MATH 6702, SPRING 2024

Projective Spaces and Grassmannians Last updated on January 28, 2022

[DG] stands for *Differential Geometry* at

https://people.math.osu.edu/derdzinski.1/courses/851-852-notes.pdf

Projective Spaces. Let V be a vector space of positive dimension $n < \infty$ over the scalar field IK, where IK is \mathbb{R}, \mathbb{C} or IH and, in the last (quaternionic) case, we mean a *left* vector space. By the *projective space* of V one means the set

 $PV = \{L : L \text{ is a 1-dimensional vector subspace of } V\},\$

and a surjective projection mapping $\pi: V \smallsetminus \{0\} \to \mathbb{P}V$ is defined by

 $\pi(x) = \mathbf{I} \mathbf{K} x.$

The set PV carries a natural manifold structure provided by the atlas

(1) $\{(U_f, \varphi_f) : f \in V^* \smallsetminus \{0\}\}$

indexed by all nonzero linear functionals on V, where

 $U_f = \{L \in P(V) : L \text{ is not contained in Ker} f\}$

(instead of 'is not contained in Ker f' one could also write ' $f(L) = \mathbb{K}$ ' or, equivalently, 'f maps L isomorphically onto \mathbb{K} '), and $\varphi_f : U_f \to f^{-1}(1)$ sends each $L \in U_f$ onto its unique intersection point with $f^{-1}(1)$. Also, $f^{-1}(1)$ is a coset of Ker f, which makes it an affine space with the translation vector space Ker f, and

(2) $\begin{aligned} \varphi_f : U_f \to f^{-1}(1) & \text{is a bijection with the inverse } \pi : f^{-1}(1) \to U_f \text{ and} \\ \varphi_f(\mathbb{K}x) &= x/f(x) & \text{whenever } L = \mathbb{K}x \in U_f \text{ (that is, } x \in V \smallsetminus \operatorname{Ker} f). \end{aligned}$

Compatibility of any two charts in (1) now follows since, for $f, h \in V^* \setminus \{0\}$, the set $\varphi_f U_f \cap U_h) = A_f \setminus \text{Ker } h$ is open in $f^{-1}(1)$ (due to closedness of Ker h in the ambient space V), while $(\varphi_f \circ \varphi_h^{-1})(x) = x/f(x)$ as a consequence of (2). (For the meaning of compatibility, see [**DG**, Section 1].)

Lemma 1. The atlas (1) satisfies the Hausdorff and countability axioms, cf. [**DG**, Sections 1 and 14], and so it actually turns PV into a smooth manifold which, in addition, is compact.

Proof. See Exercise 1.

Lemma 2. Every linear automorphism of V, acting in an obvious manner on PV, constitutes a smooth diffeomorphism. The projection $\pi: V \setminus \{0\} \to PV$ is a smooth mapping as well.

Proof. Let $A: V \to V$ be a linear automorphism. Using the same symbol for $A: PV \to PV$, we obtain, from (2), the rational (and hence smooth) chart representations $(\varphi_f \circ A \circ \varphi_h^{-1})(x) = Ax/f(Ax)$. On the other hand, the chart representations of π are identity mappings, cf. the first line of (2).

Lemma 3. If $\mathbb{K} = \mathbb{C}$, the projective space PV carries a unique structure of a complex manifold such that all chart mappings φ_f are biholomorphisms. In addition, the projection $\pi: V \setminus \{0\} \to \mathrm{PV}$ is then also holomorphic.

Proof. This is immediate since the transition mappings $\varphi_f \circ \varphi_h^{-1}$, being rational, are holomorphic. For the claim about π , see the proof of Lemma 2.

