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Metrics of Constant Curvature

Given a pseudo-Riemannian metric g on a manifold M, the g-gradient of a
smooth function f : M → IR is the vector field ∇f characterized by g(∇f, · ) = df,
that is, obtained from the differential df by g-index raising. Its components,
denoted by ∇jf or f ,j, are thus expressed as f ,j = gjkf,k or, equivalently, ∇jf =

gjk∂kf. Then, for the Levi-Civita connection ∇ of g,

(1) d[g(∇f,∇f)] = 2[∇df ](∇f, · )

or, in coordinates, (f ,kf,k),j = 2f ,kf,kj (which is immediate from the Leibniz rule,

as both g and its reciprocal metric in T ∗M are ∇-parallel). On the other hand,
for any connection ∇ on a manifold M, any smooth curve t 7→ x(t) ∈M, and any
smooth function f : M → IR, with ( )˙ = d/dt, at every t and x = x(t) one has

(2) [f(x)]̈ = [∇df ](ẋ, ẋ) + dwf, where w = ∇̇xẋ.

This is obvious: in local coordinates, [f(x)]̈ = [ẋk∂kf ]˙ = ẍk∂kf+ ẋj ẋk∂j∂kf, while

[∇df ]jk = f,jk = ∂j∂kf − Γ l
kj∂lf and [ ∇̇xẋ]k = ẍk + Γ k

lj ẋ
lẋj.

Let K ∈ IR. By a space of constant curvature K we mean any pseudo-Riemannian
manifold (M, g) such that R = Kg ∧ g, where R denotes the modified curvature
tensor of g, cf. [Differential Geometry, Section 28].

The Hessian-metric equation lemma. A pseudo-Riemannian manifold (M, g) is
a space of constant curvature K if and only if, for every x ∈ M, every a ∈ IR, and
every ξ ∈ T ∗xM, there exists a smooth function f : U → IR defined on some connected
neighborhood U of x, having (f(x), dfx) = (a, ξ) and satisfying the equation

(3) ∇df = −Kfg.

In addition, such f is uniquely determined by (a, ξ) once U is fixed.

Proof. In any pseudo-Riemannian manifold (M, g), with any constant K, the as-
signment f 7→ (f, df) obviously defines a bijective correspondence between smooth
solutions f to (3), defined on open subsets of M, and ∇-parallel local sections
(f, ξ) of the vector bundle E = [M × IR] ⊕ T ∗M over M, where ∇ is the con-

nection in E given by ∇v (f, ξ) = (dvf − ξ(v), ∇v ξ + Kfg(v, · )) whenever v is a
vector field tangent to M. To evaluate R(u, v)(f, ξ) at x ∈ M, for the curvature
R of ∇, we may assume that u, v, ξ are ∇-parallel at x and dfx = 0. One then
easily verifies that, in general, R(u, v)(f, ξ) = (0, η), where η(w) = −ξ[A(u, v, w)]
with A(u, v, w) = R(u, v)w−K[g(u,w)v− g(v, w)u]. Thus, ∇ is flat if and only if
g is a metric of constant curvature K, as required. (The final clause of the lemma
is obvious: in view of connectedness of U, a ∇-parallel section of E defined on U
is uniquely determined by its value at one point; see Distributions and the Frobenius
Theorem, Exercise 12.)
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The pseudosphere-geodesics lemma. In a pseudo-Euclidean vector space E with
the inner product 〈 , 〉, every nonempty pseudosphere M = {x ∈ E : 〈x, x〉 = c}, where
c ∈ IR r {0}, is a nondegenerate submanifold. For the Levi-Civita connection ∇ of the
submanifold metric g of M, any z ∈M, and v ∈ TzM = z⊥, the formula

(4)

x(t) = z + tv if 〈v, v〉 = 0,

x(t) = z cos t + v sin t if 〈v, v〉 = c,

x(t) = z cosh t + v sinh t if 〈v, v〉 = −c,

then defines a ∇-geodesic IR 3 t 7→ x(t) ∈M such that x(0) = z and ẋ(0) = v.

In fact, ∇̇xẋ = [Dẋ ẋ]tng for the Levi-Civita connection D of the flat constant
metric on E arising from the inner product 〈 , 〉, and Dẋ ẋ = ẍ, so that our claim
is obvious since ẍ = εx, with ε =∈ {0, 1,−1}, is normal to M.

