MATH 6701, AUTUMN 2024

Ordinary Differential Equations

By V and W we always denote finite-dimensional normed real vector spaces.

A mapping $f: K \to X$ from a set K into a metric space (X, d) is said to be bounded if its image f(K) is a bounded subset of (X, d) in the sense that it lies in a ball $B_z(r)$ with some center $z \in X$ and some radius r > 0. Let us denote $\mathcal{X} = B(K, X)$ the set of all bounded mappings $f: K \to X$ and define the uniform distance function $d_{sup}: \mathcal{X} \times \mathcal{X} \to [0, \infty)$ by

(dsu)
$$d_{sup}(f, f') = \sup \{ d(f(x), f'(x)) : x \in K \}.$$

Endowed with d_{sup} , the set \mathcal{X} becomes a metric space (Problem .1); the convergence in (\mathcal{X}, d_{sup}) is called the *uniform convergence* of bounded mappings $K \to X$.

In the case where (X, d) is the underlying metric space of a normed vector space (X, ||) (see **Homework #, Appendix**), and K is any set, it is clear that $(\mathcal{X}, d_{sup}) = (B(K, X), d_{sup})$ is the underlying metric space of the normed vector space $(\mathcal{X}, || ||_{\infty}$ with the valuewise operations on X-valued functions f on K and the supremum norm $||f||_{\infty} = \sup \{|f(x)| : x \in K\}.$

If, moreover, K happens to be a manifold or a metric space, the set $\mathcal{X} = B(K, X)$ contains the subset $C_B(K, X)$ formed by all bounded mappings $K \to X$ which are also continuous. (In both cases, a mapping $f : K \to N$ is said to be continuous if $f(x_k) \to f(x)$ in X as $k \to \infty$ whenever $x_k, k = 1, 2, \ldots$, is a sequence of points in K that converges to a point $x \in K$.) When K is compact, we write C(K, X) rather than $C_B(K, X)$, deleting the subscript 'B' as boundedness then follows from continuity (Problem .13). With the restriction of the distance function d_{sup} , the set $C_B(K, X)$ constitutes a metric space which is complete whenever so is (X, d) (Problems .2, .3 and .15).

We say that a mapping $f: K \to X$ between metric spaces (with both distances denoted d) satisfies the *Lipschitz condition* if there exists a constant $C \ge 0$ such that $d(F(x), F(y)) \le C d(x, y)$ for all $x, y \in K$. For instance, Problem .12 states that any norm satisfies the Lipschitz condition with C = 1. Note that the Lipschitz condition implies continuity.

Let us now consider an open subset U of a finite-dimensional real vector space V. By an ordinary differential equation of order $k \ge 1$ in U we mean a mapping $F: I \times U \times V^{k-1} \to V$, where $I \subset \mathbb{R}$ is an open interval and $V^{k-1} = V \times \ldots \times V$ is the (k-1)st Cartesian power of V. A C^k -differentiable curve $\gamma: I' \to V$ defined on a subinterval I' of I (open or not) is called a solution to the equation if

(.1)
$$\gamma^{(k)} = F(t, \gamma, \dot{\gamma}, \dots, \gamma^{(k-1)})$$

in the sense that $\gamma^{(k)}(t) = F(t, \gamma(t), \dot{\gamma}(t), \dots, \gamma^{(k-1)}(t))$ for all $t \in I'$, where $\gamma^{(k)} = d^k \gamma/dt^k$. Such a solution is said to satisfy the *initial condition* $(t_0, x_0, v_1, \dots, v_{k-1})$ if $(t_0, x_0, v_1, \dots, v_{k-1}) \in I \times U \times V^{k-1}$ and

(.2)
$$\gamma(t_0) = x_0, \, \dot{\gamma}(t_0) = v_1, \dots, \, \gamma^{(k-1)}(t_0) = v_{k-1}.$$

The mapping F is usually referred to as the *right-hand side* of the equation (rather than being called the equation itself). Together, (.1) and (.2) are said to form a *kth order initial value problem*. An initial value problem (.1), (.2) of any order k > 1 can always be reduced to a first-order problem $\dot{\chi} = \Phi(t, \chi)$, $\chi(t_0) = z_0$ in the open set $U \times V^{k-1}$ of the higher-dimensional space V^k , by setting $\chi(t) = (\gamma(t), \dot{\gamma}(t), \dots, \gamma^{(k-1)}(t)) \in U \times V^{k-1}$, $\Phi(t, x, w_1, \dots, w_{k-1}) =$ $(w_1, \dots, w_{k-1}, F(t, x, w_1, \dots, w_{k-1}))$ for $(t, x, w_1, \dots, w_{k-1}) \in I \times U \times V^{k-1}$, and $z_0 = (x_0, v_1, \dots, v_{k-1})$. The theorem proved below for k = 1 can therefore be easily extended to initial value problems of any order k (Problem .7).

