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Ordinary Differential Equations

By V and W we always denote finite-dimensional normed real vector spaces.

A mapping f : K → X from a set K into a metric space (X, d) is said to be
bounded if its image f(K) is a bounded subset of (X, d) in the sense that it lies
in a ball Bz(r) with some center z ∈ X and some radius r > 0. Let us denote
X = B(K,X) the set of all bounded mappings f : K → X and define the uniform
distance function dsup : X × X → [0,∞) by

(dsu) dsup(f, f ′) = sup {d (f(x), f ′(x)) : x ∈ K}.

Endowed with dsup, the set X becomes a metric space (Problem .1); the conver-

gence in (X , dsup) is called the uniform convergence of bounded mappings K → X.

In the case where (X, d) is the underlying metric space of a normed vector
space (X, | |) (see Homework #, Appendix), and K is any set, it is clear that
(X , dsup) = (B(K,X), dsup) is the underlying metric space of the normed vector

space (X , ‖ ‖∞ with the valuewise operations on X-valued functions f on K and
the supremum norm ‖f‖∞ = sup {|f(x)| : x ∈ K}.

If, moreover, K happens to be a manifold or a metric space, the set X =
B(K,X) contains the subset CB(K,X) formed by all bounded mappings K → X
which are also continuous. (In both cases, a mapping f : K → N is said to
be continuous if f(xk) → f(x) in X as k → ∞ whenever xk, k = 1, 2, . . . ,
is a sequence of points in K that converges to a point x ∈ K.) When K is
compact, we write C(K,X) rather than CB(K,X), deleting the subscript ‘B’ as
boundedness then follows from continuity (Problem .13). With the restriction of
the distance function dsup, the set CB(K,X) constitutes a metric space which is
complete whenever so is (X, d) (Problems .2, .3 and .15).

We say that a mapping f : K → X between metric spaces (with both distances
denoted d ) satisfies the Lipschitz condition if there exists a constant C ≥ 0 such
that d(F (x), F (y)) ≤ C d(x, y) for all x, y ∈ K. For instance, Problem .12 states
that any norm satisfies the Lipschitz condition with C = 1. Note that the Lipschitz
condition implies continuity.

Let us now consider an open subset U of a finite-dimensional real vector space
V . By an ordinary differential equation of order k ≥ 1 in U we mean a mapping
F : I×U×V k−1 → V , where I ⊂ IR is an open interval and V k−1 = V × . . .×V is
the (k− 1)st Cartesian power of V . A Ck-differentiable curve γ : I ′ → V defined
on a subinterval I ′ of I (open or not) is called a solution to the equation if

(.1) γ(k) = F (t, γ, γ̇, . . . , γ(k−1))

in the sense that γ(k)(t) = F (t, γ(t), γ̇(t), . . . , γ(k−1)(t)) for all t ∈ I ′, where γ(k) =
dkγ/dtk. Such a solution is said to satisfy the initial condition (t0, x0, v1, . . . , vk−1)
if (t0, x0, v1, . . . , vk−1) ∈ I × U × V k−1 and

(.2) γ(t0) = x0 , γ̇(t0) = v1 , . . . , γ
(k−1)(t0) = vk−1 .
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The mapping F is usually referred to as the right-hand side of the equation
(rather than being called the equation itself). Together, (.1) and (.2) are said
to form a kth order initial value problem. An initial value problem (.1), (.2) of
any order k > 1 can always be reduced to a first-order problem χ̇ = Φ(t, χ),
χ(t0) = z0 in the open set U × V k−1 of the higher-dimensional space V k, by
setting χ(t) = (γ(t), γ̇(t), . . . , γ(k−1)(t)) ∈ U × V k−1, Φ(t, x, w1, . . . , wk−1) =
(w1, . . . , wk−1, F (t, x, w1, . . . , wk−1)) for (t, x, w1, . . . , wk−1) ∈ I × U × V k−1, and
z0 = (x0, v1, . . . , vk−1). The theorem proved below for k = 1 can therefore be
easily extended to initial value problems of any order k (Problem .7).

