MATH 6702, SPRING 2024

Projective Spaces and Grassmannians

Last updated on January 28, 2022
[DG] stands for Differential Geometry at
https://people.math.osu.edu/derdzinski.1/courses/851-852-notes.pdf
Projective Spaces. Let V be a vector space of positive dimension $n<\infty$ over the scalar field \mathbb{K}, where \mathbb{K} is \mathbb{R}, \mathbb{C} or \mathbb{H} and, in the last (quaternionic) case, we mean a left vector space. By the projective space of V one means the set
$\mathrm{P} V=\{L: L$ is a 1 -dimensional vector subspace of $V\}$,
and a surjective projection mapping $\pi: V \backslash\{0\} \rightarrow \mathrm{P} V$ is defined by

$$
\pi(x)=\mathbb{K} x .
$$

The set $\mathrm{P} V$ carries a natural manifold structure provided by the atlas

$$
\begin{equation*}
\left\{\left(U_{f}, \varphi_{f}\right): f \in V^{*} \backslash\{0\}\right\} \tag{1}
\end{equation*}
$$

indexed by all nonzero linear functionals on V, where

$$
U_{f}=\{L \in P(V): L \text { is not contained in } \operatorname{Ker} f\}
$$

(instead of 'is not contained in $\operatorname{Ker} f$ ' one could also write ' $f(L)=\mathbb{K}$ ' or, equivalently, ' f maps L isomorphically onto \mathbb{K} '), and $\varphi_{f}: U_{f} \rightarrow f^{-1}(1)$ sends each $L \in U_{f}$ onto its unique intersection point with $f^{-1}(1)$. Also, $f^{-1}(1)$ is a coset of $\operatorname{Ker} f$, which makes it an affine space with the translation vector space $\operatorname{Ker} f$, and

$$
\begin{align*}
& \varphi_{f}: U_{f} \rightarrow f^{-1}(1) \text { is a bijection with the inverse } \pi: f^{-1}(1) \rightarrow U_{f} \text { and } \\
& \left.\varphi_{f}(\mathbb{K} x)=x / f(x) \quad \text { whenever } L=\mathbb{K} x \in U_{f} \text { (that is, } x \in V \backslash \operatorname{Ker} f\right) . \tag{2}
\end{align*}
$$

Compatibility of any two charts in (1) now follows since, for $f, h \in V^{*} \backslash\{0\}$, the set $\left.\varphi_{f} U_{f} \cap U_{h}\right)=A_{f} \backslash \operatorname{Ker} h$ is open in $f^{-1}(1)$ (due to closedness of $\operatorname{Ker} h$ in the ambient space V), while $\left(\varphi_{f} \circ \varphi_{h}^{-1}\right)(x)=x / f(x)$ as a consequence of (2). (For the meaning of compatibility, see [DG, Section 1].)

Lemma 1. The atlas (1) satisfies the Hausdorff and countability axioms, cf. [DG, Sections 1 and 14], and so it actually turns PV into a smooth manifold which, in addition, is compact.
Proof. See Exercise 1.
Lemma 2. Every linear automorphism of V, acting in an obvious manner on PV , constitutes a smooth diffeomorphism. The projection $\pi: V \backslash\{0\} \rightarrow \mathrm{PV}$ is a smooth mapping as well.

Proof. Let $A: V \rightarrow V$ be a linear automorphism. Using the same symbol for $A: \mathrm{P} V \rightarrow \mathrm{P} V$, we obtain, from (2), the rational (and hence smooth) chart representations $\left(\varphi_{f} \circ A \circ \varphi_{h}^{-1}\right)(x)=A x / f(A x)$. On the other hand, the chart representations of π are identity mappings, cf. the first line of (2).

Lemma 3. If $\mathbb{K}=\mathbb{C}$, the projective space PV carries a unique structure of a complex manifold such that all chart mappings φ_{f} are biholomorphisms. In addition, the projection $\pi: V \backslash\{0\} \rightarrow \mathrm{PV}$ is then also holomorphic.

Proof. This is immediate since the transition mappings $\varphi_{f} \circ \varphi_{h}^{-1}$, being rational, are holomorphic. For the claim about π, see the proof of Lemma 2.

