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[DG]: Differential Geometry, [DF]: Distributions and the Frobenius Theorem
[PS]: Projective Spaces and Grassmannians, [TC]: Tractor Connections
[AC]: Algebraic Curvature Tensors, [IP]: Inner Products up to a Factor

[MC]: Metrics of Constant Curvature, [CF]: Conformal Flatness
[MT]: Milnor’s Tetrahedron, [FR]: Further References

January 8: Definition of a (smooth, Hausdorff) manifold [DG, pp. 1–2] including the
countability axiom [DG, p. 53]. The resulting topology [DG, pp. 1]. Continuous and
differentiable mappings between manifolds, homeomorphisms, diffeomorphisms [DG, pp.
5–6]. Continuity in terms of convergent sequences on the one hand, and of pre-images of
open sets on the other. Tangent vectors and spaces [DG, p. 18]. Differentials of mappings
[DG, p. 20]. The rank theorem [DG, p. 33]. the inverse mapping theorem [DG, p. 198].
Submersions, immersions, submanifolds, with or without the subset topology [DG, p. 34],
examples of the latter being provided by a “figure eight” in IR2 [DG, the missing Fig.
5 on p. 35]. Geometric properties, including openness of sets [DG, p.4]. Vector bundles
over a set M, sections. Local sections and local trivializations (when M is a manifold),
transition functions, compatibility of local trivializations [DG, pp. 57–58].

January 10: Revisited topics: charts and compatibility, the definition of an n-dimen-
sional C∞ atlas, maximal atlases and the existence of a unique maximal atlas containing
a given one [DG, p.1]. Definition of a C∞ (Hausdorff) manifold [DG, pp.1–2] including
countability axiom (that is, the existence of a countable subatlas of the maximal atlas [DG,
p.53]: a manifold is thus a set with a fixed maximal atlas satisfying the Hausdorff and
countability axioms). Examples of manifolds: zero-dimensional ones (that is, nonempty
countable sets); vector spaces [DG, pp.2]; affine spaces [DG, pp. 3 and 191-192]; open
submanifolds [DG, p.5]. Cartesian products of manifolds [DG, p.4]. Differentials of
mappings, their coordinate description, and the chain rule [DG, p. 20]. Tangent spaces of
open submanifolds [DG, p.4]. Index notation with the summing convention [DG, p. 17].
Partial derivatives and components of tangent vectors relative to a coordinate system [DG,
p. 17–19]. The transformation rule [DG, p. 18]. Arbitrary C∞mappings M × N → P
written as multiplications. Multiplications of tangent vectors by points and the Leibniz
rule [DG, pp.38–39]. Tangent spaces of Cartesian products [DG, p.38].

January 12: Tangent spaces in vector and affine spaces [DG, p. 19]. The fact that a
subset of a manifold can carry at most one structure of a submanifold with the subset
topology [DG, Corollary 9.5 on p. 35]. Submanifolds with the subset topology obtained
as (nonempty) preimages, under smooth mappings, of their regular values, the dimensions
and tangent spaces of such preimages [DG, Theorem 9.6 on p. 35]. Example: Euclidean
spheres. Closed, compact, (pathwise) connected substes of a manifold, connected com-
ponents of a set [DG, pp. 2, 4, 6]. Homeomorphicıty of bijective continuous mappings
from compact sets [DG, Problem 4 on p. 9]. Examples: tori, real/complex projective
spaces, real/complex Grassmannians [DG, pp. 3–4], [PS], and their compactness [DG,
Problem 15 on p. 10], [PS]. Whitney’s embedding theorem for compact manifolds [DG,
pp. 54–55]. Spherical embeddings of projective spaces.
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January 17: Characterization of immersions [submersions] by the existence of smooth lo-
cal left [right] inverses. The implicit mapping theorem [DG, p. 199]. Spherical embeddings
of projective spaces (continued) and Grassmannians. Codimension-zero embeddings (that
is, locally diffeomorphic injective mappings) from compact manifolds into connected man-
ifolds. Diffeomorphic identfications IRP1≈ S1 and CP1≈ S2. The submersion property
of π : V r {0} → PV and π : StqV → GrqV verified using local right inverses. Con-
tinued from Jan. 8th: vector bundles over a set M, sections, sections and trivializations
over a subset K of the base M. Transition functions. The total space η, the projections
π : η → M and sections over K treated as mappings K → η [DG, pp. 66–67]. Local
sections and local trivializations (when M is a manifold), compatibility, C∞ atlases of
local trivializations, maximal ones, C∞ vector bundles over manifolds. Smooth local sec-
tions [DG, pp. 57–58]. The total space as a manifold and the submersion property of the
projection π : η →M, the fibres as submanifolds with the subset topology [DG, p. 67].

January 19: The general case of a (locally trivial) fibre bundle, involving three manifolds:
the total space η, the base M , the model fibre IF, and a C∞ projection π : η →M such
that M is covered by open subsets U with diffeomorphic identifications π−1(U) ≈ U×IF
(called local trivializations) which make π appear as the factor projection U × IF → U.
The observation that π is then a surjective submersion, and hence the fibres ηx = π−1(x),
for all y ∈M, are submanifolds of η with the subset topology, diffeomorphic to IF. Vector
bundles of fibre dimension q over the scalar field IK = IR or IK = C as a special case,
having IF = IKq. Examples of vector bundles: first, product bundles M × IF [DG, p.58].
Then, tangent bundles TM, with the local trivializations consisting of coordinate vector
fields pj [DG, p.59]. Finally, the tautological line bundles over projective spaces [DG, p.
59] and tautological vector bundles over Grassmannians [DG, p.60]. Natural operations on
real/complex vector bundles η, ζ over a manifold M, resulting in the direct sum η⊕ζ [DG,
p. 68], the bundle Hom(η, ζ) [DG, p. 73], the sections of which may be identified with
vector-bundle morphisms Φ : η → ζ [DG, p. 69], its special case η∗ = Hom(η,M×IK), the
dual of η, where IK is the scalar field [DG, p. 66]. Smooth subbundles of vector bundles
[DG, p.71]. The image and kernel of a constant-rank morphism [DG, p.72].

January 22: The image and kernel of a constant-rank morphism, continued [DG, p.
72]. Spherical embeddings of projective spaces, revisited. Equivalence of open-cover-
ing compactness to sequential compactness [DG, p.4]: the Heine-Borel theorem [DG,
p.54]. Compactness in Euclidean spaces, equivalent to being closed and bounded [DG,
p.9]. Euclidean embeddings resulting from spherical ones via stereographic projections
[DG, p. 3]. The conjugate of a complex vector space [DG, p. 68 and Problems 5–6 on p.
69]. Further natural operations on vector bundles: the conjugate E of a complex vector
bundle E [DG, p. 68], with the convention that E = E for real vector bundles E, and
the pullback [DG, p.68]. The restriction of a vector bundle to a submanifold [DG, p.
72]. Quotient bundles [DG, p. 72]. The tangent and normal bundles of an immersion
[DG, p. 72]. Vector-bundle isomorphisms and trivial bundles [DG, p. 70]. The directional
derivative dwf of a function f along a vector field w, and the fact that the operator dw
uniquely determines w [DG, p. 22].

January 24: Functional calculus of diagonalizable linear endomorphisms A. The case
where A is self-adjoint: smoothness of the square root A 7→

√
A when A > 0 (derived

from the fact that A 7→ A2 is both bijective and – due to the inverse mapping theorem –
locally diffeomorphic), and of the absolute value |A| =

√
A2 , as well as signum sgnA =

|A|−1A when detA 6= 0. Smoothness of the mapping sending A with A∗ = A and
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detA 6= 0 to the direct sum of its eigenspaces corresponding to positive eigenvalues (since
the latter space is the kernel of B = sgnA−1, while a basis of KerB depending smoothly
on B can be selected as we saw when we discussed the image and kernel of a constant-
rank vector-bundle morphism (Jan. 19-22). Spherical embeddings of projective spaces and
Grassmannians, revisited. Germs of C∞ functions/sections at a point [DG, pp.19, 75].
Abundance of cut-off functions and global extensibility of germs [DG, p. 217]. Continued:
the fact that the operator dw uniquely determines w [DG, p. 22]. The Lie bracket of
vector fields and the relation d[v,w] = dvdw− dwdv [DG, p. 23]. The Jacobi identity [DG,

p. 24]. The Lie algebra XM of smooth vector fields on M [DG, p. 26]. Vector fields
projectable under mappings [DG, p.23]. Push-forwards of vector fields under diffeomor-
phisms. Projectability of Lie brackets [DG, Theorem 6.1 on p. 24]. Distributions on a
manifold M, defined to be (smooth) vector subbundles of the tangent bundle TM [DF, p.
1]. Integral manifolds of a distribution [DF, p. 1]. The normal bundle Dnrm = (TM)/D of
a distribution D on M, with the quotient projection morphism π : TM → Dnrm [DF, p.
1], and the curvature (tensor, form) of D, which assigns to each x ∈M the skew-symmet-
ric bilinear mapping Ω : Dx ×Dx → Dnrm

x such that Ω(v, w) = π[v, w] for local sections
v, w of D [DF, p. 1].

January 26: Well-definedness of Ω [DF, Exercise 2 on p. 8]. Three operations on
vector spaces: L(V , V ′,W ) = Hom(V , Hom(V ′,W )), S(V , V ,W ), A(V , V ,W ), and their
conterparts for smooth vector bundles. The curvature Ω of D as a smooth section of
A(D,D,Dnrm). The observation that a smooth vector field on M, tangent to a submanifold
P, is smooth when restricted to a vector field on P, which does not follow directly from
[DG, Theorem 6.1 on p. 24], but requires a (simple) use of rank-theorem coordinates; thus,
if two vector fields are tangent to a submanifold, so is their Lie bracket. The conclusion
that the curvature Ω of D must vanish along every integral manifold of D. Integrability
of a distribution [DF, p. 1], meaning that every point lies in an integral manifold [DF, p.
1], which – according to the preceding sentence – implies vanishing of Ω. The Frobenius
theorem: integrability of a distribution is equivalent both to vanishing of its curvature,
and to its being locally diffeomorphically equivalent to a constant distribution on a vector
space. The decomposition of M into the leaves (maximal connected integral manifolds)
of an integrable distribution, also referred to as a foliation (which is more than M just
being a disjoint union of submanifolds of a fixed dimension). The fact that a smooth
mapping N → M taking values in a leaf of an integrable distribution is also smooth
as a mapping into the leaf [DF, p. 6]. Lie groups. Examples: countable groups, vector
spaces [DG, p. 12]; the set G of invertible elements in a finite-dimensional real/complex
associative algebra A with unit. (A one-sided inverse is also necessarily two-sided: [xy = 1
for some y] ⇔ [Lx surjective] ⇔ [Lx injective] ⇒ [yx = 1 since xyx = x], while the first
two equivalences show that G is open in A, being the preimage, under x 7→ Lx, of the
open set GL(A) ⊆ End(A) formed by all linear automorphisms of A). The special case
G = GL(V ) when A = End(V ), including GL(n, IK) [DG, p. 12]. A Lie subgroup of
a Lie group G, defined to be a submanifold H of G which is also a subgroup, without
requiring – unlike in [DG, p. 43] – that H, with these two structures, be a Lie group.

January 29: Uniqueness of the manifold structure of a leaf of an integrable distribution
[DF, p. 7]. Left-invariant vector fields on a Lie group, their smoothness, and the Lie
algebra g of a Lie group G [DG, pp. 27-28]. Left-invariant distributions D on a Lie
group G [DF, p. 7], their smoothness, and integrability of such D when D1 = T1H for
a Lie subgroup H, with integral manifolds provided by left cosets of H. The conclusion
that a Lie subgroup is a Lie group in its own right [DF, bottom of p. 7]. Smooth left
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actions of a Lie group G on a manifold M, with examples: GL(V ) on V and GL(V )
on End(V ) (or, L(V , V , IK)) via conjugation (or, inverse pullback), G on G via inner
automorphisms, G×G on G [DG, p. 44-45]. The isotropy groups Hx of an action [DG,
p. 46]. Submanifolds with the subset topology arising as (nonempty) preimages of points
under constant-rank smooth mappings, their dimensions and tangent spaces [DG, p. 41].
The conclusion that isotropy groups of an action by G are Lie subgroups of G [DG, p.
46]. Examples: orthogonal and unitary groups O(V, 〈 , 〉), U(V, 〈 , 〉), including O(n) and
U(n) [DG, p. 47]. Lie-group homomorphisms F : G→ H [DG, p. 13], constancy of their
rank [DG, p. 42]. , the resulting Lie-algebra homomorphism F∗ : g → h, and the fact
that KerF is a normal Lie subgroup of G with the subset topology. Examples: SL(V ),
SO(V, 〈 , 〉), SU(V, 〈 , 〉), with the special cases SL(n, IK), SO(n), SU(n) [DG, p. 47], the
spheres S0, S1, S3.

January 31: The identity component Go of a Lie group G, which is an open-and-closed
normal subgroup of G [DG, p. 43], generated by any connected neighborhood of 1. The
natural bijective correspondence between left-invariant distributions D on a Lie group G
and vector subspaces h of g, given by Dx = {wx : w ∈ g} for all x ∈ G [DF, p. 7]. The
observation that such D is integrable if an only if h is a Lie subalgebra of g . [DF, p. 7].
The resulting bijective correspondence between connected Lie subgroups H of G and a
Lie subalgebras h of g, where H is the leaf of D (see the last sentence) through 1 [DF,
pp. 7-8]. The algebra IH of quaternions [DG, p. 13]. Incidental isomorphisms and (two-to-
one) almost-isomorphisms: SO(1) = {1}, SO(2) = S1, SU(2) = S3 ≈ IRP3, S3→ SO(3),
S3 × S3 → SO(4) [DG, p. 48]. The set B(V ) of ordered bases of a finite-dimensional
vector space V over IK = IR or IK = C. Diffeomorphic identifications GL(V ) ≈ B(V ).
An “upper triangular basis” for any A ∈ End(V ) when IK = C, and the resulting curve
joining Id to A in End(V ), which implies connectedness of GL(V ) and B(V ) [DG, pp.
49, 51]. Two connected components of GL(V ) or B(V ), called the orientations of V , if
IK = IR and V 6= {0}, with two bases lying in the same component precisely when their
transition determinant is positive [DG, pp. 192-193].