The Existence and Uniqueness Theorem. Let I ⊂ IR be an open interval, and
let U be an open subset of a finite-dimensional real vector space V . If F : I × U → V
is continuous and satisfies the Lipschitz condition in x ∈ U uniformly in t ∈ I , i.e.,
|F (t, x′)−F (t, x)| ≤ C|x′−x| for some fixed norm | | in V , some constant C ≥ 0, and
all t ∈ I , x, x′ ∈ U , then, for any initial condition (t0, x0) ∈ I × U there is ε > 0 such
that the equation γ̇ = F (t, γ) has a unique C1 solution γ : [t0 − ε, t0 + ε] → U with
γ(t0) = x0.

Remark .1. The condition imposed on ε is

(.3) εsε < (1− Cε)δ ,

with C, | | as above, sε = sup {|F (t, x0)| : |t − t0| ≤ ε} and δ = inf{|y − x0| :
y ∈ V r U} ∈ (0,∞] equal to the distance between x0 and the complement (or
boundary) of U , where r = ∞ if U = V . Since sε → |F (t0, x0)| as ε → 0, (.3)
holds for all sufficiently small ε > 0.

Proof. For γ : [t0 − ε, t0 + ε] → U , the requirement that γ be C1 and satisfy
γ̇ = F (t, γ) and γ(t0) = x0, is equivalent to continuity of γ along with

(.4) γ(t) = x0 +

∫ t

t0

F (τ, γ(τ)) dτ

for all t ∈ [t0− ε, t0 + ε]. Let Xε be the Banach metric space C([t0− ε, t0 + ε], V )
with the supremum norm ‖ ‖sup defined above using the norm | | in V . The
mapping hε : Kε → Xε from the subset Kε = C([t0− ε, t0 + ε], U) of Xε into Xε,
given by [hε(γ)](t) = x0 +

∫ t
t0
F (τ, γ(τ)) dτ then satisfies ‖hε(γ′) − hε(γ)‖sup ≤

Cε‖γ′ − γ‖sup, as the length of the integration interval is |t − t0| ≤ ε and C is
a Lipschitz constant for F . Denoting z the constant curve x0 ∈ Kε and setting
rε = (1−Cε)−1‖z−hε(z)‖sup, we obtain rε ≤ (1−Cε)−1εsε. Thus, for ε chosen
as in (.3), rε < δ and hence the ball Bz(rε) in Xε is contained in Kε. The
assumptions of Banach’s fixed-point theorem (Homework #, Appendix) thus
will be satisfied if we replace X, d ,K, h, C, z, r in the statement of that theorem
by Xε, dsup, Kε, hε, Cε, z = x0, and, respectively, rε, for any ε with (.3). The
resulting existence and uniqueness of γ ∈ Kε with hε(γ) = γ, i.e., (.4), now proves
our assertion.

Global Solutions to Linear Differential Equations

Given an interval I ⊂ IR containing more than one point and otherwise arbitrary
(so that I may be open, closed, or half-open, bounded or unbounded), and a
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nonnegative continuous function h : I → [0,∞), we set

(.1)

∫
I

h(t) dt = sup
a,b∈I

∫ b

a

h(t) dt ∈ [0,∞] .

Note that
∫
I
h(t) dt equals the limit of

∫ b
a
h(t) dt as a→ inf I(+) and, simultane-

ously, b→ sup I(−). (The limit always exists for reasons of monotonicity.)

The following results concerning differential inequalities will later be applied to
linear ordinary differential equations and the local regularity theorem.

Lemma .1. Suppose that I ⊂ IR is an interval, h : I → [0,∞) is a continuous
function, and γ : I → V is a C1 mapping of I into a finite-dimensional real vector space
V with an inner product 〈 , 〉. If, in addition,

(.2) a) C =

∫
I

h(t) dt < ∞, b) |γ̇| ≤ h|γ|

everywhere in I , | | being the norm in V determined by 〈 , 〉, then

(.4) sup
I
|γ| ≤ eC inf

I
|γ| .

Remark. By (.3), whenever γ, h, I, V, 〈 , 〉 satisfy the hypotheses of the lemma,
then either γ = 0 identically, or γ 6= 0 everywhere in I. This fact, however, will
have to be established separately in the course the following proof.

