tensor field b need not

be symmetric.) Contracting (1.4.b), one gets the Bochner identity (1.4.c).

LEMMA 1.2. Let J and « be the complez-structure tensor and the area 2-form
of an oriented two-dimensional Riemannian manifold (M, h), with the convention
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that o, = Jghg, or, equivalently, a = h(J-, ). Any 1-form & and twice-covari-

ant symmetric tensor field b on M then satisfy the relation
JEND) = a®]|(tryb)€ —b(v, -)], for v characterized by & = h(v, -),

the local-coordinate version of which reads (§,b,s — &,b,s)J7 = (b€ — bi&;)ay,..
Two special cases arise when b = h or, respectively, &€ = d¢ and b = Dd¢ with
a function ¢ : M — IR. Namely, if D denotes both the Levi-Civita connection of
(M, h) and the h-gradient, A" is the h-Laplacian, and H = h(D¢, D¢) : M — IR,

(1.5)  JYEAR) = a®&,  J(dpADdp) = a @ [(A'¢)dp — dH/2)].

PROOF. Being skew-symmetric in g, r, the expression £ b,, —&.b,, must equal

qs
PsQyys for some 1-form p. Contracting this equality against h™ we obtain bJ¢; —
bi¢, = a;w” = JPh,w" = JPp,, with the vector field w given by p = h(w, -),
which proves our formula for J*(¢ Ab), and (1.5) now follows from (1.2). O

Given a Riemannian surface (M,g) and B,0,(: M — IR such that o and (
are functions of g, while AS = ¢ and ¢(VS3,V3) = 2¢, one has

1) 20Vdp = 2(o —(')Cg + (2¢' = 0)df®@dB, with (' =d(/dpB,

(1.6) ii) if the surface (M,g) is oriented, then e"Jv is a g-Killing field,

for v = VB and J as in Lemma 1.2. Here (1.6.ii) holds on the open set U on
which df # 0, the function k of 8 being any antiderivative of (o — 2¢")/(2(),
defined away from zeros of (. Namely, both sides of (1.6.1)) are symmetric, have
the same g-trace, and agree, when evaluated on Vf, as a consequence of (1.2),
which yields (1.6.1)) both on our open set U, and in the interior of the zero set
of dB, while the union of the two sets is dense. To obtain (1.6.ii), note that
2Ce "V (e"Jv) = 2(c —(")¢J in view of the relations 2¢(dxk® Jv = (0 —2(") df ® Jv
and 2¢JVv =2(c — {')¢J + (2¢' — o) dB® Jv due, respectively, to our choice of &,
and to (1.6.1) rewritten as 2(Vv = 2(c — ¢"){ + (2¢' — 0) dB® v, where 2(c — (')
stands for 2(c — ¢’)¢ times the identity.

LEMMA 1.3. For a Riemannian surface (M, g) with the Gaussian curvature K,

(i) whenever ¥,v: M — R are functions with VdK = g+ v dK® dK, one
necessarily has (K —¢v)dK + dy = g(VK,Vv)dK — ¢(VK,VK) dv,

(i) if functions X, Z defined on an interval containing the range of K satisfy
the relations AK = X(K) and g(VK,VK) =2Z(K), then

(L7 (272 -5\ Z -x)=22"- % —K)Z, where () =d/dK.

Proor. In (i), AK = 2¢p + vg(VK,VK), and our claim immediately follows
from (1.4.c) for h =g¢ and ¢ = K, combined with (1.2). Under the hypotheses of
(ii), we may apply (1.6.1), at points with df # 0, to (8, 0,() = (K, X, Z), obtaining
the assumption of (i) for ¢y = X' — Z’ and v = (Z'— X/2)/Z. The conclusion of (i)
now reads (K — ¢v)dK + diy = 0, since v is a function of K, and it easily gives
(1.7) wherever Z # 0. Thus, (1.7) holds on the whole interval in question, due to
a dense-union argument analogous to the one following (1.6); note that X' =0 on
every open interval on which Z = 0. (Il

REMARK 1.4. The scalar curvatures s, s” and Laplacians A, A" of conformally
related Riemannian metrics g and h = g/7° in dimension m are given by

(1.8)  s"=7%5+2(m — 1)tA7 —m(m — 1)g(v,v), A"=72A— (m —2)7d,,
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where v = Vz is the g-gradient of z. Cf. [4, Theorem 1.159]. For m = 2, this
becomes K" = 2K + 7At — g(v,v) and A" = 72A, with s = 2K and s" = 2K"
expressed in terms of the Gaussian curvatures K, K" of g and h.

REMARK 1.5. Under the assumptions of Remark 1.4, if 7 assumes its extremum
values 7, T while s, s” are both constant and s < 0 < 7, then 7 is constant

max’ “min?

and s < 0. This well-known conclusion follows since, by (1.8), 72, < s"/s < 72

max min*

REMARK 1.6. The existence of a nontrivial h-Killing vector field v, for a Rie-
mannian metric h on a compact surface M, precludes negativity of the Gaussian
curvature K of any metric ¢ on M. In fact, passing to a two-fold covering, if
necessary, we may assume M oriented, which turns h into a Kahler metric on a
compact complex curve of some genus g, admitting a nontrivial real-holomorphic
vector field v (so that g < 1), while the condition K < 0 would give g > 1.

REMARK 1.7. A Riemannian product with factors of dimensions n and n' is
conformally flat if and only if both factors have constant sectional curvatures K, K’
and (n—1)(n'—1)(K+K') = 0. See [23, Section 5], as well as [4, subsection 1.167].

REMARK 1.8. Let Af = £2(f) for a function f on a compact Riemannian
manifold and a function {2 on an interval containing the range of f. If {2 is strictly
increasing or constant, then f must be constant, since 2(f,,..) <0< 2(fi)-

REMARK 1.9. Let A; be the jth eigenvalue of —A, for the Laplacian A of the

2-sphere (or, projective plane) of constant Gaussian curvature K, with
(1.9) Ag <AL <Ay <.al

Then A\; = j(j + 1)K (or, A; =2j(2j + 1)K) The spectrum of —A acting on
rotationally invariant functions is the same, but with one-dimensional eigenspaces,
spanned by the zonal spherical harmonics [24, Sect. 2.3].

REMARK 1.10. On every closed orientable surface M of genus greater than 1
there exist metrics g having constant Gaussian curvature K < 0 and an arbitrarily
large number of eigenvalues of —A in (|K|/4,t+|K|/4], for any ¢ € (0, c0), where
A is the Laplacian; all such metrics obviously satisfy (0.5). See [5, p. 211, Theorem
8.12], [6, p. 251, Theorem 2]. Also, M then admits a sequence of metrics g with
K = —1 for which the lowest positive eigenvalue A\; of —A tends to 0 and has
multiplicity 1. This follows from a result of Schoen, Wolpert and Yau [19, three
final lines of the first paragraph on p. 279], applied to n = 1.

Finally, (1.1) follows since one can treat Killing fields as sections of a certain
vector bundle, parallel relative to a natural connection. This is why the same con-
clusion holds, more generally, both for conformal vector fields in the pseudo-Riem-
annian case, and for infinitesimal affine transformations on a manifold with a con-
nection, cf. [10, lines following Lemma 9.1], [12, text surrounding formula (1.5)].