When $V=\mathbb{K}^{n}$, rather than PV one writes $\mathbb{K P}^{n-1}$ and speaks of the real, complex or quaternionic projective space of dimension $n-1$ over the respective field, where the latter the real/complex dimension $n-1$ or (for $\mathbb{K}=\mathbb{H}$) the real dimension $4(n-1)$. The 1-dimensional subspace $L \in P(V)$ spanned by a nonzero vector $\left(x^{1}, \ldots, x^{n}\right)$ in \mathbb{K}^{n} is then denoted by $\left[x^{1}, \ldots, x^{n}\right] \in P(V)$, and one refers to x^{1}, \ldots, x^{n} as homogeneous coordinates of $L=\left[x^{1}, \ldots, x^{n}\right]$.

Generalization to Grassmannians. In addition to V, n, \mathbb{K} as above, let us also fix an integer q with $0 \leq q \leq n$, set

$$
\mathrm{Gr}_{q} V=\{W: W \text { is a } q \text {-dimensional vector subspace of } V\}
$$

and define a surjective projection mapping $\pi: \mathrm{St}_{q} V \rightarrow \mathrm{Gr}_{q} V$ by

$$
\pi(\mathbf{x})=\operatorname{span} \mathbf{x} \text { for } \mathbf{x}=\left(x_{1}, \ldots, x_{q}\right) \in \mathrm{St}_{q} V
$$

where $\mathrm{St}_{q} V$ denotes the Stiefel manifold formed by all q-frames (that is, linearly independent ordered q-tuples of vectors) in V. (Thus, $\mathrm{St}_{q} V$ is an open subset of the q th Cartesian power V^{q}.) One calls $\mathrm{Gr}_{q} V$ the Grassmannian of q-planes in V. The set $\mathrm{Gr}_{q} V$ carries a natural manifold structure provided by the atlas

$$
\begin{equation*}
\left\{\left(U_{f}, \varphi_{f}\right): f \in V^{*} \backslash\{0\}\right\}, \quad \text { with } \quad U_{f}=\left\{W \in \operatorname{Gr}_{q} V: f(W)=\mathbb{K}^{q}\right\} \tag{3}
\end{equation*}
$$

indexed by all surjective linear operators $f: V \rightarrow \mathbb{K}^{q}$. (Instead of ' $f(W)=\mathbb{K}^{q}$ ' one may equivalently write ' f maps W isomorphically onto \mathbb{K}^{q} '). The chart mappings

$$
\begin{equation*}
\varphi_{f}: U_{f} \rightarrow f^{-1}\left(e_{1}\right) \times \ldots \times f^{-1}\left(e_{q}\right) \tag{4}
\end{equation*}
$$

with e_{1}, \ldots, e_{q} denoting the standard basis of \mathbb{K}^{q}, are slightly more complicated: φ_{f} sends each $W \in U_{f}$ onto the unique ordered q-tuple $\mathbf{x}=\left(x_{1}, \ldots, x_{q}\right)$ of vectors in W such that $f x_{a}=e_{a}$ for $a=1, \ldots, q$. In other words, using the inverse f_{W}^{-1} of the restriction isomorphism $f_{W}: W \rightarrow \mathbb{K}^{q}$, we have $\varphi_{f}(W)=$ $\left(f_{W}^{-1}\left(e_{1}\right), \ldots, f_{W}^{-1}\left(e_{q}\right)\right)$. Note that $f^{-1}\left(e_{1}\right) \times \ldots \times f^{-1}\left(e_{q}\right)$ a coset, in V^{q}, of the q th Cartesian power of $\operatorname{Ker} f$, and hence an affine subspace of V^{q}. If $\mathbf{x}=\left(x_{1}, \ldots, x_{q}\right)$ equals $\varphi_{f}(W)$, then, obviously, $W=\pi(\mathbf{x})$, the span of x_{1}, \ldots, x_{q}, which easily proves bijectivity of (4). Let there be now given two surjective linear operators $f, h: V \rightarrow \mathbb{K}^{q}$. The φ_{h}-image of $U_{f} \cap U_{h}$ is open in the affine space $f^{-1}\left(e_{1}\right) \times \ldots \times f^{-1}\left(e_{q}\right)$, being its intersection with the set of all $\mathbf{x}=\left(x_{1}, \ldots, x_{q}\right)$ in the Cartesian power V^{q} such that $h x_{1}, \ldots, h x_{q}$ are linearly independent or, equivalently, form a basis of \mathbb{K}^{q}. (The latter condition means that h restricted to span \mathbf{x} is a linear isomorphism onto \mathbb{K}^{q}.) For $\mathbf{x}=\left(x_{1}, \ldots, x_{q}\right) \in \varphi_{h}\left(U_{f} \cap U_{h}\right)$ we see that $\left(\varphi_{f} \circ \varphi_{h}^{-1}\right)(\mathbf{x})=\varphi_{f}(\operatorname{span} \mathbf{x})$ is the basis $y_{a}, a=1, \ldots, q$, of $\operatorname{span} \mathbf{x}$ which f sends onto the standard basis e_{a} of $\mathbb{K}^{q}, a=1, \ldots, q$, and so, with

