
call # 18441

MATH 6701, AUTUMN 2022
M-W-F 1:50 p.m., EC 322

A DAY-BY-DAY LIST OF TOPICS
Included are references to the following texts, accessible through the course homepage at

https://people.math.osu.edu/derdzinski.1/courses/6701/6701.html

[DG]: Differential Geometry, [DF]: Distributions and the Frobenius Theorem,
[PS]: Projective Spaces and Grassmannians, [LL]: Local Lie-group structures

August 24: Topological spaces, open sets, neighborhoods, continuity of mappings, con-
vergence of sequences. The Hausdorff and second-countability axioms. Metric spaces,
including IRn. Charts and Cr compatibility, r = 0, 1, . . . ,∞, ω. Definition of an n-di-
mensional Cr atlas and the resulting topology. Maximal atlases. The existence of a unique
maximal atlas containing a given one [DG, p.1]. Definition of a Cr (Hausdorff) manifold
[DG, pp.1–2] including the second-countability axiom [DG, p.53]. Equivalence of the
latter axiom to the existence of a countable subatlas of the maximal atlas. (A manifold is
thus a set with a fixed maximal atlas satisfying the Hausdorff and countability axioms.)
Geometric properties, including openness of sets [DG, p.4]. Examples of manifolds: ze-
ro-dimensional ones (that is, nonempty countable sets); vector spaces [DG, pp.2]; affine
spaces [DG, pp. 3 and 191-192]; open submanifolds [DG, p.5].

August 26: Cartesian products of manifolds [DG, p.4]. The first-countability axiom
(the existence of a countable basis of neighborhoods at each point of the topological space
in question, which can clearly be replaced by a descending one, that is, a sequence Uj ,

j ≥ 1, of neighborhoods of x with every neighborhood of x containing some Uj). The

repeatedly used observation that, given such Uj and x, a sequence xj , j ≥ 1, hav-

ing xj ∈ Uj for all j, necessary converges to x. Continuous and differentiable map-
pings between manifolds, homeomorphisms, diffeomorphisms [DG, pp.5–6]. Continuity
in terms of convergent sequences on the one hand, and of pre-images of open sets on
the other. Equivalence – immediate from the above observation — of both characteri-
zations of continuity when the source topological space satisfies the first-countability ax-
iom. Chart mappings taking values in affine spaces, such as cosets of vector subspaces
[DG, p.3]. Real and complex projective spaces [DG, pp.3–4; [PS, p.1]. Unit Euclidean
spheres, with stereographic projections serving as chart mappings [DG, p.3]. The formula
x 7→ z = [2x− (1 + 〈x, v〉)v]/(1−〈x, v〉) for the stereographic projection Sr{v} → v⊥−v
from the pole v ∈ S, and z 7→ x = [(|z|2− 1)v+ 3z]/(|z|2 + 2) for its inverse, S being the
unit sphere centered at 0 in a Euclidean space with the inner product 〈 , 〉.

August 29: More on unit Euclidean spheres, including the case of just two stereo-
graphic projections from mutually opposite poles v, −v which – when treated as valued in
v⊥ – have the transiton mapping y 7→ 4y/|y|2. Closedness and compactness of subsets in
topological space, the former meaning openness of the complement [DG, p.2], the latter
involving the open-covering test [DG, p.54]. Closedness in terms of convergent sequences
when the first-countability axiom is assumed. Compactness of continuous images of com-
pact sets [DG, p.9] and their finite unions. Some consequences of the first-countability
axiom: closedness of compact sets and compactness of their closed subsets; the fact that
a bijective continuous mapping from a compact topological space is a homeomorphism.



A family of sets subordinate to another family. Equivalence of compactness to sequential
compactness [DG, p.4] in spaces satisfying the second-countability axiom: the Heine-Bo-
rel theorem [DG, p.54]. Compactness in Euclidean spaces, equivalent to being closed and
bounded [DG, p.9]. The fact that Euclidean spheres and all projective spaces are com-
pact manifolds, while compactness of a zero-dimensional manifold amounts to its finiteness
[DG, p.8]. Gluing of two n-dimensional manifolds along a diffeomorphism between their
open submanifolds, the result being “almost” a manifold, except for the Hausdorff axiom
which need not hold [DG, p.7].