February 2: Orientations, continued. The canonical orientation of the underlying real
space of a nonzero finite-dimensional complex vector space, and its compatibility with the
direct-sum operation. The Frobenius theorem rephrased as the statement that “complete
integrability” of a system of first-order partial differential equations, “solved” for the par-
tial deerivatives, is equivalent to equality of mized second-order partial derivatives being a
formal (or “algebraic”) consequence of the system. More details follow: a distribution D of
dimension p on an m-dimensional manifold M, and the replacement of M by a coordinate
domain identified via the coordinate mapping (x1, . . . , xp, yp+1, . . . , ym) with a Euclidean
rectangle so that Dx, at any point x, intersects trivially the span of the last m− p coor-
dinate vectors ∂λ(x). The projection π acting as (x1, . . . , xp, yp+1, . . . , ym) 7→ (x1, . . . , xp)
between Euclidean rectangles, the first identifed with M, the second referred to as the
“base” B. The convention 1 ≤ j, k, l ≤ p < p + 1 ≤ λ, µ, ν ≤ m about the ranges
of the indices j, k, l, λ, µ, ν. The unique smooth functions Hµ

j with the property that

ej = ∂j +Hµ
j ∂µ and the images ∂̂λ of ∂λ under the projection morphism TM → Dnrm are

local trivializing sections for D and, respectively, Dnrm. (These Hµ
j exist: ej(x) are, at

every x ∈ M, the preimages, under the isomorphism dπx : Dx → Tπ(x)B, of the coordi-

nate vectors at π(x) in the base rectangle B. The local trivializations ej , ∂λ in TM and

dyj, dyλ−Hλ
k dx

k in T ∗M, dual to each other [DF, formula (5) on p. 2]. The equations
dyλ = Hλ

j dx
j of the distribution D, in the sense that a vector (field) v is tangent to D if
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and only if both sides yield the same value on it: vλ = Hλ
j v

j [DF, formula (6) on p. 2]. The

component functions Ωλjk of the curvature Ω of D, characterized by Ω(ej , ek) = Ωλjk∂̂λ,

and the equality Ωλ
jk = ∂jH

λ
k − ∂kHλ

j + Hµ
j ∂µH

λ
k −H

µ
k ∂µH

λ
j . Mappings ϕ : Q → M into

our coordinate domain M that are tangent to the distribution D, and their characteriza-
tion: ∂ay

λ = (∂ax
j)Hλ

j (x1, . . . , xp, yp+1, . . . , ym) whenever za are local coordinates in the

manifold Q, with xj and yλ standing for xj ◦ϕ and yλ◦ϕ [DF, formula (9) on p. 3]. Two
special cases, where Q is an open interval I ⊆ IR (or, Q = B and ϕ happens to be a map-
ping of the form (x1, . . . , xp) 7→ (x1, . . . , xp, yp+1, . . . , ym), with za constituting the standard
coordinate t (or, the coordinates xj), so that ẏλ = ẋjHλ

j (x1, . . . , xp, yp+1, . . . , ym) (the
condition describing curves tangent to D), the notational convention that ( )˙ = d/dt
being used from now on, or, respectively, ∂jy

λ = Hλ
j (x1, . . . , xp, yp+1, . . . , ym) [DF, for-

mulae (10) and (12) on p. 3]. The observation that integral manifolds P of D are,
locally, graphs of mappings (x1, . . . , xp) 7→ (x1, . . . , xp, yp+1, . . . , ym), as the bundle projec-
tion π restricted to P must be locally diffeomorphic, P being transverse to the fibres,
and so complete integrability of a system of partial differential equations having the form
∂jy

λ = Hλ
j (x1, . . . , xp, yp+1, . . . , ym) is equivalent to vanishing of Ω, that is, to symmetry

of ∂jH
λ
k + Hµ

j ∂µH
λ
k in j, k. A condition necessary and sufficient for such a system to be

completely integrable thus amounts to the system’s internal consistency: to the symme-
try relation ∂j ∂ky

λ = ∂k∂jy
λ being a formal consequence of the system itself [DF, p. 4].

An outline of the proof of the Frobenius theorem via induction on the dimensions q of
“partial” integral manifolds, with both the case q = 1 and the induction step arising from
solvability of ordinary differential equations: the required first-order partial differential
equations on a rectangle of the next dimension is established via the fact that zero is
the only solution, assuming the value 0 somewhere, of a system of linear homogeneous
ordinary differential equations [DF, pp. 4-5].

Homework: [DF, Exercises 5, 7, 12 on pp. 8-9].
February 5: The Koszul definition of a linear connection ∇ in a real/complex vector
bundle E over a manifold M [FR, item BM, pp. 22-23]. Example: the standard flat con-
nection, denoted here by D, in a product vector bundle M× IF over M, with Dvψ = dvψ
for smooth sections ψ treated as functions M → IF, so that D has the zero components
in a costant global trivialization of M × IF [DG, Example 20.2 on p. 77]. The local char-
acter of ∇ resulting from abundance of cut-off functions [DG, p. 217], meaning that the
restriction of ∇wψ to an open set U depends only on the restrictions to U of the smooth
vector field w on M and the smooth section ψ of E. Restrictibility of ∇ to a connection
in the restriction of E to any open submanifold U of M, that is, well-definedness of ∇wψ
when w and ψ are only smooth sections of TM and E with the same domain U. The
component functions Γ bja of ∇ relative to a local coordinate system xj in M and local

trivializing sections ea of E, with ∇∂jea = Γ bjaeb. The formula [∇wψ]a = wj(∂jψ
a+ Γ ajb ψ

b),

that is, ∇wψ = wj(∂jψ
a + Γ ajb ψ

b)ea for smooth local sections w of TM and ψ of E.

The conclusion that the dependence of ∇wψ on w is pointwise (and not just local): at
any x ∈ M, the value [∇wψ]x ∈ Ex is uniquely determined by wx and by the restriction
of ψ to any given neighborhood of x. Well-definedness of ∇vψ ∈ Ex for v ∈ TxM and
a smooth local section of E defined on a neighborhood of x. The resulting linear oper-
ator [∇ψ]x : TxM → Ex, for any such ψ, and the existence of such ψ with [∇ψ]x = 0
having any prescribed value ψx ∈ Ex, immediate from the above formula for [∇wψ]a. The
interpretation of ∇ψ as a section of Hom(TM,E) (that is, a vector-bundle morphism
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TM → E, cf. [DG, pp. 69 and 73]) whenever ψ is a smooth section of a vector bundle E

over M with a fixed linear connection ∇. The linear operator TxM 3 v 7→ vφ
hrz ∈ T(x,φ)E

of horizontal lift associated with ∇, any x ∈ M, and any φ ∈ Ex, given by vφ
hrz = dψxv,

where ψ is any smooth local section of E defined on a neighborhood U of x such that
ψx = φ and [∇ψ]x = 0. (Local sections ψ of E defined on U are identified here – in
the usual fashion – with mappings ψ : U → E having π ◦ ψ = id, so that ψ(x) = (x, ψx)

whenever x ∈ U). Correctness of the definition of vφ
hrz (that is, its independence of the

choice of ψ): as ψa(x) = φa and (∂jψ
a)(x) = −Γ ajb (x)φb, in the local coordinates xj, φa for

E arising from our local coordinate system xj in M and local trivializing sections ea of E
[DG, p. 67], the components of dψxv consist of vj (the components of v relative to xj)

and vj(∂jψ
a)(x) = −vjΓ ajb (x)φb. The relation dπ(x,φ)vφ

hrz = v, immediate from the chain

rule [DG, p. 20], applied to the equality π ◦ ψ = id (and reflected by the just-mentioned

fact that the initial components of vφ
hrz are vj, the components of v). The horizontal

distribution H on E corresponding to ∇, with Hy = {vφ
hrz: v ∈ TxM} for y = (x, φ) ∈ E,

so that the horizontal-lift operator TxM 3 v 7→ vφ
hrz ∈ Hy (equal, by the way, to dψx

for any smooth local section of E, defined on a neighborhood of x, with ψx = φ and
[∇ψ]x = 0) is an isomorphism with the inverse dπy : Hy → TxM. The horizontal lift of
a (smooth, local) vector field w tangent to M, relative to a linear connection ∇ in a

vector bundle π : E → M, defined to be the (smooth, local) vector field whrz tangent to

E given by whrz
y = vφ

hrz for v = wx and y = (x, φ) ∈ E, so that x = π(y). The components

vj,−vkΓ akbφb of vhrz in local coordinates xj, φa for E discussed earlier, which we will also

informally express as vhrz ∼ (vj,−vkΓ akbφb). Smoothness of H. The vertical and horizontal
projection bundle morphisms TE = H ⊕ V → V and TE → H, depending on ∇ via H,

and written as [ ]vrt, [ ]hrz. The equalities ξhrz ∼ (ξj, −Γ akbφbξk), ξvrt ∼ (0, ξa + Γ akbφ
bξk)

whenever ξ is a vector (field) tangent to the total space E, with ξ ∼ (ξj, ξa), and ξvrt, ξhrz

denoting its V and H components (projections). The equality [∇vψ]x = [dψxv]vrt, for any
x ∈M, any v ∈ TxM and any smooth local section ψ of E defined on a neighborhood of
x, showing that H uniquely determines ∇. Proof of this equality based on noting that, in
local coordinates xj, φa for E mentioned above (January 14), dψxv ∼ (vj, vk(∂kψ

a)(x)),

which equals the sum of the horizontal vector vφ
hrz∼ (vj,−vkΓ akb (x)ψb(x)) and the vertical

vector with the components (0, vk[(∂kψ
a)(x) + Γ akb (x)ψb(x)]), that is, the vertical vector

corresponding to (∇vψ)x under the canonical isomorphic identication between a finite-di-
mensional real vector space (treated as a manifold) and its tangent space at any point
[DG, Example 5.1 on p. 19].

February 7: The curvature tensor R = R∇ of a linear connection ∇ in a real/com-
plex vector bundle E over M, assigning to x ∈M the skew-symmetric bilinear mapping
Rx = TxM×TxM → EndEx into the space EndEx of real/complex endomorphisms of Ex,
and characterized by R(v, w)ψ = ∇w∇vψ−∇v∇wψ+∇[v,w]ψ for smooth local sections v, w

of TM and ψ of E. The pointwise dependence of R(v, w)ψ on v, w and ψ, due to the
easily-verified formula [R(v, w)ψ]a = Rjkb

avjwkψb, where the component functions Rjkb
a of R

relative to any xj and ea as above are given by Rjkb
a = ∂kΓ

a
jb −∂jΓ akb+Γ akcΓ

c
jb−Γ ajc Γ ckb (Problem

1). The curvature operators Rx(v, w) ∈ End(Ex) corresponding to a linear connection ∇
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with the curvature tensor R = R∇ in a real/complex vector bundle E over a manifold
M and vectors v, w tangent to M at a point x. The “universal shortcut” to be used for
proving equalities known to be pointwise, but phrased in terms of smooth local sections
of vector bundles (including vector fields): one may always assume that the first-order
partial derivatives of all the sections involved vanish at the point in question. The equality

([vhrz, whrz]vrt)y = Rx(vx, wx)φ for y = (x, φ) ∈ E and vector fields v, w tangent to M,

showing that R = R∇ essentially becomes the curvature Ω of the horizontal distribution
H on E corresponding to ∇, as long as one identifies Hy with TxM via the isomor-

phism dπy : Hy → TxM, the normal bundle Hnrm with the vertical distribution V, and

the quotient projection π : TE → Hnrm with the vertical projection TE → V . A proof of
this last equality, based on combining the “universal shortcut” with the coordinate expression of
the Lie bracket [DG, formula (6.7) on p. 23], the fact that [vhrz, whrz] projects under the bundle
projection π : E →M onto [v, w], cf. [DG, Theorem 6.1 on p. 24], plus the following relations
(February 5): ξvrt∼ (0, ξa+Γ akbφ

bξk) applied to ξ = [vhrz, whrz]) and vhrz ∼ (vj,−vkΓ akbφb),
along with the analog of the latter for whrz (Problem 2). Another proof: the relation

vhrz ∼ (vj,−vkΓ akbφb) rewritten as va = Ha
j v

j with Ha
j = Γ ajb φ

b gives Ωa
jk = Rjkb

aφb for

the component functions Rjkb
a of R (see the sixth line of February 7) and Ωa

jk associated
with the horizontal distribution H of ∇, cf. February 2. The standard flat connection
D in a product vector bundle (February 5) and the flatness of D, that is, vanishing of its
curvature (Problem 3). The effect on connections of the natural operations on real/com-
plex vector bundles E,E′ over a manifold M, namely, the direct sum E ⊕ E′, the Hom
bundle Hom(E, ,E′), and its special case, the dual E∗ = Hom(E,M×IK), presented using

the “comma” notation ψa,j instead of [∇ψ]aj (which one also writes as ∇jψa) for smooth
local sections ψ of a vector bundle E over manifold M, a linear connection ∇ in E, local
coordinates xj in M, and local trivializing sections ea in E, so that ψa,j= ∂jψ

a + Γ ajb ψ
b

[DG, p. 85], and nstarting from the direct sum [DG, p. 97]. Next, the functor Hom
applied to linear connections in vector bundles [DG, p. 87], uniquely characterized by
the Leibniz rule ∇w(Φψ) = (∇wΦ)ψ + Φ∇wψ for (local) smooth sections Φ and ψ of
Hom(E,E′) and E, with the component formula Φλa,j = ∂jΦ

λ
a+ΓλjµΦ

µ
a−Γ bjaΦλb and the local

definition ∇∂j(e
a⊗eλ) = Γµjλe

a⊗eµ−Γ ajb eb⊗eλ for the resulting connection in Hom(E,E′)

(all connections involved being denoted by ∇), where xj, ea, eλ are, respectively, a local
coordinate system in the base manifold M, and local trivializing sections for the original
vector bundles E,E′ [DG, p. 87]. The special case of the dual connection in E∗ =
Hom(E,M× IK), the dual bundle of E, where IK = IR or IK = C, with ξa,j = ∂jξa−Γ bjaξb
and ∇∂je

a = −Γ ajb eb [DG, pp. 87-88].

Homework: Problems 1, 2 and 3, italicized above.