The Existence and Uniqueness Theorem. Let $I \subset \mathbb{R}$ be an open interval, and let U be an open subset of a finite-dimensional real vector space V. If $F : I \times U \to V$ is continuous and satisfies the Lipschitz condition in $x \in U$ uniformly in $t \in I$, i.e., $|F(t,x') - F(t,x)| \leq C|x' - x|$ for some fixed norm | | in V, some constant $C \geq 0$, and all $t \in I$, $x, x' \in U$, then, for any initial condition $(t_0, x_0) \in I \times U$ there is $\varepsilon > 0$ such that the equation $\dot{\gamma} = F(t, \gamma)$ has a unique C^1 solution $\gamma : [t_0 - \varepsilon, t_0 + \varepsilon] \to U$ with $\gamma(t_0) = x_0$.

Remark .1. The condition imposed on ε is

$$(.3) \qquad \qquad \varepsilon s_{\varepsilon} < (1 - C\varepsilon)\delta\,,$$

with C, || as above, $s_{\varepsilon} = \sup \{|F(t, x_0)| : |t - t_0| \le \varepsilon\}$ and $\delta = \inf \{|y - x_0| : y \in V \setminus U\} \in (0, \infty]$ equal to the distance between x_0 and the complement (or boundary) of U, where $r = \infty$ if U = V. Since $s_{\varepsilon} \to |F(t_0, x_0)|$ as $\varepsilon \to 0$, (.3) holds for all sufficiently small $\varepsilon > 0$.

Proof. For $\gamma : [t_0 - \varepsilon, t_0 + \varepsilon] \to U$, the requirement that γ be C^1 and satisfy $\dot{\gamma} = F(t, \gamma)$ and $\gamma(t_0) = x_0$, is equivalent to continuity of γ along with

(.4)
$$\gamma(t) = x_0 + \int_{t_0}^t F(\tau, \gamma(\tau)) d\tau$$

for all $t \in [t_0 - \varepsilon, t_0 + \varepsilon]$. Let $\mathcal{X}_{\varepsilon}$ be the Banach metric space $C([t_0 - \varepsilon, t_0 + \varepsilon], V)$ with the supremum norm $\| \|_{\sup}$ defined above using the norm $\| \|$ in V. The mapping $h_{\varepsilon} : \mathcal{K}_{\varepsilon} \to \mathcal{X}_{\varepsilon}$ from the subset $\mathcal{K}_{\varepsilon} = C([t_0 - \varepsilon, t_0 + \varepsilon], U)$ of $\mathcal{X}_{\varepsilon}$ into $\mathcal{X}_{\varepsilon}$, given by $[h_{\varepsilon}(\gamma)](t) = x_0 + \int_{t_0}^t F(\tau, \gamma(\tau)) d\tau$ then satisfies $\|h_{\varepsilon}(\gamma') - h_{\varepsilon}(\gamma)\|_{\sup} \leq C\varepsilon \|\gamma' - \gamma\|_{\sup}$, as the length of the integration interval is $\|t - t_0\| \leq \varepsilon$ and C is a Lipschitz constant for F. Denoting z the constant curve $x_0 \in \mathcal{K}_{\varepsilon}$ and setting $r_{\varepsilon} = (1 - C\varepsilon)^{-1} \|z - h_{\varepsilon}(z)\|_{\sup}$, we obtain $r_{\varepsilon} \leq (1 - C\varepsilon)^{-1}\varepsilon s_{\varepsilon}$. Thus, for ε chosen as in (.3), $r_{\varepsilon} < \delta$ and hence the ball $B_z(r_{\varepsilon})$ in $\mathcal{X}_{\varepsilon}$ is contained in $\mathcal{K}_{\varepsilon}$. The assumptions of Banach's fixed-point theorem (**Homework #, Appendix**) thus will be satisfied if we replace X, d, K, h, C, z, r in the statement of that theorem by $\mathcal{X}_{\varepsilon}$, d_{\sup} , $\mathcal{K}_{\varepsilon}$, h_{ε} , $C\varepsilon$, $z = x_0$, and, respectively, r_{ε} , for any ε with (.3). The resulting existence and uniqueness of $\gamma \in \mathcal{K}_{\varepsilon}$ with $h_{\varepsilon}(\gamma) = \gamma$, i.e., (.4), now proves our assertion.

