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§0. Introduction

A pseudo-Riemannian metric g on a (connected) manifold M is called an Ein-
stein metric if its Ricci tensor Ric and scalar curvature s satisfy the relations

(0.1) Ric =
s

n
g , ds = 0 , n = dimM .

One then also refers to the pair (M, g) as an Einstein manifold . Note that, since
M is assumed connected, condition ds = 0 means here that s is constant.

This article is an exposition of selected results concerning Einstein metrics on
four-manifolds. The focus of our discussion on dimension four, with other dimen-
sions mentioned only in passing, follows what has consistently, with relatively few
exceptions, seemed to be the main areas of interest for Einstein metrics both in
differential geometry and mathematical physics.

We address two main topics concerning four-dimensional Einstein metrics, often
treated as completely separate. One is the question of global properties of compact
Einstein 4-manifolds which are Riemannian in the sense that their metrics are
positive definite. The other topic pertains to local properties of Einstein metrics
on 4-dimensional manifolds in Riemannian as well as Lorentzian and neutral cases;
the italicized terms refer to the sign patterns − + + + and − − + + , of which
the former characterizes spacetime metrics in general relativity.

As a result, the material presented here can naturally be divided into local and
global topics. The former are dealt with in most of Part I and Part IV. As for the
latter, they are discussed, usually in the context of compact Riemannian manifolds,
in Parts II and III.

Here is a brief outline of the contents of this article. Part I covers a variety of
elementary topics, ranging from preliminary material on curvature, flatness, sub-
manifolds, and conformal changes of metrics, through local classification theorems
for curvature-homogeneous Riemannian Einstein metrics of dimension four (along
the special cases of metrics which are locally homogeneous, or locally symmetric),
and also including topics such as Einstein hypersurfaces in pseudo-Euclidean spaces,
Einstein metrics conformal to Kähler metrics or to Riemannian-product metrics,
mobility for Einstein metrics, and potentials for Kähler metrics. Parts II and
III deal with topological conditions that guarantee nonexistence (or, in some rare
cases, existence) of a Riemannian Einstein metric on a given compact four–mani-
fold. Finally, Part IV is devoted to local properties of indefinite Einstein metrics in
dimension four and contains Petrov’s classification of curvature types and a local
classification of locally symmetric pseudo-Riemannian Einstein 4-manifolds.

For more details, see the detailed summaries at the beginning of each of the four
parts, and the table of contents.

Besides the local-global distinction, another division in the material reflects four
different levels involved in the presentation. One, which might be termed basic and
self-contained, appears in Part I, and is both easily accessible to nonexperts and
accompanied by full proofs. A ’nonexpert’ means here someone whose background
includes, but does not reach far beyond, the contents of a typical introductory
graduate course in modern differential geometry offered at large U.S. universities.
Accordingly, the reader is assumed to have some familiarity with objects such as
manifolds, differentiable mappings, tensors, pseudo-Riemannian metrics, and vector
bundles (along with differentiable sections of, connections in, and fibrewise algebraic
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operations on the latter); the notions just listed will not be defined. Other concepts,
although expected to be known to the reader, are briefly defined here; these include
the Levi-Civita connection, the curvature and Ricci tensors, the Lie bracket of
vector fields, etc.

As for Part II, it contains material which is still basic, but this time relies on
several non-elementary results that are quoted without proofs (but, once taken for
granted, make the rest of the discussion in Part II quite easy). In Part IV, the
presentation level is intermediate, which here means that it is elementary and self-
contained, but involves lengthy technical details that a nonexpert might not be
willing to go into. Finally, Part III contains material on an advanced level in the
form of brief summaries of results relying on repeated uses of techniques the details
of which cannot be presented in an article of this size.

As another consequence of its limited size, the present text does not and can-
not address all facts concerning four-dimensional Einstein metrics that are deemed
important by large groups of experts. The topics left out include:

• techniques of global complex analysis used to prove existence and uniqueness
results of the Calabi-Yau-Aubin type;

• moduli spaces of Einstein metrics on compact manifolds;
• the whole subject of cohomogeneity-one Einstein 4-manifolds, with the exam-

ple of a U(2)-invariant Einstein metric on a compact 4-manifold discovered
by Page (1978), and Bérard Bergery’s (1981) classification theorem stating
that no further examples of this type are possible;

• further topological obstructions to the existence of specific types of Einstein
metrics on compact 4-manifolds, such as a theorem of due to Hitchin (1974)
for nonpositively or nonnegatively curved Riemannian metrics, or results of
Law (1991) for indefinite metrics of the neutral sign pattern − − + + ;

• a result of DeTurck and Kazdan (1981) which says that every Riemannian
Einstein metric is analytic in suitable local coordinates;

• an approach to Einstein metrics using normal coordinates and power-series
solutions to (0.1);

• a result of Gasqui (1982) stating that any “Einsteinian” algebraic curvature
tensor at a point x is realized as the curvature at x of an Einstein metric g
defined in a neighborhood of x, with the prescribed value g(x) at x;

and many more.
This paper benefited from correspondence and conversations with many people.

Some of those discussions go back more than a decade. I am particularly obliged
to Andrea Sambusetti for numerous comments and helpful criticism of §27. I also
greatly appreciate conversations I had in the mid-1980s with Richard Palais and
Chuu-Lian Terng, concerning warped-product Einstein metrics, a topic mentioned
in §16 and §19 of this text.
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PART I : BASICS

Throughout the following twenty-three sections we will usually assume that the
metrics in question are both Riemannian (positive definite) and four-dimensional ,
unless a generalization to other signatures and/or dimensions is completely straight-
forward. There are only three exceptions to this rule, namely, all of §8, Remark
13.10 at the very end of §13, and the second half of §15(starting from Lemma 15.7).
In those places we discuss some classes of pseudo-Riemannian manifolds that do not
contain, and are quite different from, any Riemannian manifolds. Without those
three fragments, Part I remains a self-contained whole.

The Einstein condition (0.1) is a fairly complicated system of nonlinear second-
order partial differential equations imposed on the local component functions of the
metric g. In sections 7 through 19 and 23 we discuss some special cases in which
that system of equations becomes more manageable.

The first of such cases is that of locally homogeneous Einstein 4-manifolds.
The question of finding a local classification of all such metrics is automatically
reduced to an algebraic problem (which is an obvious consequence of homogeneity);
however, for Riemannian Einstein metrics in dimension four, it becomes completely
straightforward, as explained next.

In general, we have the following chain of inclusions

(∗) algebraic
examples

⊂ locally
symmetric

⊂ locally
homogeneous

⊂ curvature
homogeneous

between classes of pseudo-Riemannian metrics g of any given dimension and sign
pattern. Here ”algebraic examples” stands for a specific set of local-isometry types
of locally symmetric metrics (see §7) that arise from some direct linear-algebra
constructions, while curvature-homogeneity means that the metric-curvature pair
(g,R) represents the same algebraic type at each point x of the underlying manifold
M , i.e., given two points x, y, there exists a linear isomorphism TxM → TyM that
takes g(x) onto g(y) and R(x) onto R(y). (See, e.g., Tricerri and Vanhecke,
1989.)

As it turns out, in the category of Riemannian Einstein 4-manifolds, all four
inclusions in (∗) above are actually equalities:

algebraic
examples

=
locally
symmetric

=
locally
homogeneous

=
curvature
homogeneous

,

with the ”algebraic examples” listed in the assertion of Theorem 14.7. More pre-
cisely, the first of these equalities is Cartan’s classification result for locally sym-
metric 4-manifolds (Cartan, 1926; see Theorem 14.7 in §14); the second one is a
theorem of Jensen (1969), a proof of which is given in §7 (Corollary 7.3); and the
third equality is Corollary 7.2 in §7. Note that, for four-dimensional Riemannian
Einstein manifolds, curvature-homogeneity is equivalent to the requirement that
the curvature operator acting on bivectors have constant eigenvalues; see Remark
6.24 in §6.

It should be noted that, in contrast with the Riemannian case, for indefinite
Einstein metrics in dimension four all three inclusions in (∗) above are strict. See
Theorems 41.5 and 41.6 in §41 (compared with Theorem 41.4) and, respectively,
Proposition 8.5 in §8 and Corollary 49.2 in §49.
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A condition similar to, but weaker than local homogeneity is that of (local)
cohomogeneity one, where the Riemannian four-manifold in question has a (local)
isometry group with 3-dimensional principal orbits. The Einstein condition (0.1)
then is obviously equivalent to a system of ordinary differential equations. (See,
e.g., Bérard Bergery, 1982; Gibbons and Hawking, 1979.) Lack of space makes it
impossible to include a discussion of that situation in the present text.

Another possible source of easy examples of Einstein four-manifolds are those
hypersurfaces M in 5-dimensional pseudo-Euclidean vector spaces whose subman-
ifold metrics, i.e., first fundamental forms, happen to be (nondegenerate and) Ein-
stein. In the case where g is Riemannian or Lorentzian, this leads to nothing new;
in fact, (M, g) then must be a space of constant curvature (Proposition 15.6). How-
ever, among those indefinite metrics g of pseudo-Euclidean hypersurfaces having
the neutral sign pattern − − + + there is a surprising wealth of examples that
are Einstein (more precisely, Ricci-flat). For details, see Example 15.14 in §15.

A further simple method of constructing Einstein 4-manifolds is through con-
formal changes of products of surface metrics (§16). The surface metrics involved
must be of the special type known as Calabi’s extremal metrics. In the Lorentz
case, the examples obtained in this way include some important spacetime models
for general relativity, namely, the Schwarzschild and Kottler metrics (§18, §48). A
related class is that of Einstein 4-manifolds (M, g) with g locally conformal to a
(1 + 3)-dimensional product metric; see §19.

A fifth case where a simpler-than-general approach to the Einstein condition
exists is that of Kähler metrics on complex manifolds. Such metrics can be repre-
sented, locally, through a single real-valued C∞ function φ (a Kähler potential)
and, for Kähler metrics, condition (0.1) becomes a single partial differential equa-
tion imposed on φ (the Monge-Ampère equation (23.29)). See §23.

§1. Remarks on notation

The notations used in this text were chosen in an attempt to have symbols and
notational conventions that are, at the same time, simple, internally consistent
(within the text) and, finally, in agreement with whatever norms prevail in the
existing literature.

The result is, at best, an uneasy compromise. First, in matters as basic as the
sign conventions for the curvature tensor R, the second fundamental form b, or the
divergence and Laplace operators div and ∆, no general consensus seems to exist.
As a result, our usage agrees with some and disagrees with many others among
the standard sources. For instance, our sign of R differs from that in Kobayashi
and Nomizu (1963), while or ∆ and div are the opposites of those in Besse, 1987
(where, by the way, the divergence is denoted δ). Also, our conventions for the
universal factors appearing in the component descriptions of the exterior product
and exterior derivative differ from Kobayashi and Nomizu (1963).

Simplicity of notation, in a text of this size, is not only a matter of æsthetic
appeal, but also involves the requirement that notations be self-explanatory, re-
lieving the reader of the need to constantly search the ’Preliminaries’ section for
clues. This is why “projections” of all kinds are represented by the symbol pr,
with superscripts if necessary, while our Ricci tensor, divergence, and volume form
are denoted Ric, div, vol. The scalar curvature, however, is s rather than Scal
(or something similar), since the latter symbol would be too awkward in expres-
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sions like s ,j . (The same problem for Ric was resolved by writing its components
as Rjk, which follows an old tradition.) For similar reasons, ∇ is preferred over
grad for the gradient operator. It is also for the sake of simplicity that some less
orthodox symbols are used here, such as t 7→ etw for the flow of a vector field w. Fi-
nally, whenever a fixed pseudo-Riemannian metric is present, we use the associated
index-raising and index-lowering operations to identify tensorial objects of various
“types” without any special notation; the symbol v used for a tangent vector thus
represents the associated cotangent vector g(v, · ) as well.

This last identification leads to one particular difficulty which seems to lack
a completely satisfactory solution. Namely, when a twice-covariant tensor B is
treated, with the aid of a fixed metric g, as an operator acting on tangent vectors
v, we always interpret that identification as raising the second lower index of B.
Thus, Bv stands for B(v, · ) (that is, the unique vector w with g(w, u) = B(v, u)
for all vectors u; in terms of components, [Bv]j = Bk

jvk with Bk
j = Bklg

lj). Our
choice, which of course makes no difference for symmetric two-tensors, is largely
motivated by our frequent use of the standard notation R(v, w)u for the curvature
tensor of a metric g acting on vectors v, w, u so as to be skew-symmetric in v, w.
At the same time, we want to treat R(v, w) as a (skew-adjoint) operator in the
tangent space sending u to R(v, w)u, while the (skew-symmetric) two-tensor corre-
sponding to that operator should assign the number R(v, w, u, u′) = g(R(v, w)u, u′)
to vectors u, u′. The component version of this convention is Rjklp = Rjkl

sgsp,
with Rjklp skew-symmetric both in j, k and l, p. Note that if we had chosen the
first (rather than second) index of B to be the one raised, this curvature conven-
tion would require annoying modifications in the form of a minus sign or a changed
order of arguments. On the other hand, the drawbacks of our choice include a
counterintuitive form of the component description of the composite AB of two
twice-covariant tensors A,B, with (AB)jk = AskBsj . Another inconvenience arises
when the covariant derivative ∇w of a tangent vector field w acts as an operator
on tangent vector v, with (∇w)v = ∇vw, and we choose to treat w as a cotangent
vector field instead. The component notation ∇kwj then fits our convention (as
it engages vk, in vk∇kwj , via its first lower index k); however, for simplicity, we
will in most cases use the symbol wj,k as a stand-in for ∇kwj , with the resulting
component expression vkwj,k for ∇vw which constitutes an exception to the above
rule.

As the examples scattered throughout the last paragraph clearly indicate, out
notations include the summing convention, so that in a “monomial” type expres-
sion, an index repeated twice (once as a subscript and once as a superscript) is
to be summed over. Superscripts will therefore be very common, for instance in
components vj of tangent vectors, or in individual coordinate functions xj forming
a given coordinate system. They must not be confused with exponents: xj is not
the jth power of x (unless clearly stated to be just that). In those rare instances
where both uses of upper indices have to coexist, we use parentheses; an expression
such as (x2)2 stands for the square of the second coordinate function x2.

Internal consistency of notations leads to yet another problem. The sheer num-
ber of topics covered makes it hard to get by with the few commonly used alphabets
without introducing symbols that would make a reader cringe. Clashes between no-
tations used in various sections, even “noninteracting” ones, are nevertheless kept
to a minimum by being allowed only in those cases where overlapping notations
appear completely harmless and cannot be reasonably avoided. A typical exam-
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ple is the symbol A used (in §30 only) to represent a generic U(1)-connection in
a complex line bundle; this widely established usage goes back to the traditional
symbol A for a four-potential in relativistic electrodynamics (which in turn comes
from the symbol A for a nonrelativistic vector potential). However, due to alpha-
bet scarcity, the symbol A is still used elsewhere in the text as a generic notation
for linear operators or functions. Similarly, following the common usage, we denote
‖M‖ the simplicial volume of a compact orientable manifold M (in §35 only),
while in §25, §26, §27 and §34 we let ‖ ‖ stand for the L2 norm.

