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Metrics of Constant Curvature

Given a pseudo-Riemannian metric g on a manifold M, the g-gradient of a
smooth function f: M — IR is the vector field Vf characterized by g(Vf, -) = df,
that is, obtained from the differential df by g-index raising. Its components,
denoted by VIf or f, are thus expressed as f7 = g/*f , or, equivalently, V/f =
g’%0, f. Then, for the Levi-Civita connection V of g,

(1) dlg(Vf, V)] = 2[Vdf](Vf, -)

or, in coordinates, (f* fr);j=2f ok f 1; (which is immediate from the Leibniz rule,
as both ¢ and its reciprocal metric in T*M are V-parallel). On the other hand,
for any connection V on a manifold M, any smooth curve t — z(t) € M, and any
smooth function f: M — IR, with () = d/dt, at every t and x = z(t) one has

(2) [f ()] = [Vdf](z,z) + d,f, where w = V.

This is obvious: in local coordinates, [f(z)]"= [2%0, f] = fv'k'akf—i— i1 %00, f, while
Let K € IR. By a space of constant curvature K we mean any pseudo-Riemannian

manifold (M, g) such that R = Kg A g, where R denotes the modified curvature
tensor of g, cf. [Differential Geometry, Section 28].

The Hessian-metric equation lemma. A pseudo-Riemannian manifold (M, g) is
a space of constant curvature K if and only if, for every x € M, every a € IR, and
every & € T M, there exists a smooth function f : U — IR defined on some connected
neighborhood U of z, having (f(x),df,) = (a,&) and satisfying the equation

(3) Vdf = —Kfg.

In addition, such f is uniquely determined by (a,&) once U is fixed.

Proof. In any pseudo-Riemannian manifold (M, g), with any constant K, the as-
signment f — (f, df) obviously defines a bijective correspondence between smooth
solutions f to (3), defined on open subsets of M, and V-parallel local sections

(f,€) of the vector bundle E = [M x IR] @ T*M over M, where V is the con-
nection in E given by V (f,€) = (d,f — £(v), V&€ + Kfg(v, -)) whenever v is a
vector field tangent to M. To evaluate R(u,v)(f,&) at x € M, for the curvature
R of V, we may assume that u,v,& are V-parallel at  and df, = 0. One then
easily verifies that, in general, R(u,v)(f,&) = (0,7), where n(w) = —&[A(u, v, w)]
with A(u,v,w) = R(u,v)w — K[g(u, w)v — g(v,w)u]. Thus, V is flat if and only if
g is a metric of constant curvature K, as required. (The final clause of the lemma
is obvious: in view of connectedness of U, a V-parallel section of E defined on U
is uniquely determined by its value at one point; see Distributions and the Frobenius
Theorem, Exercise 12.)



The pseudosphere-geodesics lemma. In a pseudo-Euclidean vector space £ with
the inner product (), every nonempty pseudosphere M = {x € £ : (x,x) = c}, where
¢ € R \ {0}, is a nondegenerate submanifold. For the Levi-Civita connection NV of the
submanifold metric g of M, any z € M, and v € T,M = z*, the formula

z(t) = z + tv if (v,v) =0,
(4) x(t) = zcost + vsint if (v,v) =c,
x(t) = zcosht + vsinht if (v,v) = —c,

then defines a V-geodesic R > t — x(t) € M such that x(0) = z and #(0) = v.

In fact, V,# = [D,#]™® for the Levi-Civita connection D of the flat constant
metric on &£ arising from the inner product (,), and D,& = &, so that our claim
is obvious since & = ex, with ¢ =€ {0, 1, —1}, is normal to M.

Corollary. With assumptions and notations as in the preceding lemma, equation (3) holds
on the pseudosphere (M, g) for K = 1/c and f obtained as the restriction to M of any
linear homogeneous function €& — 1R.

When K = 0, (3) is satisfied by every affine function f on (M,g) which is defined
to be a finite-dimensional real affine space with a flat constant metric arising from a
pseudo-Euclidean inner product.

Proof. 1If K # 0, due to bilinearity and symmetry of both sides, it suffices to verify
(3), at any z € M, evaluated on (v,v), where v € T,M = z+ and (v,v) equals 0,
¢ or —c. This is in turn obvious from linearity of f, combined with (2) applied to
the geodesics t +— x(t) given by (4).

Now let K= 0. Then constant vector fields on M, including gradients of affine
functions, are parallel, which proves our claim.

The following classification result is a special case of a theorem due to Cartan.

(See Elie Cartan, Sur une classe remarquable d’espaces de Riemann, Bull. Soc. Math.
France 54, 1926, 214-264.)

The Constant-Curvature Theorem. Let ¢ € R~ {0}. Then any nonempty pseudo-
sphere {x € £ : (x,x) = ¢} in a pseudo-Euclidean vector space &, with its submanifold
metric, is a space of constant curvature K = 1/c.

Conversely, every pseudo-Riemannian space (M, g) of constant curvature K is locally
isometric to

(i) a pseudosphere with a metric obtained as above, if K+ 0, or
(ii) a pseudo-Euclidean vector space with the constant metric, if K= 0.

Proof. The first assertion is obvious from the Hessian-metric equation lemma along
with the above corollary.

Conversely, let (M, g) be of constant curvature K, with m = dim M. Every
point of z € M then has a connected neighborhood U such that dim& = m + 1
for the vector space £ of all smooth solutions f : U — IR of the linear equation
(3), and f — (f(2),df,) is a linear isomorphism & — Z onto the vector space
Z =R xTM. (Note that Z is the space of the initial data (a,&) in the Hessian-
metric equation lemma, and we may choose U to be contained in the intersection
of the domains of solutions of (3) corresponding to pairs (a,&) ranging over a basis



of Z.) Fixing such U from now on, we see that, for every z € U,
(5) E> f — (f(x),[VSf],) is a linear isomorphism & — R & T, M.

