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The Inverse Mapping Theorem

A metric space is a pair (X, d) consisting of a set X and a distance function
d: X x X —[0,00) such that d(z,2’) = d(2/,z), d(z,2”) < d(z,2’) + d(z’,2")
for any z,2',2” € X, and d(x,2’) > 0 unless z = a/. A sequence z, € X,
i=1,2,... of points in X then is said to converge to a limit x € X if d(z,,z) — 0
as i — 00, and it is called a Cauchy sequenceif d(z;,x;) — 0 as i, j simultaneously
tend to oo. The metric space (X, d) is called complete if every Cauchy sequence
in (X, d) converges.

Any subset K C X of a metric space (X, d) forms a metric space (K, d) with
d restricted to K x K.

The open ball B,(z) C X (with the center z € X and the radius r > 0) in
the metric space (X, d) is defined by B,(z) = {z € X : d(z,2) < r}, and the
closed ball B,(r) by B,(r) ={z € X : d(z,z) <r}. Aset U C X is called open
if it is the union of some (possibly empty, or infinite) collection of open balls. A
neighborhood of a point x € X is any open set containing z; as for manifolds, a
sequence x;, ¢ = 1,2,... of points in X converges to a limit x € X if and only if
each neighborhood of x contains the x; for all but finitely many 1.

A norm in a real or complex vector space V is a function V' — [0, oo}, usually
written as v — [[v|| (or v +— |v], when dimV < o0), such that ||v|| > 0 if v # 0,
and |lv+w| <ol + [Jwll, | || = |A|-]|v]| for v,w € V and all scalars A\. With a
fixed norm, V is called a normed vector space, and it naturally becomes a metric
space (V,d) with d(v,w) = |[v — w||. A normed vector space is called a Banach
space if it is complete as a metric space.

Banach’s Fixed-Point Theorem. Let K C X be a subset of a metric space (X, d)
such that (K, d) is complete and let a mapping h : K — X satisfy the condition

d(h(z),h(z")) < Cd(z,z")

forall x,z' € K and some C with 0 < C < 1. If, moreover,

(a) thereis z € K with h(z) € K for all integers i > 0,

or

(b) B,.(z) C K forsome z € K and r = (1 — C)71d(z, h(2)),

By (2) being the empty set, then there exists a unique x € K with h(z) = x.

Proof. Uniqueness of z is clear as C < 1. To establish its existence, set z, =
hi(z) as long as it makes sense for a given z € K and integers i > 0. Then
d(z;,2,41) < C*d(2,h(z)) (induction on i > 0), and so, for integers j > 0 such
that z,, ; exists,
itj—1
(1) d(zwzz—i—]) < Z d(zs7zs+1) <
5=1

‘ C?| d(z,h(z)) = ] ?ZC d(z,h(z)).
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We may assume that h(z) # z. Then, for r as in (b), (1) yields d(z;,2;,;) <7
and, setting ¢ = 0, we see that (b) implies (a). On the other hand, for z as in (a),

(1) shows that the z, form a Cauchy sequence, and we can take x = lim; , ;.

Corollary. Given a complete metric space (X, d) and a mapping h : X — X such
that d(h(x),h(z’)) < Cd(z,z") forall x,2" € X and some C with 0 < C < 1, there
exists a unique x € X with h(x) = x.

Let V,W now be finite-dimensional real or complex vector spaces carrying fixed
norms (both denoted by | |). Any linear mapping T : V — W is bounded in the
sense that |Tv| < C|v| for some constant C' > 0 and all v € V [DG, p.198,
Problem 11]. The smallest constant C' with this property is called the operator
norm of T and denoted by |T'|. If, moreover, U C V is an openset, h: U — V is
a C' mapping and z,z are points in U such that U contains the whole segment
Tz ={z+t(x —2): 0 <t <1} connecting z to z, then we have the estimate

(2) |h(x) = h(z)| < |& — 2] - sup |dh,]

ue Tz

—see [DG, p.199, Problem 19] — involving the operator norm of dh, : V. — W, the
supremum (which, in fact, is a maximum) being finite since Tz is compact and the
function w + |dh,| is continuous.