Also, in some places internal consistency and simplicity requirements disagree,
making it necessary to settle for a patchwork approach. The most pronounced
example is the g-inner product 〈A,B〉 of twice-covariant tensors A,B in a pseu-
do-Riemannian manifold (M, g) (treated, with the aid of g, as operators in the
tangent space), such that A,B are both symmetric, or both skew-symmetric. We
define it by 〈A,B〉 = rTraceAB with r = 1 when A,B are symmetric, and
r = − 1/2 when they are skew-symmetric. (Applying the trace to AB∗ rather than
AB removes the discrepancy in sign, but not the factor of 1/2.) The reason we
adopt this convention is that it leads to simplicity in further formulae; for instance,
when g is positive definite and | | denotes the norm corresponding to 〈 , 〉, we have
|v∧w| = |v| |w| for mutually orthogonal vectors v, w, with the “simple” convention
that (v ∧w)jk = vjwk − vkwj ;, on the other hand, |A|2 = λ2

1 + . . .+ λ2
n whenever

A is symmetric and λ1, . . . , λn are its eigenvalues.
For any given local coordinate system xj , j = 1, . . . , n, in an n-dimensional

manifold, we use the symbols e1, . . . , en for the corresponding coordinate vector
fields (rather than the more commonly accepted ∂/∂xj or ∂j). The reason is that
in our notation the directional derivative in the direction of a vector field v sends
a function f to something written as dvf , rather than vf . (We never use the
latter symbol to avoid confusion with other multiplications involving vector fields,
such as the Clifford product.) Having symbols for vector fields generally different
from those for the corresponding directional derivatives, it would be awkward to
suddenly make an exception in the case of coordinate vector fields.

Finally, we will use the phrase ’locally in (the manifold) M ’ to mean ’in a suitable
neighborhood of any given point of M ’.

§2. Preliminaries

This and the next three sections form the reference part of the text, where
formulae, definitions and some assertions with proofs can be looked up when needed.
Although they can serve as a crash course in basics, they were not designed primarily
to fulfill that rôle; consequently, the reader trying to learn material from here may
find the presentation too sketchy.

Given a local coordinate system xj in a manifold M , j = 1, . . . , n (with n =
dimM), we will denote yj and vj the components relative to the coordinates xj

of any point y in the coordinate domain U and, respectively, any tangent vector
v ∈ TyM . Thus, yj = xj(y) and, given any C1 curve t 7→ x(t) ∈ U , we have
[ẋ(t)]j = ẋj(t) (where the latter stands for dxj/dt). The coordinates xj also
give rise to the coordinate vector fields, denoted e1, . . . , en, in such a way that, for
k = 1, . . . , n, v = ek has the components (relative to the xj) given by

(2.1) vj = δjk for v = ek .



EINSTEIN METRICS IN DIMENSION FOUR 9

For any tangent vector v we thus have

(2.2) v = vj ej .

The ej are thus dual to the dxj , i.e.,

(2.3) (dxj)(ek) = δjk .

Here and in the sequel we adopt, unless stated otherwise, the standard convention of
summing over repeated indices (a subscript and a superscript), in a monomial-style
expression. A tangent vector v ∈ TxM gives rise to the corresponding directional
derivative, associating with every C1 function f defined in a neighborhood of x
the number dvf . When v varies with x (i.e., we are given a tangent vector field),
so does dvf , i.e., dv then takes functions to functions. The directional derivative dv
corresponding to the coordinate vector field ej for a fixed local coordinate system
xj is called the partial derivative in the jth coordinate direction and denoted ∂/∂xj

or simply ∂j . Thus, by (2.2), dvf = vj∂jf .
The Lie bracket of any (local) C1 vector fields v, w in M is the vector field

[v, w] characterized by the local-coordinate formula

(2.4) [v, w]j = dvw
j − dwv

j ,

i.e., [v, w]j = vk∂kw
j − wk∂kvj . Thus, for a coordinate vector field v = ek with

(2.1), we have

(2.5) [ek, w]j = ∂kw
j .

In terms of directional derivatives, (2.4) easily gives

(2.6) d[v,w]f = dvdwf − dwdvf

for any C2 function f .
Let (M, g) now be a pseudo-Riemannian manifold. As usual, we denote gjk the

component functions of the metric g relative to any local coordinate system xj in
M . Thus,

(2.7) gjk = g(ej , ek) .

The symbols gjk then stand for the component functions of the reciprocal metric
g−1, so that, at any point of the coordinate domain, [gjk] = [gjk]−1 as matrices,
i.e.,

(2.8) gjlglk = δjk .

Using the metric g, we will identify, without further comments, tangent vectors
v ∈ TxM with cotangent vectors (1-forms) ξ ∈ T ∗xM at any point x ∈ M . Thus,
ξ = g(v, · ). In terms of the components vj , ξj of v and ξ relative to any fixed local
coordinate system xj in M , this is known as lowering or raising of the indices, with
ξj = gjkv

k, vj = gjkξk. From now on, we will simply write ξ = v. In particular,
the differential df of any real-valued function f corresponds in this way, and
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will be identified with, its gradient, which is the tangent vector field ∇f with the
component functions (relative to any local coordinates xj) denoted ∇jf or f ,j ;
thus

(2.9) f ,j = ∇jf = gjk ∂kf = gjkf,j ,

Also,

(2.10) ∇xj = gjkek ,

and

(2.11) [gjk] = g(∇xj , ∇xk) .

In fact, by (2.9), for any fixed j the components of ∇xj are (∇xj)k = gks ∂sx
j =

gksδjs = gjk. Evaluating g(∇xj , ∇xk) via (2.10), we now obtain (2.11).
Similarly, we will identify 2-tensors at any x ∈M with linear operators TxM →

TxM . More precisely, a twice-covariant tensor α will be treated, with the aid of
g, as an operator v 7→ αv acting on tangent vectors v ∈ TxM , with

(2.12) g(αv, · ) = α(v, · ) , i.e., (αv)j = αkjv
k ,

or, in terms of “index-raising”, (αv)j = αk
jvk with αk

j = αklg
lj .

Our conventions about the tensor and exterior products of 1-forms ξ, η, the
exterior derivative of a 1-form ξ and the g-inner product of 2-forms α, β on the
underlying manifold M are such that

(2.13) (ξ ⊗ η)(u, v) = ξ(u)η(v) , (ξ ⊗ η)jk = ξjηk

and

(2.14) ξ ∧ η = ξ ⊗ η − η ⊗ ξ ,

i.e.,

(2.15) (ξ ∧ η)(u, v) = ξ(u)η(v) − ξ(v)η(u) , (ξ ∧ η)jk = ξjηk − ξkηj ,

(2.16) (dξ)(u, v) = du[ξ(v)] − dv[ξ(u)] − ξ([u, v]) , (dξ)jk = ∂jξk − ∂kξj ,

(2.17) 〈α, β〉 = −1

2
Trace αβ =

1

2
αjkβ

jk ,

for any tangent vectors (vector fields) u, v and any local coordinates xj . However,
for twice-covariant C∞ tensor fields A,B which are symmetric (and so, treated as
operators TxM → TxM , are self-adjoint), we define a natural inner product using
a different convention, namely

(2.18) 〈A,B〉 = Trace AB = AjkB
jk ,
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cf. (3.1). As usual, by bivectors at a point x ∈M we mean elements of the bivector
space [TxM ]∧2 (the second exterior power of TxM ; for more on bivectors, see the
paragraph preceding Lemma 3.7 in §3). Obvious examples are exterior products
v ∧ w of vectors; under the index-raising operation for a fixed metric g, bivectors
correspond to exterior 2-forms. Thus, from (2.15) and (2.17), we have, for tangent
vectors u, v, w, v′, w′ and bivectors or 2-forms α,

(2.19) 〈αv,w〉 = α(v, w) ,

(2.20) 〈α, v ∧ v′〉 = 〈αv, v′〉 = −〈v, αv′〉 = α(v, v′) ,

(2.21) 〈v ∧ w, v′ ∧ w′〉 = g(v, v′)g(w,w′) − g(v, w′)g(v′, w) ,

and, for α, u ∧ v and v ∧ w treated as operators acting in the tangent space,

(2.22) (u ∧ v)w = 〈u,w〉v − 〈v, w〉u ,

(by (2.15) and (2.19)); hence, we have the formula

(2.23) α(v ∧ w) = v ⊗ (αw) − w ⊗ (αv) .

for the composite operator and, consequently, [u ∧ v, α] = v ∧ (αu)− u ∧ (αv) for
the commutator. Therefore, for bivectors α, β and tangent vectors u, v, (2.20)
along with skew-symmetry of α and β yield

(2.24) 〈[u ∧ v, α], β〉 = 〈[α, β]u, v〉

and

(2.25) 〈v ∧ (αu)− u ∧ (αv), β〉 = 〈[α, β]u, v〉 .

Similarly, from (2.22) and the relation

(2.26) (v ⊗ u)w = g(v, w)u

(which is immediate from (2.13) and (2.12)), we have the formula

(2.27) (u ∧ v)(u′ ∧ v′) = [g(v, u′)v′ − g(v, v′)u′]⊗ u + [g(u, v′)u′ − g(u, u′)v′]⊗ v

for the composite of u ∧ v and u′ ∧ v′ (treated as operators TxM → TxM , with
u, v, u′, v′ ∈ TxM), and so their commutator is given by

(2.28)
[u ∧ v, u′ ∧ v′] = g(u, u′) v ∧ v′ + g(v, v′)u ∧ u′

− g(u, v′) v ∧ u′ − g(u′, v)u ∧ v′ ,

since u ∧ v = u⊗ v − v ⊗ u (see (2.14)).
Let F : M → N be a C1 mapping between manifolds. Given a twice-covariant

tensor field h on N , by the pullback of h under F we mean the twice-covariant
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tensor field F ∗h on M such that, for all x ∈M and v, w ∈ TxM , [F ∗h]x(v, w) =
hy(Av,Aw) with x = F (y) and A = dFy, i.e.,

(2.29) [F ∗h]x(v, w) = hF (x)(dFxv, dFxw) .

In local coordinates ya for N and xj for M , this can be expressed as the component
formula

(2.30) [F ∗h]jk = hλµ(F )(∂jF
λ)∂kF

µ .

If, in addition, g and h are pseudo-Riemannian metrics on M and N , respectively,
we will say that a mapping F : M → N is an isometry between the pseudo-Riem-
annian manifolds (M, g) and (N,h) if it is a C1 diffeomorphism with F ∗h = g.
One also says that a given pseudo-Riemannian manifold (M, g) is locally homoge-
neous if for any two points x, y ∈M there exists an isometry of a neighborhood of
x onto a neighborhood of y which sends x to y.

Remark 2.1. Given a pseudo-Riemannian manifold (M, g), let ∼ be the binary
relation in M with x ∼ y if and only if there is an isometry of a neighborhood of
x onto a neighborhood of y sending x to y. Clearly, ∼ is an equivalence relation,
and local homogeneity of (M, g) means that ∼ has only one equivalence class.

Lemma 2.2. Let a Ck vector-bundle morphism F : E → H between C∞ real or
complex vector bundles E and H over a manifold M , with 0 ≤ k ≤ ∞, be of
constant rank in the sense that dim [F (Ex)] is the same for all x ∈ M . Then
both the image F (E) and the kernel KerF of F are Ck vector subbundles of
E and H, respectively.

Proof. Let q, p and r denote the fibre dimensions of E and H, respectively, and
the rank of F (that is, the fibre dimension of F (E)). What needs to be shown
is Ck regularity of F (E) and KerF , i.e., the existence, in a neighborhood of any
given point x ∈ M , of local trivializing sections ea for F (E), a = 1, . . . , r, and
eλ of KerF , λ = r + 1, . . . , q, which are of class Ck when regarded as sections of
the ambient bundle H or E . To obtain the ea, it suffices to fix C∞ local sections
ψ1, . . . , ψq of E which trivialize E in a neighborhood of x and rearrange their
order so that the images ea = F (ψa), a = 1, . . . , r, are linearly independent at x.
Then, in some neighborhood of x, F (ψλ), for each λ = r+ 1, . . . , q, must be equal
to a combination haλF (ψa) of the ea = F (ψa) (summation over a = 1, . . . , r),
with some Ck coefficient functions haλ. The required local Ck sections eλ of E
trivializing KerF in a neighborhood of x now can be defined by eλ = ψλ−haλψa.
�

As usual, by the flow of a C1 vector field w on a manifold M is the mapping

(2.31) (t, x) 7→ etwx ∈M ,

defined on an open subset of R ×M , and characterized by the requirement that,
for each x ∈M , t 7→ x(t) = etwx be the unique C1 solution, defined on the largest
possible interval in R containing 0, to the initial value problem ẋ(t) = w(x(t)),
x(0) = x. (More generally, C1 curves t 7→ x(t) ∈ M with ẋ(t) = w(x(t)) for all
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t are called integral curves of w.) Note that the flow of w has the homomorphic
property

(2.32) etweswx = e(t+s)wx

valid for those t, s, x for which it makes sense. In fact, t 7→ y(t) = e(t+s)wx is an
integral curve of w with y(0) = eswx, and so (2.32) follows from the uniqueness-
of-solutions theorem for ordinary differential equations.

Remark 2.3. In §17 we will need the fact that every C1 vector field w on a manifold
M , which vanishes outside a compact set Ω, is complete in the sense that its flow
(2.31) is defined on all of R ×M . In fact, all integral curves t 7→ etwx can be
defined on a common interval [− a, a] for some a > 0 ; the existence of such a
for all x ∈ Ω is immediate from compactness of Ω, while for x /∈ Ω we may set
etwx = x for all t. Piecing together integral curves defined on intervals of length
2a we thus obtain integral curves defined on all of R. Completeness of w now
gives rise to the assignment

(2.33) R 3 t 7→ etw ∈ Diff (M)

valued in the group of all C∞ diffeomorphisms of M which, in view of (2.32), is a
group homomorphism.

Remark 2.4. As suggected by the notation, expression etwx in (2.31) depends only
on x and tw (rather than t and w individually). In facts, for any nonzero real
number c, the assignment t 7→ y(t) = e(t/c)(cw)x is easily seen to be an integral
curve of w with y(0) = x, and so y(t) = etwx in view of the uniqueness-of-solu-
tions theorem. Given a C1 vector field w on a manifold M , we may therefore use
the symbol ew : U →M , which stands for the mapping etw with t = 1; its domain
U is a (possibly empty) open subset of M formed by all x for which (1, x) is in
the domain of the flow (2.31).

Lemma 2.5. Let w be a C∞ vector field on a manifold M of dimension n ≥ 1
and let z ∈ M . Then, for any codimension-one submanifold N ⊂ M equipped
with the subset topology, containing z, and transverse to w at z in the sense
that w(z) /∈ TzN , and for any real number q, there exists a coordinate system xj,
j = 1, . . . , n with a domain U containing z such that

(i) w coincides on U with the coordinate field e1 in the direction of x1,
(ii) N ∩ U is precisely the subset of U given by the equation x1 = q, and

(iii) The image of U under the coordinate mapping (x1, . . . , xn) is a convex
set in Rn.

Furthermore, the functions x2, . . . , xn may be chosen so as to coincide, on a neigh-
borhood of z in N , with any prescribed coordinate system for N at z.

Proof. In view of the inverse mapping theorem, there exist neighborhoods I of
c in R and N ′ of z in N such that the formula F (t, y) = e(t−q)wy (notation
of (2.31)) defines a C∞ diffeomorphism F : I × N ′ → U onto a neighborhood
U of z in M with N ′ = N ∩ U , while N ′ itself is the domain of a coordinate
system ya, a = 2, . . . , n, which identifies N ′ with a convex set in Rn−1. (The
ya thus may be completely arbitrary, as long as we then replace N ′ by a suitable
smaller neighborhood of z in N .) The required coordinates xj now may be defined
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so as to assign to any x ∈ U the n-tuple (x1, x1, . . . , xn−1) with x1 = t and
xa = ya, a = 2, . . . , n, where F−1(x) = (t, y) and ya stand for the ya-components
of y. Assertions (ii),(ii) now are obvious, and (i) follows from the fact that the
assignment t 7→ x(t) with x1(t) = t and with any xa = xa(t) that are constant
(i.e., independent of t), is an integral curve of w. This completes the proof. �

Lemma 2.6. Given a pseudo-Riemannian manifold (M, g) of dimension n ≥ 1,
let t be a C∞ function on M with 〈∇t,∇t〉 6= 0 everywhere in M , where ∇t
is the g-gradient of t and 〈 , 〉 stands for g. Then, for any point z ∈ M , there
exists a coordinate system xj, j = 1, . . . , n, defined on a neighborhood U of z,
such that the components gjk of g relative to the xj satisfy

(2.34) g11 = 〈∇t,∇t〉 , g1a = 0 for a = 2, . . . , n ,

everywhere in U and, letting w stand for the coordinate vector field e1 in the
direction of x1, we have, on U ,

(2.35) t = x1 , ∇t =
w

〈w,w〉
,

and

(2.36) w =
∇t

〈∇t,∇t〉
.