Corollary. With assumptions and notations as in the preceding lemma, equation (3) holds
on the pseudosphere (M, g) for K = 1/c and f obtained as the restriction to M of any
linear homogeneous function E → IR.

When K = 0, (3) is satisfied by every affine function f on (M, g) which is defined
to be a finite-dimensional real affine space with a flat constant metric arising from a
pseudo-Euclidean inner product.

Proof. If K 6= 0, due to bilinearity and symmetry of both sides, it suffices to verify
(3), at any z ∈M, evaluated on (v, v), where v ∈ TzM = z⊥ and 〈v, v〉 equals 0,
c or −c. This is in turn obvious from linearity of f, combined with (2) applied to
the geodesics t 7→ x(t) given by (4).

Now let K= 0. Then constant vector fields on M, including gradients of affine
functions, are parallel, which proves our claim.

The following classification result is a special case of a theorem due to Cartan.
(See Élie Cartan, Sur une classe remarquable d’espaces de Riemann, Bull. Soc. Math.
France 54, 1926, 214–264.)

The Constant-Curvature Theorem. Let c ∈ IRr{0}. Then any nonempty pseudo-
sphere {x ∈ E : 〈x, x〉 = c} in a pseudo-Euclidean vector space E , with its submanifold
metric, is a space of constant curvature K = 1/c.

Conversely, every pseudo-Riemannian space (M, g) of constant curvature K is locally
isometric to

(i) a pseudosphere with a metric obtained as above, if K 6= 0, or
(ii) a pseudo-Euclidean vector space with the constant metric, if K= 0.

Proof. The first assertion is obvious from the Hessian-metric equation lemma along
with the above corollary.

Conversely, let (M, g) be of constant curvature K, with m = dimM. Every
point of z ∈ M then has a connected neighborhood U such that dim E = m + 1
for the vector space E of all smooth solutions f : U → IR of the linear equation
(3), and f 7→ (f(z), dfz) is a linear isomorphism E → Z onto the vector space
Z = IR× T ∗zM. (Note that Z is the space of the initial data (a, ξ) in the Hessian-
metric equation lemma, and we may choose U to be contained in the intersection
of the domains of solutions of (3) corresponding to pairs (a, ξ) ranging over a basis
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of Z.) Fixing such U from now on, we see that, for every x ∈ U,

(5) E 3 f 7→ (f(x), [∇f ]x) is a linear isomorphism E → IR⊕ TxM.

Injectivity in (5) is obvious from the final clause of the Hessian-metric equation
lemma, and surjectivity follows as both spaces have the same dimension m+ 1.

Next, for any f, f̂ ∈ E, the function

(6) 〈f, f̂ 〉 = g(∇f,∇f̂) + Kff̂

is constant, so that 〈 , 〉 defined by (6) is a symmetric bilinear form on E. To see this,

we first let f̂ = f, and then, from (1) and (3), d〈f, f〉 = d[g(∇f,∇f)] + 2Kfdf =
2[∇df ](∇f, · ) + 2Kfdf = 2[∇df + Kfg](∇f, · ) = 0. The general case follows as

4〈f, f̂ 〉 = 〈f + f̂ , f + f̂ 〉 − 〈f − f̂ , f − f̂ 〉 in view of bilinearity and symmetry.

In the case where K 6= 0, we use (5) to define a mapping ϕ : U → E by

(7) ϕ(x) = f for the unique f ∈ E with f(x) = 1/K and [∇f ]x = 0.

Our 〈 , 〉 is now nondegenerate, which makes E a pseudo-Euclidean space. (In fact,

if f 6= 0, we find f̂ with 〈f, f̂ 〉 6= 0 by letting f̂ be nonzero and ∇f̂ zero at a fixed
point x ∈ U, or vice versa, depending on whether (∇f)x = 0 or (∇f)x 6= 0, cf. (5)
and (6).) Next, all values of ϕ lie in the pseudosphere Σ = {y ∈ E : 〈y, y〉 = 1/K},
as one sees, for any x ∈ U, by choosing f as in (7) and evaluating the constant

function (6), with f̂ = f, at x, which gives the required value 〈f, f〉 = 1/K.
Furthermore, whenever x ∈ U and v ∈ TxM, (7) gives

(8) dϕxv = ḟ for the unique ḟ ∈ E with ḟ(x) = 0 and (∇ḟ)x = v.

