MATH 7711, AUTUMN 2019

Algebraic Curvature Tensors

In these notes, \mathcal{T} is always a real vector space of dimension m, with $1 \leq m < \infty$. For $\xi, \eta \in \mathcal{T}^*$, we denote by $\xi \otimes \eta$ the bilinear form $\mathcal{T} \times \mathcal{T} \to \mathbb{R}$ given by $(\xi \otimes \eta)(u, v) = \xi(u)\eta(v)$. Then

(1) $\xi \otimes \eta$ is symmetric if and only if ξ, η are linearly dependent.

In fact, we may assume that $\xi \neq 0 \neq \eta$. The 'if' part is obvious. Now let $\xi \otimes \eta$ be symmetric. Fixing $u \in \mathcal{T}$ with $\xi(u) \neq 0$, we have $\xi(u)\eta(\cdot) = \xi(\cdot)\eta(u)$, that is, $\eta = \eta(u)\xi/\xi(u)$.

The space $\mathcal{R}(\mathcal{T})$ of algebraic curvature tensors in \mathcal{T} consists of all real-valued quadrilinear forms R on \mathcal{T} with R(u,u',v,v')=-R(u',u,v,v')=-R(u,u',v',v) and $R(u,v,w,\cdot)+R(v,w,u,\cdot)+R(w,u,v,\cdot)=0$ for $u,v,w,u',v'\in\mathcal{T}$. Then

(2)
$$\mathcal{R}(\mathcal{T}) = \{0\} \text{ if } m = 1 \text{ and } \dim \mathcal{R}(\mathcal{T}) = 1 \text{ when } m = 2.$$

In the former case, this follows from the skew-symmetry requirement, while in the latter $R \mapsto R(u, v, u, v)$ is obviously, for any fixed basis u, v of \mathcal{T} , an isomorphism $\mathcal{R}(\mathcal{T}) \to \mathbb{R}$. In any dimension m, Milnor's octahedron argument gives

(3)
$$R(u, u', v, v') = R(v, v', u, u')$$
 if $R \in \mathcal{R}(\mathcal{T})$ and $u, v, u', v' \in \mathcal{T}$.

We denote by $\mathcal{S}(\mathcal{T})$ the space of symmetric 2-tensors in \mathcal{T} , that is, symmetric bilinear forms $\mathcal{T} \times \mathcal{T} \to \mathbb{R}$. The Kulkarni-Nomizu product $b \wedge d \in \mathcal{R}(\mathcal{T})$ of symmetric 2-tensors $b, d \in \mathcal{S}(\mathcal{T})$ is defined by $2(b \wedge d)(u, u', v, v') = b(u, v)d(u', v') + b(u', v')d(u, v) - b(u', v)d(u, v') - b(u, v')d(u', v)$. From now on we fix a pseudo-Euclidean inner product g in \mathcal{T} , so that $g \in \mathcal{S}(\mathcal{T})$. The g-trace functional $\mathrm{tr}: \mathcal{S}(\mathcal{T}) \to \mathbb{R}$ assigns to b the trace of

(4) the linear operator $A: \mathcal{T} \to \mathcal{T}$ with $g(Au, \cdot) = b(u, \cdot)$ for all $u \in \mathcal{T}$.

The Ricci contraction Ric: $\mathcal{R}(\mathcal{T}) \to \mathcal{S}(\mathcal{T})$ is the operator given by $[\text{Ric}(R)](u, v) = \text{tr} R(u, \cdot, v, \cdot)$, symmetry of Ric(R) being immediate from (3). We write

$$r = \operatorname{Ric}(R), \quad s = \operatorname{tr} r, \quad e = r - \frac{s}{m}g, \quad h = r - \frac{s}{2(m-1)}g, \quad W = R - \frac{2}{m-2}g \wedge h$$

whenever $R \in \mathcal{R}(\mathcal{T})$, and refer to s, r, e, h, W as the *scalar curvature* of R and its *Ricci, Einstein, Schouten* and *Weyl* tensors, with h (or, W) defined only if $m \geq 2$ (or, respectively, $m \geq 3$). It is a trivial exercise to verify that, for $m \geq 3$,

(5)
$$R = S + E + W$$
, where $S = \frac{s}{m(m-1)}g \wedge g$ and $E = \frac{2}{m-2}g \wedge e$.

The anticommutator $\{b, b'\}$ of $b, b' \in \mathcal{S}(\mathcal{T})$ is the element d of $\mathcal{S}(\mathcal{T})$ corresponding as in (4) to AA' + A'A, for A, A' related via (4) to b, b'. We have the formula

(6)
$$2\operatorname{Ric}(b \wedge d) = (\operatorname{tr} b)d + (\operatorname{tr} d)b - \{b, d\}$$

whenever $b, d \in \mathcal{S}(\mathcal{T})$, and its consequences (obvious since $\{g, d\} = 2d$):

