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Projective Spaces. Let V' be a vector space of positive dimension n < co over
the scalar field IK, where IK is IR,C or IH and, in the last (quaternionic) case,
we mean a left vector space. By the projective space of V' one means the set

PV = {L: L is a 1-dimensional vector subspace of V},
and a surjective projection mapping 7 :V ~ {0} — PV is defined by
m(z) = Kuz.
The set PV carries a natural manifold structure provided by the atlas
& {(Tr) : f eV~ {0}
indexed by all nonzero linear functionals on V, where
U = {L € P(V): L is not contained in Ker f}

(instead of ‘is not contained in Ker f’ one could also write ‘f(L) = IK’ or, equiv-
alently, ‘f maps L isomorphically onto IK), and ¢; : U — f~Y(1) sends each
L € U; onto its unique intersection point with f71(1). Also, f~1(1) is a coset of
Ker f, which makes it an affine space with the translation vector space Ker f, and

op Uy — f~1(1) is a bijection with the inverse 7 : f~1(1) — U and

(2) ¢;(Kz) = x/f(r) whenever L =Kz € U, (that is, z € V \ Kerf).

Compatibility of any two charts in (1) now follows since, for f,h € V* ~ {0}, the
set Uy NU),) = Ay~ Kerh is open in f~Y(1) (due to closedness of Kerh in the
ambient space V'), while (¢; o ¢, ) (@) = z/f(x) as a consequence of (2). (For the
meaning of compatibility, see [DG, Section 1].)

Lemma 1. The atlas (1) satisfies the Hausdorff and countability axioms, cf. [DG,
Sections 1 and 14], and so it actually turns PV into a smooth manifold which, in
addition, is compact.

Proof. See Exercise 1. O

Lemma 2. Every linear automorphism of V, acting in an obvious manner on
PV, constitutes a smooth diffeomorphism. The projection 7 :V ~ {0} = PV isa
smooth mapping as well.

Proof. Let A : V — V be a linear automorphism. Using the same symbol for
A : PV — PV, we obtain, from (2), the rational (and hence smooth) chart represen-
tations (¢poAo ©n 1) (x) = Az /f(Az). On the other hand, the chart representations
of 7 are identity mappings, cf. the first line of (2). |

Lemma 3. If IK = C, the projective space PV carries a unique structure of a
complex manifold such that all chart mappings @y are biholomorphisms. In addi-
tion, the projection w:V ~ {0} — PV is then also holomorphic.
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Proof. This is immediate since the transition mappings ¢; o <p;1, being rational,
are holomorphic. For the claim about =, see the proof of Lemma 2. (]

When V = K", rather than PV one writes IKP"~! and speaks of the real,
complex or quaternionic projective space of dimension n — 1 over the respective
field, where the latter the real/complex dimension n — 1 or (for IK = H) the real
dimension 4(n—1). The 1-dimensional subspace L € P(V) spanned by a nonzero
vector (z!,...,2") in K™ is then denoted by [z!,...,2"] € P(V), and one refers
to xt,...,2™ as homogeneous coordinates of L = [z*, ... z"].

Generalization to Grassmannians. In addition to V,n,IK as above, let us also
fix an integer ¢ with 0 < ¢ <n, set

Gr,V = {W : W is a g-dimensional vector subspace of V},
and define a surjective projection mapping : StV — Gr,V by
m(x) = spanx for x = (zy,...,7,) € St,V,

where St V' denotes the Stiefel manifold formed by all g-frames (that is, linearly
independent ordered g-tuples of vectors) in V. (Thus, St,V' is an open subset of
the gth Cartesian power V9.) One calls Gr,V the Grassmannian of g-planes in
V. The set Gr,V carries a natural manifold structure provided by the atlas

(3) {(Upp) : f €VENA0}},  with Uy = {W € Gr, V: f(W) =K},

indexed by all surjective linear operators f : V — IK?. (Instead of ‘f (W) = IK? one
may equivalently write ‘f maps W isomorphically onto IK?’). The chart mappings