2. Warped products and harmonic curvature

Given Riemannian manifolds (M, h), (II,n) of positive dimensions m,p and
a nonconstant function ¢ : M — (0, 00), consider the nontrivial warped product

(2.1) (M x IT, h + ¢*n)
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with the base (M, h), fibre (II,n) and warping function ¢. (The word ‘nontrivial’
refers to nonconstancy of ¢, and the same symbols h,7, ¢ represent the pullbacks
of h,n,¢ to the product M x II.) The warped-product metric of (2.1) is obviously
conformal to a product metric: h + ¢?n = ¢*[g + 1], where g = ¢~2h. As one
easily verifies [11, Lemma 1.2], cf. also [15], the (nontrivial) warped product (2.1)
has harmonic curvature if and only if there exists a constant € € IR such that
(i) Ric" — p¢1Dd¢ is a Codazzi tensor on (M, h),
(i) div"(¢?2Ddg) = [(p —1)A — €] ¢pP*dp, where A = h(D¢, Do),
(iii) (II,7n) is an Einstein manifold with the Einstein constant e,
Ric" and div" being the Ricci tensor of h and the h-divergence, and D denoting
both the Levi-Civita connection of (M,h) and the h-gradient.
Let us point out that, except for notations, (iii) and (i) are precisely (a)—(b)
in [11, Lemma 1.2], while (ii), with A = h(D¢, D¢), is equivalent to the condition

(2:2) ¢*div" (671 Ddg) = [(p — A — €] do + (1 - p)¢ dA/2

of [11, Lemma 1.2(c)], as one sees differentiating by parts, and also to the equality
(2.3) P*[Ric" (Do, -)+dA'¢) = [(p—1)h(D, Dp)—e] dp+(1-p/2) pd[h(D¢, Dg)],
where A" denotes the h-Laplacian. See [11, Lemma 1.2(e)].

Using, for instance, the components of the Ricci tensor of h + ¢%n evaluated
in [11, the Appendix], and noting that, if A = h(D¢, D¢),

(2.4) 2070 + (p —1)¢ 24 = d(p+ 1)L~ PHD/2Ap@+1)/2,
we express the (necessarily constant) scalar curvature p of h + ¢?n as follows:
(2.5) s 4 pleg T —A(p+ 1) pmPHIANGPEDZ — e R.

Constancy of the scalar curvature p is a general property of every metric with
harmonic curvature [4, Sect. 16.4(ii)]. Here we can also derive it from (i) and
(2.3): any h-Codazzi tensor b obviously has div"b = d(tr,b) which, in the case
of b=TRic" — ppDd¢ amounts to —2pdiv" (¢ Dde) = d[s" — 2p¢1A'¢], where
we have used the Bianchi identity for the Ricci tensor [4, Proposition 1.94]. At the
same time, (2.2) states that —2pdivh(q§_1Dd¢) equals p times the differential of
[(p — 1)h(D@, Dp) — €]¢~2. Subtracting these two equalities one gets

(2.6) constancy of s" — 2pp~'A" — p[(p — 1)h(D¢, Do) — €] 72,
that is, by (2.4) — (2.5), of u. Next, for a warped product (2.1) with divR =0,
(2.7) the base metric h is real-analytic in suitable local coordinates.

In other words, the C'*>-manifold structure of the base M contains a unique real-an-
alytic structure making h analytic. Namely, as shown by DeTurck and Goldschmidt
[13], the analog of (2.7) holds for harmonic-curvature metrics, while the base (M, h)
is isometric to a totally geodesic submanifold of the warped product (2.1).

REMARK 2.1. If dim M = 2, condition (i) amounts to (dK" + pK"¢7'd¢) A h
+pop~2dp A Ddp = 0, as one sees using (1.3) and (1.4.a) for the pair (f,b) equal to
(K" h) or (¢7%, Ddg), with Ric" = K"h, followed by (1.4.b).

REMARK 2.2. Any nontrivial warped product (2.1) with a compact base (M, h)
and harmonic curvature has p = dim IT > 2, as the Einstein constant ¢ of the fibre
(II,71) must be positive [11, Theorem 1.4]: the h-inner product of the left-hand side
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of (ii) with the h-gradient D¢ obviously differs by an h-divergence from —@P—2
times the h-norm squared of Dd¢ while, with A = h(D¢, D¢), the analogous inner
product for the right-hand side equals [(p —1)A — g]A¢P~2.

REMARK 2.3. The case of a one-dimensional fibre (p = 1), for nontrivial warped
products with harmonic curvature, is of very limited interest: it precludes compact-
ness of the base (Remark 2.2) and, for two-dimensional bases — the main focus of this
paper — the resulting three-manifolds (2.1) are conformally flat [4, Sect. 16.4(e)].

3. Warped products with two-dimensional bases

Recall that the warped-product metric in (2.1) is conformal to a product metric:
(3.1) h+¢*n = [g+n]/t?, where g = ¢%h and 7=1/¢.

The question of which nontrivial warped products (2.1) with two-dimensional bases
have harmonic curvature may obviously be rephrased in terms of the surface metric
g = ¢72h and the function 7 = 1/¢. Remark 2.3 and condition (iii) of Section 2
allow us to assume that the fibre (I1,7) is an Einstein manifold of dimension p > 2
with some Einstein constant e. In Section 4 we prove the following result.

THEOREM 3.1. Given a Riemannian surface (M,g), a nonconstant function
7: M — (0,00), and an Einstein manifold (II,n) of dimension p > 2 with the
Einstein constant ¢, the warped-product metric [g+n]/t® on M x II has harmonic
curvature if and only if the Gaussian curvature K of g satisfies the equation

(3.2) 2K+ pe)r? +2(p+ 1) tAT — (p+1)(p +2)g(Vr, V) = 1
for a constant p € R, and one of the following two conditions occurs.

(a) K is constant, and equal to —e/(p —1),
(b) K is nonconstant, (p —1)K+¢e # 0 everywhere in M, and T equals a
positive constant times |(p — 1)K+ e|*/ (=1,

The constant p in (3.2) then coincides with the scalar curvature of [g+ n]/7>.

The positive constant mentioned of Theorem 3.1(b) may always be assumed
equal to 1 by simultaneously rescaling 7 and pu, so that (3.2) still holds. The
resulting normalized version of case (b) in Theorem 3.1 amounts to a condition
imposed on K alone, with no reference to = at all. Explicitly, it reads

(3.3) (p+1)[2wAK — (3p —2)g(VK,VK)] = p|w>®=2/-D _ (2K 4 pe)w?

for w = (p — 1)K + ¢, with constants ¢, € R, where K is the (nonconstant)
Gaussian curvature of the Riemannian surface (M, g), and w # 0 everywhere.

THEOREM 3.2. Under the assumptions stated in the preceding three lines, if M
is compact, € and p are uniquely determined by g and p.

Theorem 3.2, which will be proved in Section 5, has an obvious consequence:
the product €A, for A = area(M,g), is a homothety invariant of g. Note that
multiplying g by z € (0,00) causes the quintuple (A, K, e,w,u) to be replaced
with (zA, 27K, 27, 27w, 2(1+P)/(1=P)),

REMARK 3.3. Another homothety invariant, naturally associated with any non-
flat compact Riemannian surface having the Gaussian curvature K, is the point
(K ox : K] of the real projective line IRP!, where [:] are the homogeneous
coordinates. Clearly, K is constant if and only if [K .. : K ;] = [1:1].

min
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REMARK 3.4. Whenever the hypotheses of Theorem 3.1 are satisfied, along
with (3.2) for a constant g, and one of conditions (a) — (b) holds, compactness of
M implies positivity of both & and p. See Remarks 2.2 and 6.2.

REMARK 3.5. In the context of Question 0.1, case (a) of Theorem 3.1 is of
interest only for p > 4, since an Einstein manifold (II,7) of dimension p € {2,3}
with the Einstein constant ¢ has constant sectional curvature /(p —1). According
to Remark 1.7, this implies conformal flatness of the harmonic-curvature metric
[g +n]/7% (while, in case (b), [g+ n]/7? is never conformally flat).