February 9: The pullback
∗∇ = F ∗∇ of a linear connection ∇ in a real/complex vec-

tor bundle E over a manifold M under a smooth mapping F : N → M [DG, p. 96],
which is a connection in the pullback vector bundle F ∗E, characterized by the condi-
tion

∗∇v[F ∗ψ] = ∇wψ ∈ Ex = (F ∗E)y whenever y ∈ N and w = dFyv, while ψ is a
smooth local section of E defined on a neighborhood of x = F (y). The components
∗
Γ aλb = (∂λF

j)Γ ajb of
∗∇ in a local trivialization of the form F ∗ea. Existence and uniqueness

of
∗∇ due to the fact that the above characterization of

∗∇v[F ∗ψ] implies the formula
∗
Γ aλb = (∂λF

j)Γ ajb (thus ensuring uniqueness), while the latter – used, locally, to define a con-
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nection – is easily seen to yield the former (Problem 1). The easy consequence of this
characterization of

∗∇v[F ∗ψ], stating that, if a smooth local vector field v on N is projectable
under F onto a smooth local vector field w on M [DG, p. 23], then, for any smooth local
section ψ of E, one has

∗∇v[F ∗ψ] = F ∗[∇wψ] (Problem 2). The conjugate of a connec-
tion in a complex vector bundle (linear connections in E being naturally identified with
those in E). The vector space L(V1, . . . , Vr;V

′) consisting of all r-linear mappings B :
V1×. . .×Vr → V ′ for vector spaces V1, . . . , Vr, V

′ over IK = IR or IK = C. The isomorphism

L(V1, . . . , Vr;V
′) → Hom(Vj , L(V1, . . . , V̂j , . . . , Vr;V

′) – where ̂ means ‘delete’ – sending

B ∈ L(V1, . . . , Vr;V
′) to the operator associating with vj ∈ Vj the (r−1)-linear mapping B′

given by B′(v1, . . . , v̂j , . . . , vr) = B(v1, . . . , vr). The resulting operation L(E1, . . . , Er;E
′)

applied fibrewise to smooth vector bundles E1, . . . , Er, E
′ over a manifold M, with the

equivalent recursive definition L(E1, . . . , Er;E
′) = Hom(E1, L(E2, . . . , Er;E

′)) for r >
1 and L(E1;E′) = Hom(E1, E

′), which turns L(E1, . . . , Er;E
′) into a smooth vector

bundle over M, and its effect on connections. The Leibniz rule [∇wB](ψ1, . . . , ψr) =
∇w[B(ψ1, . . . , ψr)]−B(∇wψ1, ψ2, . . . , ψr)− . . .−B(ψ1, . . . , ψr−1,∇wψr) whenever ψ1, . . . , ψr
and B are smooth local sections of E1, . . . , Er and L(E1, . . . , Er;E

′), while w is any smooth
vector field on the base manifold, and ∇ denotes the linear connection in L(E1, . . . , Er;E

′)
induced by linear connections in E1, . . . , Er, E

′ (Problem 3). The observation that, for
∇, L(E1, . . . , Er;E

′) and w as in the last sentence, in the case where Ej = Ek both carry the same
connection, j, k being distinct, the operator ∇w acting on smooth sections of L(E1, . . . , Er;E

′)
commutes with the switch of the j th and kth arguments (Problem 4). Smooth subbundles of
L(E1, . . . , Er;E

′) defined by requiring symmetry or skew-symmetry with respect to a sub-
set K of {1, . . . , r} having the same bundle Ek for all k ∈ K, and the conclusion that, due
to the preceding sentence, for ∇ as above, such subbundles are ∇-parallel. Smooth vector
subbundles that are ∇-parallel for a linear connection ∇ in a given real/complex vector
bundle E. Example: the summand subbundles in a direct-sum vector bundle are parallel relative
to any direct-sum connection (Problem 5). Bilinear symmetric and sesquilinear Hermitian
forms in real/complex vector spaces. The fact that each of them is uniquely determined by
the corresponding quadratic function (Problem 6). Spacelike, timelike and null vectors.
Spacelike and timelike subspaces. Null subspaces of a real/complex vector space with a
fixed bilinear symmetric (or, sesquilinear Hermitian) form, defined by requiring the form to
vanish on them or, equivalently (see Problem 6), consisting of null vectors. The existence
of orthogonal and orthonormal bases for a biilinear symmetric or sesquilinear Hermitian
form in a finite-dimensional real/complex vector spaces, ‘orthonormal’ meaning that the
“squares” (diagonal entries) equal ±1 or 0. The positive/negative index and defect (nul-
lity) of a form as above (the numbers i± and i0 of positive/negative and zero diagonal
entries), and their independence of the basis used (Sylvester’s law of inertia), due to their
characterization in terms of the maximum dimensions of spacelike/timelike subspaces, or
spacelike-or-null and timelike-or-null subspaces – that characterization being obvious since
a spacelike (or, timelike) subspace must have a trivial intersection with any timelike-or-
null (or, spacelike-or-null) subspace. The maximum dimension of a null subspace V in the
finite-dimensional case, equal to i0 + min(i−, i+) for the positive/negative index i± and

nullity i0, as one sees fixing an orthonormal basis: according to the trivial-intersections
conclusion three lines before, V has trivial intersections with the spans of all timelike-or-
null, and of all spacelike-or-null vectors of the basis, which gives dim V ≤ i0 + i±, while

the maximum dimension is realized by the span of all uj and vk + wk, where uj (or vk,
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or wk) are mutually distinct null (or spacelike, or timelike) vectors from the basis, and j
(or, k) ranges from 1 to i0 (or, to min(i−, i+)). The orthogonal complement V⊥ of a
vector subspace V in a finite-dimensional real vector space T , relative to a fixed symmetric
bilinear form on T , and the relation dimV+dimV⊥ = dim T , valid whenever 〈 , 〉 or V is
nondegenerate (where the latter means that V ∩V⊥ = {0}, and hence yields V⊕V⊥ = T ).
Proof: for k = dimV and m = T , and a basis e1, . . . , em of T such that e1, . . . , ek lie in
V (where they thus form a basis), x 7→ (〈x, e1〉, . . . , 〈x, eq〉) ∈ IRq is injective (and hence
an isomorphism): on T in the former case if q = m, and on V in the latter when q = k.
In both cases, T 3 x 7→ (〈x, e1〉, . . . , 〈x, ek〉) ∈ IRk is then surjective, with the kernel
V⊥. Pseudo-Euclidean and pseudo-Hermitian inner products. Their sign patterns (metric
signatures). Pseudo-Riemannian and pseudo-Hermitian fibre metrics in vector bundles E,
including the Riemannian and Hermitian ones, always required to be smooth as sections of
Hom(E,E∗), where E∗ is simultaneously the dual of the conjugate of E and the conjugate
of the dual [DG, Section 17, Problems 5–6]. The special case of tangent bundles: pseudo-
Riemannian and Riemannian metrics/manifolds.
Homework: Problems 1, 2, 3, 4, 5 and 6, italicized above.
February 12: Covariant differentiation, relative to a linear connection ∇, of smooth
sections I 3 t 7→ φ(t) ∈ Ex(t) of the vector bundle E along a curve I 3 t 7→ x(t) the base

manifold M, written as ∇ẋ , and defined to be a special case of a pullback connection, for
N= I and F (t) = x(t), where I ⊆ IR is an open interval with the fixed constant tangent
vector field w = 1, that is, the standard coordinate vector field w = d/dt on I (and yλ = t,

the index λ having a one-element range). The component formula [∇ẋφ]a = φ̇a+Γ ajb ẋ
jφb,

immediate since [
∗∇wφ]a = vλ[∂λφ

a+ (∂λF
j)Γ ajb ψ

b]. The equality [∇ẋφ](t) = ∇ẋ(t)ψ, due to

the chain rule, in the case where φ(t) = ψx(t) for a (local) smooth section ψ of E, which

implies that for a linear connection ∇ in a vector bundle E over a manifold M , a point x ∈M,
a tangent vector v ∈ TxM, and a smooth local section ψ of E defined on a neighborhood of x, the
covariant derivative ∇vψ ∈ Ex depends only on the restriction of ψ to an arbitrarily chosen smooth
curve in M passing through x with the velocity v (Problem 1). Sections I 3 t 7→ φ(t) ∈ Ex(t)
along a curve I 3 t 7→ x(t) that are ∇-parallel: ∇ẋφ = 0 or, equivalently, for which the
curve t 7→ (x(t), φ(t)) in E is horizontal (tangent to H), the equivalence being clear from

the relation 0 = ξvrt∼ (0, ξa+Γ akbφ
bξk) (see January 14) characterizing horizontal vectors

among all vectors ξ tangent to E. The conclusion that one has ẏvrt = ∇ẋφ, at every t ∈ I,
for any smooth curve t 7→ y(t) = (x(t), φ(t)) in the total space E of a vector bundle with a linear
connection ∇ (Problem 2). Parallel transport along a curve in the base [DG, p. 82].
The effect of the pullback of connections on covariant differentiation of smooth sections
along curves:

∗∇ẏψ = ∇ẋψ for a section ψ of F ∗E along a curve t 7→ y(t) ∈ N (which

is simultaneously a section of E along the curve t 7→ x(t) = F (y(t)) ∈ M), obvious if

one writes [∇ẋψ]a = ψ̇a + Γ ajb ẋ
jψb and [

∗∇ẏψ]a = ψ̇a +
∗
Γ aλb ẏ

λψb, noting that ẋj = yλ∂λF
j

and
∗
Γ aλb = (∂λF

j)Γ ajb . Parallel transport along a curve in the base, relative to a linear
connection in a vector bundle. The parallel transport as “conjugation” in the case of Hom
connections. Linear connections on a manifold, that is, in its tangent bundle. The torsion
tensor field Θ = Θ∇ of such a connection ∇ and its component functions Θljk = Γ ljk − Γ lkj
[DG, pp. 79-80]. Torsion-free connections, also referred to as symmetric.
Homework: Problems 1 and 2, italicized above.
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February 14: Sylvester’s law of inertia implying that, if a bilinear symmetric (or, ses-
quilinear Hermitian) form g is nondegenerate, all such nearby forms have the same sign
pattern as g (since, on the unit sphere S in a maximal g-spacelike or g-timelike sub-
space, the quadratic function of g is positive/negative, which implies the same for nearby
forms due to compactness of S). Constancy od the sign pattern of a fibre metric, re-
quired by definition (but automatically satisfied when the base manifold is connected).
The observation that a mapping symmetric in the first two and skew-symmetric in the last two
arguments, defined on K × K × K, where the set K has more than one element, and taking
values in an Abelian group G with no elements of order 2, must be identically zero (Prob-
lem 1), which can also be justified by the fact that, in a permutation group, any two
transpositions are conjugate to each other and hence have the same value under any ho-
momorphism into an Abelian group such as {1,−1} with multiplication. A generaliza-
tion: injectivity of the assignment α 7→ (β, γ) with β(p, q, r) = α(p, q, r)− α(q, p, r) and
γ(p, q, r) = α(p, q, r) +α(p, r, q), where α : K ×K ×K→ G, for K,G as above. (Namely,
γ(p, q, r) + γ(q, p, r) − γ(r, p, q) + β(r, p, q) + β(r, q, p) + β(p, q, r) = 2α(p, q, r).) The h-
modified components Γjab = Γ cjahcb of a linear connection ∇ in a real vector bundle with a

fibre metric h, so that Γjab = h(∇∂jea, eb) and Γ bja = Γjach
cb. Here hab = h(ea, eb) are the

component functions of h [DG, p. 101], and hab are its ‘”reciprocal” components, with
the matrix relation [hab] = [hab]

−1 [DG, p. 105]. Compatibility of the fibre metric h with
∇, meaning that ∇h = 0 and, due to the Leibniz rule, equivalent to ∂jhab = Γjab + Γjba.

The Levi-Civita connection of a pseudo-Riemannian manifold (M, g), which is the unique
torsion-free connection ∇ in TM, compatible with g. Its components, the Christoffel
symbols Γ ljk given by Γ ljk = Γjkqg

ql with 2Γjkl = ∂jgkl + ∂kgjl − ∂lgjk. The last equality,
along with the existence of uniqueness of ∇, as obvious consequences of the formula for
2α eight lines earlier, applied to the equations Γjkl − Γkjl = 0 and Γjkl + Γjlk = ∂jgkl.

The velocity vector field t 7→ ẋ(t) of a smooth curve t 7→ x(t) a manifold M, giving
rise to the geodesic curvature (acceleration) vector field ∇̇xẋ, relative to any connection
∇ in TM, with the components [ ∇̇xẋ]k = ẍk + Γ klj ẋ

lẋj. The geodesics of a connection

∇ on M, that is, the smooth curves t 7→ x(t) ∈ M with ∇̇xẋ = 0 or, in coordinates,
ẍk + Γ klj ẋ

lẋj = 0. Existence and uniqueness of the ∇-geodesic t 7→ x(t) with any initial

data (x(a), ẋ(a)) = (z, v) ∈ TM, defined on a maximal open interval containing the given
parameter value a ∈ IR. The observation that, for a geodesic, the analog of ẍk + Γ klj ẋ