Global Solutions to Linear Differential Equations

Given an interval $I \subset \mathbb{R}$ containing more than one point and otherwise arbitrary (so that I may be open, closed, or half-open, bounded or unbounded), and a

nonnegative continuous function $h: I \to [0, \infty)$, we set

(.1)
$$\int_{I} h(t) dt = \sup_{a,b \in I} \int_{a}^{b} h(t) dt \in [0,\infty].$$

Note that $\int_I h(t) dt$ equals the limit of $\int_a^b h(t) dt$ as $a \to \inf I(+)$ and, simultaneously, $b \to \sup I(-)$. (The limit always exists for reasons of monotonicity.)

The following results concerning *differential inequalities* will later be applied to linear ordinary differential equations and the local regularity theorem.

Lemma .1. Suppose that $I \subset \mathbb{R}$ is an interval, $h : I \to [0, \infty)$ is a continuous function, and $\gamma : I \to V$ is a C^1 mapping of I into a finite-dimensional real vector space V with an inner product \langle , \rangle . If, in addition,

everywhere in I, || being the norm in V determined by \langle , \rangle , then

(.4)
$$\sup_{I} |\gamma| \le e^{C} \inf_{I} |\gamma|$$

Remark. By (.3), whenever $\gamma, h, I, V, \langle , \rangle$ satisfy the hypotheses of the lemma, then either $\gamma = 0$ identically, or $\gamma \neq 0$ everywhere in I. This fact, however, will have to be established separately in the course the following proof.

Proof. We may assume that γ is not identically zero. By the Schwarz inequality and (.3), $\varphi = \langle \gamma, \gamma \rangle : I \to [0, \infty)$ satisfies $|\dot{\varphi}| = 2|\langle \gamma, \dot{\gamma} \rangle| \leq 2h\varphi$. Thus, if $a, b \in I$ and $\gamma \neq 0$ everywhere in the closed interval ab connecting a and b, we have

(.5)
$$|\gamma(b)| \le e^{C(a,b)} |\gamma(a)|, \quad \text{where} \quad C(a,b) = \int_{-}^{+} h(t) \, dt,$$

as $2 \log |\gamma(b)| - 2 \log |\gamma(a)| = \log \varphi(b) - \log \varphi(a) = \int_a^b \varphi^{-1} \dot{\varphi} dt \leq 2 \int_{\overline{ab}} h(t) dt$. Consequently, $\gamma \neq 0$ everywhere in I. In fact, otherwise, we could select a maximal open subinterval I' of I with $\gamma \neq 0$ everywhere in I', so that $\gamma(c) = 0$ for at least one endpoint $c \in I$ of I'; fixing $b \in I'$ and letting $a \in I'$ vary, we would obtain the contradiction $0 < |\gamma(b)| \leq 0$ by taking the limit of (.5) as $a \to c$ and noting that $\int_{\overline{ab}} h(t) dt < \infty$. Therefore, by (.5), $|\gamma(b)| \leq e^C |\gamma(a)|$ for all $a, b \in I$, with C as in (.4), and we can take the supremum over b and infimum over a.

Corollary .3. Let $\gamma, h, I, V, \langle , \rangle$ satisfy the hypotheses of Lemma .1. Then γ has a limit at each finite endpoint of I, while the endpoint itself does not have to belong to I.

In fact, by (.3), (.4) we have $\int_{I} |\dot{\gamma}(t)| dt \leq Ce^{C} \inf_{I} |\gamma|$, and so we can use Problem .2.