4. Proof of Theorem 3.1

Due to (3.1), [g+ n]/7? has harmonic curvature if and only if (M, h) satisfies
(i) and (ii) in Section 2 or, equivalently, (i) and (2.3). This further amounts to

wp Y K"+ DK odo+ (No)do— 2] = o,

b)  ¢*(K"d¢ + dA'¢) — [(p —1)A—eldp — (1-p/2)pdA = 0,
with A = h(D¢, D), and K" denoting the Gaussian curvature of h. Namely,
Ric" = K"h, so that (2.3) becomes (4.1.b), while Remark 2.1 and (1.5) easily yield

the equivalence between (i) and (4.1.a).
As a consequence of (4.1), we obtain the relation (2.6), which now reads

(4.2) 2K" 4 pledp™ — 207" — (p — 1) 4] = pu for some p € IR.
Explicitly, subtracting (4.1.b) multiplied by 2p¢—2 from 2¢~2 times (4.1.a), we see
that d{...} =0, with {...} denoting the left-hand side in (4.2). The system (4.1)
is thus equivalent to one consisting of (4.1.a) and (4.2), namely

4.3 i) ¢°dK" + p[K"pdp + (A'g)de —dA /2] = 0,
(4.3) i) 2K" 4+ plep2 — 2¢07'A — (p —1)¢~24] is constant.

Let us now rewrite (4.3) in terms of the conformally related metric g = ¢~2h and
the function 7 = 1/¢ on M, using the symbols K, V, A for the Gaussian curvature
of g, the g-gradient, and the g-Laplacian, as well as setting Q = ¢g(Vr, Vr) and
Y = Ar. Since A= Q/7% and A(1/7) = (2Q — 7Y) /73, Remark 1.4 yields

a) dK+72dY — (1+p/2)rdQ +[(2—p)Kr +Y]rdr = 0,

b) (2K+pe)r®+2(p+1)7Y — (p+1)(p +2)Q is constant.

Finally, we may replace (4.4) with the (obviously equivalent) system consisting of
(4.4.b) and the equality 2p(p — 1) ePT2d{z""P[(p — 1)K + €]} = 0 obtained by
applying d to (4.4.b), multiplying the result by 7z, and then subtracting it from

2(p+1) times (4.4.a). This proves Theorem 3.1, with the cases (a), (b) depending
on whether the constant 7!7P[(p — 1)K + ¢] is or is not equal to 0.

(4.4)

5. Proof of Theorem 3.2

We assume that p > 2, as the case p =2 is already settled in [9, Remark 4].

It suffices to establish uniqueness of ¢, since (3.3) provides an expression for
4 in terms of ¢ and geometric invariants of g. Suppose that, on the contrary, in
addition to (3.3) with w = (p —1)K + ¢ one also has

(p+1)20AK — (3p —2)g(VK,VK)] = a|a?P~2/0=0 — (2K + p&)@?

for © = (p — 1)K+ ¢ and constants &, i, while € < ¢ and w® # 0 everywhere,
cf. the lines following (3.3). As w — & = ¢ — &, subtracting the last equality (or,
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w times it) from (3.3) or, respectively, from @ times (3.3), one gets AK = Y(K)

and g(VK,VK) = 2Z(K) with the functions ¥ and Z of the variable K given by
i) 2(p+1)(c—8&X(K)=a’0 —uw?O,

i) 2(p+1)(3p —2)(c — ) Z(K) = w20 — wO)], for

i) w=@p@P-1)K+e, o=(@p-1)K+¢&, and

iv) @ =2K+pe—plwf¥P) O =2K+pé— p|w*/0-P),

Thus, since w@ # 0 everywhere,

(5.1)

the values of K lie in I, which is one of the intervals

(5.2) (=00,6/(1 = p)), (¢/(1 = p),&/(1 = p)), (€/(1 = p),00),
’ while w,©,6,0,X and Z are real-analytic functions
of the real variable K, defined on the whole interval I..

As (p—1)K=w—e=w—¢, (5.1.ii) — (5.1.iv), with ()’ = d/dK, give

(p—1)0 =2w+ (p+1)(p —2)e — (p — Dp|w|* 7P,
(p =16 =20+ (p+1)(p —2)¢ — (p — D@/ ),
W=a'=p—-1, @ =2+2>gnw)u|w|/tr)/0-p)
O =2 + 2(sgn @) ji| @ |(HHP)/(=p),
Multiplying (5.1.i) and (5.1.ii) by p — 1, then using (5.3), we obtain
) 20°-1)(e-8)X =20 -w®) + (p+1)(p —2)(E0* — ew?)
+ (p — 1) [p|w[2P=2/(0=1) _ | 52—/ (p—1)),

(5.4) i) 2(p*-1)38p—2)(e —&)Z

= 287+ (p+ 1)p —2)2 — (p — G202/ D]

— (207 + (p+ 1o — 2)ew? = (p — Daluw 0D/ ]a,
Next, as a consequence of (5.3),

(WO = 4w+ (p+1)(p —2)e — (p— 3)p|w|>/ 7P,
O] = 4+ (p+ 1) (p — 2)Z — (p — Dl @/ 17,
Thus, [w?6] = w'wO + w[wO] = w{(p —1)O@ + [wO]'}. Now, by (5.3) and (5.5),
(6] = 2[3w + (p+1)(p —2)e — (p — 2)p|w|” " P]w,
[@26) = 2[3@ + (p+1)(p —2)¢ — (p —2)a|@[ " P)@
From (5.1.ii), 2(p+1)(3p — 2)(5 — &) 7' = {w[@?6] — ©[w?O]}. The Leibniz rule
applied to both products w[@?0] and &[w?O)] yields, via (5.3), (5.1.i) and (5.6),
20+ 1)Bp —2)(e —8)Z' =2(p° - 1)(e - )X

+2wo[(PP—p+1)(E — &)+ (p —2)u|w>/ 7P — (p —2)a|@|>/ (=),
as w—w = ¢ — €, which, setting v =sgnw and ¥ = sgnw, we can rewrite as
2p+1)(e — 2)Bp ~2) 7' — (p— 1) 5] = 27— p+ )¢ — )i

+2(p — 2)[yu@|w|P=3/ =1 _ Fhw|o|(P-3)/(P=1)),
With the same meaning of v and 4, using (5.1.i) and (5.6), or (5.3), we get

) (p+1)(e—8)X =3@*-w?)+(pP+1(p—2)(fd —ew)

(5.8) + (p = 2)yplw| @D — 55| @) P/ @1,
i) 0"=-2(p+1)plw/0=P) 0" =-2(p+1)a|o>/0-P),

Consequently, (5.L.i) gives 2(p +1)(3p —2)(c — £)2" = [(w&*)0)" — [(w*©)O)" =
(W20 — (W2D)O" + 2(wi?)' O — 2wW?D)'O + (Wi?)"O — (W2D)"O. As (5.3)

(5.3)

~

(5.5)

(5.6)

(5.7)
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easily implies that (w@?)’, (W?@), (w@?)” and (wW?@)" are, respectively, equal to
(p—1)(@+2w)@, (p—1)(w+20)w, 2(p—1)?(20 +w) and 2(p —1)?(2w + @), we
obtain 2(p +1)(3p —2)(c — &) 2" = (w&?)O" — (W?@)O" + 2(p — 1)(& + 2w) DO’ —
2p — 1)(w + 28)w’ + 2(p — 1)(2& + w)[(p —~ O] — 2(p — 1) (2w + &)[(p — 1)O).
Therefore, replacing 0”,0",6',60',(p —1)0 and (p —1)© with the expressions
provided by (5.8.ii) and (5.3), we see that, since w — @ =€ — &,

(p+1)(3Bp—2)Z" + 3(p —1)(p>—p+2)w equals the sum of a
(5.9) constant and a constant-coeflicient combination of the functions
M@|w|2/(1—p) — /lw|d;|2/(1_p) and WL|(,J|(p—i’>)/(p—1) — ,7/1|@|(p—3)/(p—1)_

LEMMA 5.1. As K — +o00, one has the following limit relations.

