MATH 7711, AUTUMN 2019

Metrics of Constant Curvature

Given a pseudo-Riemannian metric g on a manifold M, the g-gradient of a smooth function $f: M \to \mathbb{R}$ is the vector field ∇f characterized by $g(\nabla f, \cdot) = df$, that is, obtained from the differential df by g-index raising. Its components, denoted by $\nabla^j f$ or $f^{,j}$, are thus expressed as $f^{,j} = g^{jk} f_{,k}$ or, equivalently, $\nabla^j f = g^{jk} \partial_k f$. Then, for the Levi-Civita connection ∇ of g,

(1)
$$d[g(\nabla f, \nabla f)] = 2[\nabla df](\nabla f, \cdot)$$

or, in coordinates, $(f^{,k}f_{,k})_{,j}=2f^{,k}f_{,kj}$ (which is immediate from the Leibniz rule, as both g and its reciprocal metric in T^*M are ∇ -parallel). On the other hand, for any connection ∇ on a manifold M, any smooth curve $t\mapsto x(t)\in M$, and any smooth function $f:M\to\mathbb{R}$, with () =d/dt, at every t and x=x(t) one has

(2)
$$[f(x)] = [\nabla df](\dot{x}, \dot{x}) + d_w f, \text{ where } w = \nabla_{\dot{x}} \dot{x}.$$

This is obvious: in local coordinates, $[f(x)] = [\dot{x}^k \partial_k f] = \ddot{x}^k \partial_k f + \dot{x}^j \dot{x}^k \partial_j \partial_k f$, while $[\nabla df]_{jk} = f_{,jk} = \partial_j \partial_k f - \Gamma^l_{kj} \partial_l f$ and $[\nabla_{\dot{x}} \dot{x}]^k = \ddot{x}^k + \Gamma^k_{lj} \dot{x}^l \dot{x}^j$.

Let $K \in \mathbb{R}$. By a space of constant curvature K we mean any pseudo-Riemannian manifold (M,g) such that $R = Kg \wedge g$, where R denotes the modified curvature tensor of g, cf. [Differential Geometry, Section 28].

The Hessian-metric equation lemma. A pseudo-Riemannian manifold (M,g) is a space of constant curvature K if and only if, for every $x \in M$, every $a \in \mathbb{R}$, and every $\xi \in T_x^*M$, there exists a smooth function $f: U \to \mathbb{R}$ defined on some connected neighborhood U of x, having $(f(x), df_x) = (a, \xi)$ and satisfying the equation

$$\nabla df = -Kfg.$$

In addition, such f is uniquely determined by (a, ξ) once U is fixed.

The pseudosphere-geodesics lemma. In a pseudo-Euclidean vector space \mathcal{E} with the inner product \langle , \rangle , every nonempty pseudosphere $M = \{x \in \mathcal{E} : \langle x, x \rangle = c\}$, where $c \in \mathbb{R} \setminus \{0\}$, is a nondegenerate submanifold. For the Levi-Civita connection ∇ of the submanifold metric g of M, any $z \in M$, and $v \in T_zM = z^\perp$, the formula

(4)
$$x(t) = z + tv \quad \text{if} \quad \langle v, v \rangle = 0,$$

$$x(t) = z \cos t + v \sin t \quad \text{if} \quad \langle v, v \rangle = c,$$

$$x(t) = z \cosh t + v \sinh t \quad \text{if} \quad \langle v, v \rangle = -c,$$

then defines a ∇ -geodesic $\mathbb{R} \ni t \mapsto x(t) \in M$ such that x(0) = z and $\dot{x}(0) = v$.

In fact, $\nabla_{\dot{x}}\dot{x} = [D_{\dot{x}}\dot{x}]^{\text{tng}}$ for the Levi-Civita connection D of the flat constant metric on \mathcal{E} arising from the inner product \langle , \rangle , and $D_{\dot{x}}\dot{x} = \ddot{x}$, so that our claim is obvious since $\ddot{x} = \varepsilon x$, with $\varepsilon = \{0, 1, -1\}$, is normal to M.

Corollary. With assumptions and notations as in the preceding lemma, equation (3) holds on the pseudosphere (M,g) for K=1/c and f obtained as the restriction to M of any linear homogeneous function $\mathcal{E} \to \mathbb{R}$.

When K = 0, (3) is satisfied by every affine function f on (M, g) which is defined to be a finite-dimensional real affine space with a flat constant metric arising from a pseudo-Euclidean inner product.

Proof. If $K \neq 0$, due to bilinearity and symmetry of both sides, it suffices to verify (3), at any $z \in M$, evaluated on (v, v), where $v \in T_z M = z^{\perp}$ and $\langle v, v \rangle$ equals 0, c or -c. This is in turn obvious from linearity of f, combined with (2) applied to the geodesics $t \mapsto x(t)$ given by (4).

Now let K=0. Then constant vector fields on M, including gradients of affine functions, are parallel, which proves our claim.

The following classification result is a special case of a theorem due to Cartan. (See Élie Cartan, *Sur une classe remarquable d'espaces de Riemann*, Bull. Soc. Math. France **54**, 1926, 214–264.)