Injectivity in (5) is obvious from the final clause of the Hessian-metric equation
lemma, and surjectivity follows as both spaces have the same dimension m + 1.

Next, for any f, f € &, the function

(6) (f.f) = g(VI,Vf) + Kff

is constant, so that (,) defined by (6) is a symmetric bilinear form on €. To see this,
we first let f = f, and then, from (1) and (3), d(f, f) = d[g(Vf,Vf)] + 2Kfdf =
2[VdAf|(Vf, -) + 2Kfdf = 2[Vdf + Kfg|(Vf, ) = 0. The general case follows as
M=+ f+f)={f—=F.f—f) in view of bilinearity and symmetry.

In the case where K # 0, we use (5) to define a mapping ¢ : U — £ by
(7) o(x) = f for the unique f € & with f(z) =1/K and [Vf],=0.

Our (,) is now nondegenerate, which makes £ a pseudo-Euclidean space. (In fact,
if f+0,wefind f with (f, f) # 0 by letting f be nonzero and Vf zero at a fixed
point z € U, or vice versa, depending on whether (Vf), =0 or (Vf), # 0, cf. (5)
and (6).) Next, all values of ¢ lie in the pseudosphere X' = {y € £ : (y,y) = 1/K},
as one sees, for any x € U, by choosing f as in (7) and evaluating the constant
function (6), with f = f, at x, which gives the required value (f,f) = 1/K.
Furthermore, whenever z € U and v € T, M, (7) gives

(8) dp,v = f for the unique fe & with f(z) =0 and (Vf), = v.

To verify (8), consider an interval I C IR and a smooth curve I >t +— z = z(t) € U.
Then f = p(z(t)) is a curve of functions U — IR, parametrized by ¢ € I, which
allows us to treat it as a function (t,z) — f(t,z) of (t,z) € IxU, with f(¢t,-) €&

for each t. We will use the partial derivatives f = 0f/9t and 9, f (for fixed local
coordinates in U), all of which are functions of (¢,z). According to (7),

(9) [t x(t) = 1/K, (0;1)(t,2(t)) = 0.

Applying d/dt to (7), we obtain, from the chain rule, f+ ik, f = 0 and 5’jf +
:'xkakaj f =0 (with each term evaluated at (¢,z(t)), which is suppressed from our
notation). As f ., = 0,0;f — Iggﬁl f, (9) allows us to rewrite these equalities as
f=0and 0= 8jf+ikﬁjk = 8jf— fo'lgjl = 8jf— :'ckgjk. With z(t) = = and
#(t) = v at fixed t, this yields (8).

Finally, by (6) and (8), (f,f) = g(v,v). Thus, ¢ is isometric and so, locally,
is an isometry between open sets in U and open subsets of the pseudosphere X,
which completes the proof when K # 0.

Now let K = 0. This time (,) is degenerate, with the nullspace IR = £+
consisting of constant functions. We denote by A the set of all linear functionals
£ — IR, the restriction of which to the line IR C £ of constant functions equals
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the identity mapping IR — IR. Thus, A is an affine subspace of £*, namely, a
coset of the vector subspace (£/IR)* of £* formed by all linear functionals & — IR
that vanish on IR C £. Clearly, (,) descends to a pseudo-Euclidean inner product
on £/IR, again denoted by (,), which induces a further inner product (,), and
thus turns the affine space into A into a flat pseudo-Riemannian manifold. We
now define a mapping ¢ : U = A by ¢(x) = d,, with ¢, standing for the Dirac
delta (evaluation) functional, that is, the assignment £ 5 f — f(x) € IR. Next, if
z €U and v e T,M, we have do,v = (f, -) € (§/R)* for the unique f € £ with
f(z) = 0 and [Vf], = v. In fact, given an interval I C IR and a smooth curve
I >t~ x=2x(t) € U, the evaluation of ¢(z(t)) on a fixed function f € £ yields
f(x(t)), and so, applying d/dt, one gets df,&, with = = x(t), which equals (f, f).
Thus, by (6), ( 1, f) = g(v,v). Consequently, ¢ is again isometric, as required.

Remark. Here is a common method of constructing injective mappings ¢ from a
manifold (or a more general topological space), denoted here by M, into a vector
space: one first selects a “natural” vector space F of functions M — IR, and
then defines ¢ : M — F* by ¢(x) = 6, (the Dirac delta functional), so that
[o(2)](f) = f(z) for x € M and f € F. This is precisely what we did in the above
proof, with F = & — not only (quite explicitly) when K= 0, but also for K# 0. In
the latter case, nondegeneracy of (,) leads to the isomorphic identification F = F*
via f > (f, -) which, by (6), makes ¢, correspond to ¢(z) with (7).

Another well-known example of (a modified version of) the above method arises
in complex differential geometry: let F denote the space of all holomorphic sections
of a given a holomorphic line bundle L over a compact complex manifold M,
assumed to have a “weak-ampleness” property, in the sense that for every x € M
there exists ¢ € F with ¢, # 0. Denoting by P(F*) the projective space of
the complex dual F*, we now define a holomorphic mapping ¢ : M — P(F*) by
o(z) = Co,. Note that, even though ¢, : F — L, (rather than ¢, : F — C), the
complex span Cd, of d, equals that of a linear functional F — C, obtained by
choosing an isomorphic identification L, ~ C, and independent of the choice of
such an identification.