(a) 2(p+1)X/K? and (p+1)X'/K both tend to —(p —1)(p®>—p +4),
(b) 2(p+1)Bp —2)Z/K* = —(p —1)*(p*—p+2),

(c) 2(p+1)(3p —2)Z'/K?* = =3(p —1)*(p* = p +2),

(d) (p+1)Bp —2)2"/K — =3(p —1)(p*—p+2).

The limits, as K — +oo, of 4[(p +1)(3p —2)]2(2Z' — X)(Z' — £)/K* and of
S[(p+1)(3p —2)P (2" — &' — K)ZJK* are —(p—1)(p—2) (5P + 5p—2) (35— p+2)
and, respectively, —4(p —1)%(p —2)(p?>— p +2)(3p>—5p*+ 12p—8). The difference
between the former and the latter limits equals (p —1)3(p —2) times the positive
function 12p* —23p>+ 55p? — 56p + 60 of the real variable p > 1.

PROOF. By (5.1.ii), w/K and &/K tend to p—1 as K — Fo0. Since @*—w? =
(W—w)(@*+@dw+w?) and w— = e—&, (5.4.i) and (5.8.), with 2(p—2)/(p—1) < 2
and (p—3)/(p—1) <1, yield (a). Similarly, (5.4.ii), (5.7) combined with (a), and
(5.9) give (b), (c) and, respectively, (d). Now (a) — (d) imply positivity in the final
clause as 12p*—23p3+55p2—56p+60 = pA(p —1)(12p —11) +4(11p*— 14p+15). O

We now derive the contradiction that proves Theorem 3.2. By Lemma 1.3(ii),
our Z and X satisfy the differential equation (1.7), and so the interval I, in (5.2)
must be bounded since, due to the positivity claim at the very end of Lemma 5.1,
the two sides of (1.7), divided by K*, have different limits as |K| — oco. (At the
beginning of this section we assumed that p > 2.) Thus, I, = (¢/(1—p),&/(1—p))
and K < £/(1 —p), so that K < 0, as Remark 2.2 yields £ > 0. According to the
lines preceding (1.1), our equalities AK = Y (K) and ¢(VK,VK) = 2Z(K) imply
the existence of a g-Killing field v without zeros, defined on a nonempty connected
open set U C M, which is also an h-Killing field, for the metric h = g/7% in (3.1),
since the normalization of (3.3) gives 7 = |(p—1)K+¢|/®~1 thatis, 7 = |w|"/®P~1),
and the local flow of v preserves the Gaussian curvature K. The same obviously
applies to the metric h = ¢/72, where 7 = |@|"/®~V. By (2.7) and Theorem 3.1, h
and h are real-analytic. At least one of them has nonconstant Gaussian curvature.
Otherwise, their constant Gaussian curvatures would be negative (from the Gauss-
Bonnet theorem — note that K < 0) and, as h and h are conformally related,
Remark 1.5 would imply constancy of their conformal factor 7/z, thus making K
constant. Finally, x(M) < 0 since K < 0, so that by Lemma 1.1 a nontrivial
Killing field exists on (M, h), or (M, k), or on a two-fold isometric covering. This
in turn contradicts Remark 1.6.
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6. Theorem 3.1, rephrased

Let us rewrite Theorem 3.1 in terms of the positive function f = 77?/2, the
parameter v € IR characterized by (p — 1)K+ & = 7?7}, and the following triple
of real constants:

(6.1) (a,¢,7) = (p(p —2)e/[Alp — V)], pu/[4(p + 1)), pv/12(p* = 1)]).

THEOREM 6.1. Given a nonconstant function f: M — (0,00) on a Riemann-
ian surface (M, g), and an FEinstein manifold (II,n) of dimension p > 2, the
metric f4Plg +n] on M x IT has harmonic curvature if and only if, for the
Gaussian curvature K of g, some a,c,r € R, and the Finstein constant € of n,

i) K=2r(L+1/p)f U0 —c/(p~1), i) p(p—2)e=4(p —Da,
(6.2) i) Af —af = —cf1H4/P 4 ppit2/p,

The constant scalar curvature of f*P[g+n] then equals 4(1+ 1/p)c. Also,
(6.3) cases (a) and (b) in Theorem 3.1 correspond to r =0 and r # 0.

Here (6.3) is obvious since 2(p?—1)r = py, cf. (6.1), and p > 2.
When M is compact, and f: M — (0,00) nonconstant, (6.2) implies that

i) ¢>0, i) p—2 and a are both zero, or both positive,
(6.4) iii) if a =0, then K is nonconstant, r > 0, and p = 2,
iv) whenever r < 0, one has p > 2 and K < 0 everywhere.

In fact, (6.4.i) follows from (6.2.ii), as € > 0 (see Remark 2.2) and p > 2. Next,
one of ¢ and r is positive: by (6.4.ii), a > 0, so that if we had r < 0 and ¢ <0,
(6.2.iii) would make Af the sum of three constant or increasing functions of the
variable f > 0 resulting, via Remark 1.8, in constancy of f. Nonpositivity of ¢
would thus lead to positivity of r, with (6.2.iii) expressing Af as the sum of three
nonnegative terms and, again, contradicting nonconstancy of f. This yields (6.4.1).
If a =0, weget r>0 (or else Af would, by (6.2.iii) and (6.4.1), be negative),
so that (6.2.1) and (6.4.ii) yield (6.4.iii). To prove (6.4.iv), let r < 0. Hence, by
(6.2.1), K< 0, as € >0 (Remark 2.2), while p > 2, or else (6.4.ii) with p =2 and
(6.4.iii) would give r > 0.

REMARK 6.2. Positivity of € (or, p) in the compact case follows from Re-
mark 2.2 or, respectively, (6.4.1) and (6.1).

7. Vanishing differentials and Hessians

For a manifold W, an interval I C IR, a C% curve I >t~ y(t) € W, and a
parameter ¢ € I such that y(c) = 0, the acceleration vector w = j(c) € T, W
with the components w® = §j%(c¢) in any local coordinates at y(c) is clearly well
defined, a coordinate-free description being: d, ¢ = d?[¢(y(t))]/dt?, evaluated at

t = ¢, whenever ¢ is a C? function on a neighborhood of y(c) in W. Thus,
(7.1) §(c) equals the ordinary second derivative of y(t) at t =c¢
if W happens to be a C? submanifold of a Banach space V, making I > ¢ — y(t)

a curve in V. This is immediate if one diffeomorphically identifies a neighborhood
U of y(c) in V with Ux U’, for open subsets U’ of some Banach space and U of

R™, where n = dimW and 0 € U/, so as to make WN U correspond to U x {0},
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and then treats the projection U x U’ — U, restricted to WNU = U x {0}, as a
local coordinate system for W.

Given a C? mapping F : N' — W between manifolds and a point z € N
such that dF, = 0, one defines the Hessian of F' at z to be the symmetric bilin-
ear mapping H : TN X TN — T, F(Z)W characterized by the component formula
[H (u,v)]* = Hﬁcujvk with Hj} = (9;0,F“)(z), whenever u,v € TN and 2/ (or,
y®) are local coordinates in N at z, or in W at F(z). An obviously equivalent
definition of H(u,v), where symmetry allows us to set u = v, reads

H(v,v) = (c) for the curve y(t) = F(x(t)) if t — z(t)

(7.2) is a C? curve in A such that z(c) =z and i(c) = v.

