MATH 6701, AUTUMN 2024

The Inverse Mapping Theorem

A metric space is a pair (X, d) consisting of a set X and a distance function $d: X \times X \to [0, \infty)$ such that d(x, x') = d(x', x), $d(x, x'') \leq d(x, x') + d(x', x'')$ for any $x, x', x'' \in X$, and d(x, x') > 0 unless x = x'. A sequence $x_i \in X$, $i = 1, 2, \ldots$ of points in X then is said to converge to a limit $x \in X$ if $d(x_i, x) \to 0$ as $i \to \infty$, and it is called a Cauchy sequence if $d(x_i, x_j) \to 0$ as i, j simultaneously tend to ∞ . The metric space (X, d) is called complete if every Cauchy sequence in (X, d) converges.

Any subset $K \subseteq X$ of a metric space (X, d) forms a metric space (K, d) with d restricted to $K \times K$.

The open ball $B_r(z) \subseteq X$ (with the center $z \in X$ and the radius r > 0) in the metric space (X, d) is defined by $B_r(z) = \{x \in X : d(x, z) < r\}$, and the closed ball $\overline{B}_z(r)$ by $\overline{B}_z(r) = \{x \in X : d(x, z) \leq r\}$. A set $U \subseteq X$ is called open if it is the union of some (possibly empty, or infinite) collection of open balls. A neighborhood of a point $x \in X$ is any open set containing x; as for manifolds, a sequence $x_i, i = 1, 2, \ldots$ of points in X converges to a limit $x \in X$ if and only if each neighborhood of x contains the x_i for all but finitely many i.

A norm in a real or complex vector space V is a function $V \to [0, \infty]$, usually written as $v \mapsto ||v||$ (or $v \mapsto |v|$, when dim $V < \infty$), such that ||v|| > 0 if $v \neq 0$, and $||v+w|| \le ||v|| + ||w||$, $||\lambda v|| = |\lambda| \cdot ||v||$ for $v, w \in V$ and all scalars λ . With a fixed norm, V is called a normed vector space, and it naturally becomes a metric space (V, d) with d(v, w) = ||v - w||. A normed vector space is called a *Banach* space if it is complete as a metric space.

Banach's Fixed-Point Theorem. Let $K \subseteq X$ be a subset of a metric space (X, d) such that (K, d) is complete and let a mapping $h : K \to X$ satisfy the condition

$$d(h(x), h(x')) \le C d(x, x')$$

for all $x, x' \in K$ and some C with $0 \leq C < 1$. If, moreover,

(a) there is $z \in K$ with $h^i(z) \in K$ for all integers $i \ge 0$,

or

(b) $B_r(z) \subseteq K$ for some $z \in K$ and $r = (1 - C)^{-1} d(z, h(z))$,

 $B_0(z)$ being the empty set, then there exists a unique $x \in K$ with h(x) = x.

Proof. Uniqueness of x is clear as C < 1. To establish its existence, set $z_i = h^i(z)$ as long as it makes sense for a given $z \in K$ and integers $i \ge 0$. Then $d(z_i, z_{i+1}) \le C^i d(z, h(z))$ (induction on $i \ge 0$), and so, for integers $j \ge 0$ such that z_{i+j} exists,

(1)
$$d(z_i, z_{i+j}) \le \sum_{s=i}^{i+j-1} d(z_s, z_{s+1}) \le \left[\sum_{s=i}^{\infty} C^s\right] d(z, h(z)) = \frac{C^i}{1-C} d(z, h(z)).$$

We may assume that $h(z) \neq z$. Then, for r as in (b), (1) yields $d(z_i, z_{i+j}) < r$ and, setting i = 0, we see that (b) implies (a). On the other hand, for z as in (a), (1) shows that the z_i form a Cauchy sequence, and we can take $x = \lim_{i \to \infty} z_i$.

Corollary. Given a complete metric space (X, d) and a mapping $h : X \to X$ such that $d(h(x), h(x')) \leq C d(x, x')$ for all $x, x' \in X$ and some C with $0 \leq C < 1$, there exists a unique $x \in X$ with h(x) = x.

Let V, W now be finite-dimensional real or complex vector spaces carrying fixed norms (both denoted by $| | \rangle$). Any linear mapping $T : V \to W$ is bounded in the sense that $|Tv| \leq C|v|$ for some constant $C \geq 0$ and all $v \in V$ [**DG**, p.198, Problem 11]. The smallest constant C with this property is called the *operator* norm of T and denoted by |T|. If, moreover, $U \subseteq V$ is an open set, $h: U \to V$ is a C^1 mapping and x, z are points in U such that U contains the whole segment $\overline{xz} = \{z + t(x - z) : 0 \leq t \leq 1\}$ connecting z to x, then we have the estimate

(2)
$$|h(x) - h(z)| \le |x - z| \cdot \sup_{u \in \overline{xz}} |dh_u|$$

- see $[\mathbf{DG}, p.199, \text{Problem 19}]$ - involving the operator norm of $dh_u : V \to W$, the supremum (which, in fact, is a maximum) being finite since \overline{xz} is compact and the function $u \mapsto |dh_u|$ is continuous.