Let U now be an open subset of V, and let $I \subset \mathbb{R}$ be an open interval. A kth order ordinary differential equation (.1) in U, i.e.,

$$\gamma^{(k)} = F(t, \gamma, \dot{\gamma}, \dots, \gamma^{(k-1)}),$$

is called *linear* if its right-hand side

$$F: I \times U \times V^{k-1} \to V$$

has the form

$$F(t, x, w_1, \dots, w_{k-1}) = B_0(t)x + B_1(t)w_1 + \dots + B_{k-1}(t)w_{k-1}$$

with some *coefficient functions* (curves) $B_0, B_1, \ldots, B_{k-1} : I \to \text{Hom}(V, V)$ valued in the vector space of all linear mappings $V \to V$. In other words, a linear kth order equation reads

(.6)
$$\gamma^{(k)} = B_0(t)\gamma + B_1(t)\dot{\gamma} + \ldots + B_{k-1}(t)\gamma^{(k-1)}$$

Note that, due to linearity of the $B_0(t), B_1(t), \ldots, B_{k-1}(t)$, we may always assume that U = V.

A linear equation (.6) of any order k > 1 can always be reduced to a first-order linear equation $\dot{\chi} = A(t)\chi$ in a higher-dimensional space, with the coefficient curve $t \mapsto A(t)$ of the same regularity as the original $B_0, B_1, \ldots, B_{k-1}$ (Problem .6).

Proposition .4. Suppose that V is a finite-dimensional real vector space and $I \subset \mathbb{R}$ is an open interval. If $F : I \times V \to V$ is continuous and locally Lipschitz in $x \in U$, locally uniformly in $t \in I$ (Problem .6, and satisfies the inequality

$$|F(t,x)| \le h(t)|x|$$

for all $(t, x) \in I \times V$, where $h : I \to [0, \infty)$ is a continuous function and || is a fixed norm in V, then for any $(t_0, x_0) \in I \times V$ the initial value problem

(.8)
$$\dot{\gamma} = F(t,\gamma), \qquad \gamma(t_0) = x_0$$

has a unique solution $\gamma: I \to V$ defined everywhere in I.

Proof. We may assume that | | is the norm determined by an inner product \langle , \rangle in V (Problem .18). Let $\gamma : (a, b) \to V$ be the (unique) solution to (.8) defined on the largest possible interval $(a, b) \subset I$ with $t_0 \in (a, b)$ (Problem .5). To show that (a, b) = I, suppose on the contrary that, for instance, $b \in I$. Applying **Corollary** .3 to $[t_0, b]$ instead of I, we see that $\gamma(t)$ has a limit y_0 as $t \to b(-)$, and so from the existence theorem (see, e.g., Problem .6), there is $\varepsilon > 0$ with $b + \varepsilon \in I$ and a C^1 curve $\gamma_1 : [b, b + \varepsilon) \to V$ with $\dot{\gamma}_1 = F(t, \gamma_1)$ and $\gamma_1(b) = y_0$. Combining γ with γ_1 as in Problem .1, we obtain a C^1 solution to (.8) defined on $(a, b + \varepsilon)$, which contradicts maximality of (a, b) and thus completes the proof.

The Global Existence Theorem for Linear Ordinary Differential Equations. Every linear initial value problem

(.9)
$$\gamma^{(k)} = B_0(t)\gamma + B_1(t)\dot{\gamma} + \ldots + B_{k-1}(t)\gamma^{(k-1)}, \gamma(t_0) = x_0, \, \dot{\gamma}(t_0) = v_1, \, \ldots, \, \gamma^{(k-1)}(t_0) = v_{k-1}$$

of order $k \ge 1$ in a finite-dimensional real vector space V, with continuous coefficient functions $B_0, B_1, \ldots, B_{k-1} : I \to \text{Hom}(V, V)$, where $I \subset \mathbb{R}$ is an open interval, has a unique solution $\gamma : I \to V$ defined on the whole interval I. **Proof.** Fix a norm | | in V. We may assume that k = 1 (Problem .6), so that (.9) becomes $\dot{\gamma} = B(t)\gamma$ with $\gamma(t_0) = x_0$. Thus, (.7) is satisfied by F(t,x) = B(t)x and h(t) = |B(t)| (the operator norm; see **Homework** #, **Appendix**), and $h : I \to [0, \infty)$ is continuous according to Problem .18 (or .20). The assertion is now immediate from **Proposition .4**.

Differential Equations with Parameters

Again, V, W are always finite-dimensional normed real vector spaces.

$$\|\gamma\|_{\infty} \le |\gamma(a)| + L \|\dot{\gamma}\|_{\infty}.$$

In fact, $\gamma(t) = \gamma(a) + \int_a^t \dot{\gamma}(\tau) d\tau$, whenever $t \in I$, and so $|\gamma(t)| \leq |\gamma(a)| + \int_a^t |\dot{\gamma}(\tau)| d\tau$, while the last term clearly does not exceed $L \|\dot{\gamma}\|_{\infty}$.

