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Projective Spaces. Let V be a vector space of positive dimension n < ∞ over
the scalar field IK, where IK is IR,C or IH and, in the last (quaternionic) case,
we mean a left vector space. By the projective space of V one means the set

PV = {L : L is a 1-dimensional vector subspace of V },

and a surjective projection mapping π : V r {0} → PV is defined by

π(x) = IKx.

The set PV carries a natural manifold structure provided by the atlas

(1) {(Uf , ϕf ) : f ∈ V ∗ r {0}}

indexed by all nonzero linear functionals on V, where

Uf = {L ∈ P (V ) : L is not contained in Kerf}

(instead of ‘is not contained in Ker f ’ one could also write ‘f(L) = IK’ or, equiv-
alently, ‘f maps L isomorphically onto IK’), and ϕf : Uf → f−1(1) sends each

L ∈ Uf onto its unique intersection point with f−1(1). Also, f−1(1) is a coset of
Ker f, which makes it an affine space with the translation vector space Kerf, and

(2)
ϕf : Uf → f−1(1) is a bijection with the inverse π : f−1(1)→ Uf and

ϕf (IKx) = x/f(x) whenever L = IKx ∈ Uf (that is, x ∈ V r Kerf).

Compatibility of any two charts in (1) now follows since, for f, h ∈ V ∗ r {0}, the
set ϕfUf ∩Uh) = Af r Kerh is open in f−1(1) (due to closedness of Kerh in the

ambient space V ), while (ϕf ◦ϕ
−1
h )(x) = x/f(x) as a consequence of (2). (For the

meaning of compatibility, see [DG, Section 1].)

Lemma 1. The atlas (1) satisfies the Hausdorff and countability axioms, cf. [DG,
Sections 1 and 14], and so it actually turns PV into a smooth manifold which, in
addition, is compact.

Proof. See Exercise 1. �

Lemma 2. Every linear automorphism of V, acting in an obvious manner on
PV, constitutes a smooth diffeomorphism. The projection π : V r {0} → PV is a
smooth mapping as well.

Proof. Let A : V → V be a linear automorphism. Using the same symbol for
A : PV → PV, we obtain, from (2), the rational (and hence smooth) chart represen-
tations (ϕf ◦A◦ϕ

−1
h )(x) = Ax/f(Ax). On the other hand, the chart representations

of π are identity mappings, cf. the first line of (2). �

Lemma 3. If IK = C, the projective space PV carries a unique structure of a
complex manifold such that all chart mappings ϕf are biholomorphisms. In addi-

tion, the projection π : V r {0} → PV is then also holomorphic.
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Proof. This is immediate since the transition mappings ϕf ◦ ϕ
−1
h , being rational,

are holomorphic. For the claim about π, see the proof of Lemma 2. �

When V = IKn, rather than PV one writes IKPn−1 and speaks of the real,
complex or quaternionic projective space of dimension n − 1 over the respective
field, where the latter the real/complex dimension n− 1 or (for IK = IH) the real
dimension 4(n− 1). The 1-dimensional subspace L ∈ P (V ) spanned by a nonzero
vector (x1, . . . , xn) in IKn is then denoted by [x1, . . . , xn] ∈ P (V ), and one refers
to x1, . . . , xn as homogeneous coordinates of L = [x1, . . . , xn].

Generalization to Grassmannians. In addition to V , n, IK as above, let us also
fix an integer q with 0 ≤ q ≤ n, set

GrqV = {W : W is a q-dimensional vector subspace of V },

and define a surjective projection mapping π : StqV → GrqV by

π(x) = span x for x = (x1, . . . , xq) ∈ StqV ,

where StqV denotes the Stiefel manifold formed by all q-frames (that is, linearly

independent ordered q-tuples of vectors) in V. (Thus, StqV is an open subset of

the qth Cartesian power V q.) One calls GrqV the Grassmannian of q-planes in

V. The set GrqV carries a natural manifold structure provided by the atlas

(3) {(Uf , ϕf ) : f ∈ V ∗ r {0}}, with Uf = {W ∈ GrqV : f(W ) = IKq},

indexed by all surjective linear operators f : V → IKq. (Instead of ‘f(W ) = IKq’ one
may equivalently write ‘f maps W isomorphically onto IKq’). The chart mappings

(4) ϕf : Uf → f−1(e1)× . . .× f−1(eq)

with e1, . . . , eq denoting the standard basis of IKq, are slightly more complicated:

ϕf sends each W ∈ Uf onto the unique ordered q-tuple x = (x1, . . . , xq) of vec-

tors in W such that fxa = ea for a = 1, . . . , q. In other words, using the
inverse f−1W of the restriction isomorphism fW : W → IKq, we have ϕf (W ) =

(f−1W (e1), . . . , f−1W (eq)). Note that f−1(e1)× . . .× f−1(eq) a coset, in V q, of the qth

Cartesian power of Ker f, and hence an affine subspace of V q. If x = (x1, . . . , xq)

equals ϕf (W ), then, obviously, W = π(x), the span of x1, . . . , xq, which eas-

ily proves bijectivity of (4). Let there be now given two surjective linear op-
erators f, h : V → IKq. The ϕh-image of Uf ∩ Uh is open in the affine space

f−1(e1)× . . .× f−1(eq), being its intersection with the set of all x = (x1, . . . , xq) in

the Cartesian power V q such that hx1, . . . , hxq are linearly independent or, equiva-
lently, form a basis of IKq. (The latter condition means that h restricted to span x
is a linear isomorphism onto IKq.) For x = (x1, . . . , xq) ∈ ϕh(Uf ∩ Uh) we see that

(ϕf ◦ ϕ
−1
h )(x) = ϕf (span x) is the basis ya, a = 1, . . . , q, of span x which f sends

onto the standard basis ea of IKq, a = 1, . . . , q, and so, with

(5) ya = Sc
a xc ,

the unknown coefficients Sc
a are characterized by ea = Sc

a fxc. The entries Sc
a thus

form the transition matrix between the bases fx1, . . . , fxq and e1, . . . , eq of IKq

and, if one writes the former basis as a q × q matrix (having the ath column fxa
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for a = 1, . . . , q), the matrix S with the entries Sc
a is its inverse. Thus, the chart

transition mapping ϕf ◦ ϕ
−1
h must be smooth, being equal to the composite

(x1, . . . , xq) 7→ (fx1, . . . , fxq) 7→ S

in which the constituents are smooth: one is in fact linear, the other (the matrix
inverse) rational. The atlas (3) thus turns GrqV into a manifold, cf. Exercise 4.

More precisely, the atlas (3) satisfies the Hausdorff and countability axioms [DG,
Sections 1 and 14]: the former, since

..............

the latter, as GrqV is covered by a finite subatlas of (3). Namely, for any

basis v1, . . . , vn of V , with the dual basis ξ1, . . . , ξn of V ∗, the restrictions of the
functionals ξa to any given W ∈ GrqV span W ∗ (or else they would span a sub-

space of W ∗ of some dimension p < q, and rearranging the va we might assume
the restrictions of ξ1, . . . , ξp to form a basis of this subspace; extending these p
functionals to a basis ξ1, . . . , ξp, ηp+1, . . . , ηn of V ∗ such that the restrictions of
ξ1, . . . , ξp, ηp+1, . . . , ηq form a basis of W ∗,

all ξa would vanish on a nontrivial subspace of W, and a vector w 6= 0 from
such a subspace would have all components wa = ξaw equal to 0).

Tautological Bundles. Given a real or complex vector space V of real/complex
dimension n < ∞ and an integer q with 0 ≤ q ≤ n, one defines the tautological
vector bundle T over the Grassmannian GrqV by

GrqV 3W 7→ TW = W.

The chart mappings (4) for GrqV , when regarded as local trivializations of T , form a
smooth atlas, parametrized by the set of all surjective linear mappings f : V → IKq

(where IK is the scalar field). This is clear from smoothness of the functions Sc
a in

(5), and turns T into a smooth real/complex vector bundle of fibre dimension q.

Exercises.

Exercise 1. Prove Lemma 1.

Exercise 2. Generalize Lemma 2 to Grassmannians.

Exercise 3. Generalize Lemma 3 to Grassmannians.

Exercise 4. Generalize Lemma 1 to Grassmannians.

Exercise 5. Verify that, if n = dimV , the dimension of GrqV equals (n− q)q, for
IK = IR, or 2(n− q)q, for IK = C.

Exercise 6. Show that every linear functional ξ ∈ V ∗ may be viewed as a smooth
section of the dual T ∗ of the tautological vector bundle T over the Grassmannian
GrqV with ξW equal to the restriction of ξ to W whenever W ∈ GrqV .