Lemma Let U,U’ be open sets in finite-dimensional vector spaces V, W, respectively,
and let a C* mapping F : U — U’ with 1 < k < 0o be one-to-one and onto, and such
that, for each x € U, the differential dF, : V' — W is a linear isomorphism. Then the
inverse mapping F~' : U’ — U is also C* differentiable.

Proof. Fixnormsin V,W (both denoted | |). For any fixed z € V, differentiability
of F' at z means that

o, 2) —0 asx— 2.

(3)  F(z)—F(2)=dF,(z —2) 4+ a(z, 2),

|z — 2|

Since |dF,(x — z)| > 2C|z — z| for some constant C' > 0 [DG, p.198, Problem 13],
choosing & > 0 with |a(z,2)| < |z —z| for all x € U with |z — z| < &, we obtain,
for such z, |F(x) — F(2)| > |[dF,(z — z)| — |a(z, )| in view of (3) and [DG, p.22,
Problem 10], that is, |F(x) — F(z)| > C|xz — 2| for all x sufficiently close to any
fixed z € U and a suitable C' > 0, depending on z. (Thus, F~! is continuous.)
Applying (dF,)™ to both sides of (3) and writing ¢ = F(z), £ = F(x), we obtain

F7H(8) = F7H(Q) = (dF.) (€ = ¢) + B(&,€)

with 8(¢,¢) = —(dF,) 'a(z, 2). Thus, F~ is differentiable at ¢ and d(F ™) =
(dF,)™ since. due to the estimate |£ — (| > Clz — z|.

€ =17 QI < O — 2T B(E Q) = CTH(dF.) T (|2 — 2[ Tz, 2))| = 0

as & — (. Induction on s now shows that { — d(F_1)C = (alFF,l(O)_1 isa C571
differentiable mapping for each s =1,...,k. This completes the proof.

We have the following fundamental result.
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The Inverse Mapping Theorem. Let F : M — N be a C* mapping between C*
manifolds, 1 < k < oco. If the differential A = dF, : T,M — T,,N at a point z € M is
a linear isomorphism, where w = F(z), then, for a suitable neighborhood U of z in M,
the image F(U) is an open subset of N and F : U — F(U) is a C* diffeomorphism.

Proof. Using local coordinates, we may assume that M, N are open subsets of
finite-dimensional real vector spaces V,W endowed with some fixed norms, both
denoted ||. For any fixed y € W, define the C* mapping h : M — V by
h(z) =+ A (y — F(z)). As dh, = Id — A7YdF,, we have dh, = 0 and hence
there is a closed ball B.(z) centered at z, of some radius ¢ > 0, with the operator-
norm inequality |dh,| < C for all z € B,(¢) and any chosen constant C € (0,1).
(Rather than fixing e, we should be ready to replace it by ¢’ € (0, €).) On the other
hand, d(z,h(z)) = |z—h(z)| < |A7Y||Jy—w| and so, whenever y € U’ = B, (§) with
w = F(z) and 6§ = (1-C)¢e/|A7, the assumptions of Banach’s fixed-point theorem
will be satisfied, according to (2), by X =V, K = B_(¢), this C, our h (depending
on ), and r = ¢ in assumption (b). The resulting unique =z € K = B,(g) with
h(z) = x, that is, y = F(x), must actually lie in B,(¢). In fact, we may replace
it with & € (0, ) chosen so that our given y € U’ = B,,(§) lies in B, (d"), where
8 = (1-C)¢e'/|A7Y, and invoke the existence and uniqueness of x for these &’ and
§'. Consequently, F: U — U’ is one-to-one and onto, where U = B_(g)NF~1(U’),
and our assertion follows from the above lemma. Note that the lemma is applicable
since — due to the freedom of making ¢ smaller — we may select our U to be a
subset of any prescribed neighborhood of z.



