
THE EULER-FERMAT THEOREM AND RSA CRYPTOGRAPHY

Fermat’s Little Theorem states that, for every integer x and every prime p, the
number xp − x is divisible by p. Equivalently, for a prime p and an integer x
which is not divisible by p, the difference xp−1 − 1 is divisible by p. This last
statement is clear as the remainder of x modulo p is nonzero, that is, lies in the
(p− 1)-element multiplicative group Zp r {0}, and so its (p− 1)th power in that
group equals 1.

A more general statement is the Euler-Fermat Theorem, which uses the function
φ assigning to every positive integer n the number of those positive integers which
are less than n and relatively prime to n, so that φ(p) = p − 1 if and only if p
is a prime or p = 1. It states that, for every positive integer n and every integer
x relatively prime to n, the difference xφ(n) − 1 is divisible by n. In fact, the
remainder of x modulo n is not a zero divisor in the ring Zn, and hence, as Zn
is finite, it is invertible, and our assertion follows since the multiplicative group of
all invertible elements of Zn has φ(n) elements.

Finally, let an integer n = pq be the product of two different primes p, q, so
that φ(n) = (p − 1)(q − 1). Also, let a, b be positive integers whose remainders
modulo φ(n) are invertible in Zφ(n) and form each other’s inverses. Then, for

every integer x, the number xab − x is divisible by n. In fact, ab = 1 + sφ(n) for
some nonnegative integer s, and all we need to verify is that multiplying x by xφ(n)

modulo n we still get x modulo n (so that x multiplied by the sth power of xφ(n)

remains x, modulo n, and xab ≡ x modulo n, as required). However, when x is
relatively prime to n = pq, this is clear from the Euler-Fermat Theorem; when x is
divisible by n = pq, it is trivial; in the remaining case, switching the symbols p, q
if necessary we may assume that x is divisible by q and not by p, so that Fermat’s
Little Theorem (applied to xq−1 (rather than x) and p gives (xq−1)p−1 = 1 + kp
for some nonnegative integers k, and x ·xφ(n)−x = x[x(p−1)(q−1)−1] = kpx, which
is divisible by n = pq, since x is divisible by q.

This leads to the following procedure of RSA cryptography. We choose two
large different primes p, q, so large that even modern supercomputers are unable
to factorize n = pq. We also choose a, b as above, and make the values of n and
a public (that is, we announce them to everyone interested). Anybody sending us
a message, which is an element x of Zn, encodes it first by raising x to the ath
power in Zn, and then sends us the result, y. To decode it, we raise y to the bth
power in Zn, obtaining x. Others cannot find b, which is the inverse of a modulo
φ(n) = (p− 1)(q − 1), and they do not know what p and q are.

Another useful application of this procedure is authentication of signatures. Sup-
pose that we send a message to another recipient, using that recipient’s analogues
of our n and a (which are a matter of public record). In addition, we include a
“signature”, identifying us as the sender (possibly with the date, etc., so that no
one could intercept it and then use it to impersonate us on later occasions). That
signature is some element z of Zn (our n) and we encode it by raising it to the bth
power in Zn. The recipient only needs to raise that bth power to the ath power in
Zn (and everyone knows what our n, a are), which yields our original signature z.

Typeset by AMS-TEX