Furthermore, denoting N the codimension-one submanifold defined by N = t−1(q)
with q = t(z), we may choose the functions x2, . . . , xn so as to coincide, near z in
N , with any given local coordinate system for N at z.

Proof. Defining the vector field w by (2.36), we clearly obtain the second equality
in (2.35). Choosing the coordinates xj , j = 1, . . . , n, as in Lemma 2.5 for our w
and z and for the codimension-one submanifold N = t−1(q), q = t(z), we now
have w = e1. Hence, by (2.36), g11 = 〈w,w〉〈∇t,∇t〉. On the other hand, by
Lemma 2.5(ii), the intersection of N with the coordinate domain U is given by
x1 = q. The coordinate vector fields ea, a = 2, . . . , n, thus are tangent to N ∩ U
along N ∩ U and, since t is constant on N , (2.36) implies that w is normal to
N ∩U along N ∩U , that is, g1a = 0. Finally, ∂1t = dwt = 〈w,∇t〉 = 1 and so, by
(2.35), ∂1t = 1. Hence, for a = 2, . . . , n, ∂1∂at = ∂a∂1t = 0, i.e., ∂at is constant
in the direction of x1. Since t is constant on N , we have ∂at = 0 wherever x1 = q
(that is, along N ∩ U), so that ∂at = 0 everywhere in U . As t = x1 = q on
N ∩ U , these relations show that t = x1 on U . This completes the proof. �

§3. Some linear algebra

Most arguments appearing in this text are algebraic in nature. Some facts from
linear algebra are, however, invoked much more often than others, and it is con-
venient to have those facts gathered in one place for easy reference. This section
serves such a purpose.

Lemma 3.1. Any real- or complex-valued function f of three variables u, v, w
which is skew-symmetric in u, v and symmetric in v, w, must be identically equal
to zero.
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In fact, writing, for simplicity, f(u, v, w) = uvw, we then have uvw = − vuw =
− vwu = wvu = wuv = −uwv = −uvw. �

For a quick reference, let us note here that

(3.1) TraceAB = TraceBA .

whenever A,B : V → V are linear operators in a finite-dimensional real or complex
vector space V .

Remark 3.2. A linear operator F : V → V in a real or complex vector space V
is called an involution if F 2 = Id. This is the case if and only if V admits a
direct-sum decomposition

(3.2) V = V+ ⊕ V−

such that F = ± Id on V±. In other words, for either sign ±,

(3.3) V± = Ker (F ∓ Id) ,

so that V± = is the (±1)-eigenspace of F unless V± = {0}. The direct-sum
projections pr± : V → V± then are given by 2 pr± = F ± Id.

Lemma 3.3. Let F : V → V be a complex-linear operator in a complex vector
space V of dimension m with 1 ≤ m <∞.

(i) There exists a basis e1, . . . , em of V in which the matrix [F kj ] of F ,
characterized by

Fej = F kj ek (summed over k = 1, . . . ,m) ,

is upper triangular in the sense that F kj = 0 whenever k > j.
(ii) The complex and real traces of F , obtained by treating it as a complex-

linear or, respectively, real-linear operator, are related by

(3.4) TraceRF = 2 Re [TraceCF ] .

Proof. (i): Induction on m. Assuming the assertion to be true in dimension m−1,
pick an eigenvector e1 ∈ V of F and select e2, . . . , em so that their cosets in the
quotient space V ′ = V/Ce1 make the operator F ′ : V ′ → V ′ that F descends to
appear upper triangular. (ii): Evaluate both traces using any fixed (complex) basis
e1, . . . , em of V and, respectively, the real basis

(3.5) e1 , ie1 , . . . , em , iem .

This completes the proof. �

Given a finite-dimensional vector space V over the field K of real or complex
numbers, let B(V ) stand for the set of all bases of V , and let GL(V ) be the group
of all K-linear isomorphisms V → V . When V = Kn, the group GL(V ) is also
denoted GL(n,K), and consists of all invertible n × n matrices with entries in
K. Either of the groups GL(V ) and GL(n,K), n = dimV , then has a natural
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simply transitive actions on the set B(V ): The former via the transformations
(e1, . . . , en) 7→ (Fe1, . . . , F en), with F ∈ GL(V ) and (e1, . . . , en) ∈ B(V ), the
latter by matrix multiplication from the right, applied to bases now treated as row
matrices [e1, . . . , en]. Fixing any basis, we thus obtain a diffeomorphic identification
B(V ) ≈ GL(V ). Note that both sets involved amay be treated as manifolds, since
they are open subsets of vector spaces; specifically,

(3.6) GL(V ) ⊂ gl(V ) , B(V ) ⊂ V n ,

where gl(V ) = Hom (V, V ) is the space of all K-linear operators V → V , and
V n is the nth Cartesian power of V, n = dimV . In the case where K = R, the
group GL(V ) contains the open subgroup GL+(V ) of all R-linear isomorphisms
F : V → V which are orientation-preserving in the sense that detF > 0. When
V = Rn, the corresponding matrix group is denoted GL+(n,R).

Lemma 3.4. For any complex vector space V with dimV <∞, the sets GL(V )
and B(V ) are connected.

Proof. Let us set m = dimV and fix A ∈ GL(V ). According to Lemma 3.3(i),
we can find a basis e1, . . . , em of V which makes A upper triangular, that is,
Aej =

∑
k ajkek for j = 1, . . . ,m, with ajk = 0 whenever k > j. As detA =

a11 . . . amm 6= 0, we then also have ajj = ez(j), j = 1, . . . ,m, with some z(j) ∈ C.
A continuous curve [0, 1] 3 t 7→ At ∈ GL(V ) joining Id to A now can be
defined by Atej =

∑
k ajk(t)ek, j = 1, . . . ,m, with ajk(t) = tajk when j 6= k

and ajj(t) = etz(j). Thus, GL(V ) is connected, and our assertion follows since
B(V ) ≈ GL(V ). �

Lemma 3.5. Let there be given a real vector space V with 1 ≤ n = dimV < ∞,
and a positive-definite inner product 〈 , 〉 in V .

(i) The group GL+(V ) is connected, while GL(V ) has two connected com-
ponents.

(ii) The set B(V ) of all bases of V , and the set of all 〈 , 〉-orthonormal bases
of V , each have two connected components.

Proof. Since the standard orthonormalization process can be treated as a continu-
ous deformation, all we need to show is that two orthonormal bases with a positive
transition determinant can be joined by a continuous curve of orthonormal bases.
Such a curve may consist of segments each of which brings successive vectors of one
basis in agreement with the other basis, by employing a continuous rotation in a
plane containing the two vectors, complemented by the identity transformation in
the orthogonal complement of the plane. �

For V as in Lemma 3.5, the two connected components of B(V ) are called
orientations of V . When one orientation is chosen, V is said to be oriented. Bases
belonging to that fixed orientation then are referred to as positive-oriented.

Remark 3.6. A real vector space V with dimV = n, 1 ≤ n < ∞, becomes
naturally oriented if one chooses any fixed connected set of bases of V . (In fact,
they all represent the same orientation of V .) As an example, the underlying real
space of an m-dimensional complex vector space V (1 ≤ m < ∞) has a natural
orientation determined in this way by the set of all real bases (3.5) obtained using
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complex bases e1, . . . , em of V . In fact, according to Lemma 3.4, such real bases
form a connected set.

By a p-vector in a finite-dimensional real or complex vector space V we will
mean, as usual, any element of the pth exterior power V ∧p. When p = 2, the term
bivector is also used. One of many equivalent definitions of V ∧p is

(3.7) V ∧p = Lskew(V ∗, . . . , V ∗;K)

(with V ∗ in parentheses repeated p times), that is, the space of all skew-symmetric
p-linear mappings V ∗ × . . .× V ∗ → K, where K is the scalar field (R or C), and
V ∗ stands for the dual space of V . There is a natural p-linear skew-symmetric
mapping V × . . .× V → V ∧p called exterior multiplication and denoted

(3.8) (v1, . . . , vp) 7→ v1 ∧ . . . ∧ vp ,

which, for V ∧p as in (3.7), is defined by (v1 ∧ . . . ∧ vp)(ξ1, . . . , ξp) = det M for
ξ1, . . . , ξp ∈ V ∗, M being the p × p matrix [ξj(vk)]. For any basis e1, . . . , en of
V , n = dimV , pne easily verifies that the set of exterior products

(3.9) {ej1 ∧ . . . ∧ ejp : 1 ≤ j1 < . . . < jp ≤ n}

forms a basis of V ∧p. Therefore, the exterior product v1 ∧ . . . ∧ vp ∈ V ∧p is
nonzero if and only if the vectors v1, . . . , vp ∈ V are linearly independent. (To
see this, complete v1, . . . , vp to a basis of V .) A nonzero p-vector α which is
decomposable (i.e., α = v1 ∧ . . . ∧ vp for some v1, . . . , vp ∈ V ) uniquely determines
the p-dimensional subspace of V spanned by v1, . . . , vp ; for instance,

(3.10) Span {v1, . . . , vp} = {v ∈ V : v ∧ (v1 ∧ . . . ∧ vp) = 0} .

as one sees, again, by completing v1, . . . , vp to a basis v1, . . . , vn of V and using the
corresponding basis of type (3.9) for V ∧p. The exterior multiplication of vectors
has an extension to a bilinear pairing of p-vectors β and p′-vectors β′ for any
p, p′, sending them to a (p + p′)-vector β ∧ β′, and uniquely determined by the
requirement of associativity.

Lemma 3.7. Given a bivector α ∈ V ∧2 in a finite-dimensional real or complex
vector space V ,

(a) A nonzero vector v ∈ V satisfies v ∧ α = 0 if and only if α = v ∧ w for
some vector v ∈ V .

(b) Condition α ∧ α = 0 holds if and only if α is decomposable, that is,
α = v ∧ w for some vectors v, w ∈ V .

Proof. (a) is obvious from (3.9) for a basis e1, . . . , en of V , n = dimV , with
e1 = v. The ’if’ assertion in (b) is also immediate. Finally, it is easy to verify
that, for a vector v ∈ V , conditions v ∧ α = 0 and α ∧ α = 0 are, respectively,
equivalent to vkαlm+vlαmk+vmαkl = 0 and αjkαlm+αjlαmk+αjmαkl = 0 for all
indices j, k, l,m = 1, . . . , n, where e1, . . . , en is any fixed basis of V and v = vjej ,
α = αjkej ∧ ek are the expansions of v and α, with the coefficients of the latter
made unique by the skew-symmetry requirement αjk = −αkj . To prove the ’only
if’ part of (b), let us suppose that α ∧ α = 0. Clearly, we may assume that α 6= 0,
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and so αjk 6= 0 for some fixed j and some k. Defining the vector v by vk = αjk

for all k (with this fixed j), we thus have v 6= 0 and vkαlm + vlαmk + vmαkl = 0,
i.e, v ∧ α = 0. Our assertion now follows from (a), which completes the proof. �

Let ω be a p-linear skew-symmetric mapping V × . . .× V →W for some real
or complex vector spaces V and W . Then

(3.11) ω(u1, . . . , up) = detB · ω(v1, . . . , vp)

whenever v1, . . . , vp ∈ V and u1, . . . , up ∈ V are vectors such that each vj , j =
1, . . . , p, is a combination of the vj , with the coefficient matrix B = [Bkj ], so that

uj = Bkj vk, j, k ∈ {1, . . . , p}. This is clear since, denoting εj1...jp is the Ricci
symbol (equal to the signum of the permutation (j1, . . . , jp), if the j1, . . . , jp are
all distinct, and to 0, if they are not), we have

(3.12)
ω(Bj11 vj1 , . . . , B

jp
p vjp) = Bj11 . . . Bjpp ω(vj1 , . . . , vjp)

= εj1...jpB
j1
1 . . . Bjpp ω(v1, . . . , vp) .

On he other hand, εj1...jpB
j1
1 . . . B

jp
p = det [Bkj ].

Remark 3.8. An n-dimensional real or complex vector space V admits an n-linear
skew-symmetric function ω : V × . . .× V → K, where K is the scalar field (R or
C), and such a function is unique up to a scalar factor. In fact, by (3.11), such ω
is uniquely determined by the value ω(e1, . . . , en) for any fixed basis e1, . . . , en of
V .

Given a finite-dimensional real or complex vector space V , let us fix a basis
ej of V , j = 1, . . . , n (n = dimV ) and an n-linear skew-symmetric mapping
ω : V × . . . × V → V ′, valued in a vector space V ′. For any linear operator
F : V → V we then have

(3.13)

(detF ) · ω(e1, . . . , en) = ω(Fe1, . . . , F en) ,

(TraceF ) · ω(e1, . . . , en) =
n∑
j=1

ω(e1, . . . , ej−1, Fej , ej+1, . . . , en) ,

as one sees using (3.11) for the matrix B = [F kj ] with Fej = F kj ek. Therefore, for

any C1 curve t 7→ F = F (t) ∈ GLV ⊂ Hom (V, V ) of isomorphisms V → V , we
have

(3.14) (detF )˙ = detF · Trace (F−1Ḟ )

with ( )˙ = d/dt, that is, for all t, d [detF (t)]/dt = [detF (t)] · Trace [F−1(t)◦ Ḟ (t)].
To see this, fix ω 6= 0 as above with V ′ = R (or V ′ = C) and apply d/dt to (3.13):

(detF )˙ · ω(e1, . . . , en) = [ω(Fe1, . . . , F en)] ˙ =
∑
α ω(Fe1, . . . , Ḟ eα, . . . , F en) =∑

α ω(Fe1, . . . , FF
−1Ḟ eα, . . . , F en) = (detF ) ·

∑
α ω(e1, . . . , F

−1Ḟ eα, . . . , en) =

detF · (TraceF−1Ḟ )ω(e1, . . . , en). (Note that the first relation in (3.13) remains
valid whether or not the e1, . . . , en are linearly independent; if they are not, both
sides must equal zero.)
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Remark 3.9. We will repeatedly use the obvious fact that a complex vector space
V is nothing else than its underlying real vector space along with the operator
J : V → V of complex multiplication by i. The operator J is often called a
complex structure in the real space V , and is subject to the single condition

(3.15) J2 = − Id .

Remark 3.10. Let V now be a real or complex vector space, and let K stand for
the scalar field (R or C). Suppose that 〈 , 〉 is a function V × V → K such that
one of the following three cases occurs:

(a) K = R, 〈 , 〉 is real-bilinear and symmetric;
(b) K = C, 〈 , 〉 is sesquilinear and Hermitian;
(c) K = C, 〈 , 〉 is complex-bilinear and symmetric.

Two vectors v, w ∈ V then are called orthogonal if 〈v, w〉 = 0. An orthonormal
system in V is an ordered q-tuple v1, . . . , vq of vectors in V , for any integer q ≥ 0,
such that 〈va, vb〉 = 0 for all a, b = 1, . . . , q with a 6= b, while, for a = 1, . . . , q,
〈ea, ea〉 = εa with some numbers εa such that εa ∈ {1,− 1} in cases (a), (b), and
εa = 1 in case (c). An orthonormal basis of V is any orthonormal system in V
which also happens to be a basis of V . We also define the orthogonal complement
of any set K ⊂ V to be the vector subspace

(3.16) K⊥ = {v ∈ V : 〈v, x〉 = 0 for all x ∈ K} .

When K = {v}, we use he simplified symbol v⊥ rather than {v}⊥.