The acceleration w = ¢(c¢) in the lines preceding (7.1) involves a special case of
the Hessian; specifically, w = H(u,u) at z = c¢ in N = I, the mapping F and u
being the curve and, respectively, 1 treated as a vector tangent to I.

8. Fredholm differentials and bifurcations

Suppose that we are given real Banach spaces V,f/ and a C* mapping L,
1 < k < o0, from a neighborhood of 0 in V into V, such that L(0) = 0 and the
differential of L at 0 is a Fredholm operator @ = dL, : V — V. Thus, Ker®
and V/®()V) are finite-dimensional, from which closedness of the image #(V) in V
follows [1, p. 156]. We fix closed subspaces Y CV and W C V with V =YVpKer®

and V= WaP(V), so that dim W < co. Due to Banach’s open mapping theorem,
(8.1) & =dL, restricted to Y is a linear homeomorphism Y — &(V).

The problem of understanding the preimage L~!(0), clearly contained in L~1(W),
has a local finite-dimensional reduction.

LEMMA 8.1. Under the above assumptions, the intersection N of L~(W) and
a suitable neighborhood of 0 in V forms a C* manifold of the finite dimension
dim Ker @, having at 0 the tangent space TyN = Ker @, while L restricted to N
constitutes a C* mapping F : N' — W with F(0) = 0 such that dF, = 0 and,
if k> 2, the Hessian H of F at 0 is given by H(v,v") = n(d[dL]v)v" for any
v,v" € WN =Ker® and the projection T : V =W having the kernel (V).

PROOF. Let pr = Id — 7 be the projection V — &(V) with the kernel W.
Setting S(y, z) = (prL(y+2), 2), we obtain a C* mapping S from a neighborhood
of 0 in Y x Ker® into &(V) x Ker @. The assignment (7, 2) — (Py, 2) represents
the differential of S at (0,0) which — due to (8.1) — is a linear homeomorphism.
Our claim about F : N'— W now follows from the inverse mapping theorem: N
corresponds via S to a neighborhood of (0,0) in {0} x Ker &, while dS(_ol,o) (0,2) =
(0,2), and dFyy = 0 since T)N = Ker® = KerdL,. To evaluate H, we choose a
curve t — y(t) + z(t) € N C L"HW) with y(t) € Y and 2(t) € Ker @, having at
t =0 the value 0 and velocity v € )N = Ker®. Thus, y(0) = z(0) = y(0) =0
and 2(0) = v, as well as L(y +z) = nL(y + z) for all ¢, due to W-valuedness of
L, where — from now on — we write y, z,9, 2 rather than y(t), etc. Applying d/dt
twice to the last equality, one gets dL, . (9 + %) = 7dL, . (§+2) at any ¢, and
dldL,,.(j +2)]/dt = n(d[dL]yv)v at t = 0, since d[dL,,,]/dt = d[dL], . (j + %)
(with y=2=9y =0 and 2 =v when t = 0), while 7dLy(j +2) = nP(j+ %) =
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0 (note that #(V) = Kerm). By (7.2) and (7.1), H(v,v) = w(d[dL],v)v, and
symmetry of H implies the required formula for H(v,v"). O

9. The saddle-point case

A simple special case of Lemma 8.1 arises when

(i) #(V) has the codimension 1 in V and, consequently, dim W = 1,

(ii) k > 2 and dim Ker® = 2, so that N is a surface,

(iii) there is an embedded C' curve C C N with 0 € C' C L7Y0),

(iv) we identify W with IR, which turns 0 € A into a critical point of the C?
function F : N'— IR on the surface N, having F(0) =0,

(v) H(v,v") #0 for the Hessian H of F' at 0, some vector v tangent to the

curve C at 0, and some v’ € TyN = Ker @.

Then H is indefinite. Namely, H # 0, while H(v,v) = 0 since L = 0 along C,
and so H cannot be definite (or semidefinite), or else we would have v = 0 (or
H(v,v") =0). As aresult, F has a saddle point at 0, and

the intersection of L7!(0) with a neighborhood of 0 in N
is the union of two embedded curves intersecting transversal-
(9.1) ly at 0 € N and having no other points in common; one of
these curves is contained in our C, the other has the tangent
line Rw at 0, for some w € Ker® \ Rv with H(w,w) = 0.

We will refer to these two curves, respectively, as
(9.2) the curve of trivial solutions (contained in C), and the bifurcating branch.

Next, given real Banach spaces V,f) and a mapping L of class CF, 2 < k < oo,
from a neighborhood of 0 in V into V with L(0) = 0, suppose that

(a) V=V'x R, for a Banach space V/,
(b) Lt(0) =0 for all ¢ near 0 in IR, where we set L!(z) = L(x,t),
(c) dLY (the differential of LV at 0 € V’ ) is a Fredholm operator,
(d) dim KerdL3 = dim [V/dL3(V")] =
(e) dLI(V") N dLY(KerdLd) = {0} # dLO(Ker dLY), with L} = dL}/dt.

LEMMA 9.1. Under the assumptions (a) — (e), the hypotheses of Lemma 8.1
along with conditions (i) — (v) above are all satisfied, and hence so are their conclu-
stons, including (9.1), while 1, O)N: KerdL3 x R. For the Hessian H of F at
(0,0) and any vectors v,v' € KerdLY x IR of the form v = (0,1) and v’ = (u,0),

where u € KerdLY, one has H(v,v') = dLJu. The curve C of condition (iii) is a
neighborhood of (0,0) in {0} x RR.

\/\/\/\/

PRrROOF. The hypotheses of Lemma 8.1 easily follow from (a) — (e), and so do
(i) = (iv): the Fredholm property of & =dL, , with the dimensions required in
(i) — (ii), is obvious since @ has the kernel KerdL x IR and the image dL3()’).
Finally, for v,v € T0 O)N Ker® = KerdL} x IR as in the statement of the
lemma, with a nonzero vector u € Ker dL, the formula H(v,v’) = 7(d[dL],v)v" of
Lemma 8.1 reads H(v,v') = mdLu while, by (e), dLu ¢ dL3(V'). The relation
dL3(V") = ®(V) = Ker 7 now yields H(v,v") # 0, proving (v). O
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10. Nonconstant Gaussian curvature: part one

Compact warped products (M x I1,g) with harmonic curvature, nonconstant
warping functions, and two-dimensional bases (M, g) represent two separate cases,
(a) and (b) in Theorem 3.1. Case (b), discussed here, amounts, by Theorem 6.1,
to having g = %/ Plg+n] for an Einstein metric n with some Einstein constant
¢ and a nonconstant function f: M — (0,00) satisfying (6.2), that is,

(10.1) a) Af=Q(f), b) K=2r(1+1/p)f 207" —c/(p-1),
K and {2 being the Gaussian curvature of g and the function on (0,00) given by
(10.2) Qf) = af —cf TP 4122 with o = p(p — 2)e/[4(p —1)].

Here p > 2 is the dimension of the fibre, ¢,r € IR, and r # 0, cf. (6.3), while K
must be nonconstant due to nonconstancy of f and (10.1.b).

In the next section we will use the bifurcation method of Lemma 9.1 to prove the
existence of Riemannian metrics g on compact surfaces M admitting nonconstant
functions f : M — (0,00) with (10.1) — (10.2). Such ¢ will arise from conformal
changes of the form g = ¢2*§, where the metric § on M has constant Gaussian
curvature R, and x : M — IR. However, rather than being smooth, x is only
required to lie in a suitable L? Sobolev space, chosen so as to ensure C*differen-
tiability of z.