August 31: The non-Hausdorff result of “doubling a point” in a manifold M and,
more generally, of gluing two copies of M along the identity self-diffeomorphism of an
open submanifold which has a boundary point in M. Connected sums of manifolds [DG,
p.7]. Compactness of Cartesian products of compact topological spaces. Compactness
of Cartesian products of compact manifolds [DG, p.9], including tori, and of connected
sums of compact manifolds. Closed orientable surfaces of any nonnegative genus [DG,
p.8]. Functions on, and curves in, topological spaces, including manifolds [DG, p.6].
Connectedness and pathwise connectedness of sets in topological spaces, their preservation
under continuous images, and the fact that the latter implies the former (since the union
of any nonempty family of connected sets with a nonempty intersection is necessarily
connected, while nonempty connected subsets of IR are easily seen to be precisely the
intervals). Connectedness of the whole space being the same as its pathwise connectedness
when the space is assumed locally pathwise connected (since one then has an obvious
equivalence relation with open equivalence classes). Connectedness of Cartesian products
of connected manifolds [DG, p.9]. Connected components of a topological space (the
equivalence classes of the relation in which two points are called equivalent if they both lie
in a connected set). The observation that the connected component of a point x is the
union of all connected sets containing x, as well as the largest connected set containing
x. Simultaneous openness and closedness of the connected components when the space
is locally pathwise connected. The union of a nonempty family of pairwise disjoint n-
dimensional manifolds (which is again an n-dimensional manifold) and the immediate
conclusion that every manifold equals the union, in this sense, of the family of its connected
components [DG, p.6].

September 2: Topological groups. The observation that, in a compact Hausdorff topo-
logical group satisfying the first-countability axiom, continuity of the inverse follows from
continuity of the group operation. Lie groups [DG, p.12]. Examples: countable groups, the
additive group V and the isomorphism group GL(V ) of any finite-dimensional real/com-
plex vector space V (including GL(n, IK) for V = IKn), the group of invertible elements
of a finite-dimensional real associative algebra with unity [DG, p.12]. Open subgroups of
Lie groups G, constituting Lie groups in their own right, an example being the identity
component Go of G [DG, p.43]. Connectedness of the automorphism group GL(V ) (and
of the set B(V ) of all ordered bases) of a finite-dimensional complex vector space V [DG,
p.193]. Orientations in a real vector space of a positive finite dimension [DG, pp.192–193].

September 7: The group GL+(V ) for a real vector space V with 0 < dimV < ∞,
including GL+(n, IR) when V = IRn. The canonical orientation of the underlying real
space of a complex vector space of a positive finite dimension [DG, p.50]. Lie-group
homomorphisms and isomorphisms [DG, p.13]. The algebra IH of quaternions [DG, p.
13]. The Lie-group structures of the unit spheres S0, S1, S3 in IR,C, IH [DG, p.14]. The



index notation for manifolds [DG, p.17], vector spaces and affine spaces. The chart-de-
pendent partial derivatives [DG, p.17], the chain rule and group property [DG, p.18].

September 9: Curves and tangentiality, tangent vectors, velocity, vector components
and the transformation rule [DG, p.18]. The tangent vector space, tangent spaces in vector
and affine spaces, directional derivative, germs of functions, components of mappings [DG,
p.19]. Differentials of differentiable mappings and the chain rule for differentials, tangent
spaces of open submanifolds, differentials of C1 functions [DG, p.20]. Differentials of
linear and affine mappings.

September 12: Invariance of the dimension under diffeomorphisms [DG, p.21]. Dual
bases in finite-dimensional vector spaces. Cotangent spaces and vectors. Bases of tangent
and cotangent spaces naturally distinguished by a given chart [DG, p.20]. Tangent vector
fields on manifolds, directional derivatives along vector fields [DG, p.22]. The Lie bracket
and its interpretation as a commutator of directional differentiations [DG, p.23].