The remainder of this section is devoted to vector spaces endowed with three
possible kinds of inner products. Specifically, let V and 〈 , 〉 be as in Remark 3.10
and, in addition, let dimV <∞. We then will call 〈 , 〉 an inner product in V if,
besides having property (a), (b) or (c) of Remark 3.10, it is also nondegenerate in
the sense that

(3.17) V ⊥ = {0} ,

i.e., if no nonzero vector is orthogonal to all of V , that is, for each v ∈ V with
v 6= 0 there exists w ∈ V with 〈v, w〉 6= 0. Thus, another requirement obviously
equivalent to (3.17) is that the operator

(3.18) V 3 v 7→ 〈 · , v〉 ∈ V ∗

be an (anti)linear isomorphism. A further condition equivalent to nondegeneracy
of 〈v, w〉 obviously is

(3.19) det[〈ej , ek〉] 6= 0

for some, or any, basis e1, . . . , en of V , with n = dimV . A vector space carrying
a fixed inner product will be referred to as an inner-product space, and its inner
product (unless specified otherwise) will be represented by the generic symbol 〈 , 〉.

Remark 3.11. A form 〈 , 〉 in a finite-dimensional complex vector space V , having
property (b) or (c) of Remark 3.10, is nondegenerate if and only if so is its real part,
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treated as a bilinear form in the underlying real space. In fact, a vector v ∈ V with
Re 〈v, x〉 = 0 for all x ∈ V must have 〈v, x〉 = 0 for all x, as one sees considering
x and ix.

Given an inner product 〈 , 〉 in V , we have

(3.20) dimV = dim T + dim T ⊥

for any vector subspace T ⊂ V . In fact, T ⊥ is the kernel of the composite of
the (anti)isomorphism (3.18) with the (obviously surjective) restriction operator
V ∗ → T ∗. Consequently, for dimensional reasons,

(3.21) T ⊥⊥ = T ,

since the inclusion T ⊂ T ⊥⊥ is obvious. A vector subspace T ⊂ V is called
nondegenerate if 〈 , 〉 restricted to T is nondegenerate, that is, constitutes an
inner product in T . Clearly, a subspace T of V is nondegenerate if and only if

(3.22) T ∩ T ⊥ = {0} .

Thus, by (3.21),

(3.23) T is nondegenerate if and only if T ⊥ is.

Another condition equivalent to nondegeneracy of T is

(3.24) Span (T ∪ T ⊥) = V .

In fact, this is immediate, for dimensional reasons, from (3.11) and (3.22). Hence,
for any nondegenerate subspace T of V ,

(3.25) V = T ⊕ T ⊥ .

A vector subspace W of an inner-product space V is called null if

(3.26) W ⊂ W⊥ ,

that is, if 〈 , 〉 restricted to W is identically zero. An equivalent condition is the
existence of a basis ea of W, a = 1, . . . , q, q = dimW which is null and orthogonal,
that is, 〈ea, eb〉 = 0 for all a, b = 1, . . . , q.

Remark 3.12. Suppose that we are given real/complex vector spaces V, V ′ and a
mapping B : V × V → V ′ which is real-bilinear and symmetric (V, V ′ real) or
complex-bilinear and symmetric (V, V ′ complex) or, finally, sesquilinear and Her-
mitian (V complex, V ′ = C). It is well-known (and easy to verify) that B then
is uniquely determined by its quadratic function V 3 x 7→ B(x, x) ∈ V ′. Thus,
a subspace W of an inner-product space V is null if and only if all its elements
w ∈ W are null vectors in the sense that 〈w,w〉 = 0. Another consequence is that
a mapping B : V × V → V ′ which is bilinear (or, sesquilinear with V ′ = C) is
skew-symmetric (or, skew-Hermitian) if and only if B(x, x) = 0 (or, respectively,
B(x, x) ∈ iR) for all x ∈ V .
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In the real-bilinear and complex-sesquilinear cases, the inner product 〈 , 〉 will
be referred to pseudo-Euclidean or, respectively, pseudo-Hermitian. If, in addi-
tion, 〈 , 〉 happens to be positive definite, we will call it Euclidean or, respectively,
(positive-definite) Hermitian.

A form 〈 , 〉 satisfying (a), (b) or (c) of Remark 3.10 in a vector space V with
dimV < ∞ is nondegenerate, i.e., constitutes an inner product in V , if and only
if it admits an orthonormal basis. The ’if’ part is clear from (3.19). As for the
’only if’ assertion, it follows if one assumes that V 6= {0} and proceeds to select
such a basis by first choosing e1 with 〈ej , ej〉 = ± 1 (which is possible according
to Remark 3.12), and then using induction on n = dimV along with (3.23) and
the decomposition (3.25) for T = Ke1. Similarly one sees that every orthonormal
system in an inner-product space can be extended to an orthonormal basis.

Remark 3.13. Let our inner-product space V now be pseudo-Euclidean or pseu-
do-Hermitian. For a fixed orthonormal basis e1, . . . , en of V , n = dimV , let q−

and q+ be the number of minuses and , respectively, of pluses among the signs of
〈ej , ej〉, j = 1, . . . , n. Then q− (or, respectively, q+) is the maximum dimension
of a vector subspace of V on which the inner product is negative semidefinite (or,
respectively, positive semidefinite). In fact, any subspace T with ±〈x, x〉 ≤ 0 for
all x ∈ T satisfies T ∩ T ± = {0}, and so dim T ≤ dimV − q± = q∓, as required.
dim T + q+ ≤ dimV = q− + q+. Thus, q− and q+ are algebraic invariants of the
inner-product space V . The pair (q−, q+) will be referred to as the sign pattern of
the inner product of V and often written in the form − . . . − + . . . + (with q−

minuses, q+ pluses).

For any pseudo-Euclidean or pseudo-Hermitian inner-product space V with the
sign pattern (q−, q+),

(3.27) min(q−, q+) is the maximum dimension of a null subspace of V .

In fact, dimW ≤ q± for any null subspace W (Remark 3.13). On the other hand,
given an orthonormal basis v1, . . . , vq− , w1, . . . , wq+ of V with 〈va, va〉 = − 1 for
a = 1, . . . , q− and 〈wλ, wλ〉 = 1 for λ = 1, . . . , q+, the vectors vj + wj with
1 ≤ j ≤ min(q−, q+) obviously span a null subspace of dimension min(q−, q+).

Lemma 3.14. Let u1, . . . , ur be mutually orthogonal, linearly independent null
vectors in an n-dimensional inner-product space V , 0 ≤ r ≤ n/2. Then V
admits a basis of the form

u1, . . . , ur, v1, . . . , vr, w1, . . . , wn−2r ,

where n = dimV , such that 〈ua, va〉 = 〈va, ua〉 = 1 for all a ∈ {1, . . . , r}, while
〈wλ, wλ〉 ∈ {1,− 1} for λ = 1, . . . , n − 2r, and all other inner products involving
vectors of the basis are zero.

Proof. Induction on r ∈ {0, 1, . . . , n/2}. If r = 0, this is just the existence of an
othonormal basis. Now suppose that r ≥ 1 and our assertion holds if r is replaced
by r−1 Completing u1, . . . , ur to a basis of V and then choosing v ∈ V such that
〈 · , v〉 is the first element of the dual basis in V ∗ (which is possible since (3.18) is
bijective), we obtain 〈u1, v〉 = 1 and 〈ua, v〉 = 0 for a = 2, . . . , r. Thus, v1 =
v − 〈v, v〉u1/2 satisfies the relations just listed for v and, in addition, 〈v1, v1〉 = 0.
The subspace T = Span {u1, v1} is nondegenerate (by (3.19)) and our conclusion
follows from the inductive assumption applied to the vectors u2, . . . , ur ∈ T ⊥ (cf.
(3.25) and (3.23). �
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Lemma 3.15. Let vectors u,w in an inner-product space V with n = dimV ≥ 4
satisfy the conditions u 6= 0, 〈u, u〉 = 0 and 〈w,w〉 ∈ {1,− 1}. Then

(a) There exists w′ ∈ V , orthogonal to u and w, with 〈w′, w′〉 ∈ {1,− 1}.
(b) For any w′ with the properties listed in (i), there exists v ∈ V , orthogonal

to w and w′, with 〈u, v〉 = 1 and 〈v, v〉 = 0.

Proof. The orthogonal complement P⊥ of the plane P = Span {u,w} is of dimen-
sion n − 2 ≥ n/2 (see (3.20)) and so it cannot be a null subspace of V . In fact,
we have relation (3.27) with min(q−, q+) ≤ n/2 which, if P⊥ were null, would
give n − 2 = n/2, that is, n = 4. Then (3.26) with W = P⊥ would imply that,
for dimensional reasons, P⊥ = P⊥⊥ = P (cf. (3.21)), i.e., P would be null,
contradicting the assumption that 〈w,w〉 6= 0.

According to Remark 3.12, this proves (a). On the other hand, the orthogonal
complement Q⊥ of the plane Q = Span {w,w′} is nondegenerate by (3.23) and
contains u 6= 0. Thus, some vector v ∈ Q⊥ is not orthogonal to u, and may be
normalized so that 〈u, v〉 = 1. Assertion (b) now follows if we replace v with
v − 〈v, v〉u/2. This completes the proof. �

In any inner-product space V one identifies linear operators F : V → V with
bilinear (or, sesqilinear) forms B on V , in such a way that

(3.28) B(v, w) = 〈Fv,w〉

for all v, w ∈ V . Note that the assignment F 7→ B with (3.28) is injective due to
nondegeneracy of 〈 , 〉, and so, for dimensional reasons, it is a linear isomorphism.
Nondegeneracy of 〈 , 〉 also guarantees that every linear operator F : V → V has
a unique adjoint F ∗ : V → V with

(3.29) 〈Fv,w〉 = 〈v, F ∗w〉

for all v, w ∈ V . Under the identification (3.28), the adjoint F 7→ F ∗ corresponds to

the operation B 7→ B∗ such that B∗(v, w) equals B(w, v) (B bilinear) or B(w, v)
(B sesqilinear). One calls F : V → V self-adjoint or skew-adjoint if F ∗ = F (or,
respectively, F ∗ = −F ). This is clearly the case if and only if the corresponding
B is symmetric [Hermitian] or, respectively, skew-symmetric [skew-Hermitian].

The skew-adjoint operators F : V → V are, explicitly, characterized by

(3.30) 〈Fv,w〉 = −〈v, Fw〉 for all v ∈ V .

Given a finite-dimensional real or complex vector space V , we denote gl(V ) =
Hom (V, V ) the space of all linear operators V → V . The commutator multiplica-
tion [ , ], with [A,B] = AB −BA, obviously turns gl(V ) into a real/complex Lie
algebra. If V now is a real space and 〈 , 〉 is pseudo-Euclidean, one uses the sym-
bol so(V ) for the subspace of gl(V ) formed by all skew-adjoint linear operators
F : V → V , and one easily sees that so(V ) is a Lie subalgebra of gl(V ). Due to
the identification (3.28) with skew-symmetric forms, we have

(3.31) dim so(V ) =
n(n− 1)

2
, n = dimV .
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Given a bilinear mapping B : V × V → V ′ of a pseudo-Euclidean vector space V
into any vector space V ′ (finite-dimensional or not), we define its 〈 , 〉-trace to be
the element TraceB of V ′ given by

(3.32) TraceB =

n∑
j=1

εjB(ej , ej) ,

where n = dimV and ej , j = 1, . . . , n, is any orthonormal basis of V , with
〈ej , ej〉 = εj ∈ {1,− 1}. Note that, if V ′ = R, we have TraceB = TraceF , F
being the operator V → V corresponding to B via the identification (3.28). In
general, the reason why (3.32) does not depend on the orthonormal basis used is
that, for two such bases e1, . . . , en and u1, . . . , un which, in addition, are sign-
coordinated (that is, 〈uj , uj〉 = 〈ej , ej〉 for all j), the transition matrix A = [ajk]
with uj =

∑
k ajkek satisfies

(3.33) CC∗ = 1 ,

where C is the matrix with the entries cjk = εjajk (no summation), and C∗ is the
transpose of C, while 1 stands for the identity matrix. (In fact, this is nothing else
than the condition 〈uj , uk〉 = 〈ej , ek〉 for all j, k.) Relation (3.33) clearly implies
C∗C = 1, which in turn easily shows (3.32).

Remark 3.16. Another consequence of (3.33) is that transition matrix A between
any two orthonormal bases of a pseudo-Euclidean space has det A = ± 1. In
fact, (3.33) yields det C = ± 1 for a sign-coordinated change of basis; however,
rearranging the order of a basis, as well as passing from A to C, both involve
multiplications by matrices of deteminant ± 1. Any oriented n-dimensional pseu-
do-Euclidean space V thus has a naturally distinguished volume element, which is
the n-vector vol ∈ V ∧n, given by

(3.34) vol = e1 ∧ . . . ∧ en
for any positive-oriented orthonormal basis e1, . . . , en of V . In fact, (3.11) now
implies that (3.34) does not depend on the choice of such a basis.

Remark 3.17. Here are some more well-known facts, listed for easy reference: For
a self-adjoint or skew-adjoint operator F : V → V in an inner-product space V ,

(i) The eigenspaces of F are mutually orthogonal;
(ii) The orthogonal complement of any F -invariant subspace of V is also F -

invariant.

Remark 3.18. Let 〈v, w〉 be a real-bilinear inner product in a complex vector space
V treated here as a real space with a fixed complex-structure operator J satisfying
(3.15). Then, for 〈v, w〉 to be the real part of a complex-bilinear (or, sesquilinear)
inner product 〈 , 〉c in the complex vector space V , it is obviously necessary and
sufficient that the operator J be anti-isometric (or, respectively, isometric) relative
to 〈v, w〉 in the sense that 〈Jv, Jw〉 = −〈v, w〉 (or, respectively, 〈Jv, Jw〉 = 〈v, w〉)
for all v, w ∈ V . In view of (3.15), the requirement that J be anti-isometric
(or, respectively, isometric) is equivalent to its self-adjointness (or, respectively,
skew-adjointness) relative to 〈v, w〉. Moreover, if such 〈 , 〉c exists, it is uniquely
determined by 〈 , 〉 via the formula

(3.35) 〈v, w〉c = 〈v, w〉 − i 〈Jv,w〉
for v, w ∈ V .
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§4. Basic facts about curvature

Let (M, g) be a pseudo-Riemannian manifold. We will denote Γ ljk the Christoffel

symbols of (M, g) relative to any fixed local coordinate system xj in M . Thus,

(4.1) Γ ljk =
1

2
gls(∂jgks + ∂kgjs − ∂sgjk) .

(See Remark 4.1 below.) More generally, given any connection ∇ in the tangent
bundle TM of a manifold M , one introduces the component functions Γ ljk of ∇
relative to any local coordinate system xj in M by

(4.2) ∇ejek = Γ ljkel .

A connection ∇ in TM is called torsionfree if

(4.3) Γ ljk = Γ lkj .

A coordinate-independent characterization of torsionfree connections is

(4.4) ∇vw − ∇wv = [v, w] ,

for any (local) C1 vector fields v, w on M , where [ , ] denotes the Lie bracket
(see (2.4)). Another important class of connections ∇ in TM are those ∇ which
are compatible with a given pseudo-Riemannian metric g on M in the sense that
∇g = 0 or, equivalently, the Leibniz rule

(4.5) du[g(v, w)] = g(∇uv, w) + g(v, ∇uw)

holds for arbitrary C1 vector fields u, v, w defined on any open set in M .

Remark 4.1. The Levi-Civita connection ∇ of a given pseudo-Riemannian metric
g on M is the unique connection in TM which is both compatible with g (i.e.,
makes g parallel) and torsionfree. In fact, for any ∇ we may set

(4.6) Γjkl = Γ sjkgsl

in fixed local coordinates xj , with Γ sjk as in (4.2). Note that, by (4.2) and (4.6),

(4.7) Γjkl = g(∇ejek, el) .