$$
\begin{equation*}
y_{a}=S_{a}^{c} x_{c} \tag{5}
\end{equation*}
$$

the unknown coefficients S_{a}^{c} are characterized by $e_{a}=S_{a}^{c} f x_{c}$. The entries S_{a}^{c} thus form the transition matrix between the bases $f x_{1}, \ldots, f x_{q}$ and e_{1}, \ldots, e_{q} of \mathbb{K}^{q} and, if one writes the former basis as a $q \times q$ matrix (having the a th column $f x_{a}$
for $a=1, \ldots, q$), the matrix \mathbf{S} with the entries S_{a}^{c} is its inverse. Thus, the chart transition mapping $\varphi_{f} \circ \varphi_{h}^{-1}$ must be smooth, being equal to the composite

$$
\left(x_{1}, \ldots, x_{q}\right) \mapsto\left(f x_{1}, \ldots, f x_{q}\right) \mapsto \mathbf{S}
$$

in which the constituents are smooth: one is in fact linear, the other (the matrix inverse) rational. The atlas (3) thus turns $\mathrm{Gr}_{q} V$ into a manifold, cf. Exercise 4.

More precisely, the atlas (3) satisfies the Hausdorff and countability axioms [DG, Sections 1 and 14]: the former, since
the latter, as $\mathrm{Gr}_{q} V$ is covered by a finite subatlas of (3). Namely, for any basis v_{1}, \ldots, v_{n} of V, with the dual basis ξ^{1}, \ldots, ξ^{n} of V^{*}, the restrictions of the functionals ξ^{a} to any given $W \in \mathrm{Gr}_{q} V$ span W^{*} (or else they would span a subspace of W^{*} of some dimension $p<q$, and rearranging the v_{a} we might assume the restrictions of ξ^{1}, \ldots, ξ^{p} to form a basis of this subspace; extending these p functionals to a basis $\xi^{1}, \ldots, \xi^{p}, \eta^{p+1}, \ldots, \eta^{n}$ of V^{*} such that the restrictions of $\xi^{1}, \ldots, \xi^{p}, \eta^{p+1}, \ldots, \eta^{q}$ form a basis of W^{*},
all ξ^{a} would vanish on a nontrivial subspace of W, and a vector $w \neq 0$ from such a subspace would have all components $w^{a}=\xi^{a} w$ equal to 0).

Tautological Bundles. Given a real or complex vector space V of real/complex dimension $n<\infty$ and an integer q with $0 \leq q \leq n$, one defines the tautological vector bundle \mathcal{T} over the Grassmannian $\operatorname{Gr}_{q} V$ by

$$
\mathrm{Gr}_{q} V \ni W \mapsto \mathcal{T}_{W}=W
$$

The chart mappings (4) for $\operatorname{Gr}_{q} V$, when regarded as local trivializations of \mathcal{T}, form a smooth atlas, parametrized by the set of all surjective linear mappings $f: V \rightarrow \mathbb{K}^{q}$ (where $\mathbb{I K}$ is the scalar field). This is clear from smoothness of the functions S_{a}^{c} in (5), and turns \mathcal{T} into a smooth real/complex vector bundle of fibre dimension q.

Exercises.

Exercise 1. Prove Lemma 1.
Exercise 2. Generalize Lemma 2 to Grassmannians.
Exercise 3. Generalize Lemma 3 to Grassmannians.
Exercise 4. Generalize Lemma 1 to Grassmannians.
Exercise 5. Verify that, if $n=\operatorname{dim} V$, the dimension of $\mathrm{Gr}_{q} V$ equals $(n-q) q$, for $\mathbb{K}=\mathbb{R}$, or $2(n-q) q$, for $\mathbb{K}=\mathbb{C}$.

Exercise 6. Show that every linear functional $\xi \in V^{*}$ may be viewed as a smooth section of the dual \mathcal{T}^{*} of the tautological vector bundle \mathcal{T} over the Grassmannian $\operatorname{Gr}_{q} V$ with ξ_{W} equal to the restriction of ξ to W whenever $W \in \mathrm{Gr}_{q} V$.