When $V = \mathbb{K}^n$, rather than PV one writes $\mathbb{K}P^{n-1}$ and speaks of the real, complex or quaternionic projective space of dimension n-1 over the respective field, where the latter the real/complex dimension n-1 or (for $\mathbb{K} = \mathbb{H}$) the real dimension 4(n-1). The 1-dimensional subspace $L \in P(V)$ spanned by a nonzero vector (x^1, \ldots, x^n) in \mathbb{K}^n is then denoted by $[x^1, \ldots, x^n] \in P(V)$, and one refers to x^1, \ldots, x^n as homogeneous coordinates of $L = [x^1, \ldots, x^n]$.

Generalization to Grassmannians. In addition to V, n, \mathbb{K} as above, let us also fix an integer q with $0 \le q \le n$, set

 $\operatorname{Gr}_{q}V = \{W : W \text{ is a } q \text{-dimensional vector subspace of } V\},\$

and define a surjective projection mapping $\pi : \operatorname{St}_{q}V \to \operatorname{Gr}_{q}V$ by

 $\pi(\mathbf{x}) = \operatorname{span} \mathbf{x} \text{ for } \mathbf{x} = (x_1, \dots, x_q) \in \operatorname{St}_q V,$

where $\operatorname{St}_q V$ denotes the *Stiefel manifold* formed by all *q-frames* (that is, linearly independent ordered *q*-tuples of vectors) in *V*. (Thus, $\operatorname{St}_q V$ is an open subset of the *q*th Cartesian power V^q .) One calls $\operatorname{Gr}_q V$ the *Grassmannian of q-planes* in *V*. The set $\operatorname{Gr}_q V$ carries a natural manifold structure provided by the atlas

$$(3) \quad \{(U_f,\varphi_f): f \in V^* \smallsetminus \{0\}\}, \quad \text{with} \ U_f = \{W \in \operatorname{Gr}_q V : f(W) = \mathbb{K}^q\},$$

indexed by all surjective linear operators $f: V \to \mathbb{K}^q$. (Instead of $f(W) = \mathbb{K}^q$) one may equivalently write f maps W isomorphically onto \mathbb{K}^q). The chart mappings

(4)
$$\varphi_f: U_f \to f^{-1}(e_1) \times \ldots \times f^{-1}(e_q)$$

with e_1, \ldots, e_q denoting the standard basis of \mathbb{K}^q , are slightly more complicated: φ_f sends each $W \in U_f$ onto the unique ordered q-tuple $\mathbf{x} = (x_1, \ldots, x_q)$ of vectors in W such that $fx_a = e_a$ for $a = 1, \ldots, q$. In other words, using the inverse f_W^{-1} of the restriction isomorphism $f_W : W \to \mathbb{K}^q$, we have $\varphi_f(W) = (f_W^{-1}(e_1), \ldots, f_W^{-1}(e_q))$. Note that $f^{-1}(e_1) \times \ldots \times f^{-1}(e_q)$ a coset, in V^q , of the qth Cartesian power of Ker f, and hence an affine subspace of V^q . If $\mathbf{x} = (x_1, \ldots, x_q)$ equals $\varphi_f(W)$, then, obviously, $W = \pi(\mathbf{x})$, the span of x_1, \ldots, x_q , which easily proves bijectivity of (4). Let there be now given two surjective linear operators $f, h : V \to \mathbb{K}^q$. The φ_h -image of $U_f \cap U_h$ is open in the affine space $f^{-1}(e_1) \times \ldots \times f^{-1}(e_q)$, being its intersection with the set of all $\mathbf{x} = (x_1, \ldots, x_q)$ in the Cartesian power V^q such that hx_1, \ldots, hx_q are linearly independent or, equivalently, form a basis of \mathbb{K}^q . (The latter condition means that h restricted to span \mathbf{x} is a linear isomorphism onto \mathbb{K}^q .) For $\mathbf{x} = (x_1, \ldots, x_q) \in \varphi_h(U_f \cap U_h)$ we see that $(\varphi_f \circ \varphi_h^{-1})(\mathbf{x}) = \varphi_f(\operatorname{span} \mathbf{x})$ is the basis $y_a, a = 1, \ldots, q$, of span \mathbf{x} which f sends onto the standard basis e_a of \mathbb{K}^q , $a = 1, \ldots, q$, and so, with