Obviously, the requirement that ∇ be compatible with g (or, torsionfree) is equiv-
alent to

(4.8) ∂jgkl = Γjkl + Γjlk

(or, respectively, Γjkl = Γkjl). Hence both conditions hold simultaneously if and
only if

(4.9) 2Γjkl = ∂jgkl + ∂kgjl − ∂lgjk ,

that is, if ∇ is the connection characterized by (4.1).
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Next we have two formulae which, although important, will not be needed until
§23. First, for any pseudo-Riemannian metric g (or, respectively, a C1 curve
t 7→ g(t) of metrics), and any coordinate system xj , we have

(4.10) gjk
d

dt
gjk =

d

dt
log |det[gjk]| , gjk∂lgjk = ∂l log |det[gjk]| ,

with gjk given by (2.8). Furthermore, the Christoffel symbols of g satisfy the
conditon

(4.11) 2Γ ssl = ∂l log |det[gjk]| .

In fact, (4.10) is nothing else than (3.14) with F standing for the matrix [gjk]
of the component functions of g, and the second relation in (4.10) is obtained by
choosing t to be the coordinate xl. Now (4.11) is immediate from (4.10) and (4.1).

Let ∇ again be any connection in TM . For local C1 vector fields w in M and
vectors v tangent to M , we have

(4.12) [∇vw]j = wj,kv
k with wj,k = ∂kw

j + Γ jklw
l ,

in any local coordinates xj . Similarly, for a C1 vector field t 7→ w(t) ∈ Tx(t)M

along a C1 curve t 7→ x(t) ∈M , the covariant derivative ∇ẋw is characterized by
the local-coordinate formula

(4.13) [∇ẋw]
j

= ẇj + Γ jkl(x)ẋkwl ,

where ( )˙ = d/dt and (x) stands for x(t). If the curve t 7→ x(t) ∈ M is of
class C2, by its velocity we mean the C1 vector field ẋ along the curve, given by
t 7→ ẋ(t) ∈ Tx(t)M . Those C2 curves in M for which

(4.14) ∇ẋẋ = 0

identically are called geodesics of the connection ∇ in TM . In terms of a local
coordinate system xj , they are characterized by the system of equations

(4.15) ẍj + Γjkl(x)ẋkẋl = 0 ,

that is, (4.13) with wj(t) = ẋj(t). Every geodesic is automatically of class C∞

and, for any fixed a ∈ R, y ∈ M and v ∈ TyM , there exists an open interval
I ⊂ R containing a and a unique geodesic I 3 t 7→ x(t) ∈M with x(a) = y and
ẋ(a) = v. This allows us to introduce the exponential mapping

(4.16) expx : Ux → M

of the given connection ∇ at any point x ∈M , defined as follows. Its domain Ux
is a subset of TxM consisting of those v ∈ TxM for which there exists a geodesic
t 7→ x(t), defined on the whole interval [0, 1], and such that x(0) = x, ẋ(0) = v.
For such v and x(t), we set expx v = x(1). (One traditionally writes expx v,
without parentheses, rather than expx(v).) It is obvious from the dependence-on-
parameters theorem for ordinary differential equations that the set Ux is open in
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TxM (and contains 0), and the mapping expx is of class C∞. Furthermore, the
geodesic x(t) with x(0) = x and ẋ(0) = v is given by x(t) = expx tv, as one
sees fixing t ∈ [0, 1] and noting that [0, 1] 3 t′ 7→ x(tt′) then is a geodesic with
the value and velocity at t′ = 0 equal to x and, respectively, tv. In particular,
d[expx tv]/dt at t = 0 equals v while, obviously, expx 0 = x; in other words, the
differential of the mapping (4.16) at the point 0 ∈ Ux is given by

(4.17) d(expx)0 = Id : TxM → TxM .

According to the inverse mapping theorem, there exist a neighborhood U of y in
M and a neighborhood U ′ of 0 in TxM such that U ′ ⊂ Ux and expx : U ′ →
U is a C∞-diffeomorphism. Its inverse diffeomorphism may be thought of as a
coordinate system x1, . . . , xn with the domain U (after one has identified TxM
with Rn, n = dimM , using any fixed linear isomorphism). A coordinate system
obtained as a local inverse of expx is called a normal, or geodesic, coordinate
system at x, for the given connection ∇ in TM . Note that if the connection ∇
is torsionfree, its component functions Γ ljk satisfy

(4.18) Γ ljk(x) = 0 in normal coordinates at x .

To see this, note that under the identification U ′ ≈ U provided by expx, geodescis
emanating from 0 ≈ x appear as the radial line segments t 7→ tv, and so we have
ẍj = 0. For such a geodesic, the system (4.15) gives, at t = 0, Γ jkl(x)vkvl = 0 for
all v, which in view of the symmetry (4.3) implies (4.18) (cf. Remark 3.12).

A fixed connection ∇ in TM gives rise to the corresponding (“dual”) connection
in the cotangent bundle T ∗M (also denoted ∇), which acts on local C1 cotangent
vector fields ξ so that, for vectors v tangent to M ,

(4.19) [∇vξ]j = ξj,kv
k with ξj,k = ∂kξj − Γ lkjξl ,

with the same Γ lkj as in (4.12). If ∇ is the Levi-Civita connection of a pseudo-

Riemannian manifold (M, g), and v is a local C1 vector field in M treated, with
the aid of g, as a dual vector field with the components vj = gjkv

k, (4.19) combined
with (4.6) yields

(4.20) vj,k = ∂kvj − Γkjlv
l .

For any torsionfree connection ∇ and a 1-form ξ of class C1, we have

(4.21) (dξ)(u, v) = [∇uξ](v) − [∇vξ](u)] , (dξ)jk = ξk,j − ξj,k .

Hence, if ∇ is torsionfree,

(4.22) ∇ξ = 0 implies dξ = 0 ,

for any 1-form ξ of class C1. The same is true for 2-forms α as well; the compo-
nents of dα for a 2-form α are (dα)jkl = ∂jαkl + ∂kαlj + ∂lαjk, and one easily
sees using the formula αjk,l = ∂lαjk − Γ sljαsk − Γ slkαjs (analogous to (4.19)) that,

if ∇ is torsionfree, i.e., satisfies (4.3), we also have (dα)jkl = αjk,l + αkl,j + αlj,k.
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Our sign convention for the curvature tensor R of any connection ∇ in TM ,
including the case where ∇ is the Levi-Civita connection of a pseudo-Riemannian
metric g on M , is such that

(4.23) R(v, w)u = ∇w∇vu − ∇v∇wu + ∇[v,w]u

for C2 vector fields u, v, w. In any local coordinates xj , the curvature component
functions Rjkl

m, characterized by the formula

(4.24) R(v, w)u = vjwkulRjkl
mem ,

thus satisfy the relation

(4.25) Rjkl
m = ∂kΓ

m
jl − ∂jΓ

m
kl + Γmks Γ

s
jl − Γmjs Γ

s
kl .

As an immediate consequence of (4.25), we have the Ricci-Weitzenböck identity for
for C2 vector fields w in pseudo-Riemannian manifolds (M, g):

(4.26) wl,jk − wl,kj = Rjks
lws .

Similarly, given a twice-covariant C2 tensor field F , viewed as a bundle mor-
phism TM → TM , and C2 vector fields v, w, we have

(4.27) ∇w∇vF − ∇v∇wF + ∇[v,w]F = [F,R(v, w)] ,

[ , ] being the ordinary commutator of bundle morphisms. Here R(v, w) is the
bundle morphism TM → TM given by (4.23), i.e, with the local-coordinate com-
ponents

(4.28) [R(v, w)]ml = vjwkRjkl
m .

Thus, the local coordinate version of (4.27) is

(4.29) Flm,jk − Flm,kj = Rjkl
pFpm + Rjkm

pFlp , Fjk = F ljglk .

Let Rjklm denote, as usual, the g-modified components of the curvature tensor of
(M, g), with

(4.30) Rjklm = Rjkl
pgpm .

From (4.25), (4.8) and (4.6), we thus have

(4.31) Rjklm = ∂kΓjlm − ∂jΓklm + gpq [ΓklpΓjmq − ΓjlpΓkmq] .

The well-known algebraic symmetries of Rjklm are

(4.32) Rjklm = −Rkjlm = −Rjkml = Rlmjk

and the first Bianchi identity

(4.33) Rjklm + Rjlmk + Rjmkl = 0 .
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(Relation Rjklm = Rlmjk happens to be an algebraic consequence of the remaining
symmetries; see Remark 38.1 in §38.)

The Ricci tensor Ric of any connection ∇ in TM is a twice-covariant tensor
field on M which assigns to each point x ∈ M the bilinear mapping Ric(x) :
TxM × TxM → R given by

(4.34) Ric(v, w) = Trace [u 7→ R(v, u)w] .

(We write Ric(v, w), with no reference to x, in order to simplify the notation.) In
local coordinates xj , Ric has the component functions

(4.35) Rjk = Ric (ej , ek) ,

where ej are the coordinate vector fields with (2.1), (2.2). Thus, Ric(v, w) =
vjwkRjk for v, w ∈ TxM . From (4.34) and (4.24) we obtain

(4.36) Rjk = Rjlk
l ,

In the case where ∇ is the Levi-Civita connection of a pseudo-Riemannian metric
g on M , (4.36) becomes

(4.37) Rjk = glmRjlkm = glmRljmk = − glmRjlmk ,

cf. (4.32). Note that, by (4.32) and symmetry of gjk, we also have glmRjlkm =
glmRkmjl = glmRkljm, that is, the Ricci tensor any pseudo-Riemannian manifold
(M, g) is symmetric:

(4.38) Rjk = Rkj .

Contracting (4.26) in k = l and using (4.37), we now obtain the contracted
Ricci-Weitzenböck formula

(4.39) Rjkw
k = wk,jk − wk,kj ,

valid for local C2 vector fields w in any pseudo-Riemannian manifold (M, g).
With the aid of g, we may treat the Ricci tensor Ric of (M, g) as a self-

adjoint bundle morphism TM → TM (see (3.28)). Its components then can also
be written as Rkj = gklRjl. The scalar curvature of (M, g) is defined to be the
function s : M → R equal, at every point x of M , to the trace of this morphism
in TxM (that is, the g-trace of Ric at x, cf. (3.32)). Thus,

(4.40) s = Trace Ric = Rjj = gjkRjk .

Remark 4.2. Given a pseudo-Riemannian metric g on a manifold M and a real
constant a 6= 0, the product g̃ = ag is another metric on M , whose Levi-Civita
connection ∇̃, Ricci tensor R̃ic and scalar curvature s̃ are given by ∇̃ = ∇,
R̃ic = Ric and s̃ = s/a, where ∇, Ric and s denote the analogous objects

corresponding to g. In fact, ∇ coincides with ∇̃, as one sees using Remark 4.1
(since ∇ is torsionfree and makes g̃ parallel), or directly from (4.1) with g̃jk =
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a−1gjk. The other two relations are clear from (4.40) and the fact that Ric is
determined by ∇ alone (see (4.34), (4.23)).

The divergence operator div acting on differential forms of any degree on a
pseudo-Riemannian manifold (M, g) is given by

(4.41) divα =

n∑
j=1

εj(∇ejα)(ej , . . . ) , n = dimM ,

ej being any local orthonormal vector fields with g(ej , ej) = εj = ±1, j = 1, . . . , n.
(See (3.32).) The same definition of div applies, more generally, to differential
forms on (M, g) that are valued in a vector bundle over M carrying a fixed con-
nection. In particular, treating a C1 vector field w on M as a 1-form (with the
aid of g), we obtain from (4.12)

(4.42) divw = Trace∇w = wj,j .

The Laplacian or Laplace operator ∆ acting on C2 functions f in a given pseu-
do-Riemannian manifold (M, g) is defined by

(4.43) ∆ = div ◦ ∇ ,

that is,

(4.44) ∆f = f,j
j = gjkf,jk .

As another example, the contracted Ricci-Weitzenböck formula (4.39) can be rewrit-
ten as

(4.45) Ric (w, · ) = div (∇w) − d (divw) ,

where ∇w is treated as a 1-form valued in tangent vectors. Also, as a consequence
of (2.12) and (4.41), for a 2-form α and a 1-form ξ, we have

(4.46) div (αξ) = −〈divα, ξ〉 − 〈α, dξ〉 .

In §17 we will need the fact that

(4.47) div divα = 0 , i.e., αjk,jk = 0

for any C2 bivector field α on a pseudo-Riemannian manifold (M, g). To see
this, note that, due to skew-symmetry of α, 2αjk,jk = αjk,jk − αjk,kj . The last
expression is zero for any twice-contravariant tensor field α (skew-symmetric or
not), since, by (4.29) and (4.37), it equals Rjk

j
sα

sk +Rjk
k
sα

js = (Rjk −Rkj)αjk,
and so it vanishes in view of (4.38).

Beside connections in the tangent bundle TM , we will also have to discuss the
more general case of connections in arbitrary vector bundles.

Let E be a real or complex vector bundle over a manifold M , and let ∇ be
a connection in E . Any local trivialization ea of E associates with every (local)
section φ its component functions φa, characterized by φ = φaea. Similarly, ∇
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is represented by its component functions Γ bja relative to the local trivialization ea
of E and any given local coordinate system xj in M , both with the same domain.
The Γ bja are given by

(4.48) ∇ejea = Γ bjaeb .

Thus, for any tangent vector (field) v and any local C1 section φ of E ,

(4.49) ∇vφ = vj
(
∂jφ

a + Γ ajbφ
b
)
ea .

As in (4.13), we can use a connection ∇ in E to define a covariant-derivative
operation that can be applied to “sections” of E that are defined only along a
curve in M . More precisely, for a C1 section t 7→ ψ(t) ∈ Ex(t)M of E along a C1

curve t 7→ x(t) ∈M , we have the component formula

(4.50) [∇ẋψ]
a

= ψ̇a + Γ ajbẋ
jψa ,

with ( )˙ = d/dt. As before, the covariant derivative ∇ẋψ thus obtained is a new
section of E along the same curve, and it does not depend on the local trivialization
and local coordinates used in (4.50). A section t 7→ ψ(t) along the given curve is
called parallel, or ∇-parallel, if ∇ẋψ = 0 identically. The ∇-parallel transport in E
along such a fixed curve associates with any two parameter values t, t′, the parallel
transport along the curve from t to t′, which the linear isomorphism Ex → Ey,
with x = x(t), y = x(t′), sending any φ to ψ(t′), where ψ is the unique parallel
section along the curve with ψ(t) = φ.

Given any connection ∇ in the tangent bundle TM of a manifold M and a
C1 vector field t 7→ w(t) ∈ Tx(t)M along any C1 curve t 7→ x(t) ∈ M which is a
geodesic for ∇, one says that w is a Jacobi field if it satisfies the Jacobi equation

(4.51) ∇ẋ∇ẋw = R(w, ẋ)ẋ ,

where R is the curvature tensor of ∇ and the operation ∇ẋ is defined by (4.13).
For more on Jacobi fields, see §17 and §28, especially Remark 28.5.

Our conventions for the curvature tensor R∇ of a connection ∇ in a vector
bundle E over M , and its component functions Rjka

b, are analogous to the special
case in (4.23) and (4.25) (where E = TM , the ea are the ej , and ∇ is the Levi-
Civita connection of (M, g)): for C2 (local) sections v, w of TM and φ of E ,

(4.52) R∇(v, w)φ = ∇w∇vφ − ∇v∇wφ + ∇[v,w]φ ,

and so R∇(v, w)φ = vjwkφaRjka
beb with

(4.53) Rjka
b = ∂kΓ

b
ja − ∂jΓ

b
ka + Γ bkcΓ

c
ja − Γ bjcΓ

c
ka .