Proof. We may assume that γ is not identically zero. By the Schwarz inequality
and (.3), ϕ = 〈γ, γ〉 : I → [0,∞) satisfies |ϕ̇| = 2|〈γ, γ̇〉| ≤ 2hϕ. Thus, if a, b ∈ I
and γ 6= 0 everywhere in the closed interval ab connecting a and b, we have

(.5) |γ(b)| ≤ eC(a,b)|γ(a)|, where C(a, b) =
∫

ab

h(t) dt,

as 2 log |γ(b)| − 2 log |γ(a)| = logϕ(b)− logϕ(a) =
∫ b
a
ϕ−1ϕ̇ dt ≤ 2

∫
ab

h(t) dt. Con-

sequently, γ 6= 0 everywhere in I. In fact, otherwise, we could select a maximal
open subinterval I ′ of I with γ 6= 0 everywhere in I ′, so that γ(c) = 0 for at
least one endpoint c ∈ I of I ′ ; fixing b ∈ I ′ and letting a ∈ I ′ vary, we would
obtain the contradiction 0 < |γ(b)| ≤ 0 by taking the limit of (.5) as a → c and
noting that

∫
cb

h(t) dt < ∞. Therefore, by (.5), |γ(b)| ≤ eC |γ(a)| for all a, b ∈ I,

with C as in (.4), and we can take the supremum over b and infimum over a.

Corollary .3. Let γ, h, I, V, 〈 , 〉 satisfy the hypotheses of Lemma .1. Then γ has a
limit at each finite endpoint of I , while the endpoint itself does not have to belong to I .

In fact, by (.3), (.4) we have
∫
I
|γ̇(t)| dt ≤ CeC inf

I
|γ|, and so we can use

Problem .2.

Let U now be an open subset of V , and let I ⊂ IR be an open interval. A kth
order ordinary differential equation (.1) in U , i.e.,

γ(k) = F (t, γ, γ̇, . . . , γ(k−1)) ,
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is called linear if its right-hand side

F : I × U × V k−1 → V

has the form

F (t, x, w1, . . . , wk−1) = B0(t)x+B1(t)w1 + . . .+Bk−1(t)wk−1

with some coefficient functions (curves) B0, B1, . . . , Bk−1 : I → Hom(V, V ) valued
in the vector space of all linear mappings V → V . In other words, a linear kth
order equation reads

(.6) γ(k) = B0(t)γ +B1(t)γ̇ + . . .+Bk−1(t)γ(k−1) .

Note that, due to linearity of the B0(t), B1(t), . . . , Bk−1(t), we may always assume
that U = V .

A linear equation (.6) of any order k > 1 can always be reduced to a first-order
linear equation χ̇ = A(t)χ in a higher-dimensional space, with the coefficient curve
t 7→ A(t) of the same regularity as the original B0, B1, . . . , Bk−1 (Problem .6).

Proposition .4. Suppose that V is a finite-dimensional real vector space and I ⊂ IR
is an open interval. If F : I × V → V is continuous and locally Lipschitz in x ∈ U ,
locally uniformly in t ∈ I (Problem .6, and satisfies the inequality

(.7) |F (t, x)| ≤ h(t)|x|

for all (t, x) ∈ I × V , where h : I → [0,∞) is a continuous function and | | is a fixed
norm in V , then for any (t0, x0) ∈ I × V the initial value problem

(.8) γ̇ = F (t, γ) , γ(t0) = x0

has a unique solution γ : I → V defined everywhere in I .

Proof. We may assume that | | is the norm determined by an inner product 〈 , 〉
in V (Problem .18). Let γ : (a, b)→ V be the (unique) solution to (.8) defined on
the largest possible interval (a, b) ⊂ I with t0 ∈ (a, b) (Problem .5). To show that
(a, b) = I, suppose on the contrary that, for instance, b ∈ I. Applying Corollary
.3 to [t0, b] instead of I, we see that γ(t) has a limit y0 as t→ b(−), and so from
the existence theorem (see, e.g., Problem .6), there is ε > 0 with b + ε ∈ I and
a C1 curve γ1 : [b, b + ε) → V with γ̇1 = F (t, γ1) and γ1(b) = y0. Combining
γ with γ1 as in Problem .1, we obtain a C1 solution to (.8) defined on (a, b+ ε),
which contradicts maximality of (a, b) and thus completes the proof.

