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Algebraic Curvature Tensors

In these notes, T is always a real vector space of dimension m, with 1 ≤ m <∞.
For ξ, η ∈ T ∗, we denote by ξ ⊗ η the bilinear form T × T → IR given by
(ξ ⊗ η)(u, v) = ξ(u)η(v). Then

(1) ξ ⊗ η is symmetric if and only if ξ, η are linearly dependent.

In fact, we may assume that ξ 6= 0 6= η. The ‘if’ part is obvious. Now let ξ ⊗ η
be symmetric. Fixing u ∈ T with ξ(u) 6= 0, we have ξ(u)η( · ) = ξ( · )η(u), that is,
η = η(u)ξ/ξ(u).

The space R(T ) of algebraic curvature tensors in T consists of all real-valued
quadrilinear forms R on T with R(u, u′, v, v′) = −R(u′, u, v, v′) = −R(u, u′, v′, v)
and R(u, v, w, · ) +R(v, w, u, · ) +R(w, u, v, · ) = 0 for u, v, w, u′, v′ ∈ T . Then

(2) R(T ) = {0} if m = 1 and dimR(T ) = 1 when m = 2.

In the former case, this follows from the skew-symmetry requirement, while in the
latter R 7→ R(u, v, u, v) is obviously, for any fixed basis u, v of T , an isomorphism

R(T )→ IR. In any dimension m, Milnor’s octahedron argument gives

(3) R(u, u′, v, v′) = R(v, v′, u, u′) if R ∈ R(T ) and u, v, u′, v′ ∈ T .

We denote by S(T ) the space of symmetric 2-tensors in T , that is, symmetric
bilinear forms T × T → IR. The Kulkarni-Nomizu product b ∧ d ∈ R(T ) of sym-
metric 2-tensors b, d ∈ S(T ) is defined by 2(b ∧ d)(u, u′, v, v′) = b(u, v)d(u′, v′) +
b(u′, v′)d(u, v) − b(u′, v)d(u, v′) − b(u, v′)d(u′, v). From now on we fix a pseudo-
Euclidean inner product g in T , so that g ∈ S(T ). The g-trace functional
tr : S(T )→ IR assigns to b the trace of

(4) the linear operator A : T → T with g(Au, · ) = b(u, · ) for all u ∈ T .

The Ricci contraction Ric : R(T )→ S(T ) is the operator given by [Ric(R)](u, v) =
trR(u, · , v, · ), symmetry of Ric(R) being immediate from (3). We write

r = Ric(R), s = tr r, e = r − s

m
g, h = r − s

2(m− 1)
g, W= R − 2

m− 2
g ∧h

whenever R ∈ R(T ), and refer to s, r, e, h,W as the scalar curvature of R and its
Ricci, Einstein, Schouten and Weyl tensors, with h (or, W ) defined only if m ≥ 2
(or, respectively, m ≥ 3). It is a trivial exercise to verify that, for m ≥ 3,

(5) R = S + E + W, where S =
s

m(m− 1)
g ∧ g and E =

2

m− 2
g ∧ e.

The anticommutator {b, b′} of b, b′ ∈ S(T ) is the element d of S(T ) corresponding
as in (4) to AA′+A′A, for A,A′ related via (4) to b, b′. We have the formula

(6) 2 Ric(b ∧ d) = (tr b)d+ (tr d)b− {b, d}
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whenever b, d ∈ S(T ), and its consequences (obvious since {g, d} = 2d):

(7) 2 Ric(g ∧ d) = (m− 2)d+ (tr d)g, tr [Ric(g ∧ d)] = (m− 1) tr d

which, combined with the definitions of s, r, h and W, give

(8) trh = (m− 2)s/(2m− 2), 2 Ric(g ∧ h) = (m− 2)r, Ric(W ) = 0.

Let the subpaces W(T ),B(T ) and E(T ) of R(T ) be defined by W(T ) = Ker Ric,
B(T ) = {g ∧ b : b ∈ S(T )} and E(T ) = {g ∧ b : b ∈ S(T ) and tr b = 0}. We then
have the direct-sum decompositions

(9) R(T ) = [IRg ∧ g]⊕ E(T )⊕W(T ) and B(T ) = [IRg ∧ g]⊕ E(T ).

To prove (9), we first note that it holds, for obvious reasons, when m ≤ 2 (all
spaces involved are trivial if m = 1, cf. (2) while, as formula (7) always gives
tr [Ric(g∧g)] 6= 0, for m = 2 we have R(T ) = IRg∧g by (2) and E(T ) =W(T ) =
{0}). Next, with m ≥ 3, in both cases, the summands span the space in question:
for B(T ) this is clear from its definition, for R(T ) – immediate from (5) and the
last equality in (8) (as tr b = 0). Furthermore, the two linear operators

(10) S(T ) 3 b 7→ g ∧ b ∈ B(T ) and Ric : B(T )→ S(T ) are isomorphisms,

since their composite S(T )→ B(T )→ S(T ) is injective by (7), so that they both
are injective, while the first operator is surjective by the definition of B(T ). In
view of the first part of (10), the summands of B(T ) in (9) are direct summands.
The same now follows for the summands of R(T ), as the second part of (10) gives
B(T ) ∩W(T ) = {0}. This completes the proof of (9).

Remark 1. As an immediate consequence of (9), for any R,R̂ ∈ R(T ),

R and R̂ have the same W(T )-component if and only if R̂−R is ∧-divisible by g.

Remark 2. We have W(T ) = {0} if m = 3.

Proof. Let W ∈ W(T ). In an orthonornal basis e1, e2, e3, with g(ei, ei) = εi = ±1,
setting Wijkl = W (ei, ej , ek, el), we have the following consequences of the condition

r = 0, for r = Ric(W ). First, Wijij = 0 (where we may assume that i 6= j), since

the three numbers a12, a13, a23, given by aij = aji = εiεjWijij , being pairwise

opposite to each other (due to the equality εirii = aij + aik when i 6= j 6= k 6= i),

must all equal 0. Second, Wijkl = 0 if i, j, k are distinct, as Wijki = −Wjiki =

εirjk, and similarly Wijkj = εjrik, while, obviously, Wijkk = 0. Thus, Wijkl = 0

whenever the set {i, j, k} has 1, 2 or 3 elements.

Remark 3. For m = 2, the Ricci tensor Ric(R) is always a multiple of g.

This follows from the first equality in (7), since (10) gives g ∧ g 6= 0 and so
R(T ) = IRg ∧ g as a consequence of (2).

Exercise 1. Given b ∈ S(T ), prove that b ∧ b = 0 if and only if rank b ≤ 1,
where rank b is the rank (dimension of the image) of T 3 u 7→ b(u, · ) ∈ T ∗. Also,
show that the condition rank b ≤ 1 is equivalent to the existence of ξ ∈ T ∗ with
b = ±ξ ⊗ ξ for some sign ±.

Exercise 2. Verify (5) – (8).