lẋj

obtained by replacing t with a new parameter s equals (dt/ds)2ẋ, and so affine parameter
changes are the only ones leading from a nonconstant geodesic to a geodesic. Example:
constant-speed line segments as geodesics of the standard flat connection in an open sub-
set of a finite-dimensional affine space. The affine space of linear connections in a vector
bundle E, with the space of smooth sections) of Hom(TM,Hom(E,E)) serving as its
translation vector space. The assignment ∇ 7→ ∇ − Θ∇/2 constituting a projection from
the set of all linear connections in TM onto the subset formed by torsion-free ones, meaning
that it is valued in the latter set an equal to the identity on it (Problem 2). The observa-
tion that ∇ has the same geodesics as its torsion-free part ∇ − Θ∇/2. The exponential
mapping expz : Uz → M, at a point z of a manifold M carrying a fixed connection ∇
in TM, having the domain Uz ⊆ TzM formed by all v ∈ TzM such that there exists
a ∇-geodesic [0, 1] 3 t 7→ x(t) with (x(0), ẋ(0)) = (z, v), and expzv then equals x(1).
(Obviously, 0 ∈ Uz and expz0 = z.) Two consequences of invariance of the geodesic equa-
tion under affine parameter changes (five lines eearlier). First, Uz is star-shaped in the
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sense of being closed under multiplications by all scalars c ∈ (0, 1). In fact, if v ∈ Uz and
c ∈ (0, 1), using the geodesic [0, 1] 3 t 7→ x(t) chosen as above we obtain a new geodesic,
[0, 1] 3 t 7→ y(t) = x(ct), for which (y(0), ẏ(0)) = (z, cv), and so cv ∈ Uz. Secondly, given
any geodesic t 7→ x(t) with x(0) = z defined on a maximal open interval I containing 0,
setting v = ẋ(0) ∈ TzM one gets tv ∈ Uz and x(t) = expz tv for all t ∈ I (which is obvious
when t = 0, and otherwise follows if one notes that the geodesic t−1I 3 t′ 7→ x(tt′) has the
initial velocity tv, while [0, 1] ⊆ t−1I). Openness of Uz, immediate from the open-domain
assertion in the regularity theorem for ordinary differential equations with parameters, the
initial conditions being considered a part of the parameters [DG, Theorem 80.3 on p. 213],
which also implies smoothness of expz : Uz →M.
Homework: Problems 1 and 2, italicized above.
February 16: The open-domain assertion in the regularity theorem for ordinary dif-
ferential equations with parameters, the initial conditions being considered a part of the
parameters [DG, Theorem 80.3 on p. 213], which implies not only openness of Uz and
smoothness of expz : Uz → M, but also smoothness of the “at-large” exponential map-
ping exp : UExp → M given by Exp(x, v) = expxv, along with openness of its domain
UExp = {(x, v) : x ∈ M and v ∈ Ux} as a subset of TM. Thus, UExp is a neighborhood
of the zero section in TM. Here we speak of a “neighborhood” of Y when Y is a subset
of a manifold M, referring to any open set in M which contains Y. The zero section of
a vector bundle E over a manifold M is the submaniifold {(x, v) ∈ E : v = 0 in Ex},
identified with M. (Generally, smooth sections of E are naturally identified with sub-
maniifolds of the total space which the bundle projection π maps diffeomorphically onto
the base M.) The observation that T(x,0)E = TxM ⊕ Ex. The fact that the differential
of expz at 0 equals the identity operator TzM → TzM (Problem 1), and so, by the in-
verse mapping theorem, expz restricted to a possibly smaller star-shaped neighborhood
of 0 in TzM maps it diffeomorphically onto a neighborhood of z in M. By forming a
composite in which the inverse of the latter diffeomorphism is followed by a linear iso-
morphism TzM → IRm, with m = dimM, one gets a coordinate chart, referred to as a
geodesic, or normal, coordinate system for ∇ at z. The augmented exponential mapping
Exp : UExp → M × M with Exp(x, v) = (x, expzv) and its local diffeomorphicity, at
any (x, 0) in the zero section M, its differential at (x, 0) being the identity automorphism
of T(x,0)(TM) = TxM ⊕ TxM = T(x,x)(M ×M) (Problem 1); cf. [DG, p.38] for the last

equality. Weak local convexity: given a manifold M and a connection ∇ in TM, every
point z ∈ M has arbitrarily small neighborhoods U such that any two points x, y ∈ U
can be joined by a ∇-geodesic depending smoothly on the pair (x, y). The meaning of the
last italicized clause: for all x, y ∈ U one has expxv = y, where v = v(x, y), with some
smooth mapping U × U 3 (x, y) 7→ (x, v(x, y)) ∈ TM. (Namely, the latter mapping is
nothing else that a locai inverse of Exp restricted to a suitable neighborhood of (z, 0) in
TM.) Linear involutions in vector spaces and the resulting ±1 “eigenspace” decompo-
sitions [DG, p. 145]. Examples: the linear/antilinear decomposition of real-linear operators
between complex vector spaces, and the Hermitian/skewH-ermitian decomposition of a sesquilin-
ear form on such a space (Problem 3). The second “universal shortcut” in addition to the
one from February 7: given a linear connection ∇ in a real/complex vector bundle E over
a manifold M and a point z ∈M, one can find local trivializing sections ea defined on a
neighborhood of z such that Γ bja(z) = 0 for all j, a, b and every local coordinate system

xj at z, immediate from the existence of smooth local sections ψ of E at z having any
prescribed value ψx ∈ Ex and [∇ψ]x = 0 (see February 5). Equivalence between vanish-
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ing at z ∈ M of the torsion tensor field of a given connection in TM and the existence
of local coordinates at z having Γ ljk(z) = 0 [DG, Problem 2 on p. 95], which is based

on observing that, for the given coodinates xj and new coodinates xj
′

at z, all ∂j′ are

parallel at z (or, equivalently, ∂j∂j′x
k = −Γ kjl ∂j′xl) if and only if ∂j∂kx

k′ = Γ ljk∂lx
k′ at

z [DG, formula (26.9) on p. 95], the equivalence being immediate if one multiplies the

last equality by ∂j′x
k, differentiates by parts obtaining (∂kx

k′)∂j∂j′x
k = −Γ ljk(∂j′x

k)∂lx
k′,

and then further multiplies by ∂k′x
p, repeatedly using the fact that – due to the chain

rule – the matrices [∂kx
j′ ] and [∂j′x

k] are each other’s inverses. The ensuing third “uni-

versal shortcut” allowing us to assume that Γ ljk = 0 at any chosen point z, as long as

the given connection in TM is torsion-free. The first Bianchi identity [DG, pp. 94]:
R(u, v)w + R(v, w)u + R(w, u)v = 0 for torsion-free connections and any vector fields
u, v, w, with the coordinate version Rjkl

q+Rklj
q+Rljk

q = 0 easily derived from the third
“universal shortcut” just mentioned. Another observation: if m = dimM, a ∇-geodesic
coordinate system at z may equivalently be characterized as any coordinate chart x1, . . . , xm on
a neighborhood U of z which identifies z and U with 0 and, respectively, with a star-shaped
neighborhood U′ of 0 in IRm, so that Γ ljk(x1, . . . , xm)xkxl = 0 identically on U′, which also
gives Γ ljk+Γ lkj = 0 at the origin (Problem 4). The possibility of using this very last conclusion
for an alternative proof of third “universal shortcut” (Problem 5). The covariant derivative
∇R of the curvature tensor R = R∇ of a connection ∇ in a real/complex vector bundle
E over a manifold M, depending, since R is a section of A(TM, TM,Hom(E,E)), also
on a fixed connection – usually assumed torsion-free – in TM, and arising via repeated
application of the Hom functor [DG, pp. 94-95]. The second Bianchi identity [DG, pp.
95]: Rjkb

a
,l+Rklb

a
,j+Rljb

a
,k = 0, for the connection in TM again assumed torsion-free,

easily derived using the second and third “universal shortcuts” (Problem 6), and having the
coordinate-free form [∇uR](v, w) + [∇vR](w, u) + [∇wR](u, v) = 0 (Problem 7).
Homework: Problems 1, 2, 3, 4, 5, 6 and 7, italicized above.
February 19: The second covariant derivative ∇(∇ψ) of a smooth local section ψ
of a real/complex vector bundle E over a manifold M [DG, p. 88], formed with the
aid of fixed connections in E and TM, both denoted by ∇, and obviously – due to
the Leibniz rule of February 7 – characterized by [∇w(∇ψ)]v = ∇w∇vψ − ∇uψ, where
u = ∇wv, for smooth local vector fields v on M, the component version of which reads
[∇w(∇ψ)]v = ψa,jkv

jwkea, where ψa,jk = ∂kψ
a
,j +Γ akbψ

b
,j−Γ lkjψa,l (Problem 1). The Ricci

identity ψa,jk − ψa,kj = Rjkb
aψb valid when the connection in TM is torsion-free [DG,

p. 88], immediate if one uses the second and third “universal shortcuts” (February 16)
but, once rewritten as [∇w(∇ψ)]v − [∇v(∇ψ)]w = R(v, w)ψ, also easily derived from the above
coordinate-free description of ∇(∇ψ) combined with the original expression for R(v, w)ψ, cf.
February 7 (Problem 2). The Ricci tensor r of a connection on a manifold [DG, p. 80],
with the components traditionally denoted by Rjk. The tensor product V1 ⊗ . . . ⊗ Vr =

L(V ∗1, . . . , V
∗
r ; IK) of finite-dimensional vector spaces V1, . . . , Vr over IK = IR or IK = C,

and the r-linear mapping V1× . . .×Vr → V1⊗ . . .⊗ Vr of tensor multiplication, written as
(v1, . . . , vr) 7→ v1⊗ . . .⊗ vr [DG, p. 143]. The tensor-product basis of V1⊗ . . .⊗Vr arising
from bases of V1, . . . , Vr [DG, p. 146]. The universal factorization property [DG, p. 147].
The canonical isomorphisms V1⊗ . . . ⊗ Vr ∼= Vσ(1)⊗ . . . ⊗ Vσ(r) for any permutation σ of

{1, . . . , r}, as well as V ⊗ IK ∼= V and Hom(V , V ′) ∼= V ∗⊗V ′ [DG, p. 148]. The (fibrewise
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defined) tensor product E1⊗ . . .⊗Er of smooth vector bundles E1, . . . , Er over a manifold
M, carrying a linear connection naturally induced by linear connections in E1, . . . , Er.
The Leibniz rule ∇w(ψ1⊗ . . . ⊗ ψr) = [∇wψ1] ⊗ . . . ⊗ ψr + . . . + ψ1⊗ . . . ⊗ ∇wψr for smooth
local sections ψ1, . . . , ψr of E1, . . . , Er (Problem 3). The rth symmetric and exterior
powers, V �r and V ∧r, of a finite-dimensional vector space V , the r-linear symmetric
and exterior multiplications of vectors, the bases of V �r and V ∧r resulting from a basis
of V , so that dimV �r =

(
n
r

)
if n = dimV , and the universal factorization properties

[DG, pp. 143-144]. The space V̂ = V ⊗ . . . ⊗ V ⊗ V ∗ ⊗ . . . ⊗ V ∗ of (p, q) tensors in
a finite-dimensional real/complex vector space V, with p factors equal to V and q to
V ∗. One also also refers to these tensors of type (p, q) as being p times contravariant,
q times covariant. Thus, vectors are once contravariant; linear functionals once covar-
iant; bilinear forms twice covariant; endomorphisms once contravariant, once covariant.
Tensor fields of type (p, q) on a manifold. The Ricci symbol ε

j1...jn
equal to the signum of

(j1, . . . jn) when it is a permutation of {1, . . . , n} and to zero otherwise [DG, p. 32], so

that det B = ε
j1...jn

B
j1
1 . . . B

jn
n if B is an n×n matrix. Volume forms in an n-dimensional

real/complex vector space V , that is, nonzero elements ω of [V ∗]∧n which, cvonsequently,
span [V ∗]∧n. The formula ω(Φe1, . . . , Φen) = (detB)ω(e1, . . . , en) for any linear endo-
morphism Φ of V , any basis e1, . . . , en of V , and any any volume form ω, where B is
the matrix of Φ relative to the basis e1, . . . , en [DG, p. 31], implying well-definedness of
the determiant detΦ (as the Φ-pullback Φ∗ : [V ∗]∧n→ [V ∗]∧n in the line [V ∗]∧n equals
the multiplication by detΦ).
Homework: Problems 1, 2 and 3, italicized above.
February 21: The immediate conclusion that det(ΦΨ) = (detΦ) detΨ for endomor-
phisms Φ, Ψ : V → V , since (ΦΨ)∗ = Ψ∗Φ∗ : [V ∗]∧n→ [V ∗]∧n. The derivation associated
with a linear endomorphism Φ : V → V , which itself is a linear endomorphism of the space
[V ∗]⊗r⊗W = L(V , . . . , V ,W ), for any vector space W and any integer r ≥ 1, and sends
any α to β given by β(v1, . . . , vr) = α(Φv1, v2, . . . , vr) + . . . + α(v1, . . . , vr−1, Φvr). The
observation that if α is symmetric, or skew-symmetric, so is β (Problem 1). The formula

(detA)̇ = (detA) tr(A−1Ȧ) for any C1 curve t 7→ A = A(t) ∈ GL(V ) [DG, p. 31]. The
conclusion that, for hab and hab introduced on February 14, hab∂jhab = ∂j log |deth|, with

deth depending on the local trivialization ea [DG, p. 125], and so Γ kkj = ∂j log
√
|detg|

in the case of the Levi-Civita connection of a pseudo-Riemannian metric g [DG, p. 125].

The relation α(Bi11 vi1 , . . . , B
ir
r vir ) = (detB)α(v1, . . . , vr), if α is r-linear, skew-symmet-

ric, and B is an r × r matrix [DG, p. 32]. The fact that detB = ±1 for the transition
matrix B between two orthonormal bases of a pseudo-Euclidean space [DG, Problem 18
on p. 50]. Densities in finite-dimensional real vector spaces [DG, p. 123]. Example: the
absolute value of a top-degree exterior form. (By degree r exterior forms in V one means
elements of [V ∗]∧r.) The volume element of a pseudo-Euclidean space. The oriented
smooth real-line bundle of densities in a smooth real vector bundle over a manifold M
[DG, p. 123], and the connection induced in it by any given connection in TM, via the
connection in [T∗M ]∧n, for n = dimM. The volume element µ = dg of an n-dimensional

pseudo-Riemannian manifold (M, g), with the essential component µ1...n =
√
|detg| [DG,

p. 124]. The divergence operator δ associated with a smooth positive density µ on an n-
dimensional manifold, sending any smooth vector field w to the function δw characterized
by the local-coordinate formula µ1...nδw = ∂j(w

jµ1...n) [DG, p. 125]. Coordinate-inde-
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pendence of this definition, verified by simultaneously showing that δw = tr∇w when µ
is the volume element dg of a pseudo-Riemannian metric g and ∇ is the Levi-Civita
connection of g [DG, p. 125].
Homework: Problem 1, italicized above.
February 23: The volume form of an oriented nonzero pseudo-Euclidean vector space.
Orientability and orientations of a real vector bundle E of positive fibre dimension, and
the volume form of a fibre metric in E when E is oriented (meaning: orientable, with
a fixed orientation). Tracelessness of the curvature operators R(v, w) of a connection
∇ in a real vector bundle of fibre dimension q admitting, locally, a nonzero parallel
density (or, volume form ω): as ω1...q,j = ∂jω1...q − Γ ajaω1...q, assuming that ∇ω = 0

we get symmetry of ∂kΓ
a
ja in j, k, which amounts to Rjka

a = 0, as one sees using the

second “universal shortcut” (February 16) to get Γ bja = 0 at any given point z. The
special case, cf. [DG, Problem 9 on p. 105], of a connection compatible with a fibre metric
h, with the stronger conclusion: R(v, w) are h-skew-adjoint, both in the real and the
complex case [DG, Proposition 28.2 on p. 103], the complex case being immediate from
the real one since a complex-line-ar is self/skew adjoint relative to a pseudoo-Hermitian inner
product if and only if it is self/skew adjoint relative to its real part (Problem 1). The h-
modified curvature tensor of a connection, where h is a fibre metric, and its components
Rjkab. ‘Parallel’ meaning the same as ‘invariant under all parallel transports’ due to the

equality [∇ẋφ](t) = ∇ẋ(t)ψ (February 12, seventh line). Symmetry of the Ricci tensor

when the connection ∇ in TM is torsion-free and, locally, admits a nonzero parallel
density (or, volume form), immediate from the first Bianchi identity (example: Levi-Civi-
ta connections). The space R(T ) of algebraic curvature tensors R in a real vector space
T , defined by the requirements that R(u, u′, v, v′) = −R(u′, u, v, v′) = −R(u, u′, v′, v), as
well as R(u, v, w, · ) +R(v, w, u, · ) +R(w, u, v, · ) = 0 for all u, v, w, u′, v′ ∈ T , imposed on
a quadrilinear form R : T × T × T × T → IR [AC]. The tetrahedron version of Milnor’s
octahedron argument [MT] showing that one then also has R(u, u′, v, v′) = R(v, v′, u, u′),
which, with the ad hoc notation abcd for R(a, b, c, d), consists of the following steps:
2abcd = abcd+ badc = −(bcad+ cabd)− (adbc+ dbac) = −(cbda+ acdb)− (dacb+ bdca) =
−(cbda+ bdca)− (acdb+ dacb) = dcba+ cdab = 2cdab (summary: place c, d at the end,
use Bianchi, place a, b at the end, again use Bianchi).
Homework: Problem 1, italicized above.
February 26: General reference: [AC]. The space S(T ) = [T ∗]�2 = S(T, T, IR) of
symmetric (0, 2) tensors in T , that is, symmetric bilinear forms T × T → IR. The g-
trace functional tr : S(T ) → IR, under the assumption – made from now on – that T is
finite-dimensional and carries a fixed pseudo-Euclidean inner product g ∈ S(T ), where tr
assigns to any bilinear form b : T × T → IK the trace of the linear operator A : T → T
characterized by g(Au, · ) = b(u, · ) for all u ∈ T. The formula tr b =