Most vector bundles we are going to encounter will carry fibre metrics. Such a
metric 〈 , 〉 in a vector bundle E over a manifold M assigns to each point x ∈M
a nondegenerate inner product in the fibre Ex whose dependence on x is C∞-
differentiable and which is, for real bundles, real-bilinear and symmetric and, for
complex bundles, usually sesquilinear and Hermitian (except for some cases where
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it is complex-bilinear and symmetric). In the first two cases, the metric may (but
does not have to be) positive definite; we speak, in general, of pseudo-Riemannian
or pseudo-Hermitian fibre metrics, dropping the prefix ’pseudo’ when the metric is
positive definite. Complex-bilinear symmetric fibre metrics in complex bundles will
be of no importance for us except in Part IV of this text.

A connection ∇ in a real (complex) vector bundle E is called compatible with
a given fibre metric 〈 , 〉 in E if 〈 , 〉 is ∇-parallel or, equivalently, the Leibniz rule

(4.54) du[〈φ, ψ〉] = 〈∇uφ, ψ〉 + 〈φ, ∇uψ〉

holds for arbitrary C1 sections φ, ψ of E and vector fields u, all defined on any
open set in M

Example 4.3. The restriction of a given connection ∇ in E to a parallel sub-
bundle P (Remark 4.7(ii)) has “the same” curvature as ∇, as one sees applying
(4.52) to sections φ of P. More precisely, for every x ∈ M and any vectors
v, w ∈ TxM , the curvature operator R∇(v, w) : Ex → Ex given by φ 7→ R∇(v, w)φ,
with (4.52), then obviously leaves the subspace Px ⊂ Ex invariant, and the analo-
gous the curvature operator for the restricted connection is the restriction of R∇

to Ex.

Remark 4.4. Given a connection ∇ in a vector bundle E over a manifold M ,
a point x ∈ M and an element ψ of the fibre Ex of E over x, we can always
find a C∞ local section φ of E defined on a neighborhood of x which realizes
the prescribed value ψ at x, that is, φ(x) = ψ, and is parallel at the point x
in the sense that [∇φ](x) = 0. (In fact, this can be done by properly choosing
the φa(x) and (∂jφ

a)(x) in (4.49).) Using sections parallel at the given point
leads to enormous simplifications in calculations, based on (4.52), of the curvature
tensors of various connections we are going to construct; specifically, we may always
omit the terms containing the first covariant derivatives of the sections involved.
At the same time, the vector fields v, w in (4.52) may be chosen so as to have
∂jv

k(x) = ∂jv
k(x) = 0 in some fixed coordinates, and so [v, w](x) = 0 by (2.4).

Consequently, the term ∇[v,w]φ in (4.52) can always be assumed to vanish at the
point in question. The result of the computation will not be affected due to the
tensorial nature of the curvature; in other words, the terms we omit would have
added up to zero anyway.

Example 4.5. As an immediate application of the simplifications offered by Re-
mark 4.4, let us note that for a connection ∇ in E , compatible with a fibre
metric 〈 , 〉, the curvature operators R∇(v, w) : Ex → Ex (Example 4.3) are all
skew-adjoint relative to 〈 , 〉. In fact, differentiating (4.52) by parts against φ
and using the simplifications described in Remark 4.4, we get 2〈R∇(v, w)φ, φ〉 =
2dw〈∇vφ, φ〉−2dv〈∇wφ, φ〉. For (real or complex) bilinear fibre metrics, this equals
dwdv〈φ, φ〉−dvdw〈φ, φ〉 = 0 (by (2.6), since [v, w] is assumed to vanish at the point
in question). This establishes the required skew-adjointness property, cf. the final
clause in Remark 3.12. For pseudo-Hermitian fibre metrics 〈 , 〉, applying the pre-
vious conclusion to the real metric Re 〈 , 〉, we see that 〈R∇(v, w)φ, φ〉 is always
imaginary, as required (again, by Remark 3.12).

Remark 4.6. Given a vector bundle E with a fixed connection ∇ over a manifold
M , we will sometimes obtain a local section φ of E defined on a neighborhood
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U of a given point x by choosing its value φ(x) at x and then spreading it via
radial parallel transports, which means selecting U which has a fixed diffeomorphic
identification with a convex open set in Rn, n = dimM , and then defining φ(y)
at any y ∈ U to be the result of the ∇-parallel transport of φ(x) from x to y
along the straight-line segment connecting x and y. In view of the dependence-
on-parameters theorem for ordinary differential equations, the resulting section φ
is of class C∞.

Note that any natural relation between a local section φ on U obtained as above
and any parallel object, if satisfied at x, must automatically be satisfied everywhere
in U . If the value φ(y) of such a section, at each point y, determined uniquely,
up to finitely many choices, by the parallel object in question, then speading φ(x)
as above produces a section which is parallel (in virtue of being invariant, due to
its “almost uniqueness”, under all parallel transports).

Remark 4.7. Given a connection ∇ in a vector bundle E over a manifold M (cf.
§11), by a parallel subbundle of E we will mean any assignment x 7→ Px which
associates with every x ∈ M a vector subspace Px of the fibre Ex of E , in a
manner invariant under ∇-parallel transports along all piecewise C1 curves in M .
(In other words, the parallel transport along any such curve connecting x to y in
M sends Px onto Py.) Note that the Px then are all of some fixed dimension q,
independent of x, and form the fibres of a C∞ vector subbundle P of M . (In fact,
let eλ(x), λ = 1, . . . , q, be a basis of Px ; spreading each eλ radially via parallel
transports, as described in Remark 4.6, produces a local trivialization of P by C∞

local sections of E .) Furthermore,

(i) For a subbundle P of fibre dimension q in a vector bundle E with a fixed
connection ∇, the following four conditions are equivalent:

a) P is parallel;
b) For any local trivialization ea of E whose initial q sections eλ,

λ = 1, . . . , q, lie in P, the component functions of ∇ defined by
(4.48) satisfy Γ cjλ = 0 whenever λ ≤ q and c > q ;

c) P is closed under taking ∇-covariant derivatives of its local C1 sec-
tions in all directions;

d) P is closed under taking ∇-covariant derivatives of its C1 sections
along all C1 curves in M .

To see this, it suffices to consider the system

(4.55) ψ̇a = −Γ ajbẋjψa ,

of equations which, according to (4.50), characterizes those C1 sections
t 7→ ψ(t) along a given curve which are parallel. Condition b) above
obviously holds if and only if every solution ψ(t) to (4.55) whose value at
some t satisfies ψc(t) = 0 for all c > q, satisfies the same condition for all
t. Thus, b) is equivalent to a). Equivalences of b) with c), and of b) with
d), now are immediate from (4.48) and (4.50). Finally, let us note that

(ii) The connection ∇ in E gives rise to a connection in every parallel sub-
bundle P, called its natural restriction to the parallel subbundle P, and
obtained just by applying ∇ to sections of P (see (i)c)).

The remainder of this section is devoted to a proof of de Rham’s local decom-
position theorem for pseudo-Riemannian metrics. We will use this theorem only
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once, in Remark 16.10 (§16), which is of relatively minor importance; also, Lemma
4.9 below which we use to prove de Rham’s Theorem 4.10, will have just one more
application (in the proof of Proposition 46.10, §46). The reason for this restraint is
to enable the reader (who choses to do so) to go through the most important topics
covered in Part I of this text with a minimum amount of prerequisite material. As
an example, even though Theorem 14.5 (§14) is usually derived from de Rham’s
decomposition theorem, its proof we give in §14 is different, cf. Remark 14.6. It
is because of these considerations that some facts used in our proof of Lemma 4.8
(see below) have not been included in this section and, instead, will appear for the
first time in §28.

Lemma 4.8. Suppose that ∇ is a torsionfree connection in the tangent bundle
TM of a manifold M , while P is a parallel subbundle of TM , as defined in
Remark 4.7. Given a point x ∈ M , let U ′ be a convex neighborhood of 0 in
TxM such that expx sends U ′ diffeomorphically onto an open set in M . The
submanifold N = expx(U ′ ∩Px) then is an integral manifold of the subbundle P
of TM in the sense that TyN = Py for each y ∈ N .

Proof. In view of Proposition 28.9, it suffices to show that any Jacobi field t 7→ w(t)
along a geodesic t 7→ x(t) = expx tv such that v, w(0) and [∇ẋw](0) all lie in Px,
must satisfy w(t) ∈ Px(t) for all t. However, the Jacobi equation (4.51), with the
fixed geodesic, may be treated as a condition imposed on sections t 7→ w(t) ∈ Px(t)

of the bundle P along the geodesic. In fact, as P is parallel and ẋ is parallel
along the geodesic, for any such w(t) the derivatives [∇ẋw](t), [∇ẋ∇ẋw](t) and
ẋ(t) must lie in Px(t) for every t. Consequently, R(u, u′)ẋ(t) ∈ Px(t) for any
u, u′ ∈ Tx(t)M , since R(u, u′) leaves the subspace Px ⊂ Tx(t)M invariant (Example
4.3). Our assertion now is easily obtained by solving (4.51) for sections of P along
the geodesic, and using the uniqueness-of-solutions theorem for ordinary differential
equations. This completes the proof. �

The following lemma is a special case of Frobenius’s integrability theorem for
involutive distributions; see, e.g., Kobayashi and Nomizu (1963).

Lemma 4.9. Let ∇ be a torsionfree connection in the tangent bundle TM of a
manifold M , and let P be a parallel subbundle of TM , as defined in Remark 4.7.
Given a point y ∈ M and a cotangent vector ξ ∈ T ∗yM , that is, a linear function
ξ : TyM → R, satisfying the condition Py ⊂ Ker ξ, there exists a C∞ function f
on a neighborhood U of y in M such that df(y) = ξ and f is constant in the
direction of P, everywhere in U , i.e., dvf = 0 for all x ∈ U and all v ∈ Px.

Proof. Let us assume that ξ 6= 0. (Otherwise, we may set f = 0.) Using a local
coordinate system, we can find a submanifold N of M containing y along with
a C∞ function ϕ : N → R such that TzM = Pz ⊕ TzN for evry z ∈ N and
dϕy is the restriction of ξ to TN . Replacing N by a smaller neighborhood of y
in N , we can also assume that the bundle P restricted to N is trivial, with some
trivializing C∞ sections ea. Let V be the vector space spanned by these sections
ea that is, formed by their constant-coefficient combinations). Making N smaller
again, we can now find a neighborhood U0 of 0 in V such that the C∞ mapping
F given by the formula F (z, v) = expz v(z), with expz as in (4.16) is well-defined
on N ×U0. Its differential dF(y,0) at (y, 0) sends (u, 0) to u and (0, w) to w(y),
for any u ∈y N and w ∈ V (since d(expy)

0
= Id by (4.17)). Thus, dF(y,0) is
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an isomorphism onto TyM and, in view of the inverse mapping theorem, we can
find a neighborhood U of y in M on which there exists an inverse for F , sending
each x ∈ U to a pair (z, v) = (h(x), A(x)). The C∞ function f : U → R given by
f(x) = ϕ(h(x)) appears, under the identification N × U0 ≈ U provided by F , to
be (z, v) 7→ ϕ(z), and so it satisfies df(y) = ξ and is constant on the submanifolds
F ({z} × U0) which, according to Lemma 4.9, form a decomposition of U into
integral manifolds of P. This completes the proof. �

The following result is known as (the local version of) de Rham’s decomposition
theorem.

Theorem 4.10 (de Rham, 1952). Let the tangent bundle TM of a pseudo-Riem-
annian manifold (M, g) admit a direct-sum decomposition

(4.56) TM = P ⊕Q ,

into subbundles P and Q, which are both parallel in the sense of Remark 4.7, and
g-orthogonal to each other. Then g is locally isometric to a product metric for
which the subbundles P and Q represent the product-factor directions. In other
words, let n = dimM and let p stand for the fibre dimension of P ; a neighborhood
of any given point y ∈M then admits a coordinate system xj, j = 1, . . . , n, with

(4.57) gaλ = gλa = 0

and

(4.58) ∂λgjk = ∂agλµ = 0

for all a, b, λ, µ with

(4.59) a, b ∈ {1, 2, . . . , p} , λ, µ ∈ {p+ 1, . . . , n} ,

as well as

(4.60) P = Span {e1, . . . , ep} , Q = Span {ep+1, . . . , en} ,

where the symbols ej, gjk = g(ej , ek) and ∂j = ∂/∂xj for j, k = 1, . . . , n denote,
respectively, the coordinate vector fields, the component functions of g and the
partial derivatives.

Proof. Let us fix any basis e1(y), . . . , en(y) of TyM such that (4.80) holds at
the point y. Using Lemma 4.9 we can now find C∞ functions x1, . . . , xn defined
on a neighborhood U ′ of y and such that their differentials dx1, . . . , dxn form,
at y, a basis of T ∗yM dual to e1(y), . . . , en(y) while, at every point of U ′, such

that x1, . . . , xp are constant in the direction of P and xp+1, . . . , xn are constant
in the direction of Q. According to the inverse mapping theorem, restricted to
some smaller neighborhood U of y, the xj form a local coordinate system in M .
Since the corresponding coordinate vector fields ej satisfy (2.3), we now have (4.80)
everywhere in U and so, due to mutual orthogonality of P and Q, also (4.57),
identically in U . By (4.80) and (4.2), the Christoffel symbols of g now satisfy
Γλab = Γ aλµ = 0 for all indices with (4.59) and so, in view of (4.6) with (4.57), we

have Γabλ = Γλµa = 0 (indices as before). Using (4.57) and formula (4.9), we now
obtain (4.58), which completes the proof. �
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§5. Einstein manifolds

The curvature tensor R of every pseudo-Riemannian manifold satisfies the sec-
ond Bianchi identity

(5.1) dR = 0 , i.e., Rjkl
p
,m +Rkml

p
, j +Rmjl

p
, k = 0

which, via two successive contractions, implies the relation

(5.2) 2 div Ric = ds , that is, 2Rkj, k = s ,j

known as the Bianchi identity for the Ricci tensor.
According to (0.1), a pseudo-Riemannian manifold (M, g) is Einstein if and only

if

(5.3) Ric = κg

for some constant κ ∈ R. In fact, the g-contraction of both sides of (5.3) then
yields

(5.4) κ =
s

n
, n = dimM .

s being the scalar curvature of (M, g). Thus, Einstein manifolds (M, g) are char-
acterized by constancy of s along with the condition E = 0, where

(5.5) E = Ric − s

n
g , n = dimM

denotes the traceless part of the Ricci tensor, sometimes called the Einstein tensor
of (M, g). However, in dimensions other than n = 2, the constancy requirement is
redundant. Namely, we have

Theorem 5.1 (Schur, 1869). Let a pseudo-Riemannian manifold (M, g) satisfy
(5.3) for some function κ : M → R. Then κ is constant unless dimM = 2.
In other words, in dimensions n 6= 2, Einstein manifolds are characterized by
condition E = 0 alone, with E given by (5.5).

Proof. Relation (5.4) reads nRkj = s δkj , whence nRkj, l = s ,lδ
k
j , and so nRkj, k =

s ,j . By (5.2), (n− 2) s ,j = 0 with n = dimM , and so s and κ are constant, as
n > 2 and our manifolds are connected by definition. �

To further put this discussion into perspective, we may note that Einstein mani-
folds are characterized by vanishing of one irreducible curvature component; by the
irreducible components of the curvature of any pseudo-Riemannian manifold (M, g)
we mean its scalar curvature s with (4.40), traceless Ricci tensor E (see (5.5)) and
the Weyl conformal curvature tensor W . The latter is defined for n = dimM ≥ 3,
by the relation

(5.6) W = R − 2

n− 2
g ~ Ric +

s

(n− 1)(n− 2)
g ~ g .
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Here ~ is a natural bilinear pairing of symmetric twice-covariant tensors B,C,
valued in covariant 4-tensors (see Besse, 1987), given by

(5.7)
2 (B ~ C)(v, w, v′, w′) = B(v, v′)C(w,w′) + B(w,w′)C(v, v′)

− B(w, v′)C(v, w′) − B(v, w′)C(w, v′) .