Our approach uses a fixed choice of the data M, g,K,p,i,r,A consisting of
a compact Riemannian surface (M,g) of constant Gaussian curvature K # 0,
integers p > 2 and i > 6, a real parameter r # 0, and a suitable eigenvalue A
of —A, for the g-Laplacian A. The Gauss-Bonnet theorem and (6.4.iv) make it
necessary to assume that

(10.3) if <0, then p>2 and K<O0.

By a solution of (10.1) we then mean a quadruple (z,f,e,c) formed by a C*
function x : M — IR, a C? function f : M — (0,00), and constants €,¢ € IR
such that (10.1), with (10.2), holds for the Gaussian curvature K of the C* metric
g=¢€2*G on M and the g-Laplacian A (the objects M, §,K,p,r still being fixed).

In contrast with the lines surrounding (10.1) — (10.2), f and K are this time
allowed to be constant: in fact, there exist trivial solutions of (10.1), namely,
(z, f,e,¢) having « = 0, a constant f > 0, and £,¢ € IR chosen so as to yield
(10.1) - (10.2) with K= K and Q(f) =0, that is,

e = (p—D2r(1+1/p)f20-1/») — K], and
c=af VP4 rf272P for a=p(p—2)e/[d(p —1)].

This curve of trivial solutions is parametrized by f € (0,00), and some of them can
be deformed to bifurcating branches of solutions with nonconstant f and K. There
are obstructions to such a deformation, in the form of three positivity conditions
imposed on the constant f > 0. The first two reflect the fact that nonconstancy of
f gives €,c € (0,00), cf. Remark 2.2 and (6.4.i), while — in trivial solutions — ¢, ¢
depend on f via (10.4). The third condition arises since a bifurcation can only
occur at f if the value of f is quite specifically related to a nonzero (and hence
positive) eigenvalue A of —A, for the g-Laplacian A. See formula (10.6.1) below.

It is convenient to replace the parameter f € (0,00) mentioned above with the
positive real variable § = f~2(1=1/P) For the trivial solution (z, f,e,¢) of (10.1)

(10.4)
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corresponding to 6 one then has z =0 and f = 0?/(=2P) whereas (10.4) reads

(10.5) e=2(p—1/p)rf — (p =K, 4e/p=[2(p—1)r6 — (p —2)K]6>/ @V,

In terms of 6, the relation between f and the eigenvalue A of —A takes the form

(10.6) i) A=20p—1/p)rd — (p —2)K, thatis, i) A\ = ¢ + K,
justified later by (11.6) and Lemma 11.2. If 6 € (0, 00), simultaneous positivity of
the three constants ¢,¢, A in (10.5) — (10.6.i) clearly amounts to

(10.7) 2(p*—1)r6 > max {p(p — DK, (p+1)(p —2)K,p(p —2)K'}.
With M, §, K, p,r still fixed, let I. C (0,00) be the open interval defined by
(10.8) I. = (0,,00), when >0, or I. =(0,60_), for r <0,

where 0, = max {pK/[2(p +1)7],0} and 6_ = p(p —2)K/[2(p*>—1)7]. Note that
6_ >0 if r <0, due to (10.3), while

(10.9) plp—2) < (p+1)(p—2) < p(p —1) whenever p > 2.
Our three positivity conditions mean precisely that 6 € I.. Namely, we have

LEMMA 10.1. The interval I, is the set of all 6 € (0,00) for which the three
expressions €,¢ and X, given by (10.5) - (10.6.1), are simultaneously positive.

PROOF. Depending on whether r > 0 and K > 0 (or, r > 0 and K <0
or, respectively, r < 0, so that (10.3) gives K < 0), condition (10.7) imposed
on 6 € (0,00) reads, by (10.9), 8 > pK/[2(p +1)r], or 6 > 0 or, respectively,
0 < p(p —2)K/[2(p* —1)7], as required. O

REMARK 10.2. Given a compact Riemannian manifold (M, g) of any dimension
m and an open interval I C IR, the Sobolev embedding theorem implies that, if
i > m, the Sobolev space L?(M,IR) of functions with i derivatives in L? can be
turned into a Banach algebra, while the I-valued functions in L?(M,IR) form an
open subset L?(M,I) of L2(M,IR). On the other hand, for any Banach algebra
A, convergent power series define A-valued C* functions on open subsets of A.
Applied to A = L2(M,TR), this yields A-valuedness and C°*differentiability of the
mapping L?(M,I) > z +— ¢ o x, whenever the function ¢ : I — IR is real-analytic.

11. Nonconstant Gaussian curvature: part two

We now proceed to construct metrics on closed surfaces realizing case (b) in
Theorem 3.1. Curves of such metrics ¢, emanating from a constant-curvature
metric §, will arise via the bifurcation argument of Lemma 9.1. As outlined in
Section 10, the construction uses a fixed septuple M, g, K D, 3,7, A formed by

(i) a closed Riemannian surface (M, §) of nonzero constant Gaussian curva-
ture f(, along with integers p > 2 and i > 6,
(ii) a real parameter r # 0, satisfying (10.3): r > 0 unless K<0 and p> 2,
(iii) a constant A € (0,00) such that, for the g-Laplacian A,
(a) A =21(2] + 1)K, where I is a positive integer, if K > 0,
(b) A+ (p —2)K]r >0 and dim Ker (A 4+ X) =1, when K < 0.
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In both cases (iii.a) — (iii.b), A is a positive eigenvalue of —A (see Section 12).
For I. C (0,00) asin (10.8), let 6 € R and I C IR be given by

(11.1) 6§ =pA+(p-2K]/20*-1)r], T={teR:0+tel}.

LEMMA 11.1. Under the assumptions (i) — (iii), § € I. and I is an open
interval containing 0.

PRrOOF. The condition § € I, reads rd > 76, = max {pK/[2(p +1)],0} when
r>0,and 0> 78 >rf =p(p—2)K/[2(p>—1)] if r < 0. Thus, § € I by (iii),
since p > 2, and (11.1) yields 2(p2—1)ré/p = A+ (p — 2)K. 0

For our fixed septuple M, g, K,p, 1,7, A\, any given t € I, a function x : M — R
having some further properties, named in the paragraph following (11.4), and ¢ as
in (11.1), we let €,¢, K, A, {2 and f denote the constants in (10.5) with 6 = 6 + ¢,
the Gaussian curvature of the metric g = €3*g, the g-Laplacian, the function (10.2),
and f characterized by (10.1.b), that is, by K =2r(1+1/p)f20-1/P) —¢/(p —1).
Using K,A, {2 and f depending on ¢,z as described here, we define Lf(x) =
L(z,t) to be Af— Q(f). Explicitly,

LHNz) = Af — af 4 cf"4/P — ¢f =142/ where

a=p(p—2)e/[4p—1)] for e =2(p—1/p)r(6+1t) - (p — 1K,
(11.2) ¢ =pRp-1)r(@+t) - (p —2)K|(5 + 1)/ #~1/4,

f = 2r(+ Up) /20K 4 c/(p ~ L]/, and

g=e2§, A=e2A K=e2(K—-Az), cf. Remark 1.4,

Since (11.2) easily shows that, whenever t € I,

(11.3) K and f have, at =0 and ¢, the values K and (5—|—t)p/(2_2p),
relations (11.2) easily yield

(11.4) L'(0) = 0 forall tel

As for x, we require that it be close to 0 in a subspace V' — described in the lines
preceding (11.7) — of the Sobolev space L?(M,IR), with i > 6 derivatives in L2
The Sobolev embedding theorem then guarantees C?~2 differentiability of z, while
its closeness to 0 is meant to ensure positivity of f via that of §+¢ € I in (11.3),
the latter due to the definition of I, cf. (11.1), and the inclusion 1. C (0, c0).