∑
i εib(ei, ei) whenever

ei is an orthonormal basis of T and εi = g(ei, ei) ∈ {1,−1} (Problem 1). More on the
space R(T ) of algebraic curvature tensors in a real vector space T of dimension n ≥ 1
carrying a fixed pseudo-Euclidean inner product g ∈ S(T ). The Ricci contraction operator
Ric : R(T ) → S(T ), with [Ric(R)](u, v) = tr R(u, · , v, · ), Another proof of symmetry of
r for Levi-Civita connections. The Kulkarni-Nomizu product b ∧ d ∈ R(T ) of symmetric
(0, 2) tensors b, d ∈ S(T ), with 2(b ∧ d)(u, u′, v, v′) = b(u, v)d(u′, v′) + b(u′, v′)d(u, v) −
b(u′, v)d(u, v′)−b(u, v′)d(u′, v). the easily verified formula 2 Ric(g∧d) = (n−2)d+(tr d)g,
with the special case Ric(g∧g) = 2(n−1)g. One-dimensionality of R(T ) when n = 2 and
the resulting equality R = Kg ∧ g, with the Gaussian curvature k of R, both immediate
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since Ric(g ∧ g) = 2(n− 1)g 6= 0, and so g ∧ g 6= 0 unless n = 1, while R 7→ R1212, in any
basis, is clearly injective. The conclusion that Ric(R) = Kg if n = 2, and its version for
pseudo-Riemannian surfaces. Three subpaces of R(T ), namely, W(T ) = Ker Ric, B(T ) =
{g ∧ b : b ∈ S(T )} and E(T ) = {g ∧ b : b ∈ S(T ) and tr b = 0}. The resulting direct-sum
decompositions R(T ) = [IRg ∧ g] ⊕ E(T ) ⊕W(T ) and and B(T ) = [IRg ∧ g] ⊕ E(T ).
The fact that W(T ) = {0} if n ≤ 3. For n = 3 we get W = 0 as follows. If R ∈ R(T )
and r = Ric(R), in any orthonormal basis ei of T with εi = g(ei, ei) ∈ {1,−1}, if i, j, k
are distinct, εiRijik = rjk, so, setting aij = aji = εiεjRijij , we get aij + aik = εirii. Thus,

R = 0 whenever r = 0 since the three numbers aij then are mutually opposite (and
hence all zero). The scalar curvature functional R(T ) 3 R 7→ s = tr [Ric(R)] ∈ IR. The
explicit decomposition R = S+E+W (scalar plus Einstein plus Weyl) of any R ∈ R(T ),
corresponding to the above equality R(T ) = [IRg ∧ g] ⊕ E(T ) ⊕ W(T ), which uses the
Einstein, Schouten and Weyl tensors e, h and W of any R ∈ R(T ), given by e = r−sg/n,
h = r − sg/(2n − 2), if n ≥ 2 and W = R − 2(g ∧ h)/(n − 2), if n ≥ 3. Specifically,
n(n − 1)S = sg ∧ g and (n − 2)E = 2g ∧ e. (For n = 1 and n = 2 we already know
that R = S = E = W = 0 and, respectively, E = W = 0.) Proof that S,E,W have the
form just described: W differs from R by an element of B(T ) = {g∧ b : b ∈ S(T )} while,
obviously, trh = (n− 2)s/(2n− 2), and so thd formula 2 Ric(g ∧ d) = (n− 2)d+ (tr d)g
(see above) yields Ric(W) = 0, as required. Easily derived explicit expressions of R as a
linear combination of sg∧g, g∧e and W , or sg∧g, g∧e and W (Problem 2). The scalar
curvature function s = tr r of a pseudo-Riemannian metric in any dimension n ≥ 1, along
with its Einstein, Schouten and Weyl tensors e, h and W, expressed as above, with n
assumed greater than 1 of 2 when necessary. The resulting classes of metrics: scalar-flat
(S = 0), Einstein (E = 0), conformally flat (W = 0), of constant (sectional) curvature
(E = W = 0), conformally flat scalar-flat (S = W = 0), Ricci-flat (S = E = 0), flat
(R = 0), where the lowest dimensions n ≤ 3 require additional provisions. The fact that,
for the Lie group G of invertible elements in a finite-dimensional real/complex associative
algebra A with unit 1, under the standard identification g = T1G = A, the Lie bracket in
g becomes the commutator: [v, w] = vw −wv (since [v, w] = dvw − dwv for vector fields
v, w on an open set ... and the differntial of a lineat operator A at any point equals A)
Homework: Problems 1 and 2, italicized above.

February 29: The sectional curvature and Ricci curvature functions, K : Gr+2 T → IR
and Rc : P+T G1 → IR, associated with any R ∈ R(T ), and the fact that R is uniquely
detdermined by the former Gr+2 T and P+T being the subsets of Gr2T and PT consisting
of nondegenerate planes/lines in T . Constant sectional curvature K meaning precisely
that R = Kg ∧ g. Integral curves of smooth vector fields on a manifold [DG, p. 219].
The local flow etw of a smooth vector field w on a manifold M [DG, pp. 219-221],
constituting a smooth mapping Yw 3 (z, t) 7→ etwz ∈ M from the open subset Yw of
M × IR, given by Yw = {(z, t) ∈ M × IR : t ∈ Iz}, into M, with Iz denoting the maximal
open interval containing 0 on which one can define an integral curve t 7→ x(t) of w
having x(0) = z, and then x(t) = etwz for all t ∈ Ix. (Openness of Yw and smoothness of
(z, t) 7→ etwz are both immediate from the regularity theorem mentioned near the end on
February 14.) The phrase “etwz exists” expressing the relation (z, t) ∈ Yw, that is, t ∈ Iz.
Correctness of our notation: etwz depends only on z and the product vector field tw,
rather than t and w separately (which is obvious when tw = 0, and otherwise, follows
since, given Iz 3 t 7→ x(t) as above and any λ ∈ IR r {0}, the maximal integral curve
λ−1Iz 3 t′ 7→ x(λt′) of w′ = λw shows that etwz exists, for t = λt′, if and only if so
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does et
′w′z, and then etwz = et

′w′z). The homomorphic property of local flows: if eswz
and etweswz both exist, then e(t+s)wz exists as well, and etweswz = e(t+s)wz [DG, p.
220]. The flow transformations etw given by x 7→ etwx, each with the (open, possibly
empty) domain Ut consisting of all x such that etwz exists, which constitute – unless Ut
is empty – diffeomorphisms etw : Ut → U−t having the inverses e−tw [DG, p. 220]. The
effect of projectability of vector fields under mappings F : M → N on integral curves: if
(dF )w = u on F (M), then F sends integral curves of w to those of u. The special cases
of push-forwards of vector fields under diffeomorphisms, and of left-invariant vector fields
on a Lie group.
March 1: Completeness of a smooth vector field w on M, defined as the equality Yw =
M×IR, so that it follows if Yw contains M×[−ε, ε] for some ε ∈ (0,∞) and, consequently,
smooth vector fields with compact supports, including smooth vector fields on compact
manifolds, as well as left-invariant and right-invariant vector fields on Lie groups, are all
complete [DG, p. 224]. Proof: given the maximal integral curve Iz 3 t 7→ x(t) of w with
x(0) = z, and any c ∈ Iz, using the integral curve [−ε, ε] 3 t 7→ y(t) of w for which
y(0) = x(c) we get y(t− c) = x(t) whenever t ∈ [−ε, ε] + c from uniqueness of solutions
applied to t = c, so, as c ∈ Iz was arbitrary, [−ε, ε] + Iz ⊆ Iz, clearly implying that
Iz = IR. One-parameter subgroups of a Lie group G, meaning: Lie-group homomorphisms
IR→ G, and the observation that they are precisely the maximal integral curves t 7→ x(t)
of both left-invariant and right-invariant vector fields on G having x(0) = 1. Namely, if
s, t ∈ IR, then IR 3 t 7→ [x(s)]−1x(s + t) is an integral curve of the same vector field, and
hence it equals t 7→ x(t) due to uniqueness of solutions, proving that x(s+ t) = x(s)x(t).
The exponential mapping exp : g → G given by exp v = ev1. The flow of w ∈ g,
with etw = Rexp tw. The exponential-series formula for exp when G is the Lie group of
invertible elements in a finite-dimensional associative algebra A with unit. Push-forwards
of tensor fields and connections under diffeomorphisms. Left-invariant connections ∇ on
a Lie group G identified with arbitrary bilinear mappings g × g 3 (v, w) 7→ ∇vw ∈ g.
The left-invariant connections ∇c, for any c ∈ IR, sending (v, w) ∈ g to c[v, w], and
their obvious bi-invariance. The special cases: L = ∇0, and the standard bi-invariant tor-
sion-free connection D = ∇1/2. The bi-invariant connection R making all right-invariant
vector fields parallel (the version of L for G with the reversed multiplication). Affine
combinations of connections. The Lie derivative £wΘ of a tensor field (or a connection)
Θ in the direction of a vector field w, both assumed smooth, defined to be the derivative
with respect to the real variable t, at t = 0, of (de−tw)Θ. The interpretation of £wΘ at
a point, in the case of tensor fields, as the limit of a difference quotient, and its analog
for covariant derivatives (with parallel transports replacing flow transformations). The
formulae £wf = dwf for functions f, immediate from the definition, and £wu = [w, u]
for vector fields u, to be proved later.

March 4: Proof of the formula £wu = [w, u] for smooth vector fields w, u, obtained as
a trivial consequence of the identity d[(detw)u]/dt = (detw)[u,w] = [(detw)u,w] on U−t
[DG, p. 222], the second equality in which is obvious as the local flow of w preserves
w (by shifting the parameter of its integral curves), while push-forwards under diffeomor-
phisms are Lie-bracket homomorphisms. The mutually equivalent conditions imposed on
vector fields w, u: vanishing of [w, u], or of £wu, or of £uw, the local flow of w preserv-
ing u, vice versa, the two flows commuting (locally or “wherever defined”). Corollary: a
connected Lie group G is Abelian if and only if so is its Lie algebra g (meaning that
[ , ] = 0 on g). Proof based on the relation etw = Rexp tw for w ∈ g (March 1). The
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fourth “universal shortcut” allowing us, when we prove an equality involving a smooth
section ψ of a vector bundle, to assume that either ψ = 0 identically or ψ 6= 0 every-
where in the domain under consideration, based on denseness, in the base manifold, of the
union of the set defined by ψ 6= 0 and the interior of the zero set of ψ (Problem 1). The
formula [£w∇]ljk = wl,jk − wqRqkjl for functions f and torsion-free connections ∇, the

former obvious, the latter, also written as [£w∇]uv = [∇v(∇w)]u−R(w, v)u with arbitrary
vector fields u, v, justified – via the fourth “universal shortcut” – as follows. If w = 0
identically, both sides vanish. At points where w 6= 0, locally, w = ∂1 for some local coor-
dinate system xj (Problem 2), and we have [£w∇]ljk = ∂1Γ

l
jk (from the definition of Lie

derivative) as well as wl,j = Γ lj1 and wl,jk = ∂kΓ
l
j1 +Γ lkqΓ

q
j1 −Γ

q
kjΓ

l
q1 (see Febrary 19), so that

[£w∇]ljk − wl,jk = R1kj
l due to the component description of R (February 7) combined

with symmetry of Γ ljk in j, k (February 12). Tensor, symmetric and exterior multiplica-

tions between tensor-product and symmetric/exterior power spaces [DG, p. 148]. The
contraction in the jth contravariant and kth covariant argument/index, which is a linear

operator assigning to a (p, q) tensor Θ in V the (p − 1, q − 1) tensor Θ̂ defined, when