(4) o Uy f o) %o x [N e,)

with e;,..., e, denoting the standard basis of IK% are slightly more complicated:
o sends each W € U} onto the unique ordered g¢-tuple x = (zq,... ,xq) of vec-
tors in W such that fz, = e, for a = 1,...,¢9. In other words, using the
inverse f;;; of the restriction isomorphism fy, : W — K% we have o (W) =
(fir(er), .-, V}l(eq)). Note that f™(e1) x...x f™(e,) a coset, in V9, of the gth
Cartesian power of Ker f, and hence an affine subspace of V. If x = (zy,...,7,)

equals <pf(W), then, obviously, W = m(x), the span of xy,...,z,, which eas-
ily proves bijectivity of (4). Let there be now given two surjective linear op-
erators f,h : V — K% The ¢,-image of Uy NU,, is open in the affine space
S e1) x ... x f7!(e,), being its intersection with the set of all x = (2,,...,z,) in
the Cartesian power V7 such that ha,, ..., hz, are linearly independent or, equiva-
lently, form a basis of IK% (The latter condition means that h restricted to span x
is a linear isomorphism onto IK%) For x = (2q,...,%,) € ¢,(U; NU},) we see that
(50 @El)(x) = py(span x) is the basis y,, a=1,...,q, of spanx which f sends
onto the standard basis e, of IK% a=1,...,q, and so, with

(5) Yo = Sacxm

the unknown coeflicients S° are characterized by e, = S¢fx.. The entries S thus
form the transition matrix between the bases fzi,..., fr, and e;,... e, of K1
and, if one writes the former basis as a ¢ X ¢ matrix (having the ath column fz,



for a =1,...,q), the matrix S with the entries Sf is its inverse. Thus, the chart
transition mapping ¢y o <p,:1 must be smooth, being equal to the composite
(T1,--5my) = (frg,..., fx,) = S

in which the constituents are smooth: one is in fact linear, the other (the matrix
inverse) rational. The atlas (3) thus turns Gr,V into a manifold, cf. Exercise 4.

More precisely, the atlas (3) satisfies the Hausdorff and countability axioms [DG,
Sections 1 and 14]: the former, since

the latter, as Gr,V is covered by a finite subatlas of (3). Namely, for any
basis vy,...,v, of V, with the dual basis &£%,...,&" of V*, the restrictions of the
functionals £ to any given W € Gr,V span W* (or else they would span a sub-
space of W* of some dimension p < ¢, and rearranging the v, we might assume
the restrictions of £1,...,£P to form a basis of this subspace; extending these p
functionals to a basis &%,...,6P,nPT1 ... n™ of V* such that the restrictions of
gL ..., &p, pPtl . nd form a basis of W*,

all &% would vanish on a nontrivial subspace of W, and a vector w # 0 from
such a subspace would have all components w* = £%w equal to 0).

Tautological Bundles. Given a real or complex vector space V' of real/complex
dimension n < oo and an integer g with 0 < ¢ < n, one defines the tautological
vector bundle T over the Grassmannian Gr,V by

Gr,V > W Ty = W.

The chart mappings (4) for Gr,V, when regarded as local trivializations of T, form a
smooth atlas, parametrized by the set of all surjective linear mappings f: V — IK?
(where IK is the scalar field). This is clear from smoothness of the functions S¢ in
(5), and turns 7 into a smooth real/complex vector bundle of fibre dimension gq.

Exercises.

Exercise 1. Prove Lemma 1.

Exercise 2. Generalize Lemma 2 to Grassmannians.
Exercise 3. Generalize Lemma 3 to Grassmannians.
Exercise 4. Generalize Lemma 1 to Grassmannians.

Exercise 5. Verify that, if n = dim V, the dimension of Gr,V equals (n—q)q, for
K =1, or 2(n —q)q, for K=C.

Exercise 6. Show that every linear functional ¢ € V* may be viewed as a smooth
section of the dual T* of the tautological vector bundle 7 over the Grassmannian
Gr,V with &y, equal to the restriction of £ to W whenever W € Gr V.