To verify (8), consider an interval I ⊆ IR and a smooth curve I 3 t 7→ x = x(t) ∈ U.
Then f = ϕ(x(t)) is a curve of functions U → IR, parametrized by t ∈ I, which
allows us to treat it as a function (t, x) 7→ f(t, x) of (t, x) ∈ I×U, with f(t, · ) ∈ E
for each t. We will use the partial derivatives ḟ = ∂f/∂t and ∂jf (for fixed local
coordinates in U), all of which are functions of (t, x). According to (7),

(9) f(t, x(t)) = 1/K, (∂jf)(t, x(t)) = 0.

Applying d/dt to (7), we obtain, from the chain rule, ḟ + ẋk∂kf = 0 and ∂j ḟ +

ẋk∂k∂jf = 0 (with each term evaluated at (t, x(t)), which is suppressed from our

notation). As f,jk = ∂k∂jf − Γ l
kj∂lf, (9) allows us to rewrite these equalities as

ḟ = 0 and 0 = ∂j ḟ + ẋkf,jk = ∂j ḟ −Kfẋlgjl = ∂j ḟ − ẋkgjk. With x(t) = x and

ẋ(t) = v at fixed t, this yields (8).

Finally, by (6) and (8), 〈ḟ , ḟ〉 = g(v, v). Thus, ϕ is isometric and so, locally,
is an isometry between open sets in U and open subsets of the pseudosphere Σ,
which completes the proof when K 6= 0.

Now let K = 0. This time 〈 , 〉 is degenerate, with the nullspace IR = E⊥
consisting of constant functions. We denote by A the set of all linear functionals
E → IR, the restriction of which to the line IR ⊆ E of constant functions equals
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the identity mapping IR → IR. Thus, A is an affine subspace of E∗, namely, a
coset of the vector subspace (E/IR)∗ of E∗ formed by all linear functionals E → IR
that vanish on IR ⊆ E . Clearly, 〈 , 〉 descends to a pseudo-Euclidean inner product
on E/IR, again denoted by 〈 , 〉, which induces a further inner product 〈 , 〉, and
thus turns the affine space into A into a flat pseudo-Riemannian manifold. We
now define a mapping ϕ : U → A by ϕ(x) = δx, with δx standing for the Dirac
delta (evaluation) functional, that is, the assignment E 3 f 7→ f(x) ∈ IR. Next, if

x ∈ U and v ∈ TxM, we have dϕxv = 〈ḟ , · 〉 ∈ (E/IR)∗ for the unique ḟ ∈ E with

ḟ(x) = 0 and [∇ḟ ]x = v. In fact, given an interval I ⊆ IR and a smooth curve
I 3 t 7→ x = x(t) ∈ U, the evaluation of ϕ(x(t)) on a fixed function f ∈ E yields

f(x(t)), and so, applying d/dt, one gets dfxẋ, with x = x(t), which equals 〈ḟ , f〉.
Thus, by (6), 〈ḟ , ḟ〉 = g(v, v). Consequently, ϕ is again isometric, as required.

Remark. Here is a common method of constructing injective mappings ϕ from a
manifold (or a more general topological space), denoted here by M, into a vector
space: one first selects a “natural” vector space F of functions M → IR, and
then defines ϕ : M → F∗ by ϕ(x) = δx (the Dirac delta functional), so that
[ϕ(x)](f) = f(x) for x ∈M and f ∈ F. This is precisely what we did in the above
proof, with F = E – not only (quite explicitly) when K= 0, but also for K 6= 0. In
the latter case, nondegeneracy of 〈 , 〉 leads to the isomorphic identification F = F∗,
via f 7→ 〈f, · 〉 which, by (6), makes δx correspond to ϕ(x) with (7).

Another well-known example of (a modified version of) the above method arises
in complex differential geometry: let F denote the space of all holomorphic sections
of a given a holomorphic line bundle L over a compact complex manifold M,
assumed to have a “weak-ampleness” property, in the sense that for every x ∈ M
there exists ψ ∈ F with ψx 6= 0. Denoting by P(F∗) the projective space of
the complex dual F∗, we now define a holomorphic mapping ϕ : M → P(F∗) by
ϕ(x) = Cδx. Note that, even though δx : F → Lx (rather than δx : F → C), the
complex span Cδx of δx equals that of a linear functional F → C, obtained by
choosing an isomorphic identification Lx ≈ C, and independent of the choice of
such an identification.