The Global Existence Theorem for Linear Ordinary Differential Equa-
tions. Every linear initial value problem

(.9)
γ(k) = B0(t)γ +B1(t)γ̇ + . . .+Bk−1(t)γ(k−1) ,

γ(t0) = x0 , γ̇(t0) = v1 , . . . , γ
(k−1)(t0) = vk−1

of order k ≥ 1 in a finite-dimensional real vector space V , with continuous coefficient
functions B0, B1, . . . , Bk−1 : I → Hom(V, V ), where I ⊂ IR is an open interval, has
a unique solution γ : I → V defined on the whole interval I .
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Proof. Fix a norm | | in V . We may assume that k = 1 (Problem .6), so that (.9)
becomes γ̇ = B(t)γ with γ(t0) = x0. Thus, (.7) is satisfied by F (t, x) = B(t)x
and h(t) = |B(t)| (the operator norm; see Homework #, Appendix), and h :
I → [0,∞) is continuous according to Problem .18 (or .20). The assertion is now
immediate from Proposition .4.

Differential Equations with Parameters

Again, V ,W are always finite-dimensional normed real vector spaces.

‖γ‖∞ ≤ |γ(a)| + L‖γ̇‖∞ .

In fact, γ(t) = γ(a) +
∫ t
a
γ̇(τ) dτ , whenever t ∈ I, and so |γ(t)| ≤ |γ(a)| +∫ t

a
|γ̇(τ)| dτ , while the last term clearly does not exceed L‖γ̇‖∞.

Lemma 2. Let γi , i = 1, 2, . . . be a sequence of V -valued C1 functions on a closed
interval I of length L such that γi (a) → z as i → ∞ for some a ∈ I and z ∈ V ,
while the derivatives γ̇i converge uniformly on I to a function φ : I → V . Then γi → γ
uniformly on I with a C1 limit function γ : I → IR having the derivative γ̇ = φ.

Proof. Define γ by γ(t) = z +
∫ t
a
φ(τ) dτ . As γi (t) = γi (a) +

∫ t
a
γ̇i (τ) dτ , we get

|γi (t)− γ(t)| ≤ |γi (a)− z|+
∫ t

a

|γ̇i (τ)− φ(τ)| dτ ≤ |γi (a)− z|+ L‖γ̇i − φ‖∞ ,

and it follows that ‖γi − γ‖∞ ≤ |γi (a)− z|+ L‖γ̇i − φ‖∞. �

Lemma 3. If mappings γi : I → V between metric spaces converge uniformly to a
continuous mapping γ : I → V and ti → a in I as i→∞, then γi (ti )→ γ(a).

Proof. Obviously, d(γi (ti ), γ(a)) ≤ d(γi (ti ), γ(ti )) + d(γ(ti ), γ(a)), which is in

turn less than or equal to dsup(γi , γ)) + d(γ(ti ), γ(a)), �

According to the “neat” version of Banach’s fixed-point theorem [IM, the corol-
lary on p.2], any contraction h of a complete metric space (X, d), meaning: a
mapping h : X → X with

(ctr) d(h(x), h(x′)) ≤ C d(x, x′) for all x, x′ ∈ X and some C ∈ [0, 1),

has a unique fixed point x ∈ X. In addition, hi(y) → x as i → ∞ for every
y ∈ X. The next lemma states that this x depends on h continuously, relative to
the supremum distance.

Lemma 4. Given contractions h, h′ of a complete metric space (X, d) with the unique
fixed points x, x′, one has d(x, x′) ≤ (1 − C)−1dsup(h, h

′) for dsup(h, h
′) ∈ [0,∞]

defined by (dsu) and the constant C < 1 in (ctr).

Proof. This is immediate from the following inequality, with η = h′ and q =
dsup(h, h

′), for any i ≥ 1 and x ∈ X, easily established by induction:

d(hi(x), ηi(x)) ≤ (1 + C + · · ·+ C i−1)q.
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The induction steps follows since

d(hi+1(x), ηi+1(x)) ≤ d(h(hi(x)), h(ηi(x))) + d(h(ηi(x)), η(ηi(x))),

while the right-hand side does not exceed (1 + C + · · ·+ C i−1)Cq + q due to the
induction hypothesis. �

Given an open set U ⊆ V ×W and a C∞ mapping F : U → V , we will write
points of U as pairs of vectors from V and W. Consider the following initial value
problem with parameters:

(ivp) γ̇ = F (γ, ξ), γ(a) = z.