Lemma 2. Let γ_i , i = 1, 2, ... be a sequence of V-valued C^1 functions on a closed interval I of length L such that $\gamma_i(a) \to z$ as $i \to \infty$ for some $a \in I$ and $z \in V$, while the derivatives $\dot{\gamma}_i$ converge uniformly on I to a function $\phi : I \to V$. Then $\gamma_i \to \gamma$ uniformly on I with a C^1 limit function $\gamma : I \to \mathbb{R}$ having the derivative $\dot{\gamma} = \phi$.

Proof. Define γ by $\gamma(t) = z + \int_a^t \phi(\tau) d\tau$. As $\gamma_i(t) = \gamma_i(a) + \int_a^t \dot{\gamma}_i(\tau) d\tau$, we get

$$|\gamma_i(t) - \gamma(t)| \le |\gamma_i(a) - z| + \int_a^t |\dot{\gamma}_i(\tau) - \phi(\tau)| d\tau \le |\gamma_i(a) - z| + L \|\dot{\gamma}_i - \phi\|_{\infty},$$

and it follows that $\|\gamma_i - \gamma\|_{\infty} \leq |\gamma_i(a) - z| + L \|\dot{\gamma}_i - \phi\|_{\infty}$.

Lemma 3. If mappings $\gamma_i : I \to V$ between metric spaces converge uniformly to a continuous mapping $\gamma : I \to V$ and $t_i \to a$ in I as $i \to \infty$, then $\gamma_i(t_i) \to \gamma(a)$.

Proof. Obviously, $d(\gamma_i(t_i), \gamma(a)) \leq d(\gamma_i(t_i), \gamma(t_i)) + d(\gamma(t_i), \gamma(a))$, which is in turn less than or equal to $d_{sup}(\gamma_i, \gamma) + d(\gamma(t_i), \gamma(a))$,

According to the "neat" version of Banach's fixed-point theorem [IM, the corollary on p.2], any contraction h of a complete metric space (X, d), meaning: a mapping $h: X \to X$ with

(ctr) $d(h(x), h(x')) \le C d(x, x')$ for all $x, x' \in X$ and some $C \in [0, 1)$,

has a unique fixed point $x \in X$. In addition, $h^i(y) \to x$ as $i \to \infty$ for every $y \in X$. The next lemma states that this x depends on h continuously, relative to the supremum distance.

Lemma 4. Given contractions h, h' of a complete metric space (X, d) with the unique fixed points x, x', one has $d(x, x') \leq (1 - C)^{-1} d_{\sup}(h, h')$ for $d_{\sup}(h, h') \in [0, \infty]$ defined by (dsu) and the constant C < 1 in (ctr).

Proof. This is immediate from the following inequality, with $\eta = h'$ and $q = d_{sup}(h, h')$, for any $i \ge 1$ and $x \in X$, easily established by induction:

$$d(h^{i}(x), \eta^{i}(x)) \leq (1 + C + \dots + C^{i-1})q.$$

The induction steps follows since

$$d(h^{i+1}(x), \eta^{i+1}(x)) \le d(h(h^{i}(x)), h(\eta^{i}(x))) + d(h(\eta^{i}(x)), \eta(\eta^{i}(x))),$$

while the right-hand side does not exceed $(1 + C + \dots + C^{i-1})Cq + q$ due to the induction hypothesis.

Given an open set $U \subseteq V \times W$ and a C^{∞} mapping $F : U \to V$, we will write points of U as pairs of vectors from V and W. Consider the following initial value problem with parameters:

(ivp)
$$\dot{\gamma} = F(\gamma, \xi), \qquad \gamma(a) = z.$$

It includes the family of ordinary differential equations, parametrized by ξ , depending on $a \in \mathbb{R}$ and $z \in V$ with $(z, \xi) \in U$, and having as solutions those differentiable functions $\gamma: I \to V$ defined on intervals $I \subseteq \mathbb{R}$ for which $(\gamma(t), \xi) \in U$ and $\dot{\gamma}(t) = F(\gamma(t), \xi)$ whenever $t \in I$, while $\gamma(a) = z$. With any $(a, z, \xi) \in \mathbb{R} \times U$ we now associate the maximal open interval $I_{a,z,\xi} \subseteq \mathbb{R}$ on which (ivp) has a solution, and declare the set $Y \subseteq \mathbb{R}^2 \times U$ to be

$$Y = \{(t, a, z, \xi) \in \mathbf{R}^2 \times U : t \in I_{a, z, \xi}\}.$$

The Regular-Dependence Theorem. The above set Y is open in $\mathbb{R}^2 \times V \times W$ and the mapping $Y \ni (t, a, z, \xi) \mapsto \gamma(t)$, with γ characterized by (ivp), is of class C^{∞} .

The proof proceeds by several steps, the first of which – openness of Y – is straightforward:

To simplify the remaining steps of the proof, we "fold" the initial-data pair (a, z) into the parameters, assuming from now on that (a, z) = (0, 0). This is achieved by replacing (t, F, γ) with $(s, G, \delta) = (t - a, G, \gamma - z)$, for G given by $G(\delta, \xi, z) = F(z + \delta, \xi)$, which turns (ivp) into $d\delta/ds = G(\delta, \xi, z)$ and $\delta(0) = 0$. Writing from now on (t, F, γ) instead of (s, G, δ) , and using the notation $\gamma(t, \xi)$ to emphasize the dependence of the solution on the parameter ξ , we rephrase (ivp) as the autonomous initial value problem

(par)
$$\dot{\gamma}(\cdot,\xi) = F(\gamma,\xi), \quad \gamma(0,\xi) = 0.$$

with () = d/dt. Now $F : U \to V$ is a C^{∞} mapping from an open set $U \subseteq V \times W$, and $(t,\xi) \mapsto \gamma(t,\xi) \in V$ is defined on the set $\{(t,\xi) \in \mathbb{R} \times W : t \in I_{0,0,\xi}\}$ (which, as we already know, is open in $\mathbb{R} \times V$).

By (formally) applying $\partial/\partial\xi^{\lambda}$ to (par), and using the chain rule, we obtain

(fop)
$$\dot{\gamma}(\cdot,\xi) = F(\gamma,\xi), \quad \gamma(0,\xi) = 0, \quad \dot{\gamma}_{\lambda} = \gamma_{\lambda}^{j}F_{j} + F_{\lambda}, \quad \gamma_{\lambda}(0,\xi) = 0.$$

where (par) is included as well, This time, () $\dot{=} \partial/\partial t$, the symbols involving γ , or F, are functions of (t,ξ) or, respectively, (γ,ξ) , and the other partial derivatives are represented by subscripts:

$$\gamma_{\lambda} = \partial \gamma / \partial \xi^{\lambda}, \quad \gamma_{\lambda}^{j} = \partial \gamma^{j} / \partial \xi^{\lambda}, \quad F_{j} = \partial F / \partial \gamma^{j}, \quad F_{\lambda} = \partial F / \partial \xi^{\lambda}.$$

Of course, our derivation of (fop) is heuristic, rather than rigorous; the next two lemmas provide a proof of (fop).

Lemma 5. The mapping $(t,\xi) \mapsto \gamma(t,\xi)$ is continuous.

Proof.

Lemma 6. Our $\gamma(t,\xi)$ is a C^1 function of (t,ξ) which, along with its first-order partial derivative $\gamma_{\lambda} = \partial \gamma / \partial \xi^{\lambda}$ satisfies the initial value problem (fop).

Proof.

Proof of the Regular-Dependence Theorem. We use induction on $k \ge 1$ to show that $\gamma(t,\xi)$ is a C^k function of (t,ξ) for every initial value problem (par) involving a C^{∞} mapping F. Lemma 6 settles the case k = 1. Assuming our assertion for some given $k \ge 1$, and fixing an initial value problem (par), we see – using Lemma 6 and the inductive assumption for (fop) rather than (par) – that the partial derivatives $\gamma_{\lambda} = \partial \gamma / \partial \xi^{\lambda}$ are of class C^k and so is, by (fop), $\partial \gamma / \partial t$. The domain of these first-order partial derivatives is the same as that of γ (since, fixing γ in (fop), we obtain a *linear* equation imposed on γ_{λ} , and we can invoke the Global Existence Theorem for Linear Ordinary Differential Equations). Thus, γ itself is of class C^{k+1} , on the same domain.