Thus, the local-coordinate version of (5.6) is

(5.8)
Wjklm = Rjklm −

1

n− 2
(gjlRkm + gkmRjl − gklRjm − gjmRkl)

+
s

(n− 1)(n− 2)
(gjlgkm − gklgjm) .

Since, by (5.5), Ric = E + sg/n, (5.6) can be rewritten as

(5.9) R = W +
2

n− 2
g ~ E +

s

n(n− 1)
g ~ g .

For Einstein manifolds (M, g), characterized by E = 0, this becomes

(5.10) R = W +
s

n(n− 1)
g ~ g , n = dimM .

It is convenient to single out those four-times covariant tensors A at a point x
of a pseudo-Riemannian manifold (M, g) which satisfy the conditions

(5.11) Ajklm = −Akjlm = −Ajkml = Almjk .

An obvious example of such a tensor is A = α⊗α for any bivector α at x treated,
with the aid of g, as an exterior 2-form. The components of A then are

(5.12) (α⊗ α)jklm = αjkαlm .

Any tensor A with (5.11) at a point x of (M, g) can be regarded as a self-adjoint
linear operator sending the space [TxM ]∧2 of bivectors β at x into itself, with

(5.13) [Aβ]jk =
1

2
Ajklmβ

lm ,

where the metric is again used to identify bivectors and 2-forms. For instance,
using (5.12) and (2.17), we see that

(5.14) (α⊗ α)β = 〈α, β〉α

for bivectors α, β. Also, given a symmetric 2-tensor B and a bivector α, by
combining (5.7) with (5.13) (for A = g ~B) and (2.12), we obtain

(5.15) 2 (g ~B)α = {B, α} .

Here {B, α} = Bα + αB is the anticommutator of B and α, that is, the sum
of the composites Bα and αB obtained by treating both B and α as operators
in the tangent space. (Note that, for a symmetric 2-tensor B and a bivector α,
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Bα + αB is again a bivector.) Since g is the identity operator when acting on
tangent vectors, (5.15) for B = g shows that, as an operator acting on bivectors,

(5.16) g ~ g = Id .

We can now introduce the Weitzenböck formula for the Weyl tensor acting on
bivectors, which reads

(5.17)

Wα =
1

2
[div (∇α − dα) − d (divα)]

+
n− 4

2(n− 2)
{Ric, α} +

s

(n− 1)(n− 2)
α ,

and holds for any bivector field α of class C2 on any n-dimensional pseudo-Riem-
annian manifold (M, g), where W , Ric and s denote, as usual, the Weyl tensor,
Ricci tensor and scalar curvature, while {Ric, α} = Ric ◦ α + α ◦ Ric is the
anticommutator of Ric and α (cf. (5.15)). Formula (5.17) is of crucial importance
for many arguments presented in this paper, the first of which appears in §9.

To establish (5.17), let us first note that its local-coordinate form is

(5.18)

Wjklmα
lm = −αlj,kl − αkl,j

l − αlk,
l
j + αlj,

l
k

+
n− 4

n− 2

(
Rlkαjl + Rljαlk

)
+

2s

(n− 1)(n− 2)
αjk ,

as one easily verifies using (5.13) (for A = W , β = α), (4.41), (4.21) and the para-
graph following formula (4.22) in §4, as well as (2.12). Setting Pjk = αjl,

l
k−αjl,kl

and contracting (4.29) (with F = α), we find that Pjk = Rlkj
sαsl + Rlkl

sαjs =
Rljksα

ls + Rskαjs (cf. also (4.32) and (4.37)). Furthermore, (Rlkjs − Rljks)αls =
Rjklsα

ls, in view of (4.32) and the relation (Rljks + Rlksj + Rlsjk)αls = 0, im-
mediate from the Bianchi identity (4.33). In other words, if we also set β =
div (∇α− dα)− d (divα), we have βjk = Pkj−Pjk and so, from these equalities and
(5.13), β = 2Rα−{Ric, α}. Since, by (5.6), (5.15) and (5.16), 2(n−1)(n−2)Wα =
2(n− 1)(n− 2)Rα− 2(n− 1){Ric, α}+ 2 sα, replacing 2Rα with β+ {Ric, α} we
now obtain 2(n− 1)(n− 2)Wα = (n− 1)(n− 2)β + (n− 1)(n− 4){Ric, α}+ 2 sα,
which proves (5.17).

Formula (5.17) becomes particularly simple (and useful) for parallel bivector
fields α on four-dimensional pseudo-Riemannian manifold (M, g). Namely,

(5.19) Wα =
s

6
α if ∇α = 0 and dimM = 4 .

Moreover, equality (5.17) has the following interesting consequence for parallel
bivector fields α on pseudo-Riemannian Einstein manifolds (M, g) of any dimen-
sion n > 2:

(5.20) Wα =
(n− 2) s

n(n− 1)
α if ∇α = 0 , Ric =

s

n
g , n = dimM ≥ 3 .

Again, given a tensor A with (5.11) at a point x of (M, g) and tangent vectors
u, v, u′, v′ ∈ TxM we have, by (2.15) and (2.17),

(5.21) 〈A(u, v)u′, v′〉 = 〈A(u ∧ v), u′ ∧ v′〉 .
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We will then also use the notation

(5.22) A(u ∧ v) = A(u, v) .

By an algebraic curvature tensor at a point x of a pseudo-Riemannian manifold
(M, g) we mean any tensor A with (5.11) whose components also satisfy Ajklm +
Ajlmk + Ajmkl = 0, that is, share all the algebraic symmetries of Rjklm listed
in (4.32) and (4.33). Besides A = R(x), obvious examples of algebraic curvature
tensors include the products B ~C of any two symmetric twice-covariant tensors
B,C at x given by (5.7). Thus, by (5.6), the Weyl tensor W is an algebraic
curvature tensor field as well, that is, it satisfies the first Bianchi identity

(5.23) Wjklm + Wkljm + Wljkm = 0

and the skew-symmetry relations

(5.24) Wjklm = −Wkjlm = −Wjkml = Wlmjk ,

with Wjklm = Wjkl
pgpm. In addition, W satisfies the relation

(5.25) Wjkl
k = 0 ,

i.e., the “Ricci contraction” (in fact, any contraction) of W is zero. (This is
immediate from (5.8).) Note that notation (5.22) then agrees with the usage of
R(u, v) and W (u, v) in (4.23), (4.28) (and in formula (5.34) below).

Any tensor field A with (5.8) on a pseudo-Riemannian manifold (M, g) (such
as A = R or A = W ) can be treated as a differential 2-form valued in 2-forms.
The divergence divA of A then can be defined as in (4.41). Thus, divA is a
differential 1-form valued in 2-forms, with the local component functions

(5.26) [divA]klm = Ajklm,j .

The divergences of R or W and satisfy the well-known identities

(5.27) divR = dRic , ds = − 2 ctr [dRic]

(where ctr is a specific contraction), and, when n = dimM ≥ 3,

(5.28) 2(n− 1)(n− 2) divW = (n− 3) dH , with H = 2(n− 1) Ric − s g ,

where the exterior derivative is applied to symmetric twice-covariant C∞ ten-
sor fields (such as Ric), viewed as differential 1-forms valued in 1-forms. Both
identities, the local-coordinate versions of which are Rjklm,

j = Rkm,l − Rkl,m,
s,k = 2Rjk,j , and

(5.29) 2(n− 1)(n− 2)Wjklm,
j = (n− 3) [Hkm,l − Hkl,m] ,

with Hjk = 2(n− 1)Rjk − s gjk, can be easily obtained by contracting the second
Bianchi identity in dimension n and using (5.8). We consequently have



EINSTEIN METRICS IN DIMENSION FOUR 39

Lemma 5.2. Every Einstein manifold (M, g) satisfies the conditions

(5.30) divR = divW = 0 ,

where R and W are treated as 2-forms valued in 2-forms. �

Any differential 1-form valued in 2-forms, such as divW , acts on bivectors α,
assigning to each of them the 1-form [divW ]ptα with (cf. (5.26))

(5.31) ([divW ]α)k =
1

2
[divW ]klmα

lm =
1

2
W j

klm,jα
lm .

Lemma 5.3. Given bivectors α, β ∈ [TxM ]∧2 at a point x in a pseudo-Riem-
annian four-manifold (M, g) and a four-times covariant tensor A at x, let us
define an exterior 2-form γ at x by γ(u, v) = 〈[A(u, v), α], β〉, with A(u, v) as
in (5.22), where [ , ] is the commutator of bivectors treated, with the aid of g,
as skew-adjoint operators TxM → TxM . Treating γ as a bivector, we then have
γ = A[α, β].

Proof. For any bivectors α, β ∈ [TxM ]∧2, 〈[β, α], β〉 = 0 in view of (2.17) and
(3.1). Therefore (see the final clause in Remark 3.12), for any three bivectors
α, β, ζ, we have 〈[ζ, α], β〉 = −〈[β, α], ζ〉 = 〈[α, β], ζ〉. Applying this to ζ =
A(u, v) = A(u ∧ v) with fixed vectors u, v, and using self-adjointness of A, we
obtain γ(u, v) = 〈[A(u∧v), α], β〉 = 〈[α, β], A(u∧v)〉 = 〈A[α, β], u∧v〉. By (2.20),
this gives γ(u, v) = (A[α, β])(u, v), where the bivector A[α, β] now is treated as a
2-form. This completes the proof. �

The g-inner product of algebraic curvature tensors is given by

(5.32) g(A, Ã) =
1

4
AjklmÃjklm = TraceAÃ .

If g is positive definite, we define the norm |A| of such a tensor A by |A|2 =
g(A,A).

In view of (5.16), relation (5.10), characterizing Einstein metrics in dimension
n, becomes the condition

(5.33) R = W +
s

n(n− 1)
, n = dimM ,

imposed on bundle morphisms [TM ]∧2 → [TM ]∧2, where the scalar on the right-
hand side stands for the corresponding multiple of Id. In view of (5.22), this can
be rewritten as

(5.34) R(u, v) = W (u, v) +
s

n(n− 1)
u ∧ v , n = dimM ,

for any tangent vectors u, v, with R(u, v) as in (4.23) or (4.28).
We will also need the fact that, for bivectors α, β, tangent vectors u, v and

symmetric 2-tensors A, B,

(5.35) 2 〈[(A ~B)(u, v), α], β〉 = 〈(A[α, β]B + B[α, β]A)u, v〉 .
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(notation as in (5.7) or (4.28)). In fact, (5.7) yields

(5.36) 2 (A ~B)(u, v) = (Au) ∧ (Bv) + (Bu) ∧ (Av) .

On the other hand, relation

(5.37) (B ~B)jklm = BjlBkm − BklBjm

for any symmetric twice-covariant tensor B, immediate from (5.7), shows that

(5.38) 2 (v ⊗ v)~ (w ⊗ w) = (v ∧ w)⊗ (v ∧ w) ,

for tangent vectors v, w. In fact, (v⊗v)jk = vjvk (see (2.13)), while the components
of the right-hand side can be evaluated from (5.12) and (2.15). Consequently,

(5.39) A~A = ±α⊗ α if A = v ⊗ v ± w ⊗ w and α = v ∧ w ,
and

(5.40) A~A = −α⊗ α if A = v ⊗ w + w ⊗ w and α = v ∧ w .
§6. Special properties of dimension four

This section lists some facts showing the extent to which four-dimensional Rie-
mannian geometry differs from what one has in other dimensions. The “ultimate
reason”, if any, may well be reducibility of the Lie algebra so(4) (Remark 6.7),
unique in this respect among all so(n).

The order in which topics are covered here is dictated by how soon they will be
used. The initial part (up to and including Lemma 6.18) is needed immediately,
that is, in §7. The reader can in this way skip the remainder of this section until it
is called for by further applications (as indicated below).

Let (M, g) be an oriented Riemannian 4-manifold. There exists a unique bundle
morphism ∗ : [TM ]∧2 → [TM ]∧2, called the Hodge star (acting on bivectors), such
that

(6.1) ∗(e1 ∧ e2) = e3 ∧ e4

for any x ∈ M and any positive-oriented orthonormal basis e1, . . . , e4 of TxM .
(For details, see formulae (37.9) and (37.13) in §37.) It is now clear from (6.1) that
the operator ∗ is an involution, i.e.,

(6.2) ∗2 = Id ,

and it easily follows from (6.1) that

(6.3) ∗ : [TxM ]∧2 → [TxM ]∧2 is self-adjoint

relative to the inner product 〈 , 〉 of bivectors, given by (2.17). (See also §37,
formulae (37.21) and (37.10).)

According to Remark 3.2, equality (6.2) gives rise to a direct-sum decomposition

(6.4) [TM ]∧2 = Λ+M ⊕ Λ−M , Λ±M = [Λ∓M ]⊥ ,

of [TM ]∧2 into the subbundles Λ±M ; specifically, the fibre Λ±xM of Λ−M over
any x ∈ M is the (±1)-eigenspace of ∗ at x. Elements of Λ+

xM and Λ−xM are
called self-dual and, respectively, anti-self-dual bivectors at x. Note that mutual
orthogonality of Λ+

xM and Λ−xM , i.e., the second relation in (6.4), now is obvious
from (6.3) (see Remark 3.17(i)). The Λ+

xM -components α± of any bivector α ∈
[TxM ]∧2, x ∈M , are obviously (cf. Remark 3.2) given by

(6.5) 2α± = α ± ∗α .
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Lemma 6.1. Suppose that we are given a point x of an oriented Riemannian
4-manifold (M, g) and a bivector α ∈ Λ+

xM . Defining the real number r ≥ 0 by
2r2 = 〈α, α〉, we then have

(6.6) α = r [e1 ∧ e2 + e3 ∧ e4]

for some positive-oriented orthonormal basis e1, . . . , e4 of TxM , and

(6.7) 2α2 = −〈α, α〉 ,

where α is treated, with the aid of g, as a skew-adjoint operator TxM → TxM .
Any two bivectors α, β ∈ Λ+

xM satisfy

(6.8) αβ + βα = −〈α, β〉 .

In both (6.7) and (6.8), the scalar on the right-hand side stands for the correspond-
ing multiple of Id.

Proof. Due to skew-adjointness of α : TxM → TxM , there exists a 2-dimensional
α-invariant vector subspace P ⊂ TxM . In fact, a nonreal complex root of the
characteristic polynomial of α immediately leads to such a subspace; on the other
hand, if one of these roots is real, then α has an eigenvector v ∈ TxM and, as v⊥

is a 3-dimensional α-invariant subspace of TxM (see Remark 3.17(ii)), α also has
an eigenvector w ∈ v⊥, and we may set P = Span {v, w}.

Obviously, P⊥ then is α-invariant as well. Choosing any positive-oriented or-
thonormal basis e1, . . . , e4 of TxM with e1, e2 ∈ P and e3, e4 ∈ P⊥, we have (by
skew-adjointness)

(6.9) αe1 = re2 , αe2 = − re1 , αe3 = qe4 , αe4 = − qe3

for some r, q ∈ R. Hence, by (2.22), α = r e1∧e2 + q e3∧e4. However, as ∗α = α,
formula (6.1) now gives q = r. Thus, (6.6) follows and, changing the signs of both
e2, e4 if necessary, we may assume that r ≥ 0. Now (6.7) is immediate from (6.9)
with q = r. Since both sides of (6.8) are bilinear and symmetric in α and β,
equality (6.8) follows from (6.7) (see Remark 3.12). This completes the proof. �

The spaces Λ±xM are all 3-dimensional. More precisely, we have

Lemma 6.2. Let (M, g) be an oriented Riemannian 4-manifold and let x ∈ M .
For any positive-oriented orthonormal basis e1, . . . , e4 of TxM , formula

(6.10)
± e1 ∧ e2 + e3 ∧ e4√

2
,
± e1 ∧ e3 + e4 ∧ e2√

2
,
± e1 ∧ e4 + e2 ∧ e3√

2
,

defines a basis of Λ±xM , which is orthonormal relative to the inner product of bivec-
tors characterized by (2.17). The bundles Λ+M and Λ−M carry natural orienta-
tions such that the bases (6.10) all are positive-oriented.