Lemma Let U, U' be open sets in finite-dimensional vector spaces V, W, respectively, and let a C^k mapping $F: U \to U'$ with $1 \le k \le \infty$ be one-to-one and onto, and such that, for each $x \in U$, the differential $dF_x: V \to W$ is a linear isomorphism. Then the inverse mapping $F^{-1}: U' \to U$ is also C^k differentiable.

Proof. Fix norms in V, W (both denoted | |). For any fixed $z \in V$, differentiability of F at z means that

(3)
$$F(x) - F(z) = dF_z(x-z) + \alpha(x,z), \qquad \frac{\alpha(x,z)}{|x-z|} \to 0 \text{ as } x \to z.$$

Since $|dF_z(x-z)| \ge 2C|x-z|$ for some constant C > 0 [**DG**, p.198, Problem 13], choosing $\varepsilon > 0$ with $|\alpha(x,z)| \le |x-z|$ for all $x \in U$ with $|x-z| < \varepsilon$, we obtain, for such x, $|F(x) - F(z)| \ge |dF_z(x-z)| - |\alpha(x,z)|$ in view of (3) and [**DG**, p.22, Problem 10], that is, $|F(x) - F(z)| \ge C|x-z|$ for all x sufficiently close to any fixed $z \in U$ and a suitable C > 0, depending on z. (Thus, F^{-1} is continuous.) Applying $(dF_z)^{-1}$ to both sides of (3) and writing $\zeta = F(z), \ \xi = F(x)$, we obtain

$$F^{-1}(\xi) - F^{-1}(\zeta) = (dF_z)^{-1}(\xi - \zeta) + \beta(\xi, \zeta)$$

with $\beta(\xi,\zeta) = -(dF_z)^{-1}\alpha(x,z)$. Thus, F^{-1} is differentiable at ζ and $d(F^{-1})_{\zeta} = (dF_z)^{-1}$ since. due to the estimate $|\xi - \zeta| \ge C|x - z|$.

$$|\xi - \zeta|^{-1} |\beta(\xi, \zeta)| \le C^{-1} |x - z|^{-1} |\beta(\xi, \zeta)| = C^{-1} |(dF_z)^{-1} (|x - z|^{-1} \alpha(x, z))| \to 0$$

as $\xi \to \zeta$. Induction on *s* now shows that $\zeta \mapsto d(F^{-1})_{\zeta} = (dF_{F^{-1}(\zeta)})^{-1}$ is a C^{s-1} differentiable mapping for each $s = 1, \ldots, k$. This completes the proof.

We have the following fundamental result.

The Inverse Mapping Theorem. Let $F: M \to N$ be a C^k mapping between C^k manifolds, $1 \le k \le \infty$. If the differential $A = dF_z : T_z M \to T_w N$ at a point $z \in M$ is a linear isomorphism, where w = F(z), then, for a suitable neighborhood U of z in M, the image F(U) is an open subset of N and $F: U \to F(U)$ is a C^k diffeomorphism.

Proof. Using local coordinates, we may assume that M, N are open subsets of finite-dimensional real vector spaces V, W endowed with some fixed norms, both denoted ||. For any fixed $y \in W$, define the C^k mapping $h: M \to V$ by $h(x) = x + A^{-1}(y - F(x))$. As $dh_x = \text{Id} - A^{-1}dF_x$, we have $dh_z = 0$ and hence there is a closed ball $\overline{B}_{\varepsilon}(z)$ centered at z, of some radius $\varepsilon > 0$, with the operatornorm inequality $|dh_x| \leq C$ for all $x \in \overline{B}_z(\varepsilon)$ and any chosen constant $C \in (0,1)$. (Rather than fixing ε , we should be ready to replace it by $\varepsilon' \in (0, \varepsilon)$.) On the other hand, $d(z, h(z)) = |z - h(z)| \le |A^{-1}| \cdot |y - w|$ and so, whenever $y \in U' = B_w(\delta)$ with w = F(z) and $\delta = (1-C)\varepsilon/|A^{-1}|$, the assumptions of Banach's fixed-point theorem will be satisfied, according to (2), by X = V, $K = \overline{B}_{z}(\varepsilon)$, this C, our h (depending on y), and $r = \varepsilon$ in assumption (b). The resulting unique $x \in K = \overline{B}_z(\varepsilon)$ with h(x) = x, that is, y = F(x), must actually lie in $B_z(\varepsilon)$. In fact, we may replace it with $\varepsilon' \in (0, \varepsilon)$ chosen so that our given $y \in U' = B_w(\delta)$ lies in $B_w(\delta')$, where $\delta' = (1-C)\varepsilon'/|A^{-1}|$, and invoke the existence and uniqueness of x for these ε' and δ' . Consequently, $F: U \to U'$ is one-to-one and onto, where $U = B_z(\varepsilon) \cap F^{-1}(U')$, and our assertion follows from the above lemma. Note that the lemma is applicable since – due to the freedom of making ε smaller – we may select our U to be a subset of any prescribed neighborhood of z.