September 14: Vector fields projectable under mappings [DG, p.23]. Push-forwards of
vector fields under diffeomorphisms. Projectability of Lie brackets [DG, p.24]. Lie algebras
[DG, pp.26–27]. Vector fields on open submanifolds of vector and affine spaces. Linear
vector fields and their Lie bracket, corresponding to the opposite of the commutator uf the
underlying linear endomorphisms [DG, p.28]. Tangent spaces of Cartesian products [DG,
p.38]. Arbitrary C1 mappings M × N → P written as multiplications and the Leibniz
rule [DG, pp.38–39].

September 16: More on Lie algebras: homomorphisms and examples [DG, pp.26–27].
The Lie algebra of (left-invariant vector fields on) a Lie group G and its identification
with T1G [DG, p.28]. The cases of the additive group of a vector space (where the Lie
algebra is Abelian) and of the group G of invertible elements of a finite-dimensional real
associative algebra A with unity, the Lie algebra g = T1G = A having the Lie bracket
equal to the commutator in A [DG, p.28]. Projectability of left-invariant fields under
Lie-group homomorphisms [DG, p.29]. The Lie-algebra homomorphism induced by a
Lie-group homomorphism. Examples: the determinant; inner automorphisms [DG, p.30].

September 19: Volume-form characterizations of the determinant and trace [DG, p.
31]. Banach’s fixed-point theorem [DG, pp.195–196]. Equivalence of norms in finite-di-
mensional vector spaces [DG, p.196].

September 21: The operator norm [DG, p.198] and the Lipschitz estimate for C1 map-
pings along intervals[DG, p.197]. The inverse mapping theorem, without differentiability
of the inverse [DG, p.198].

September 23: Differentiability of the inverse in the inverse mapping theorem [DG,
p.197]. The implicit mapping theorem [DG, p.199]. The rank of a mapping at a point,
openness of the maximum-rank subset, and the rank theorem [DG, p.33].

September 26: Submersions and their openness [DG, p.38]. Immersions, embeddings,
submanifolds, with or without the subset topology [DG, p.34]. The subset topology as



a consequence of. compactness. Continuity versus differentiability for submanifold-val-
ued mappings [DG, p.34]. Uniqueness of submanifold structure with the subset topology
[DG, p.35]. Critical and regular points and values of mappings, submanifolds defined by
equations, their dimensions and tangent spaces [DG, pp.35–36]. Euclidean spheres as an
example [DG, p.36]. The tangent spaces of projective spaces [DG, p.40].

September 28: Preimages of points under constant-rank mappings [DG, p.41]. Lie sub-
groups of Lie groups and their Lie algebras [DG, pp.43–44]. Lie-group actions. Isotropy
groups [DG, p.46].

September 30: Automorphism groups of bilinear and sesquilinear forms [DG, p.47].
The linear Lie groups of the SL, O, SO, U, SU series and their Lie algebras [DG, pp.44,
47]. Accidental isomorphism and two-to-one homomorphism between linear Lie groups in
low dimensions: U(1)→ SO(2) and S3 = SU(2)→ SO(3) [DG, p.48].

October 3: Further accidental isomorphism and finite-to-one homomorphism between
linear Lie groups: S3×S3→ SO(4) and SO(4)→ SO(3)×SO(3), as well as S1×SU(n)→
U(n) [DG, p.48]. The diffeomorphism SO(3) → IRP3 [DG, p.48]. Ordinary differential
equations and the reduction of order [DG, pp.203-204].

October 5: Existence and uniqueness of solutions for ordinary differential equations
[DG, pp.203-204]. Flows of vector fields [DG, pp.219-221].

October 7: Lie brackets and flows [DG, pp.222-223].