Our data K,p, r,0 are constants, while ¢ and ¢ depend only on ¢ (not on
z), K only on z, and f on both z,¢. Therefore, by (11.2) and (11.3), for the
differentials of K,p,r,6,e,¢, K and f with respect to the variable z € V', at
x =0 and any t € I, one has
dpy = dry = dK, = dé, = dey = dcy = 0,
dKy = —4r(1 — 1/p?)(8 + t)2=30/C=20)gf — (A +2K),

2K denoting here 2K times the identity. From (11.1),
(11.6) A=2p—1/p)ré — (p —2)K € (0,00),
which is also the value of A in Lemma 10.1 for 8 = 4.

LEMMA 11.2. With notations of Section 9, 4r(1—1/p?)(§ +t)'=P/C=2P) gLt =
[A+X+2(p —1/p)rt](A +2K), as well as 8r(p —1)(1 — 1/p?)5%~»/C=2) 41§ =
[(2—3p)A —pA+2(p —1)(p —2)K|(A +2K), at any t € I, or t =0, and x = 0.

(11.5)
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PROOF. By (11.2), d[Af], = Adf, and d[Q2(f)], = 2(f)df,, with Q(f)
denoting the derivative df2/df at f = (6 + t)?/(2=2P) (the value of f for x = 0,
which is a constant function on M, depending on t). From (10.2) and (11.2),

(f) =a— (1 +4/p)cf*?— (1 =2/p)rf 22" = —[2(p = 1/p)r(6 +1t) — (p —2) K]
which, by (11.6), equals —2(p —1/p)rt — X. This yields dL§ = d[Af]o—d[2(f)], =
[A + X+ 2(p — 1/p)rt] dfy, cf. (11.2), and the last line of (11.5) implies the first
equality; applying d/dt to it and using (11.6), we obtain the second one. O

To use Lemma 9.1, we fix M, g, K,p,i,7,\, 0 as in (i) — (iii) and (11.1), along
with specific vector subspaces V' of L?(M,IR) and V of L? ,(M,IR) such that

(iv) V contains V' = (A+A)(V') and all L'(V'), t € I, while dim [V/V'] = 1.
Here is how we select V' and V. For K < 0, we set V' = L2(M,IR) and V =
L2 ,(M,R). If K > 0, we fix a nontrivial g-isometric action of the circle group
S' on M = IRP2? (or, M = S2) and let the subspaces V',V of L3(M,IR) and
L2 ,(M,IR) consist of all Sl-invariant functions required, in the case of M = S?,
to be also invariant under the antipodal isometry. In both cases one has (iv), since

(11.7) dim[V' N Ker (A +))] = 1,
due to (iii.b) or, respectively, (iii.a) combined with Remark 1.9.

LEMMA 11.3. Conditions (a) — (e) of Section 9 are all satisfied by V',V and
L chosen as above, with V=V'x R and k = oo, while KerdL} C Ker (A + \).

ProoOF. First, C>-differentiability of L and (a) — (b) are obvious from Re-
mark 10.2 and, respectively, (11.4). (The former also holds for a more general
reason: one can derive it from Nemytsky’s theorem [18, Section 10.3.4], with-
out invoking real-analyticity.) Next, we have (c¢) — (d). Namely, due to (iii-a)
and Remark 1.9, A +2K is injective on V’. Thus, Lemma 11.2 for ¢ = 0 gives
KerdL) = V'NKer (A+ ) and dLI(V') = (A+\)(V'), while (11.7) and (iv) imply
one-dimensionality of both spaces in (d). Finally, (e) follows since the restriction
of the factor (2 —3p)A —pA+2(p—1)(p —2)K in the last equality of Lemma 11.2
to Ker (A + \) equals the identity times 2(p —1)[A + (p — 2) K], which is nonzero
as a consequence of (iii). O

Lemma 11.3 allows us to apply Lemma 9.1 to our V,V,L and V = V' x R,
arising from a fixed septuple M, §, K, p,i,r, \, which yields (i) — (v) of Section 9,
along with (9.1). We define the A-branch corresponding to these data to be the
set of all g = €2*§, where (z,t) € V' x IR ranges over the bifurcating branch of
solutions introduced in (9.2). The A-branches, associated with all positive eigenval-
ues A of —A satisfying condition (iii), are curves of metrics on our closed surface
M, emanating from the fixed metric § of nonzero constant Gaussian curvature K.

LEMMA 11.4. Every metric g # § in any A-branch, close to §, realizes case
(b) of Theorem 3.1 and, in particular, has nonconstant Gaussian curvature K.

PROOF. By (9.1) — (9.2) the bifurcating branch is a subset of L7!(0), so that
(11.2) gives (6.2) whenever g = e?*§ for any (z,t) from the bifurcating branch,
with a,e,¢, f as in (11.2). Theorem 6.1, the lines preceding it, and (6.3) will
now yield case (b) of Theorem 3.1, once K (or, equivalently, f) is shown to be
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nonconstant, which we do in the next paragraph; we cannot simply invoke (6.3),
with our fixed r # 0, since Theorem 6.1 assumes nonconstancy of f.

The curve of trivial solutions — see (9.2) — is contained in {0} x IR, due to
the final clause of Lemma 9.1. It intersects the bifurcating branch transversally,
at (0,0) € ¥V = V' x IR, while both curves lie on the surface N' C V. (Cf. (ii),
(a) in Section 9 and (9.1).) A nonzero vector (z,t) tangent to the bifurcating
branch at (0,0) thus has z # 0 (or else it would be also tangent to the trivial-
solutions curve), and the image of (z,?) under the differential d¥ o, at (0,0),
of the mapping ¥ sending (x,t) € N to the Gaussian curvature K of the metric
g = €2%§ is, from the last line of (11.5), equal to —(A+2K)z. in view of Lemmas 9.1
and 11.3, (z,t) € Tjy o\ N = KerdL) x R and KerdL) C Ker (A + )), so that

d¥ g 0y (@, 1) = —(A +2K)2z = (A —2K)z is nonzero as A # 2K by (iii), and hence

also nonconstant, being an eigenfunction of —A for the positive eigenvalue A. This,
combined with constancy of K = ¥(0,0), implies nonconstancy of ¥(x,t) for all
(x,t) # (0,0) in the bifurcating branch, sufficiently close to (0, 0). O

The harmonic-curvature property of the metric f*/ P[g+n] in Theorem 6.1 is
obviously unaffected when one multiplies g and 1 by the same positive constant,
or separately rescales f. Our approach removes this freedom, by insisting that
e and ¢ be defined as in (11.2): the metric g = e**g, for any (z,t) € L7(0)
near (0,0), either equals §, or has nonconstant Gaussian curvature, depending on
whether (z,t) lies in the trivial-solutions curve, or in the bifurcating branch with
(0,0) removed. Thus, such metrics include no nontrivial constant multiples of g.

12. Nonconstant Gaussian curvature: conclusion

Lemma 11.4 implies the second case of (0.2), that is, (b) in Theorem 3.1, for
M diffeomorphic to S2%, IRP? or a closed orientable surface of any genus g > 1,
and metrics on M forming nontrivial curves of homothety types which, in the case
g > 1, also represent a Teichmiiller-open nonempty set of conformal structures.

These metrics give rise to nontrivial compact warped products with harmonic
curvature, having fibres of all dimensions p > 2, and any such M as the base.