The Constant-Curvature Theorem. Let $c \in \mathbb{R} \setminus \{0\}$. Then any nonempty pseudo-sphere $\{x \in \mathcal{E} : \langle x, x \rangle = c\}$ in a pseudo-Euclidean vector space \mathcal{E} , with its submanifold metric, is a space of constant curvature K = 1/c.

Conversely, every pseudo-Riemannian space (M,g) of constant curvature K is locally isometric to

- (i) a pseudosphere with a metric obtained as above, if $K \neq 0$, or
- (ii) a pseudo-Euclidean vector space with the constant metric, if K = 0.

Proof. The first assertion is obvious from the Hessian-metric equation lemma along with the above corollary.

Conversely, let (M,g) be of constant curvature K, with $m = \dim M$. Every point of $z \in M$ then has a connected neighborhood U such that $\dim \mathcal{E} = m+1$ for the vector space \mathcal{E} of all smooth solutions $f: U \to \mathbb{R}$ of the linear equation (3), and $f \mapsto (f(z), df_z)$ is a linear isomorphism $\mathcal{E} \to \mathcal{Z}$ onto the vector space $\mathcal{Z} = \mathbb{R} \times T_z^*M$. (Note that \mathcal{Z} is the space of the initial data (a, ξ) in the Hessian-metric equation lemma, and we may choose U to be contained in the intersection of the domains of solutions of (3) corresponding to pairs (a, ξ) ranging over a basis

of \mathcal{Z} .) Fixing such U from now on, we see that, for every $x \in U$,

(5)
$$\mathcal{E} \ni f \mapsto (f(x), [\nabla f]_x)$$
 is a linear isomorphism $\mathcal{E} \to \mathbb{R} \oplus T_x M$.

Injectivity in (5) is obvious from the final clause of the Hessian-metric equation lemma, and surjectivity follows as both spaces have the same dimension m + 1.

Next, for any $f, \hat{f} \in \mathcal{E}$, the function

(6)
$$\langle f, \hat{f} \rangle = g(\nabla f, \nabla \hat{f}) + Kf\hat{f}$$

is constant, so that $\langle \, , \, \rangle$ defined by (6) is a symmetric bilinear form on \mathcal{E} . To see this, we first let $\hat{f} = f$, and then, from (1) and (3), $d\langle f, f \rangle = d[g(\nabla f, \nabla f)] + 2Kfdf = 2[\nabla df](\nabla f, \cdot) + 2Kfdf = 2[\nabla df + Kfg](\nabla f, \cdot) = 0$. The general case follows as $4\langle f, \hat{f} \rangle = \langle f + \hat{f}, f + \hat{f} \rangle - \langle f - \hat{f}, f - \hat{f} \rangle$ in view of bilinearity and symmetry.

In the case where $K \neq 0$, we use (5) to define a mapping $\varphi: U \to \mathcal{E}$ by

(7)
$$\varphi(x) = f$$
 for the unique $f \in \mathcal{E}$ with $f(x) = 1/K$ and $[\nabla f]_x = 0$.

Our \langle , \rangle is now nondegenerate, which makes \mathcal{E} a pseudo-Euclidean space. (In fact, if $f \neq 0$, we find \hat{f} with $\langle f, \hat{f} \rangle \neq 0$ by letting \hat{f} be nonzero and $\nabla \hat{f}$ zero at a fixed point $x \in U$, or vice versa, depending on whether $(\nabla f)_x = 0$ or $(\nabla f)_x \neq 0$, cf. (5) and (6).) Next, all values of φ lie in the pseudosphere $\Sigma = \{y \in \mathcal{E} : \langle y, y \rangle = 1/K\}$, as one sees, for any $x \in U$, by choosing f as in (7) and evaluating the constant function (6), with $\hat{f} = f$, at x, which gives the required value $\langle f, f \rangle = 1/K$. Furthermore, whenever $x \in U$ and $v \in T_x M$, (7) gives

(8)
$$d\varphi_x v = \dot{f}$$
 for the unique $\dot{f} \in \mathcal{E}$ with $\dot{f}(x) = 0$ and $(\nabla \dot{f})_x = v$.

To verify (8), consider an interval $I \subseteq \mathbb{R}$ and a smooth curve $I \ni t \mapsto x = x(t) \in U$. Then $f = \varphi(x(t))$ is a curve of functions $U \to \mathbb{R}$, parametrized by $t \in I$, which allows us to treat it as a function $(t,x) \mapsto f(t,x)$ of $(t,x) \in I \times U$, with $f(t,\cdot) \in \mathcal{E}$ for each t. We will use the partial derivatives $\dot{f} = \partial f/\partial t$ and $\partial_j f$ (for fixed local coordinates in U), all of which are functions of (t,x). According to (7),

(9)
$$f(t, x(t)) = 1/K, \qquad (\partial_i f)(t, x(t)) = 0.$$

Applying d/dt to (7), we obtain, from the chain rule, $\dot{f} + \dot{x}^k \partial_k f = 0$ and $\partial_j \dot{f} + \dot{x}^k \partial_k \partial_j f = 0$ (with each term evaluated at (t, x(t)), which is suppressed from our notation). As $f_{,jk} = \partial_k \partial_j f - \Gamma_{kj}^l \partial_l f$, (9) allows us to rewrite these equalities as $\dot{f} = 0$ and $0 = \partial_j \dot{f} + \dot{x}^k f_{,jk} = \partial_j \dot{f} - K f \dot{x}^l g_{jl} = \partial_j \dot{f} - \dot{x}^k g_{jk}$. With x(t) = x and $\dot{x}(t) = v$ at fixed t, this yields (8).