October 10: Completeness of a C∞ vectors field w on a manifold M [DG, p.224].
Examples: when the domainn of the flow contains M × [0, ε] for some ε > 0, when
w has a compact support, when M is compact, when w is preserved by a set of dif-
feomorphisms operating on M transitively, when w is left or right invariant on a Lie
group [DG, p.224]. Abundance of cut-off functions and global extensibility of germs [DG,
p.217]. “Half-completeness” of “half-integral curves” contained in a compact set [DG,
p.225]. Completeness of bounded vector fields on a vector space [DG, p.225]. Whitney’s
embedding theorem, the immersion part [DG, pp.54-55].

October 12: The remainder of Whitney’s embedding theorem [DG, pp.54-55]. Maximal
integral curves t 7→ x(t) of left-invariant vector fields on a Lie group G with x(0) = 1
being the same as smooth homomorphisms IR → G [DG, pp.231-232]. The exponential
mapping of a Lie group [DG, p.232]. The relation F ◦ exp = exp ◦F∗ for any Lie-group
homomorphism F [DG, pp.232-233]. The differential of exp at 0, equal to Id, so that the
inverse mapping theorem can be applied [DG, p.232] to treat exp−1, on a neighborhood
of 1, as a g-valued chart in G. The observation that an open subgroup of a Lie group G
contains the identity component Go of G, while any subgroup of G containing an open
set is open (and hence equals G is G is connected). The conclusions that a Lie group
homomorphism F between connected Lie groups is uniquely determined by F∗, and that
a connected Lie group is Abelian if and only if so is its Lie algebra.

October 17: A summary of some facts: given a Lie group G, every open subgroup



of G contains Go (and hence equals G if G is connected), every subgroup of G with a
nonempty open subset (that is, nonempty interior) is open; for a Lie group homomorphism
F : G → H and connected Lie subgroups G′ ⊆ G and H ′ ⊆ H, one has F (G′) ⊆ H ′ if
and only if F∗(g

′) ⊆ h′. Tensor products of finite-dimensional real or complex vector spaces
and the tensor multiplication of vectors [DG, p.143]. The tensor-product bases of tensor-
product spaces [DG, p.146]. The universal factorization property [DG, p.147]. Canonical
isomorphic identifications IK⊗V = V , where IK is the scalar field, V ∗⊗W = Hom(V ,W )
and V1 ⊗ . . . Vr = Vσ(1) ⊗ . . . Vσ(r) for any permutation σ of {1, . . . , r} [DG, p.148].

October 19: Tensor, symmetric and exterior powers, symmetric and exterior products
of vectors [DG, pp.143-144]. Bases for symmetric and exterior powers [DG, pp.146-
147]. The universal factorization properties [DG, p.147]. tensor, symmetric and exterior
algebras [DG, p.148]. Exterior forms at a point of a manifold M and differential forms
on M [DG, pp.149-150]. The exterior derivative [DG, p.151].

October 21: Restricting local operators to open sets. The local-coordinate formula
(dω)j0...jr =

∑r
q=0(−1)q ∂jqωj0...ĵq...jr

. The spaces ZrM and BrM of closed and exact

smooth differential forms on a manifold M [DG, p.152]. The cohomology spaces HrM
[DG, p.153]. The Betti numbers br(M) and the Poincaré polynomial P[M ] [DG, p.157].
the differential forms; the Poincaré lemma [DG, p.152].

October 24: Cup product and the cohomology algebra H∗M [DG, p.157]. The co-
homology functor [DG, p.158]. Smooth homotopies and the algebraic homotopy formula
[DG, p.158].

October 26: The homotopy theorem [DG, p.158]. Homotopy equivalences, homotopy
inverses, the homotopy type, and their effects on cohomology [DG, p.160]. Deformation
retracts [DG, p.160]. Exact sequences [DG, p.162].

October 28: The Mayer-Vietoris sequence [DG, p.162]. Cohomology of spheres and
projective spaces [DG, p.164].

October 31: Contractible manifolds. Tubular neighborhoods of compact submanifolds
of Euclidean spaces. The existence of an open covering of any compact manifold M with
the property that each nonempty intersection of a nonempty subfamily is contractible.
The resulting finite dimensionality of H∗M [DG, p.163]. Orientability and orientations
of a manifold [DG, p.165].