1 ≤ j ≤ p and 1 ≤ k ≤ q, by setting Θ̂(ξ1, . . . , ξj−1, ξj+1, . . . , ξp, v1, . . . , vk−1, vk+1, . . . vq) =

tr [Θ(ξ1, . . . , ξj−1, · , ξj+1, . . . , ξp, v1, . . . , vk−1, · , vk+1, . . . vq) for tr : L(V ∗, V ; IK)→ IK that

sends (ξ, v) to ξv, IK being the scalar field. The component expression Θ̂
a1...aj−1aj+1...ap
b1...bk−1

b
k+1

...bq
=

δ
bk
a
j

Θ
a1...ap
b1...bq

, and the equivalent characterization of Θ 7→ Θ̂ via v1⊗ . . .⊗ vp⊗ ξ1⊗ . . .⊗ ξq 7→
(ξjvk)v1⊗ . . .⊗vk−1⊗vk+1⊗ . . .⊗vq⊗ξ1⊗ . . .⊗ξj−1⊗ξj+1⊗ . . .⊗ξp (Problem 2). General

properties of the operator £w acting on smooth tensor fields: due to the analogous facts
concerning push-forwards, £w obeys the Leibniz rule relative to tensor multiplication, and
commutes with contractions. The fact that d[(detw)Θ]/dt = (de−tw)£wΘ whenever Θ
is a smooth tensor field (or a connection), immediate from the definition of £wΘ since
etweswz = e(t+s)wz [DG, p. 220]. The obvious corollary that £wΘ = 0 if and only if
the local flow of w preserves Θ. A system of derivations for vector spaces V , V ′, V ′′ and
a bilinear “multiplication” V × V ′ 3 (x, y) 7→ xy ∈ V ′′, defined to be a triple of linear
endomorphisms of V , V ′ and V ′′, all denoted by a common symbol such as δ, and satis-
fying the condition δ(xy) = (δx)y + x(δy) whenever x ∈ V and y ∈ V ′, an example of
which is δ = £w and the spaces V , V ′, V ′′ of smooth tensor fields of types (p, q), (p′, q′)
and (p+ p′, q+ q′) with the tensor multiplication (see the above Leibniz rule). The trivial
observation that the commutator of two such derivation systems (carried out separately
in each of V , V ′, V ′′) is again a derivation system. The property £[w,u] = [£w,£u] of Lie

derivatives acting on smooth tensor fields of any type (p, q), immediate since it holds when
applied to functions and vector fields (January 24).
Homework: Problems 1 and 2, italicized above.
March 6: Variations (t, s) 7→ x(t, s) of smooth curves in a manifold M and smooth
sections (t, s) 7→ ψ(t, s) ∈ Ex(t,s), along such a variation, of a vector bundle E over

M [DG, p. 90]. The partial derivatives xt, xs and partial covariant derivatives ψt, ψs,
the former being sections of TM along the variation, the latter, depending on a fixed
connection in E, constituting, again, sections of E along the variation [DG, p. 91].
The second and higher order partial covariant derivatives, written without parentheses:
ψtt, ψts, ψst, ψss, ψttt, etc., as well as xtt, xts, xst, xss, all requiring the presence of a fixed
connection in the tangent bundle, always assumed torsion-free [DG, p. 91]. The equality
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xts = xst, easily verified using the third “universal shortcut” of February 16, and the Ricci
identity ψts − ψst = R(xt, xs)ψ (Problem 1). The holonomy group Holx ⊆ GL(Ex),
at a point x ∈ M, of a linear connection ∇ in a real/complex vector bundle E over a
manifold M, formed by all parallel transports along piecewise smooth loops at x (curves
in M joining x to itself). The word ’piecewise’ may actually be dropped since a suitable
monotone reparametrization has the derivatives of all orders vanishing at the finitely many excep-
tional parameter values (Problem 2), and – as we saw – reparametrizations leave parallel
transports unaffected. The observation that the parallel transport along any piecewise
smooth curve in M joining x to y is an isomorprism Ex → Ey, conjugating GL(Ex)

onto GL(Ey) and Holx onto Holy. Thus, when M is connected, Holx has a unique

isomorphism type (and an isomorphically unique action on Ex). The holonomy theorem:
if Holz ⊆ G for a Lie subgroup G of GL(Ez)with the Lie algebra g ⊆ gl(Ez), then all the
curvature operators Rz(v, w), for v, w ∈ TzM, lie in g. First step in the proof: the variation
[−π, π]×[0, 1] 3 (t, s) 7→ x(t, s) = (1+eit)s of circles in C, with xt = iseit and xs = 1+eit.
Second step: the observation that, if a smooth curve t 7→ x(t) in a manifold M lies in a
submanifold P, and the derivatives of xj of orders 1, . . . , r−1 all vanish at some given t,
for some local coordinates, then the vector u with the components drxj/dtr, evaluated at
t, is tangent to P at x(t). In addition, this vector u does not depend on local coordinates used,
as duf equals dr[f(x(t))]/dtr at the given t, for all functions f (Problem 3). Third step:
with a fixed torsion-free connection in TM, and some neighborhood of the disk |z−1| = 1
in C treated as embedded in M so that 0 ∈ C becomes our z and the vectors 1, i tan-
gent to C at 0 are identified with any two prescribed linearly independent vectors v, w in
TzM, we consider a section ψ of E along our variation, with ψ(−π, s) = φ ∈ Ez constant
(independent of s) and ψt = 0, so that ψ(π, s) = Asφ, for As denoting the parallel trans-
port along [−π, π] 3 t 7→ x(t, s). Fourth step: the Ricci identity gives ψst = R(xs, xt)ψ
and ψsst = R(xs, xt)ψs + [R(xs, xt)ψ]s which, whenever s = 0 (for the remainder of this
long sentence) gives ψst = 0 (as xt = 0), and so ψs(π, 0) = 0, that is, A0 = Id and
[dAs/ds]s=0 = 0, while ψsst = Rz(xs, xts)ψ (remember, s = 0 and xt = 0). Fifth step:
at s = 0 (still), with x(t, 0) = z, the covariant derivative equals the ordinary derivative,
and so, since xs = 1 + eit and xts = xst = ieit, our ψss starts from the value 0 at t = −π
and has the t-derivative Rz(xs, xts)ψ = Rz(1 + eit, ieit)φ = Rz(1, ie

it)φ + Rz(e
it, ieit)φ,

where ψ = φ (a constant) along the curve t 7→ x(t, 0). Now d2As/ds
2 at s = 0 equals

the integral of the sum Rz(1, ie
it) + Rz(e

it, ieit) over t ∈ [−π, π]. The first integrates to
0, having the periodic antiderivative Rz(1, i sin t). (We identify C with a plane in TzM.)
The second term is constant, and equal – along with the integral – to Rz(v, w), due to
skew-symmetry of R in the first two arguments. The holonomy theorem follows from
the second step, with r = 2. The Gauss lemma: in a pseudo-Riemannian manifold, with
the metric also denoted by 〈 , 〉, one has 〈xt, xs〉t = 0 for any variation (t, s) 7→ x(t, s)
such that xtt = 0 and 〈xt, xt〉 is constant (a variation of geodesics, all with the same
“speed”), and its proof via trivial Leibniz-rule calculation using the fact that xts = xst
(see above). The simplest geometric application, to x(t, s) = expz tv(s), where s 7→ v(s) is
a smooth curve in the domain Uz ⊆ TzM of the exponential mapping expz at the point z
of a pseudo-Riemannian manifold (February 14) having a constant value of gz(v(s), v(s)),
with the conclusion that 〈xt, xs〉 = 0. An interpretation of this last conclusion: if we fix
z ∈ M along with v ∈ Uz, and let ( , ) be the symmetric bilinear form on TzM given
by (u,w) = gy(Hu,Hw), where H : TzM → TyM is the differential of expz at v, for
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y = expz v, so that ( , ) equals the H-pullback of gy to TzM, the tangent space of Uz at

v, then ( , ) and 〈 , 〉 = gz agree on the span IRv of v, while v is ( , )-orthogonal to the
〈 , 〉-orthogonal complement of v [DG, Lemma 32.2 on p. 111]. A physical interpretation
of the curvature as tidal effect, preventing (when nonzero) a truly inertial motion of rigid
macroscopic objects [DG, p. 92].
Homework: Problems 1, 2 and 3, italicized above.
March 20: Consequences, for tensor fields ξ of type (0, 1) and Θ of type (1, 1), of
the formula £wu = [w, u] for vector fields u, namely, (£wξ)u = dw(ξu) − ξ[w, u] and
(£wΘ)u = [w,Θu] − Θ[w, u], as well as the versions of these relations involving a fixed
torsion-free connection ∇, which read £wξ = ∇wξ + ξ∇w and £wΘ = ∇wΘ + [Θ,∇w].
The definition of an almost-complex structure on a manifold: a (1, 1) smooth tensor field
J with J2 = −Id, which amounts to realizing the tangent bundle as the underlying real bundle
of a complex vector bundle (Problem 1). Kähler connections on manifolds with a fixed
almost-complex structure J , meaning: torsion-free connections ∇ such that ∇J = 0. The
observation that for any connection ∇ in TM and any almost-complex structure J on M, one
has ∇J = 0 if and only if ∇ is a connection in TM treated as a complex vector bundle (Problem
2). Holomorphic mappings between almost-complex manifolds (that is, manifolds carrying
fixed almost-complex structures), defined by requiring smoothness and complex-linearity of
the differential at each point. Holomorphic vector fields w on an almost-complex manifold,
that is, w with the local flow which consists of holomorphic mappings, which is equivalent
to the condition £wJ = 0 (Problem 3). Corollary: due to the general formula £wΘ =
∇wΘ+[Θ,∇w] (see above), a smooth vector field w on a manifold with a Kähler connection
is holomorphic if and only if J and ∇w commute when viewed as endomorphisms of the
tangent bundle. The relation (£wb)(u, v) = dw[b(u, v)]− b([w, u], v)− b(u, [w, v]) involving
a tensor field b of type (0, 2) and any vector fields w, u, v, all smooth, along with its
the version (£wb)(u, v) = [∇wb](u, v) + b(∇uw, v) + b(u,∇vw) in the presence of a torsion-
free connection ∇. The special case £wg = g(A· , · ) arising when ∇ is the Levi-Civita
connection of a pseudo-Riemannian metric g and we set A = B+B∗ for B = ∇w. Killing
vector fields w (infinitesimal isometries) on a pseudo-Riemannian manifold (M, g), defined
by requiring that £wg = 0 (or, in other words, the local flow of w consist of isometries),
which is also equivalent to skew-adjointness of ∇w at every point. Affine diffeomorphisms
between manifolds with fixed connections in their tangent bundles, that is, diffeomor-
phisms sending one connection, via push-forward, onto the other. Affine vector fields w
on a manifold with a fixed connection ∇ (also called infinitesimal affine transformations),
defined by requiring the flow mappings etw to be affine, which is nothing else than the
condition £w∇ = 0 and hence, for torsion-free connections, amounts to wk,jl = wsRslj

k

(see March 4). The last condition rewritten, with a lowered index, w,jkl = Rjkl
qwq, thus

holds for every Killing field.
Homework: Problems 1, 2 and 3, italicized above.
March 22: The length of the image curve [a, b] 3 t 7→ x(t) = expz v(t), with the step
|Hv̇| ≥ |〈v̇, v〉|/|v| in its proof [DG, p. 111] immediate since |Hu| ≥ |〈u, v〉|/|v|, where H
is the differential of expz at v = v(t). The further observation that, under the additional
assumption of injectivity of the differential of expz at v(t) for every t ∈ [a, b], the above
inequality L ≥ |r(b)− r(a)| is strict unless all v(t) lie in a single line segment emanating
from 0 in TzM and the function t 7→ r(t) is weakly monotone [DG, p. 112]. The
injectivity radius rinj(z) ∈ (0,∞] of a Riemannian manifold at a point z [DG, p. 112].

Lemma 32.3 in [DG, p. 114].
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March 25: Proposition 32.4, Corollary 32.5 and Theorem 32.6 in [DG, pp. 112-113].
Lemma 33.1 in [DG, p. 114].

March 27: Proposition 32.4, Corollary 32.5, Lemma 33.1 and Theorem 32.6 in [DG, pp.
112-114]. Inequalities between symmetric bilinear forms. A fourth equivalent condition,
not listed explicitly in Theorem 32.6 (but appearing in its proof): any finite-length piece-
wise C1 curve [a, b] 3 t 7→ x(t) ∈M, with a < b <∞, has a linit as t→ b. Completeness
of g implying completeness of h when g ≤ Ch with a constant C. Completenss of a
metric on an affine space bounded from below by a positive constant. Finite partitions of
unity for a compact set Y in a manifold, and the special case of those subordinate to a
given open covering of Y [DG, p. 121].

March 29: Reminder from February 21: the divergence operator associated with a
smooth positive density on a manifold [DG, p. 125], and the relation divw = tr∇w in
the case of the volume element of a metric. The integral of a compactly-supported smooth
density and the volume of a compact pseudo-Riemannian manifold [DG, p. 124]. The
divergence theorem [DG, p. 127]. Integration by parts.

April 1: The relation divw = tr∇w of February 21 generalized to the case of a tor-
sion-free connection ∇ admitting a ∇-parallel smooth positive density µ. Proof of the
integration-by-parts formula, based on this last relation. The L2 inner product ( , ) and
norm ‖ ‖. The second covariant derivative ∇df, also known as the Hessian, of a smooth
local function in a manifold with a connection in TM [DG, p. 89] having the components
f,kj = ∂j∂kf − Γ lkj∂j , which implies symmetry of the Hessian of f for torsion-free connections
(Problem 1). The gradient vector field w = ∇f of a smooth function f on a pseudo-
Riemannian manifold (M, g), characterized by g(w, · ) = df, its components fk, = gkjf,j ,

also written as f,k The Laplacian ∆ with ∆φ = δ∇φ applied to smooth functions φ on
a pseudo-Riemannian manifold and the equality (∆φ, ψ) = −(∇φ,∇ψ) between L2 inner
products when one of the functions has a compact support (Problem 2), establishing both
symmetry of ∆ and, via the special case (φ,∆φ) = −‖∇φ‖2, its nonpositivity if the metric
is positive definite. Bochner’s lemma, stating that in the latter case, unders the connectedness
assumption, the condition ∆f ≥ 0 implies constancy of f (Problem 3). The Bochner
identity r( · , v) = div∇v − d(div v), in coordinates: Rjkv

k = vk,jk − vk,kj , immediate, via

contraction in l = p, from the Ricci identity Rjpk
lvk = v l,jp − v l,pj (see February 19) and

the resulting Bochner integral formula
∫
r(v, v)dg = ‖δv‖2dg −

∫
tr (∇v)2dg for a com-

pactly-supported smooth vector field v on a pseudo-Riemannian manifold (M, g) with the
Levi-Civita connection ∇ and the volume element dg. Successively narrower special cases:
(rv, v) = ‖δv‖2−

∫
tr (∇v)2dg when g is positive definite, and (rv, v) = ‖∆f‖2− ‖∇df‖2

if, in addition, v = ∇f for a compactly-supported smooth function f : M → IR, with
v 7→ rv referring to r treated as a bundle endomorphism of TM via g-index-raising.
The L2 norm ‖∇df‖ comes here from inner product 〈b, b′〉 of (0, 2) tensors [DG, p.
107] related, again via g-index-raising, to the inner product of endomorphisms A,B of
a pseudo-Euclidean space given by 〈A,B〉 = trAB∗. The Lichnerowicz theorem, stating
that on a compact Riemannian manifold of dimension n ≥ 2 having r ≥ (n−1)Kg, where
K ∈ IR, any nonzero eigenvalue λ of −∆ must satisfy the condition λ ≥ nK.
Homework: Problems 1, 2 and 3, italicized above.

April 3: The Schwarz inequality |∆f |2 ≤ n|∇df |2 for the (0, 2) tensors g and ∇df,
the Hessian of a smooth function f on an n-dimensional Riemannian manifold, which
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is obvious since 〈g, g〉 = n, and combined with the relations (f,∆f) = −‖∇f‖2 and
(rv, v) = ‖∆f‖2− ‖∇df‖2 if v = ∇f (see April 1) has the immediate consequence

nKλ‖f‖2 = nK(f,−∆f) = nK‖∇f‖2

≤ n

n− 1
(r∇f,∇f) =

n

n− 1
[‖∆f‖2− ‖∇df‖2] ≤ ‖∆f‖2 = λ2‖f‖2

in the case where K,λ ∈ IR, while r ≥ (n− 1)Kg and ∆f = −λf for a smooth function
f : M → IR on a compact Riemannian manifold (M, g) of dimension n ≥ 2. Proof of the
Lichnerowicz theorem, obvious from the above chain of inequalities. The projected linear
connections ∇± in E±, or ∇r in E r, for r = 1, . . . , q, arising when ∇ is a linear connection
in a vector bundle E = E+⊕E−, or E = E1⊕. . .⊕Eq, over a manifold M, given by ∇±v ψ =
[∇vψ]± or, respectively, ∇rv ψ = [∇vψ]r, with [ ]± (or [ ]r) denoting the projection mor-
phism from E onto the summand E± (or E r) treated as a subbundle of E. Compatibility
of ∇± with θ± whenever θ± are fibre metrics in E± and ∇ is compatible with their
orthogonal direct sum θ, since dv[θ

±(ψ, φ)] = dv[θ(ψ, φ)] = θ(∇v ψ, φ) + θ(ψ,∇v φ) =
θ([∇v ψ]±, φ) + θ(ψ, [∇v φ]±) for sections ψ, φ of E±. The fact that [F ∗∇]± = F ∗∇± for
pullbacks under a mapping F, immediate when the following characterization (February
9): [F ∗∇]v[F

∗ψ] = ∇wψ ∈ Ey = [F ∗E]x with y = F (x) and w = dFxv is applied to ∇± as

well. The special case ∇±ẋ φ = [∇̇xφ]± for smooth sections along curves. The pullback Φ∗Θ
of a (0, q) tensor Θ in a vector space V ′ under a linear operator Φ : V → V ′, which is
the (0, q) tensor in V with [Φ∗Θ](v1, . . . , vq) = Θ(Φv1, . . . , Φvq) whenever v1, . . . , vq ∈ V .
The pullback F ∗Θ of a (0, q) tensor field Θ on a manifold N under a smooth mapping

F : M → N, defined to be the (0, q) tensor field Θ̂ on M given by Θ̂x = Φ∗ΘF (x)

for any x ∈ M and Φ = dFx. Smoothness of Θ̂ following from that of Θ via the

obvious component formula Θ̂j1...jq = (∂j1F
a1) . . . (∂jqF

aq )(Θa1...aq ◦ F ). Nondegeneracy

of a smooth mapping F : M → N into a pseudo-Riemannian manifold (N,h), meaning
nondegeneracy of F ∗h at every point, and thus giving rise to the pseudo-Riemannian pull-
back metric g = F ∗h on M, not be confused with the pullback fibre metric F ∗h in F ∗TN.
The term ‘submanifold metric’ used for g = F ∗h when F (still assumed nondegenerate) is
the inclusion mapping of a submanifold M of N. The fact that all nondegenerate mappings
are immersions, and the converse implication holds when h is a Riemannian metric (Problem
1). Smoothness of the orthogonal complement E⊥ of a nondegenerate smooth vector

subbundle E of a real vector bundle Ê endowed with a pseudo-Riemannian fibre metric,
due to the existence of (smooth) orthonormal local trivializations. The normal bundle
[TM ]⊥ of a nondegenerate immersion F : M → N into a pseudo-Riemannian manifold
(N,h), that is, the orthogonal complement of TM treated as a subbundle of F ∗TN, and
its obvious canonical isomorphic identification [TM ]⊥ = [F ∗TN ]/[TM ] with the ordinary
normal bundle of the immersion F. The ensuing decomposition E = E+⊕E− (February

4) of E = F ∗TN into the summands E+ = TM and E−= [TM ]⊥. The notation [ ]tng

and [ ]nrm instead of [ ]+ and [ ]− for the summand projections F ∗TN = E → E±.

The relation ∇ = [F ∗D]tng between the Levi-Civita connections ∇ of the pullback metric
g = F ∗h on M, and D of h. Proof of this relation, in two parts. First, compatibility of
[F ∗D]tng with g follows: both pullbacks, and direct-summand projections of connections,

preserve compatibility. Second, [F ∗D]tng is torsion-free since so is D. Namely, the rank
theorem [DG, p. 33] easily shows that smooth local vector fields in M projectable under an
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immersion F : M → N realize as values all vectors tangent to M at all points (Problem
2). Using the fact that whenever two vector fields are tangent to a submanifold, so is
their Lie bracket [DG, Theorem 6.1 on p. 24], along with the definitions of the torsion
tensor field (February 12) and the Levi-Civita connection (February 14), we now obtain

our assertion. The conclusion that ∇̇xv = [Dẏw]tng for a smooth vector field t 7→ v(t)

along a smooth curve t 7→ x(t) ∈ M and the vector field w(t) = dFx(t)v(t), the latter

being tangent to N along the image curve y(t) = F (x(t)). Namely, ∇̇xv represents the
pullback, under the curve mapping t 7→ x(t), of the left-hand side of the equality ∇ =

[F ∗D]tng, while the corresponding pullback of the right-hand side must account for [Dẏw]tng

since, applied to connections, pullbacks commute with direct-summand projections (see the
relation [F ∗∇]± = F ∗∇± of February 27), and the composition of pullbacks is the same as
the pullback under the composite mapping, for both bundles and connections (Problem 3).

Two special cases: ∇̇xẋ = [Dẏ ẏ]tng for the velocity vector field t 7→ v(t) = ẋ(t) of the

curve, and ∇̇xv = [Dẋv]tng when M is a nondegenerate submanifold of (N,h). The

formula ∇̇xẋ = [Dẋ ẋ]tng, arising when both special cases occur at the same time. Thus,
the geodesics of a nondegenerate submanifold M of (N,h) are precisely those smooth
curves t 7→ x(t) ∈ M for which the acceleration vector field Dẋ ẋ, in (N,h), is normal to
M. The formula dϕx = 2〈x, · 〉 for the function ϕ : V → IR given by ϕ(x) = 〈x, x〉 on
a pseudo-Euclidean vector space V with the inner product 〈 , 〉, obtained when one lets
x depend smoothly on a parameter t and then applies d/dt to ϕ(x), using Problem 3 of
February 13. The conclusion that all values of ϕ : V r {0} → IR are regular, and so, due
to [DG, Theorem 9.6 on p. 35], every (nonempty) pseudosphere Σ = {x ∈ V : 〈x, x〉 = c},
where c ∈ IR r {0}, is a submanifold of V with the subset topology, having the tangent
spaces TzΣ = z⊥ at all z ∈ Σ. The equality V⊥⊥ = V valid whenever V is a vector
subspace of a pseudo-Euclidean vector space T , and immediate for dimensional reasons
(February 4), due to the obvious inclusion V ⊆ V⊥⊥ = V. Nondegeneracy of the orthogonal
complement V⊥ under the assumption of nondegeneracy of V, the sign pattern (metric
signature) being clearly complementary to that of V, which follows as V ⊕V⊥ = T (see
February 4): a vector in V⊥ orthogonal to V⊥ must be orthogonal to T , and hence zero.
The resulting nondegeneracy of every (nonempty) pseudosphere Σ = {x ∈ V : 〈x, x〉 = c},
where c ∈ IR r {0}, as a submanifold of the ambient pseudo-Euclidean vector space V
with the inner product 〈 , 〉. The description of ∇-geodesics IR 3 t 7→ x(t) ∈ Σ for the
Levi-Civita connection ∇ of the submanifold metric g of Σ, realizing any initial data
x(0) = z ∈ Σ and ẋ(0) = v ∈ TzΣ = z⊥ such that 〈v, v〉 = εc with ε ∈ {1,−1, 0}, which
has x(t) equal to z + tv (if ε = 0), or z cos t+ v sin t (if ε = 1), or z cosh t+ v sinh t (if
ε = −1): namely, ẍ = −εx is normal to Σ [MC, p. 2].
Homework: Problems 1, 2 and 3, italicized above.

April 5: The observation that nonconstant geodesics of (Σ, g) are suitably parametrized
circles, hyperbolas or lines in planes through 0 within V, depending on whether 〈 , 〉 restricted
to the plane is definite, or nondegenerate and indefinite or, respectively, degenerate and semi-
definite (Problem 1). The fact that, given a linear connection ∇ in a real/complex vector
bundle E over a manifold M, and a nonempty connected open set U, with V denoting the
space of ∇-parallel local sections of E defined on U, at every x ∈ U the evaluation operator
V 3 ψ 7→ ψx ∈ Ex is injective (Problem 2), and it becomes a linear isomorphism for
flat connections ∇ and all sufficiently small connected neighborhoods U of any given point
z ∈ M which, conversely, implies flatness of ∇ (Problem 3). The “Hessian-metric
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equation” ∇df = −Kfg with the unknown function f on a pseudo-Riemannian manifold
(M, g), for a constant K, and the idea of “encoding” its solutions f as ∇-parallel sections
(f, w) = (f,∇f) of the vector bundle E = [M × IR] ⊕ TM over M which is the direct
sum of the product line bundle M× IR and T ∗M, the connection ∇ in E being given by

∇v (f, w) = (dvf − g(v, w), ∇vw + Kfv). The curvature tensor R of ∇, having the form
R(u, v)(f, w) = (0, R(u, v)w −K[g(u,w)v − g(v, w)u]), as one easily sees using the general
curvature formula (February 7) combined with the first and second “universal shortcuts”
of February 7 and February 16 (so that ∇u,∇v,∇w, [u, v] and df all vanish at the point in
question). The obvious consequence: the metric g has constant sectional curvature K if
and only if ∇ is flat, that is, if and only if ∇ satisfies the condition described in Problem
3 [MC, p. 1]. Another fact, easily verified in local coordinates: for any connection ∇ on
a manifold M, any smooth curve t 7→ x(t) ∈ M, and any smooth function f : M → IR,
with ( )˙ = d/dt, at every t and x = x(t) one has [f(x)]̈ = [∇df ](ẋ, ẋ) + dwf, where
w = ∇̇xẋ [MC, p. 1]. The simplified form [f(x)]̈ = [∇df ](ẋ, ẋ) of the last formula in the
case of ∇-geodesics t 7→ x(t). Corollary: symmetry of the Hessian (Problem 1 of April 1)
and the April 3 – April 5 description of pseudosphere geodesics imply that, for any linear
homogeneous function on a pseudo-Euclidean vector space, its restriction f to a pseudo-
sphere of “radius squared” c 6= 0 satisfies the Hessian-metric equation ∇df = −Kfg with
K= 1/c. An immediate consequence: due to the unlimited solvability of this last equation,
∇ is flat (see Problem 2), and so – as shown above – the pseudo-sphere in question, with
its submanifold metric, is a pseudo-Riemannian manifold of constant curvature K= 1/c.
The conclusion, immediate from the chain of inequalities of April 3, that nK is the
lowest positive eigenvalue of −∆ for an n-dimensional Euclidean sphere with its sub-
manifold metric of constant sectional curvature K > 0, and the corresponding eigenspace
consists precisely of all linear functionals restricted to the sphere. A brief mention of the
Poincaré inequality ‖∇f‖2 ≥ λ1‖f‖2 for smooth functions f on a compact Riemannian
manifold without (or, with) boundary that have integral zero (or, respectively, vanish on
the boundary), λ1 being the lowest positive eigenvalue of −∆ in this function space, and
the inequality is strict except when ∆f = λ1f.
Homework: Problems 1, 2 and 3, italicized above.