- (7) $2\operatorname{Ric}(g \wedge d) = (m-2)d + (\operatorname{tr} d)g$, $\operatorname{tr}\left[\operatorname{Ric}(g \wedge d)\right] = (m-1)\operatorname{tr} d$ which, combined with the definitions of s, r, h and W, give
- (8) $\operatorname{tr} h = (m-2)s/(2m-2)$, $2\operatorname{Ric}(g \wedge h) = (m-2)r$, $\operatorname{Ric}(W) = 0$. Let the subpaces $\mathcal{W}(\mathcal{T}), \mathcal{B}(\mathcal{T})$ and $\mathcal{E}(\mathcal{T})$ of $\mathcal{R}(\mathcal{T})$ be defined by $\mathcal{W}(\mathcal{T}) = \operatorname{Ker}\operatorname{Ric},$ $\mathcal{B}(\mathcal{T}) = \{g \wedge b : b \in \mathcal{S}(\mathcal{T})\}$ and $\mathcal{E}(\mathcal{T}) = \{g \wedge b : b \in \mathcal{S}(\mathcal{T}) \text{ and } \operatorname{tr} b = 0\}$. We then have the direct-sum decompositions
- (9) $\mathcal{R}(\mathcal{T}) = [\mathbb{R}g \wedge g] \oplus \mathcal{E}(\mathcal{T}) \oplus \mathcal{W}(\mathcal{T})$ and $\mathcal{B}(\mathcal{T}) = [\mathbb{R}g \wedge g] \oplus \mathcal{E}(\mathcal{T})$. To prove (9), we first note that it holds, for obvious reasons, when $m \leq 2$ (all spaces involved are trivial if m = 1, cf. (2) while, as formula (7) always gives $\operatorname{tr}[\operatorname{Ric}(g \wedge g)] \neq 0$, for m = 2 we have $\mathcal{R}(\mathcal{T}) = \mathbb{R}g \wedge g$ by (2) and $\mathcal{E}(\mathcal{T}) = \mathcal{W}(\mathcal{T}) = \{0\}$). Next, with $m \geq 3$, in both cases, the summands span the space in question: for $\mathcal{B}(\mathcal{T})$ this is clear from its definition, for $\mathcal{R}(\mathcal{T})$ – immediate from (5) and the last equality in (8) (as $\operatorname{tr} b = 0$). Furthermore, the two linear operators
- (10) $S(\mathcal{T}) \ni b \mapsto g \land b \in \mathcal{B}(\mathcal{T})$ and Ric: $\mathcal{B}(\mathcal{T}) \to \mathcal{S}(\mathcal{T})$ are isomorphisms, since their composite $S(\mathcal{T}) \to \mathcal{B}(\mathcal{T}) \to \mathcal{S}(\mathcal{T})$ is injective by (7), so that they both are injective, while the first operator is surjective by the definition of $\mathcal{B}(\mathcal{T})$. In view of the first part of (10), the summands of $\mathcal{B}(\mathcal{T})$ in (9) are *direct* summands. The same now follows for the summands of $\mathcal{R}(\mathcal{T})$, as the second part of (10) gives $\mathcal{B}(\mathcal{T}) \cap \mathcal{W}(\mathcal{T}) = \{0\}$. This completes the proof of (9).

Remark 1. As an immediate consequence of (9), for any $R, \widehat{R} \in \mathcal{R}(\mathcal{T})$, R and \widehat{R} have the same $\mathcal{W}(\mathcal{T})$ -component if and only if $\widehat{R}-R$ is \wedge -divisible by g.

Remark 2. We have $W(\mathcal{T}) = \{0\}$ if m = 3.

Proof. Let $W \in \mathcal{W}(\mathcal{T})$. In an orthonornal basis e_1, e_2, e_3 , with $g(e_i, e_i) = \varepsilon_i = \pm 1$, setting $W_{ijkl} = W(e_i, e_j, e_k, e_l)$, we have the following consequences of the condition r = 0, for r = Ric(W). First, $W_{ijij} = 0$ (where we may assume that $i \neq j$), since the three numbers a_{12}, a_{13}, a_{23} , given by $a_{ij} = a_{ji} = \varepsilon_i \varepsilon_j W_{ijij}$, being pairwise opposite to each other (due to the equality $\varepsilon_i r_{ii} = a_{ij} + a_{ik}$ when $i \neq j \neq k \neq i$), must all equal 0. Second, $W_{ijkl} = 0$ if i, j, k are distinct, as $W_{ijki} = -W_{jiki} = \varepsilon_i r_{jk}$, and similarly $W_{ijkj} = \varepsilon_j r_{ik}$, while, obviously, $W_{ijkk} = 0$. Thus, $W_{ijkl} = 0$ whenever the set $\{i, j, k\}$ has 1, 2 or 3 elements.

Remark 3. For m=2, the Ricci tensor Ric(R) is always a multiple of g. This follows from the first equality in (7), since (10) gives $g \wedge g \neq 0$ and so $\mathcal{R}(\mathcal{T}) = \mathbb{R}g \wedge g$ as a consequence of (2).

Exercise 1. Given $b \in \mathcal{S}(\mathcal{T})$, prove that $b \wedge b = 0$ if and only if rank $b \leq 1$, where rank b is the rank (dimension of the image) of $\mathcal{T} \ni u \mapsto b(u, \cdot) \in \mathcal{T}^*$. Also, show that the condition rank $b \leq 1$ is equivalent to the existence of $\xi \in \mathcal{T}^*$ with $b = \pm \xi \otimes \xi$ for some sign \pm .

Exercise 2. Verify (5) - (8).