November 2: Finite partitions of unity [DG, p.121]. Oriented integration of top degree
compactly supported continuous differential form on an oriented manifold [DG, p.165].
Stokes’s theorem [DG, p.166]. The oriented-integration functional HnM → IR for a
compact oriented manifold M of dimension n [DG, p.166].

November 4: The observation that the integration functional HnSn→ IR is an isomor-
phism in the case of an oriented n-dimensional sphere and, as a consequence, given two
different concentric closed balls K,K ′ with K ⊆ K ′ ⊆ IRn, a smooth differential n-form
on IRn having zero integral and a support in K equals dθ for some smooth differential



(n − 1)-form on IRn supported in K ′ [DG, p.168]. The obvious generalization of the
last observation to the case where IRn is replaced by any oriented n-dimensional manifold
[DG, p.168]. The conclusion that the integration functional HnM → IR is an isomor-
phism for every oriented n-dimensional manifold M [DG, pp.168-169]. Bundles, with
total spaces E, bases B, model fibres F, bundle projections π : E → B, and local trivi-
alizations π−1(U) ≈ U × F over open sets U ⊆ M. Surjectivity of π, and the fact that
the fibres Ey = π−1(y) over all y ∈ B are submanifolds of E with the subset topology,
diffeomorphic to F. Special cases: trivial bundles (admitting a global trivialization, with
U = B), such as a product bundle E = B × F, and covering projections (bundles with
zero-dimensional fibres). A preimage characterization of covering projections with con-
nected bases. Bundles with various types of fibre geometry prescribed in the model fibre
F, and preserved by local trivializations, one example being provided by vector bundles
(here F is a vector space), another by G-principal bundles (G being a Lie groups acting
simply transitiuvely on F ). The observation that ZZ2-principal bundles are nothing else
than two-fold coverings. The orientation bundle (two-fold covering) of a manifold.

November 7: The canonical orientation of the orientation bundle (covering) of a mani-
fold. The push-forward of an orientation under a diffeomorphism. Orientation-preserving
and orientation-reversing diffeomorphisms between oriented manifolds (assumed connected
in the latter case), and their effect on oriented integrals of top degree compactly supported
continuous differential forms. The standard involution of the total space of a two-fold cov-
ering, and its orientation-reversing property in the case of the orientation bundle (covering)
of a manifold. The conclusion that HnM = {0} for any nonorientable compact connected
manifold M of dimension n. The π-lifts of continuous curves in the base B of a covering
projection π : E → B. The observation that the total space of a two-fold covering pro-
jection with a connected base is itself disconnected if and only if the covering is trivial (as
a ZZ2-principal bundle). The projective spaces PV as bases of (IK r {0})-principal and
S d−1-principal bundles with total spaces V r {0} and Σ, where d and Σ are the real
dimension of IK and the unit sphere around 0 for a fixed Euclidean or Hermitian inner
product in V .

November 9: Vector bundles over sets, sections over subsets, local trivializations, tran-
sition functions [DG, p.57]. Atlases, compatibility, smooth vector bundles over manifolds,
smooth local/global sections, product bundles [DG, p.58]. Tangent bundles and tauto-
logical line bundles over projective spaces [DG, p.59]. The total space of a vector bundle
[DG, p.66], and its manifold structure [DG, p.67]. Vector-bundle morphisms [DG, p.
69]. Operations on vector bundles: direct sum, the dual, Hom, the conjugate, the pullback
[DG, p.68]. Smooth subbundles of vector bundles [DG, p.71]. The image and kernel of a
constant-rank morphism [DG, p.72].