It includes the family of ordinary differential equations, parametrized by ξ, depend-
ing on a ∈ IR and z ∈ V with (z, ξ) ∈ U, and having as solutions those differen-
tiable functions γ : I → V defined on intervals I ⊆ IR for which (γ(t), ξ) ∈ U and
γ̇(t) = F (γ(t), ξ) whenever t ∈ I, while γ(a) = z. With any (a, z, ξ) ∈ IR× U we

now associate the maximal open interval Ia,z,ξ ⊆ IR on which (ivp) has a solution,

and declare the set Y ⊆ R2× U to be

Y = {(t, a, z, ξ) ∈ R2× U : t ∈ Ia,z,ξ}.

The Regular-Dependence Theorem. The above set Y is open in R2× V ×W
and the mapping Y 3 (t, a, z, ξ) 7→ γ(t), with γ characterized by (ivp), is of class C∞.

The proof proceeds by several steps, the first of which – openness of Y – is
straightforward:

To simplify the remaining steps of the proof, we “fold” the initial-data pair
(a, z) into the parameters, assuming from now on that (a, z) = (0, 0). This is
achieved by replacing (t, F, γ) with (s,G, δ) = (t − a,G, γ − z), for G given by
G(δ, ξ, z) = F (z + δ, ξ), which turns (ivp) into dδ/ds = G(δ, ξ, z) and δ(0) = 0.
Writing from now on (t, F, γ) instead of (s,G, δ), and using the notation γ(t, ξ)
to emphasize the dependence of the solution on the parameter ξ, we rephrase (ivp)
as the autonomous initial value problem

(par) γ̇( · , ξ) = F (γ, ξ), γ(0, ξ) = 0.

with ( )˙ = d/dt. Now F : U → V is a C∞ mapping from an open set U ⊆ V ×W,

and (t, ξ) 7→ γ(t, ξ) ∈ V is defined on the set {(t, ξ) ∈ IR×W : t ∈ I0,0,ξ} (which,

as we already know, is open in IR× V ).

By (formally) applying ∂/∂ξλ to (par), and using the chain rule, we obtain

(fop) γ̇( · , ξ) = F (γ, ξ), γ(0, ξ) = 0, γ̇λ = γjλFj + Fλ , γλ(0, ξ) = 0.

where (par) is included as well, This time, ( )˙ = ∂/∂t, the symbols involving γ, or
F, are functions of (t, ξ) or, respectively, (γ, ξ), and the other partial derivatives
are represented by subscripts:

γλ = ∂γ/∂ξλ, γjλ = ∂γj/∂ξλ, Fj = ∂F/∂γj , Fλ = ∂F/∂ξλ.
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Of course, our derivation of (fop) is heuristic, rather than rigorous; the next two
lemmas provide a proof of (fop).

Lemma 5. The mapping (t, ξ) 7→ γ(t, ξ) is continuous.

Proof.

Lemma 6. Our γ(t, ξ) is a C1 function of (t, ξ) which, along with its first-order partial
derivative γλ = ∂γ/∂ξλ satisfies the initial value problem (fop).

Proof.

Proof of the Regular-Dependence Theorem. We use induction on k ≥ 1 to
show that γ(t, ξ) is a Ck function of (t, ξ) for every initial value problem (par)
involving a C∞ mapping F. Lemma 6 settles the case k = 1. Assuming our
assertion for some given k ≥ 1, and fixing an initial value problem (par), we see
– using Lemma 6 and the inductive assumption for (fop) rather than (par) – that

the partial derivatives γλ = ∂γ/∂ξλ are of class Ck and so is, by (fop), ∂γ/∂t.
The domain of these first-order partial derivatives is the same as that of γ (since,

fixing γ in (fop), we obtain a linear equation imposed on γλ, and we can invoke
the Global Existence Theorem for Linear Ordinary Differential Equations). Thus,
γ itself is of class Ck+1, on the same domain. �


