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The Inverse Mapping Theorem

A metric space is a pair (X, d) consisting of a set X and a distance function
d : X ×X → [0,∞) such that d(x, x′) = d(x′, x), d(x, x′′) ≤ d(x, x′) + d(x′, x′′)
for any x, x′, x′′ ∈ X, and d(x, x′) > 0 unless x = x′. A sequence xi ∈ X,
i = 1, 2, . . . of points in X then is said to converge to a limit x ∈ X if d(xi, x)→ 0
as i→∞, and it is called a Cauchy sequence if d(xi, xj)→ 0 as i, j simultaneously
tend to ∞. The metric space (X, d) is called complete if every Cauchy sequence
in (X, d) converges.

Any subset K ⊆ X of a metric space (X, d) forms a metric space (K, d) with
d restricted to K ×K.

The open ball Br(z) ⊆ X (with the center z ∈ X and the radius r > 0) in
the metric space (X, d) is defined by Br(z) = {x ∈ X : d(x, z) < r}, and the
closed ball Bz(r) by Bz(r) = {x ∈ X : d(x, z) ≤ r}. A set U ⊆ X is called open
if it is the union of some (possibly empty, or infinite) collection of open balls. A
neighborhood of a point x ∈ X is any open set containing x ; as for manifolds, a
sequence xi, i = 1, 2, . . . of points in X converges to a limit x ∈ X if and only if
each neighborhood of x contains the xi for all but finitely many i.

A norm in a real or complex vector space V is a function V → [0,∞], usually
written as v 7→ ‖v‖ (or v 7→ |v|, when dimV < ∞), such that ‖v‖ > 0 if v 6= 0,
and ‖v+w‖ ≤ ‖v‖+ ‖w‖, ‖λv‖ = |λ| · ‖v‖ for v, w ∈ V and all scalars λ. With a
fixed norm, V is called a normed vector space, and it naturally becomes a metric
space (V, d) with d(v, w) = ‖v − w‖. A normed vector space is called a Banach
space if it is complete as a metric space.

Banach’s Fixed-Point Theorem. Let K ⊆ X be a subset of a metric space (X, d)
such that (K, d) is complete and let a mapping h : K → X satisfy the condition

d(h(x), h(x′)) ≤ C d(x, x′)

for all x, x′ ∈ K and some C with 0 ≤ C < 1. If, moreover,

(a) there is z ∈ K with hi(z) ∈ K for all integers i ≥ 0,

or

(b) Br(z) ⊆ K for some z ∈ K and r = (1− C)−1 d(z, h(z)),

B0(z) being the empty set, then there exists a unique x ∈ K with h(x) = x.

Proof. Uniqueness of x is clear as C < 1. To establish its existence, set zi =
hi(z) as long as it makes sense for a given z ∈ K and integers i ≥ 0. Then
d(zi , zi+1) ≤ Ci d(z, h(z)) (induction on i ≥ 0), and so, for integers j ≥ 0 such

that zi+j exists,

(1) d(zi , zi+j) ≤
i+j−1∑
s=i

d(zs, zs+1) ≤

[ ∞∑
s=i

Cs

]
d(z, h(z)) =

Ci

1− C
d(z, h(z)) .
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We may assume that h(z) 6= z. Then, for r as in (b), (1) yields d(zi , zi+j) < r
and, setting i = 0, we see that (b) implies (a). On the other hand, for z as in (a),
(1) shows that the zi form a Cauchy sequence, and we can take x = limi→∞ zi .

Corollary. Given a complete metric space (X, d) and a mapping h : X → X such
that d(h(x), h(x′)) ≤ C d(x, x′) for all x, x′ ∈ X and some C with 0 ≤ C < 1, there
exists a unique x ∈ X with h(x) = x.

Let V,W now be finite-dimensional real or complex vector spaces carrying fixed
norms (both denoted by | |). Any linear mapping T : V → W is bounded in the
sense that |Tv| ≤ C|v| for some constant C ≥ 0 and all v ∈ V [DG, p.198,
Problem 11]. The smallest constant C with this property is called the operator
norm of T and denoted by |T |. If, moreover, U ⊆ V is an open set, h : U → V is
a C1 mapping and x, z are points in U such that U contains the whole segment
xz = {z + t(x− z) : 0 ≤ t ≤ 1} connecting z to x, then we have the estimate

(2) |h(x)− h(z)| ≤ |x− z| · sup
u∈ xz

|dhu|

– see [DG, p.199, Problem 19] – involving the operator norm of dhu : V →W , the
supremum (which, in fact, is a maximum) being finite since xz is compact and the
function u 7→ |dhu| is continuous.

Lemma Let U,U ′ be open sets in finite-dimensional vector spaces V,W , respectively,
and let a Ck mapping F : U → U ′ with 1 ≤ k ≤ ∞ be one-to-one and onto, and such
that, for each x ∈ U , the differential dFx : V → W is a linear isomorphism. Then the
inverse mapping F−1 : U ′ → U is also Ck differentiable.

Proof. Fix norms in V,W (both denoted | |). For any fixed z ∈ V , differentiability
of F at z means that

(3) F (x)− F (z) = dFz(x− z) + α(x, z) ,
α(x, z)

|x− z|
→ 0 as x→ z .

Since |dFz(x− z)| ≥ 2C|x− z| for some constant C > 0 [DG, p.198, Problem 13],
choosing ε > 0 with |α(x, z)| ≤ |x− z| for all x ∈ U with |x− z| < ε, we obtain,
for such x, |F (x)− F (z)| ≥ |dFz(x− z)| − |α(x, z)| in view of (3) and [DG, p.22,
Problem 10], that is, |F (x) − F (z)| ≥ C|x − z| for all x sufficiently close to any
fixed z ∈ U and a suitable C > 0, depending on z. (Thus, F−1 is continuous.)
Applying (dFz)

−1 to both sides of (3) and writing ζ = F (z), ξ = F (x), we obtain

F−1(ξ)− F−1(ζ) = (dFz)
−1(ξ − ζ) + β(ξ, ζ)

with β(ξ, ζ) = −(dFz)
−1α(x, z). Thus, F−1 is differentiable at ζ and d(F−1)ζ =

(dFz)
−1 since. due to the estimate |ξ − ζ| ≥ C|x− z|.

|ξ − ζ|−1|β(ξ, ζ)| ≤ C−1|x− z|−1|β(ξ, ζ)| = C−1|(dFz)−1(|x− z|−1α(x, z))| → 0

as ξ → ζ. Induction on s now shows that ζ 7→ d(F−1)ζ = (dFF−1(ζ))
−1 is a Cs−1

differentiable mapping for each s = 1, . . . , k. This completes the proof.

We have the following fundamental result.
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The Inverse Mapping Theorem. Let F : M → N be a Ck mapping between Ck

manifolds, 1 ≤ k ≤ ∞. If the differential A = dFz : TzM → TwN at a point z ∈ M is
a linear isomorphism, where w = F (z), then, for a suitable neighborhood U of z in M ,
the image F (U) is an open subset of N and F : U → F (U) is a Ck diffeomorphism.

Proof. Using local coordinates, we may assume that M,N are open subsets of
finite-dimensional real vector spaces V,W endowed with some fixed norms, both
denoted | |. For any fixed y ∈ W , define the Ck mapping h : M → V by
h(x) = x + A−1(y − F (x)). As dhx = Id − A−1dFx, we have dhz = 0 and hence
there is a closed ball Bε(z) centered at z, of some radius ε > 0, with the operator-
norm inequality |dhx| ≤ C for all x ∈ Bz(ε) and any chosen constant C ∈ (0, 1).
(Rather than fixing ε, we should be ready to replace it by ε′ ∈ (0, ε).) On the other
hand, d(z, h(z)) = |z−h(z)| ≤ |A−1|·|y−w| and so, whenever y ∈ U ′ = Bw(δ) with
w = F (z) and δ = (1−C)ε/|A−1|, the assumptions of Banach’s fixed-point theorem
will be satisfied, according to (2), by X = V , K = Bz(ε), this C, our h (depending
on y), and r = ε in assumption (b). The resulting unique x ∈ K = Bz(ε) with
h(x) = x, that is, y = F (x), must actually lie in Bz(ε). In fact, we may replace
it with ε′ ∈ (0, ε) chosen so that our given y ∈ U ′ = Bw(δ) lies in Bw(δ′), where
δ′ = (1−C)ε′/|A−1|, and invoke the existence and uniqueness of x for these ε′ and
δ′. Consequently, F : U → U ′ is one-to-one and onto, where U = Bz(ε)∩F−1(U ′),
and our assertion follows from the above lemma. Note that the lemma is applicable
since – due to the freedom of making ε smaller – we may select our U to be a
subset of any prescribed neighborhood of z.