(5)
$$y_a = S_a^c x_c$$

the unknown coefficients S_a^c are characterized by $e_a = S_a^c f x_c$. The entries S_a^c thus form the transition matrix between the bases $f x_1, \ldots, f x_q$ and e_1, \ldots, e_q of \mathbb{K}^q and, if one writes the former basis as a $q \times q$ matrix (having the *a*th column $f x_a$)

for $a = 1, \ldots, q$), the matrix **S** with the entries S_a^c is its inverse. Thus, the chart transition mapping $\varphi_f \circ \varphi_h^{-1}$ must be smooth, being equal to the composite

$$(x_1,\ldots,x_q)\mapsto (fx_1,\ldots,fx_q)\mapsto \mathbf{S}$$

in which the constituents are smooth: one is in fact linear, the other (the matrix inverse) rational. The atlas (3) thus turns $\operatorname{Gr}_{a}V$ into a manifold, cf. Exercise 4.

More precisely, the atlas (3) satisfies the Hausdorff and countability axioms [**DG**, Sections 1 and 14]: the former, since

.....

the latter, as $\operatorname{Gr}_q V$ is covered by a finite subatlas of (3). Namely, for any basis v_1, \ldots, v_n of V, with the dual basis ξ^1, \ldots, ξ^n of V^* , the restrictions of the functionals ξ^a to any given $W \in \operatorname{Gr}_q V$ span W^* (or else they would span a subspace of W^* of some dimension p < q, and rearranging the v_a we might assume the restrictions of ξ^1, \ldots, ξ^p to form a basis of this subspace; extending these pfunctionals to a basis $\xi^1, \ldots, \xi^p, \eta^{p+1}, \ldots, \eta^n$ of V^* such that the restrictions of $\xi^1, \ldots, \xi^p, \eta^{p+1}, \ldots, \eta^q$ form a basis of W^* ,

all ξ^a would vanish on a nontrivial subspace of W, and a vector $w \neq 0$ from such a subspace would have all components $w^a = \xi^a w$ equal to 0).

Tautological Bundles. Given a real or complex vector space V of real/complex dimension $n < \infty$ and an integer q with $0 \le q \le n$, one defines the *tautological vector bundle* \mathcal{T} over the Grassmannian $\operatorname{Gr}_q V$ by

$$\operatorname{Gr}_q V \ni W \mapsto \mathcal{T}_W = W.$$

The chart mappings (4) for $\operatorname{Gr}_q V$, when regarded as local trivializations of \mathcal{T} , form a smooth atlas, parametrized by the set of all surjective linear mappings $f: V \to \mathbb{K}^q$ (where \mathbb{K} is the scalar field). This is clear from smoothness of the functions S_a^c in (5), and turns \mathcal{T} into a smooth real/complex vector bundle of fibre dimension q.

Exercises.

Exercise 1. Prove Lemma 1.

Exercise 2. Generalize Lemma 2 to Grassmannians.

Exercise 3. Generalize Lemma 3 to Grassmannians.

Exercise 4. Generalize Lemma 1 to Grassmannians.

Exercise 5. Verify that, if $n = \dim V$, the dimension of $\operatorname{Gr}_q V$ equals (n-q)q, for $\mathbb{I} = \mathbb{R}$, or 2(n-q)q, for $\mathbb{I} = \mathbb{C}$.

Exercise 6. Show that every linear functional $\xi \in V^*$ may be viewed as a smooth section of the dual \mathcal{T}^* of the tautological vector bundle \mathcal{T} over the Grassmannian $\operatorname{Gr}_a V$ with ξ_W equal to the restriction of ξ to W whenever $W \in \operatorname{Gr}_a V$.