November 14: The quotient vector bundle [DG, p.72]. The differential of a smooth
mapping F : M → N treated as a bundle morphism dF : TM → F ∗TN [DG, p.72].
The tangent and normal bundles of an immersion [DG, p.72]. Symmetric and exterior
powers of vector bundles, and theire equivalent description as subbundles of tensor powers.
Tensors of type (p, q) in a vector space. Tensor bundles over a manifold. Distribution on a
manifold, their integral manifolds, and integrability, with examples provided by the vertical
distribution of fibrations, in which the fibres serve as integral manifolds [DF, p.1]. Hori-
zontal distributions for fibrations (or, more generally, submersions), and the approach to
a distribution in which one treats it, locally, as a horizontal distribution, with the defining



formula dyλ = Hλ
j dx

j [DF, p.2], so that integral manifolds are, locally, graphs of mappings

(x1, . . . , xp) 7→ (yp+1, . . . , ym) satisfying the system ∂jy
λ = Hλ

j (x1, . . . , xp, yp+1, . . . , ym)
of first-order partial differential equations [DF, pp.3-4]. Complete integrability of this
system vs. integrability of the distribution [DF, p.3].

November 16: Submanifolds and mappings, including curves, tangent to a given dis-
tribution. The existence and uniqueness of such a curve with a prescribed projection on
the base and initial value in a local fibration setting (making the given distribution D
horizontal) [DF, p.3]. The normal bundle and curvature form of a distribution [DF, pp.
1-2]. The Frobenius theorem [DF, p.1], and the first step in its proof by induction on the
dimension of the domain [DF, p.4].

November 18: The induction step, concluding the proof of the first part Frobenius
theorem [DF, p.4], and the second (local fibration) part [DF, p.5]. Intersections of integral
manifolds [DF, p.5]. Unions of nonempty countable families of integral manifolds [DF, p.
5]. Maximal integral manifolds, or leaves, of a (possibly nonintegrable) distribution, and
the leaf theorem [DF, p.6].

November 21: The leaf-mapping theorem [DF, p.6]. Uniqueness of the manifold struc-
ture of an integral manifold of an integrable distribution [DF, p.7]. Diffeomorphic images
of distributions, left-invariant distributions on a Lie group, and the Lie-subgroup theorem
[DF, pp.7-8]. The image-group theorem [DF, p.8].

November 28: Local Lie-group structures as diffeomorphic images of standard ones,
arising in Liegroups [LL]. Stiefel manifolds and Grassmannians, with a natural atlas for
the latter [PS, p.2].

November 30: Hausdorff and countability axioms for Grassmannians, their connect-
edness and compactness [PS, p.3]. The representation of a manifold as a union of an
ascending sequence of open sets, each of them having a compact closure contained in the
next one [DG, p.217]. Locally finite families of sets [DG, p.218].

December 2: Locally finite partitions of unity subordinate to open coverings. Existence
of fibre metrics in vector bundles and nowhere-zero top degree differential forms on ori-
entable manifolds. The derivative (∂ψ)z : TzM → ηz, defined only if ψz = 0, of a local
section ψ of a vector bundle η over a manifold M, with z ∈ M. The component repre-
sentation ∂jψ

a. The special case of η = TM and a vector field w vanishing at z, where

(∂w)z ∈ gl(TzM) is the infinitesimal generator of the local flow of w acting on TzM (so
that the latter action is the homomorphism IR 3 t 7→ exp[t(∂w)z] ∈ GL(TzM)).

December 5: The Hessian HesszF of a mapping F : M → N at a point z ∈ M
where dFz = 0, defined by HesszF = (∂dF )z, with dF treated as a section of the
vector bundle Hom(TM,F ∗TN), and its coordinate form ∂j∂kF

λ, showing that HesszF

is a symmetric bilinear mapping TzM × TzM → TF (z)N. Monomials and homogeneous

polynomial functions of degrees r ≥ 0 on a vector space V , the latter forming the space
Pr(V ), and the polynomial algebra P(V ) [DG, p.144]. The space Pr(V,W ) of degree r
homogeneous polynomial functions on V valued in a vector space W, and the canonical



isomorphism Sr(V ,W ) = Hom([V ∗]�r,W ) → Pr(V,W ) [DG, p.144]. The set jrz (M,N)
of r-jets of mappings M → N at a point z ∈ M. Special cases j0z (M,N) = N and
j1z (M, IR) = IR× T ∗zM, as well as j1z (IR, N) = TN at any z ∈ IR.