Recall that the A-branches appearing in Lemma 11.4, for eigenvalues A > 0 of
—A satisfying (iii) in Section 11, constitute curves of metrics on the closed surface
M, emanating from the metric § of constant Gaussian curvature K = 0, and every
metric g near § in the A-branch, except ¢, realizes case (b) of Theorem 3.1. The
metrics in any given A-branch

(a) represent uncountably many distinct homothety types, and
(b) when sufficiently close to g, they cannot be homothetic to any metric from
a N-branch, close to §, provided that X # A.

First, (a) follows since the homothety invariant [K,,, : K,;,] of Remark 3.3, re-
stricted to any neighborhood of § in the A-branch, is nonconstant (and, obviously,
continuous): its constancy would make it equal to [1:1] (the value of the invariant
for §), and the Gaussian curvatures of all the metrics near § in the A-branch
would thus be constant, contrary to the final clause of Lemma 11.4.

On the other hand, when a metric g # ¢ in the A-branch approaches g, the
area A of (M,g) tends to the area A of (M,§) (clearly equal to 2r/K times

the Euler characteristic x(M)) and, consequently, for the homothety invariant €A
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mentioned in the lines following Theorem 3.2, (10.6.ii) implies that
(12.1) eA = 2r(—1+ M\/K)x(M) as g — § in the A-branch.

The limits (12.1) are obviously different for different A, which proves (b).

According to Theorem 3.1, for every positive eigenvalue A of A having the
property (iii-a) or (iii-b) of Section 11, the metrics g # ¢ in the A-branch give rise
to nontrivial compact warped products with harmonic curvature.

In case (iii.a), A is a positive eigenvalue of —A, which may be completely
arbitrary (if M = IRP?), or of the form A; with j even and positive (if M = S?2
and (1.9) represents the spectrum of —A). See Remark 1.9.

Condition (iii.b) amounts to requiring that A be simple and either greater than
(p —2)|K| (when 7 > 0) or less than (p —2)|K| (for 7 < 0), while K < 0.

If » <0 (so that (ii) in Section 11 gives p > 2), or > 0 and p = 2, the
existence of such eigenvalues A is immediate from the result of Schoen, Wolpert
and Yau [19] mentioned in Remark 1.10.

Finally, when r > 0 and p > 2, we can only provide some anecdotal evidence
for an analogous existence assertion: on the Bolza surface, with the convention
(1.9), Ay, is greater than 23|K]| and simple [20]; therefore, (iii.b) holds in this case
for all p € {3,4,...,21}.

To simplify the phrasing of the last two paragraphs, let us unify the two cases
of condition (iii.b) by ignoring the sign of r. Then, (iii.b) states that, on a closed
orientable surface of genus g > 1, with a metric of constant Gaussian curvature
K < 0, the eigenvalue A > 0 of —A is simple and different from (p — 2)|K].
The result of [19] guarantees that, for every genus g > 1, metrics admitting such
eigenvalues A\ realize a nonempty open subset of the Teichmiiller space.

13. Constant Gaussian curvature: existence

We now proceed to verify that the first case of (0.2) — or, equivalently, (a) in
Theorem 3.1 — holds for a Teichmiiller-open, nonempty set of metrics of constant
negative curvatures, on closed orientable surfaces M of all genera g > 1.

This results in nontrivial compact warped products with harmonic curvature,
having fibres of all relevant dimensions p > 4, and all such M as the bases.

The existence assertion needed here is provided by the following result of Ya-
mabe [22], cf. also [2, pp. 115-119], [4, Lemma 16.37], which remains valid even if
dim M = m > 2, as long as (m — 2)g < 2m. The sign of the g-Laplacian A in [4]
is the opposite of ours.

LEMMA 13.1. Given a compact Riemannian surface (M, g), real numbers q > 2
and ¢ >0, and a € R such that (¢ —2)a > Ay for the lowest positive eigenvalue
Ay of —A, the equation

(13.1) Af — af = —cf!
admits a nonconstant positive C*° solution f: M — IR.

By (6.3), Lemma 13.1 can be applied to case (a) in Theorem 3.1 for compact
bases M. The resulting construction of compact warped products with harmonic
curvature is a special case of one in [8] and [4, Example 16.35(v)].

Due to (6.3), equation (6.2.iii) then becomes (13.1) for ¢ = 2+ 4/p (so that
q > 2), while (6.2.1)) with r =0 reads € = (1—p)K. Since the Einstein constant ¢
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of the fibre is positive (Remark 2.2), (M, g) has in this case the negative constant
Gaussian curvature K and, as a = p(p —2)e/[4(p —1)], the condition (¢—2)a > A,
needed in Lemma 13.1 is equivalent to p > 2— X\, /K, cf. (0.4). However, we are free
to assume that p > 4. (If p € {2,3}, the warped-product metric is conformally flat
according to Remark 3.5.) Obviously, having p > 2 — A\, /K for all p > 4 amounts
to the inequality 2 > —)\;/K.

According to the second part of Remark 1.10, every closed orientable surface
of genus greater than 1 admits metrics with negative constant Gaussian curvature
K satisfying this last inequality, which implies the existence of examples mentioned
in the italicized statement at the beginning of this section.

14. Constant Gaussian curvature: multiplicity

In equation (13.1) we can always assume that ¢ = a, rewriting it as
(14.1) Af — af = —afi™!,

since f may be replaced with (a/c)9~2f. This normalization removes the freedom
of simultaneously rescaling f and ¢, which is of no geometric interest.

There are various known multiplicity results for positive solutions of (14.1) on
compact Riemannian manifolds (M, g) of all dimensions m > 2. Consider

the number #(M, g,a,q) of distinct nonconstant

(14.2) positive smooth solutions f to (14.1) on (M, g),

so that 0 < #(M, g,a,q) < co. Typically, a lower bound on #(M, g,a,q) is given
in terms of the topology of M.

One defines the Lusternik—Schnirelmann category cat(X) of a topological space
X to be the least integer k£ > 1 such that X is the union of k& open contractible
subsets. If no such k exists, one sets cat(X) = co. Let us also denote by b,(X,K)
the ith Betti number of X with coefficients in any given field IK, and by b(X, IK)
the sum ) . b,(X,IK) < co. Thus, cat(S™) = 2, while any closed surface M of
genus g > 1 has cat(M) =3 and b(M,Z,) =2(1+g).

Finally, one calls a solution f of (14.1) nondegenerate if it is nondegenerate as
a critical point of the associated energy functional or, equivalently, if the linearized
equation Ay — a) = a(1 — q) f9=2¢ holds only for the trivial solution ¢ = 0.

THEOREM 14.1. Given a compact Riemannian manifold (M,g) of dimension
m > 2, any sufficienly large a € (0,00), and any q € (2,2m/(m — 2)), with
2m/(m —2) = oo if m = 2, one has #(M,g,a,q) > cat(M), in the notation
of (14.2). For any field I and any sufficienly large a such that all nonconstant
smooth solutions of (14.1) are nondegenerate, #(M,g,a,q) > 2b(M,IK) — 2.

PRrROOF. This is the central result of [3], where it is stated (for reasons not clear
to us) only for m > 3. However, the proof remains completely valid also in the case
m = 2, due to the Sobolev embedding theorem. The same result, with exactly the
same proof, also appears in [17, Theorem 1.2], with no restriction on m > 2. O

In the case of hyperbolic surfaces M, Theorem 14.1 with cat(M) = 3 yields

COROLLARY 14.2. On any closed orientable surface of genus greater than 1,
endowed with a metric of negative constant Gaussian curvature, equation (14.1)
has at least four distinct nonconstant positive smooth solutions f.
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