April 8: Proof of these claims in the case of the closed interval [0, π] carrying the
obvious metric dt ⊗ dt, so that ∆ = ( )̈ with ( )˙ = d/dt for the standard variable t,
where one has λ1 = 1, and the λ1-eigenspace is spanned by the function t 7→ sin t (Problem
1). The proof is based on observing that, whenever ϕ : [0, π] → IR and H : (0, π) →
IR are functions with continuous derivatives ϕ̇ = dϕ/dt and Ḣ = dH/dt such that

ϕ(0) = ϕ(π) = 0 and there exist finite limits of tH(t) and t2Ḣ(t) as t → 0+, and of

(t−π)H(t) and (t−π)2Ḣ(t) as t→ π−, one necessarily has
∫ π
0

(Ḣ−H2)ϕ2dt≤
∫ π
0
ϕ̇2dt,

the inequality being strict unless ϕ = qe−F on (0, π) for some constant q and some

antiderivative F of H. Namely, nonnegativity of
∫ π
0

(ϕ̇2− Ḣϕ2 +H2ϕ2) dt follows since

it equals
∫ π
0

(ϕ̇+ Hϕ)2dt, as one sees noting that (ϕ̇2 + Hϕ)2 = ϕ̇2 + 2Hϕϕ̇ + H2ϕ2,

while the integrals of 2Hϕϕ̇ and −Ḣϕ2 coincide: 2Hϕϕ̇ + Ḣϕ2 = (Hϕ2) .̇ The Poin-
caré inequality for [0, π] and the claim about the equality case are now immediate if one
sets H(t) = − cot t (Problem 2). The general identity d[g(∇f,∇f)] = 2[∇df ](∇f, · )
for functions f on pseudo-Riemannian manifolds [MC, p. 1], immediate either from the
component calculation [f,kf,k],j = 2f,kf,kj , of from the symmetry of the Hessian ∇df =

g(A· , · ) for A = ∇w and w = ∇f (Problem 1 of April 1) combined with the Leib-
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niz rule: dv[g(w,w)] = 2g(∇vw,w) = 2g(Av,w) = 2g(Aw, v) = 2[∇df ](w, v). Isometries
between pseudo-Riemannian manifolds. The classification theorem: as a special case of
a result due to Élie Cartan [Sur une classe remarquable d’espaces de Riemann, Bull. Soc.
Math. France 54, 1926, 214–264], any pseudo-Riemannian manifold (M, g) of constant
curvature K 6= 0 is locally isometric to a pseudo-sphere Σ = {x ∈ V : 〈x, x〉 = 1/K}
of “radius squared” c = 1/K in a pseudo-Euclidean vector space V (‘locally isometric’
being shorthand for: every point of the former manifold has a neighborhood isometric to
an open submanifold of the latter). Proof [MC, p. 2]: V consists here of functions f with
∇df = −Kfg defined on a fixed sufficiently small connected neighborhood U of any given
point in M, with the inner product 〈 , 〉 in V characterized by 〈f, f 〉 = g(∇f,∇f) +Kf2,
which is easily seen to be constant due to the condition ∇df = −Kfg and the general
identity d[g(∇f,∇f)] = 2[∇df ](∇f, · ) (see above). One also easily verifies nondegeneracy of
〈 , 〉 (Problem 3). As a next step, we define Φ : U → V by ϕ(x) = f, for the unique
f ∈ V with f(x) = 1/K and dfx= 0. Naturality of the (seemingly strange) definition of
Φ, obvious when one uses 〈 , 〉 to identify V with V∗, since Φ now becomes the mapping
U → V∗ assigning to each x the evaluation (Dirac delta) functional V 3 f 7→ f(x) ∈ IR.
The observations that the values of Φ all lie in the pseudosphere Σ = {y ∈ V : 〈y, y〉 = 1/K}
(Problem 4), while, for an open interval I and a curve I 3 t 7→ f(t, · ) valued in a fi-
nite-dimensional vector space V of smooth functions on a manifold M, smoothness of the curve
is equivalent to smoothness of the mapping I ×M 3 (t, x) 7→ f(t, x) ∈ IR (Problem 5),
as one notes choosing a basis of V. The differential of Φ at any point z = z(t) of a

smooth curve t 7→ z(t) ∈ M, sends v = ż(t) to dΦzv = ḟ, the unique function ḟ ∈ V
with ḟ(z) = 0 and dḟz = g(v, · ), as one sees using the partial derivatives ḟ = ∂f/∂t
and ∂jf (for fixed local coordinates in U), all of which are functions of (t, x), expressing

our definition of Φ as f = 1/K and ∂jf = 0 at (t, z(t)) (these and subsequent relations
being valid at (t, z(t))), and then applying ( )̇ = d/dt to the last two equalities, obtaining

(from the chain rule) ḟ + żk∂kf = 0 and ∂j ḟ + żk∂k∂jf = 0, at (t, z(t)). Now, since

f,jk = ∂k∂jf − Γ lkj∂lf, the Hessian-metric equation satisfied by f, combined with the

relations f = 1/K and ∂jf = 0 at (t, z(t)), allows us to rewrite these last two equalities

as ḟ = 0 and 0 = ∂j ḟ+ żlf,jl = ∂j ḟ−Kfżlgjl = ∂j ḟ− żlgjl. With z(t) = z and ż(t) = v at

fixed t, our claim about dΦzv follows. Finally, our description of ḟ = dΦzv clearly gives

〈ḟ , ḟ 〉 = g(v, v) or, in other words, g equals the Φ-pullback of the submanifold metric of
the pseudosphere Σ = {y ∈ V : 〈y, y〉 = 1/K}, which makes Φ : U → Σ an immersion,
and hence locally diffeomorphic due to equality of the dimensions and the inverse mapping
theorem. Thus, Φ is, locally, is an isometry between open sets in U and open subsets of
Σ, which completes the proof.
Homework: Problems 1 – 5, italicized above.

April 10: The effect of operations applied to connections on the curvature tensor, ex-
pressed via the curvature operators B = R(v, w), where the vector fields v, w are fixed.
First, B = B1⊕ . . .⊕Bq for the direct-sum connection ∇ in E = E1⊕ . . .⊕Eq, where Bj
are associated with the given connections in Ej , j = 1, . . . , q, as one sees using the component
description of R (February 7) in a direct-sum type local trivialization for E (Problem 1).
Second, R′(v, w) = R(v, w) (restricted to E′) in the case of a ∇-parallel subbundle E′ of
E, a connection ∇ in E and the resulting connection ∇′ in E′ and the resulting Third,
R(v, w)Φ = [R′(v, w)]◦Φ−Φ◦ [R(v, w)], for sections v, w of TM and Φ of E (or, elements
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v, w of TxM and Φ of Êx, where x ∈ M), vector bundles E,E′ with linear connections
∇,∇′ over a base manifold M, and ∇ in E = Hom(E,E′) obtained by applying the Hom

functor, R,R′, R̂ being the curvature tensors of ∇,∇′, ∇̂. This easily follows (Problem 2)
from the Leibniz-rule characterization of ∇ (February 7). One has two special cases, and
an “alternative interpretation” of the formula for R(v, w)Φ. In one case, E = E′ and
∇ = ∇′, resulting in the commutator relation R(v, w)Φ = [R(v, w), Φ], in the other ∇′
is the standard flat connection D in the product line bundle M × IK, so that ∇ equals
the dual of ∇ in the dual E∗ = Hom(E,M × IK) of E, and R(v, w)ξ = −ξ[R(v, w)],
with ξ now denoting a section of E∗. Affine diffeomorphisms between manifolds with
fixed connections which, in the case of vector spaces with standard flat connections, are just the
ordinary affine isomorphisms (Problem 3). The local classification of flat torsion-free con-
nections ∇ in tangent bundles: such ∇, in TM, is locally diffeomorphically equivalent to
the standard flat connection D in TN, for a vector space N. Proof: one easily verifies that
the curvature tensor R of the connection ∇ in the vector bundle E = [M × IR] ⊕ T ∗M
over M, given by ∇v (f, ξ) = (dvf − ξv, ∇v ξ), with ∇ also denoting the dual of ∇ in
T ∗M, has the form R(v, w)(f, ξ) = (0,−ξ[R(v, w)]). Flatness of ∇ now implies that of
∇. For any fixed z ∈ M, let V be the vector space of ∇-parallel local sections (f, ξ)
of E having f(z) = 0 and defined on a connected neighborhood U of z, small enough
so that V has the same dimension m as M, and we can choose a basis (xj, dxj) of V,
j = 1, . . . , n. Having linearly independent differentials at z, the functions xj restricted
to a suitable smaller neighborhood U ′ of z form – due to the inverse mapping theorem
– a local coordinate system, that is, a diffeomorphism F between U ′ an open set in IRn.
Identifying U ′ with the image F (U ′) and ∇ with the connection on the resulting open set
U ′ = F (U ′) ⊆ IRm arising as the F-push-forward of ∇, we see that the differentials dxj of
the coordinate functions xj are ∇-parallel. Thus, the component functions Γ ljk of ∇ rela-
tive to the standard coordinate system of IRm must vanish identically, being characterized
by ∇∂j∂k = Γ ljk∂l (February 5), so that, with ∇ also denoting the dual of ∇, the formula

∇∂je
a = −Γ ajb eb of February 7, or [DG, pp. 87-88], now yields 0 = ∇̂∂jdx

l = −Γ ljkdxk, the

local trivializations ∂j and dxj being dual to each other [DG, formula (5.26) on p. 21],

which completes the proof. An equivalent assertion: expz : U → U ′ is then an affine
diffeomorphism between suitably chosen connected neighborhoods of 0 in TzM and z in
M (which is immediate as it holds for the standard flat connection, having expz v = z+v).
The conclusion about flat pseudo-Riemannian manifolds (M, g) being locally isometric to
pseudo-Euclidean vector spaces with constant metrics: expz : U → U ′ as above, being
affine, pushes the pseudo-Euclidean of TzM, restricted to U, onto a parallel metric on U ′,
which must equal g since it equals g at the point z (Problem 4). The central argu-
ment needed to prove the Myers theorem – much more general than the theorem itself, as
stated in [DG, p. 119]: if a length L geodesic [0, π] 3 t 7→ x(t) in a Riemannian manifold
of dimension n ≥ 2 is locally minimizing – meaning: not longer than all nearby smooth curves
joining its endpoints – and r(ẋ, ẋ) ≥ (n− 1)Kg(ẋ, ẋ) at all x = x(t), where K ∈ (0,∞), then
L ≤ π/

√
K. Proof of the above statement [DG, p. 119].

Homework: Problems 1 – 5, italicized above.

April 12: Proof of Myers’s theorem [DG, pp. 119-120]. Further conclusion: M then also
has a finite fundamental group, due to the resulting compactness of its universal covering.
The scalar curvature function s : M → IR of a pseudo-Riemannian manifold (M, g), withy
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s = trg r, so that s = gjkRjk. The exterior derivative of a smooth local (0, 2) tensor field

b on a manifold with a connection, which is the (0, 3) tensor field Z = db given by
Zjkl = bkl,j − bjl,k. The identities Rjkl

p
,p = Rjl,k − Rkl,j for torsion-free connections,

and 2gklRjk,l = s,j (known as the Bianchi identity for the Ricci tensor), valid in all pseu-
do-Riemannian manifolds, and obtained by successive contractions of the second Bianchi
identity (February 16). The coordinate-free versions of these identities: δR = −dr and
2δr = ds. Schur’s theorem: in dimensions n ≥ 3, if a connected pseudo-Riemannian
manifold (M, g) has r = sg/n (that is, its Ricci tensor equals a function times g), then
the scalar curvature s is constant. Its one-line proof [DG, p. 131], based on applying div
to the equality r = sg/n. Einstein metrics/manifolds defined by requiring that r = λg
with a constant λ, which by Schur’s theorem need not be assumed constant in dimensions
n 6= 2. The relation R = Kg ∧ g for a constant K, characterizing metrics/manifolds
of constant (sectional) curvature, showing, via the equality Ric(g ∧ g) = (n − 1)g, that
constancy of K comes for free if n 6= 2, and constant sectional curvature implies the Ein-
stein property. Equivalence of flatness, and constancy of the Gaussian curvature, to both of
the above conditions when n = 1 or, respectively, n = 2. The second fundamental form B
of a smooth vector subbundle E of a given real/complex vector bundle Ê over a manifold

M, relative to a linear connection ∇ in Ê, which is a section of Hom(TM,Hom(E, Ê/E))
such that Bwψ, also written as B(w,ψ), equals π∇wψ for any smooth local sections w of

TM and ψ of E, with π : Ê → Ê/E denoting the quotient projection morphism. Proof
of well-definedness of B, that is, of the pointwise dependence of Bwψ on w and ψ, based
on the component expression Bwψ = Bλjaπeλ with Bλja = Γλja , obviously valid – due to

the formula ∇wψ = wj(∂jψ
a + Γ ajb ψ

b)ea of February 5 – whenever ea, eλ, or ea, or πeλ
are local trivializing sections for Ê, or E or, respectively, Ê/E, the last property being a
consequence of the first two [DG, p. 72]. The observations that B = 0 everywhere if and

only if E is ∇-parallel (February 9), and Hom(TM,Hom(E, Ê/E)) = L(TM,E ; Ê/E)
for real vector bundles. The special case provided by the second fundamental form B
of an immersion F : M → N into a manifold N, relative to a fixed connection D in
TN, which is here a section of L(TM, TM ; [F ∗TN ]/[TM ]), since the injective vector-
bundle morphism TM → F ∗TN sending (x, v), with v ∈ TxM, to (x, dFxv) allows us,
from now on, to treat TM in this situation as a subbundle of F ∗TN, while referring to
[F ∗TN ]/[TM ] as the normal bundle of the immersion F. The above formula Bλja = Γλja
now rewritten as Bλjk = Γλjk for local coordinates xj in M and yj, yλ in which F has the

form (x1, . . . , xm) 7→ (x1, . . . , xm, 0, . . . , 0), and ea, eλ are replaced by the corresponding
coordinate vector fields. The conclusion that B must be symmetric at every point whenever D
is torsion-free (Problem 1). A submanifold M of a manifold N with a fixed connection
D in TN being called totally geodesic if, given any D-geodesic I 3 t 7→ x(t) ∈ N and
any parameter t′ ∈ I such that the point x = x(t′) lies in M and ẋ(t′) ∈ TxM, one
has x(t) ∈M for all t ∈ I sufficiently close to t′. Examples: open submanifolds of affine
subspaces in an affine space N carrying the standard flat connection D. Conclusion: since
Bλjk = Γλjk , in the torsion-free case the totally geodesic property of M is equivalent to vanishing
of B (Problem 2).
Homework: Problems 1 and 2, italicized above.

April 15:
The lowest dimensions n ∈ {0, 1, 2, 3, 4}.
dimΛp = 3.
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Homework: Problems 1 and 2, italicized above.

April 17:
√
α
±

= ab± cd,
..................
left (or, right) multiplications by pure quaternions. The geometric interpretation of

a Euclidean, or pseudo-Euclidean, inner product defined only up to a factor, phrased
as the angle-geometry lemma [IP] or, respectively, the null-cone lemma [IP]. Conformal
relatedness of two pseudo-Riemannian metrics on a given manifold, meaning that one
equals the other times a function without zeros (and usually assumed positive when both
metrics are Riemannian), which one also expresses by calling one metric the result of a
conformal change of the other. Pseudo-Riemannian (or, Riemannian) conformal structures
on a manifold: equivalence classes of metrics modulo conformal relatedness (with a posi-
tive-function factor in the Riemannian case).

April 19: Conformal flatness of a metric – its being locally conformally related to a
flat metric. The result of Jan A. Schouten [Über die konforme Abbildung n-dimensionaler
Mannigfaltigkeiten mit quadratischer Maßbestimmung auf eine Mannigfaltigkeit mit euklidischer
Maßbestimmung, Math. Zeitschr. 11, 1921, 58-88]: a pseudo-Riemannian manifold of any
dimension m ≥ 1 is conformally flat if and only if W and dh are both identically zero, W
and dh being its Weyl tensor and the exterior derivative of its Schouten tensor (February
26). Here W (or, by definition, h) equals zero if m ≤ 3 (or, if m = 1) and, as we will see
later, vanishing of W implies that of dh when m ≥ 4.
Homework: Problems 1, 2 and 3, italicized above.
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