Finally, by (6) and (8), $\langle \dot{f}, \dot{f} \rangle = g(v, v)$. Thus, φ is isometric and so, locally, is an isometry between open sets in U and open subsets of the pseudosphere Σ , which completes the proof when $K \neq 0$.

Now let K = 0. This time \langle , \rangle is degenerate, with the nullspace $\mathbb{R} = \mathcal{E}^{\perp}$ consisting of constant functions. We denote by \mathcal{A} the set of all linear functionals $\mathcal{E} \to \mathbb{R}$, the restriction of which to the line $\mathbb{R} \subseteq \mathcal{E}$ of constant functions equals

the identity mapping $\mathbb{R} \to \mathbb{R}$. Thus, \mathcal{A} is an affine subspace of \mathcal{E}^* , namely, a coset of the vector subspace $(\mathcal{E}/\mathbb{R})^*$ of \mathcal{E}^* formed by all linear functionals $\mathcal{E} \to \mathbb{R}$ that vanish on $\mathbb{R} \subseteq \mathcal{E}$. Clearly, \langle , \rangle descends to a pseudo-Euclidean inner product on \mathcal{E}/\mathbb{R} , again denoted by \langle , \rangle , which induces a further inner product \langle , \rangle , and thus turns the affine space into \mathcal{A} into a flat pseudo-Riemannian manifold. We now define a mapping $\varphi: U \to \mathcal{A}$ by $\varphi(x) = \delta_x$, with δ_x standing for the *Dirac delta* (evaluation) functional, that is, the assignment $\mathcal{E} \ni f \mapsto f(x) \in \mathbb{R}$. Next, if $x \in U$ and $v \in T_x M$, we have $d\varphi_x v = \langle \dot{f}, \cdot \rangle \in (\mathcal{E}/\mathbb{R})^*$ for the unique $\dot{f} \in \mathcal{E}$ with $\dot{f}(x) = 0$ and $[\nabla \dot{f}]_x = v$. In fact, given an interval $I \subseteq \mathbb{R}$ and a smooth curve $I \ni t \mapsto x = x(t) \in U$, the evaluation of $\varphi(x(t))$ on a fixed function $f \in \mathcal{E}$ yields f(x(t)), and so, applying d/dt, one gets $df_x \dot{x}$, with x = x(t), which equals $\langle \dot{f}, f \rangle$. Thus, by (6), $\langle \dot{f}, \dot{f} \rangle = q(v, v)$. Consequently, φ is again isometric, as required.

Remark. Here is a common method of constructing injective mappings φ from a manifold (or a more general topological space), denoted here by M, into a vector space: one first selects a "natural" vector space \mathcal{F} of functions $M \to \mathbb{R}$, and then defines $\varphi: M \to \mathcal{F}^*$ by $\varphi(x) = \delta_x$ (the Dirac delta functional), so that $[\varphi(x)](f) = f(x)$ for $x \in M$ and $f \in \mathcal{F}$. This is precisely what we did in the above proof, with $\mathcal{F} = \mathcal{E}$ – not only (quite explicitly) when K = 0, but also for $K \neq 0$. In the latter case, nondegeneracy of \langle , \rangle leads to the isomorphic identification $\mathcal{F} = \mathcal{F}^*$, via $f \mapsto \langle f, \cdot \rangle$ which, by (6), makes δ_x correspond to $\varphi(x)$ with (7).

Another well-known example of (a modified version of) the above method arises in complex differential geometry: let \mathcal{F} denote the space of all holomorphic sections of a given a holomorphic line bundle L over a compact complex manifold M, assumed to have a "weak-ampleness" property, in the sense that for every $x \in M$ there exists $\psi \in \mathcal{F}$ with $\psi_x \neq 0$. Denoting by $P(\mathcal{F}^*)$ the projective space of the complex dual \mathcal{F}^* , we now define a holomorphic mapping $\varphi: M \to P(\mathcal{F}^*)$ by $\varphi(x) = \mathbb{C}\delta_x$. Note that, even though $\delta_x: \mathcal{F} \to L_x$ (rather than $\delta_x: \mathcal{F} \to \mathbb{C}$), the complex span $\mathbb{C}\delta_x$ of δ_x equals that of a linear functional $\mathcal{F} \to \mathbb{C}$, obtained by choosing an isomorphic identification $L_x \approx \mathbb{C}$, and independent of the choice of such an identification.