Proof. Our assertion is immediate from (6.1), (2.21) and the fact that positive-
oriented orthonormal bases of TxM form a connected set (cf. Lemma 3.5(ii)).
�
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Corollary 6.3. Let (M, g) be an oriented Riemannian 4-manifold, and let the
bivector space [TxM ]∧2 at any point x ∈ M be identified, as in (2.12), with the
Lie algebra so(TxM) of all skew-adjoint operators TxM → TxM . Then Λ+

xM
and Λ−xM commute in the Lie algebra [TxM ]∧2 = so(TxM), in the sense that
[α+, α−] = 0 whenever α± ∈ Λ±xM .

Proof. Let us write a fixed bivector α ∈ Λ+
xM in the form (6.6) for some positive-

oriented orthonormal basis e1, . . . , e4 of TxM (see Lemma 6.1). The numerators of
the expressions (6.10) with the sign ± equal to ’minus’ then form a basis of Λ−xM
(Lemma 6.2). On the other hand, for mutually orthogonal vectors e1, . . . , e4, (2.28)
implies that e1 ∧ e2 + e3 ∧ e4 commutes with − e1 ∧ e2 + e3 ∧ e4, − e1 ∧ e3 + e4 ∧ e2

and − e1 ∧ e4 + e2 ∧ e3, which completes the proof. �

Corollary 6.4. Suppose that x is a point of an oriented Riemannian 4-mani-
fold (M, g), and bivectors at x are treated, according to (2.12), as skew-adjoint
operators TxM → TxM . For any fixed nonzero self-dual bivector α ∈ Λ+

xM and a
bivector β ∈ [TxM ]∧2, the following two conditions are equivalent :

(a) β anticommutes with α ; in other words, αβ + βα = 0;
(b) β is self-dual and orthogonal to α, i.e., β ∈ Λ+

xM and 〈α, β〉 = 0.

Proof. (b) implies (a) as a consequence of (6.8). Conversely, let β satisfy (a).
Since α 6= 0, we may normalize α so that 〈α, α〉 = 2. By (6.7) we now have
α2 = − Id and, in particular, α is an isomorphism. We can now write β =
cα+ β′ + β− with c ∈ R, β′ ∈ Λ+

xM , 〈α, β′〉 = 0 and β− ∈ Λ−xM . Denoting { , }
the anticommutator, with {α, β} = αβ + βα, we now have {α, β′} = 0 (see (6.8)),
and so, since β−α = αβ− by Corollary 6.3, we have 0 = {α, β} = − 2c + 2αβ−,
where c stands for c times the identity. Taking the trace, we obtain, by (2.17),
c = 0 (as α ∈ Λ+

xM is orthogonal to β− ∈ Λ−xM , cf. (6.4)). Thus, αβ− = 0 and,
since α is an isomorphism, we obtain β− = 0. In other words, β = β′, i.e., (b)
follows from (a). This completes the proof. �

Corollary 6.5. Suppose that (M, g) is a four-dimensional oriented Riemannian
manifold, x ∈ M , and α1, α2, α3 is a positive-oriented orthogonal basis of Λ+

xM

or Λ−xM consisting of vectors of length
√

2, i.e., such that

(6.11) 〈αj , αk〉 = 2 δjk , for j, k ∈ {1, 2, 3} .

Treated as skew-adjoint operators TxM → TxM , the αj then satisfy the quaternion-
units relations

(6.12) α2
j = − Id , αjαk = αl = −αkαj if εjkl = 1 ,

where, for any indices j, k, l ∈ {1, 2, 3}, εjkl is the Ricci symbol, equal to the
signum of the permutation (j, k, l) of {1, 2, 3}, if j, k and l are all distinct, and
to 0 otherwise.

Proof. Reversing the orientation, if necessary, we may assume that α1, α2, α3 ∈
Λ+
xM . Relations α2

j = − Id for j = 1, 2, 3 are obvious from (6.7). In view of (6.8),
α1 and α2 anticommute, and so their composite β = α1α2 is again skew-adjoint.
Moreover, β anticommutes with both α1 and α2 (again by (6.8)), and so Corollary
6.4 implies that β ∈ Λ+

xM and 〈α1, β〉 = 〈α2, β〉 = 0. Also, β2 = − Id (since
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the same is true for α1 and α2), and so (2.17) yields 〈β, β〉 = 2. In this way,
β = ±α3. The sign ± appearing here is the same for all bases α1, α2, α3 with
the stated properties. Namely, it equals sgn〈α1, α2α3〉 which, in turn, does not
depend on the basis used since positive-oriented orthonormal bases of TxM form
a connected set (cf. Lemma 3.5(ii)). To see that this sign is actually ’plus’, it now
suffices to test it, using (2.27), on just one basis, for instance, one formed by the
numerators of the expressions (6.10) (with either fixed sign ± preceding e1), and
any given positive-oriented orthonormal basis e1, . . . , e4 of TxM . This completes
the proof. �

Corollary 6.6. At any point x of an oriented Riemannian 4-manifold (M, g),
the spaces Λ+

xM and Λ−xM are Lie subalgebras of the Lie algebra [TxM ]∧2 =
so(TxM), both isomorphic to the Lie algebra formed by R3 with the vector product.
More precisely, for α1, α2, α3 as in Corollary 6.5, we have

(6.13) [αj , αk] = 2αl if εjkl = 1 .

This is obvious from Corollary 6.5. �

Remark 6.7. The assertions of Corollaries 6.3 and 6.6 describe a well-known Lie-
algebra isomorphism so(4) ≈ so(3)⊕ so(3).

It will be useful to have the following analogue of Corollary 6.4.

Corollary 6.8. Let there be given an oriented Riemannian 4-manifold (M, g), a
point x ∈ M , and a fixed nonzero self-dual bivector α ∈ Λ+

xM . For any bivector
β ∈ [TxM ]∧2, the following two conditions are equivalent :

(i) β is anti-self-dual, that is, β ∈ Λ−xM .
(ii) β commutes with α and is orthogonal to α ; in other words, αβ = βα

and 〈α, β〉 = 0.

Proof. (i) implies (ii) as a consequence of (6.4) and Corollary 6.3. Conversely, let
β satisfy (ii). As α 6= 0, we may normalize α so that 〈α, α〉 = 2 and, by (6.7),
α2 = − Id. Thus, α is an isomorphism. Writing β = cα + β′ + β− with c ∈ R,
β′ ∈ Λ+

xM , 〈α, β′〉 = 0 and β− ∈ Λ−xM , we have c = 0 since 〈α, β〉 = 0, and
the commutator relation with [α, β] = 0 now becomes 0 = [α, β′] + [α, β−]. Since
[α, β−] = 0 (Corollary 6.3), we thus have αβ′ = β′α while, by (6.8) with β = β′,
αβ′ = −β′α. Therefore, αβ′ = 0 and, since α is an isomorphism, we obtain
β′ = 0. Consequently, β = β−, and so (i) follows from (ii). This completes the
proof. �

Lemma 6.9. Given an oriented Riemannian 4-manifold (M, g), let W and ∗
be the Hodge star and the Weyl tensor of (M, g), both treated as bundle morphisms
[TM ]∧2 → [TM ]∧2. Then

(i) W and ∗ commute.
(ii) We have TraceW = Trace [W ∗] = Trace [∗W ] = 0 everywhere in M .

Proof. (i) follows from (6.1) and (5.25); for details, see the paragraph following
formula (38.7) in §38. As for (ii), note that, according to (5.13), 2 TraceW equals
Wjk

jk, which is zero by (5.25). On the other hand, we obviously have Trace [W ∗] =∑
j<k〈W (∗(ej ∧ek)), ej ∧ek), where e1, . . . , e4 is any positive-oriented orthonormal
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basis of TxM (and so, by (2.21), the ej∧ek with j < k form an orthonormal basis
of [TxM ]∧2). Hence, in view of (6.1), Trace [W ∗] equals W3412 +W4213 +W2314 +
W1423 + W3124 + W1234 with Wjklm = g(W (ej , ek)el, em) = 〈W (ej ∧ ek), el ∧ em〉
(cf. (5.21)), which is zero in view of (5.23) and (5.24). �

In view of Lemma 6.9(i), for any oriented Riemannian 4-manifold (M, g), the
direct-summand subbundles Λ±M of [TM ]∧2 are invariant under the bundle mor-
phism W : [TM ]∧2 → [TM ]∧2, i.e.,

(6.14) W (Λ±M) ⊂ Λ±M .

One denotes W± the restriction of W to the Λ±M . In this way, W± becomes a
bundle morphism Λ±M → Λ±M .

It follows from (6.5) that, for any tangent vectors u, v, the operator W :
[TM ]∧2 → [TM ]∧2 satisfies

(6.15) [W±(u, v), α±] = [W (u, v), α]± , [W±(u, v), α∓] = 0 .

(Note, again, that the commutator of bivectors at any point x ∈ M makes sense
since they can be viewed as skew-adjoint operators TxM → TxM .) In fact, (6.15)
is clear from Corollary 6.3, as W (u, v) = W (u ∧ v) (and similarly for W+, W−),
while W± is a bundle morphism with

(6.16) W± : [TM ]∧2 → Λ±M , W± = 0 on Λ∓M .

In other words, the same symbols W± as for W± : Λ±M → Λ±M are also used for
their obvious extensions of to bundle morphisms [TM ]∧2 → [TM ]∧2 characterized
by (6.16). We then clearly have

(6.17) 2W± = W ± ∗W ,

and so, by Lemma 6.9(ii),

(6.18) TraceW± = 0 .

In other words, the eigenvalues λ1, λ2, λ3 of W+ (or, W−) at any given point
satisfy

(6.19) λ1 + λ2 + λ3 = 0 .

Remark 6.10. Since the Hodge star ∗ is parallel (due to its naturality), either of
the subbundles Λ±M of [TM ]∧2 is parallel, as defined in Remark 4.7. This leads
to connections in the bundles Λ+M and Λ−M obtained as the natural restrictions
to these parallel subbundles of the connection in [TM ]∧2 induced by the Levi-
Civita connection ∇ of TM . They both amount to nothing else than the ordinary
covariant derivative operation applied to (anti)self-dual bivector fields. This is why
they will also be denoted ∇ and referred to as the Levi-Civita connections in Λ+M
and Λ−M .
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Lemma 6.11. Given a point x of any oriented Riemannian 4-manifold (M, g)
and a traceless, twice-covariant, symmetric tensor B at x, the anticommutator
operator

[TxM ]∧2 3 α 7→ {B, α} ∈ [TxM ]∧2 ,

with {B, α} = Bα + αB, as in (5.15), interchanges Λ+
xM and Λ−xM , that is,

sends Λ±xM into Λ∓xM .

Proof. Fix α ∈ Λ±xM . For B as above, β = Bα + αB is obviously skew-adjoint,
i.e., a bivector and, by (6.7), β commutes with α. Similarly, in view of (2.17), (3.1)
and the assumption that TraceB = 0, we have 〈α, β〉 = 0. From Corollary 6.8
aplied to this or the opposite orientation, we now conclude that β ∈ Λ∓xM unless
α = 0. Since α = 0 implies β = 0, this completes the proof. �

Remark 6.12. Lemma 6.11 has the following important consequence which, how-
ever, will be needed only for Lemma 6.25 near the end of this section. Namely, we
have the relations

(6.20) [Rα]± = (W + s/12)α , for α ∈ Λ±xM ,

(6.21) [Rα]∓ = (g ~ E)α = Eα + αE for α ∈ Λ±xM ,

valid for the curvature tensor R acting on (anti)self-dual bivectors α at any point
x of any oriented Riemannian 4-manifold (M, g), where E is the traceless Ricci
tensor of (M, g) (notation of (5.5), (5.13), (6.5)). In fact, given α ∈ Λ±xM , we have
Rα = (W+ s/12)α+ (g~E)α from (5.9) with n = 4. However, Wα = W±α, while
(5.15) gives 2(g~E)α = Eα + αE. We thus obtain the following characterization,
due to Singer and Thorpe (1969), of the irreducible components of the curvature
(§5) at a point x in any oriented Riemannian 4-manifold: For any α ∈ Λ±xM ,

(6.22) 12Rα = sα + 12W±α + 6(Eα + αE) .

The first two terms on the right-hand side are in Λ±xM (see (6.14)), while the last
term is in Λ∓xM (Lemma 6.11). This proves (6.20) and (6.21), and shows that each
of s, W±, and E accounts for one of four “parts” of R acting on bivectors a part
which is a multiple of Id, a part which is zero on Λ∓xM and leaves Λ±xM invariant,
forming a traceless operator in it, for either sign ± (cf. Lemma 6.9(ii)); and a part
that interchanges Λ+

xM and Λ−xM .

Remark 6.13. Much of what was established here in the Riemannian case remains
valid also for pseudo-Riemannian 4-manifolds with indefinite metrics of the neutral
sign pattern − − + + . Namely, we then still have relations (6.2), (6.3) (see
(37.21), (37.10) in §37). Consequently, we also then have (6.4) and (6.5). Relations
(6.7) and (6.8) still hold for any two bivectors α, β ∈ Λ+

xM (Proposition 37.5). The
spaces Λ+

xM and Λ−xM still are mutually commuting Lie subalgebras of [TxM ]∧2 =
so(TxM) (Proposition 37.2), and Corollaries 6.4 and 6.8 become valid, with exactly
the same proofs, if we replace the word ’nonzero’ by ’non-null’. Similarly, Lemma
6.9 and formulae (6.14) – (6.16) remain valid, without any change. As for Lemma
6.11, it still holds; the proof works for α with 〈α, α〉 6= 0, and so the assertion still
follows since Bα+ αB is linear in α. Hence, we also have (6.20) and (6.21).
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The bundle morphism W : [TM ]∧2 → [TM ]∧2 may of course be regarded as a
[TM ]∧2-valued 2-form on M . Then W± are the Λ±M -components of W , both
when the decomposition is applied valuewise (as it would be for a [TM ]∧2-valued
form of any degree), or argumentwise (as it would be done for real-valued 2-forms
and, more generally, for 2-forms valued in any vector bundle over M).

Similarly, divW± then are nothing else than the Λ±M -components of divW ,
treated as a [TM ]∧2-valued 1-form on M . (This is clear from (4.41) and Remark
6.10.) Thus, Lemma 5.2 yields

Lemma 6.14. For every oriented Riemannian Einstein 4-manifold we have

(6.23) divW+ = divW− = 0 .

�

Lemma 6.15. Let F : E → E be a Ck morphism, 1 ≤ k ≤ ∞, in a C∞

real/complex vector bundle E of fibre dimension 2 or 3 over a manifold M .
Suppose that the restriction F (x) : Ex → Ex of F to the fibre Ex is diagonalizable
for each x ∈ M , and let # specF : M → {1, 2, 3} be the function which assigns
to each x ∈ M the number of distinct eigenvalues of the operator F (x) : Ex →
Ex. Finally, let M ′ denote the subset of M consisting of all points x such that
# specF is constant on some neighborhood of x. Then

(i) M ′ is open and dense in M .
(ii) Every point x ∈ M ′ has a neighborhood U ′ on which there exist Ck-

differentiable eigenvalue functions λa of F , a = 1, . . . , q, where q = 2
or q = 3, such that at each x ∈ U ′ the unordered system {λ1, . . . , λq}
represents the eigenvalues of the operator F (x) along with their correct
multiplicities. If the eigenvalues of F are all real at every point of M ,
then such functions λa may be defined globally on each connected compo-
nent U ′ of M ′.

(iii) Given a point x ∈ M ′ with # specF = m at x, there exists Ck-
differentiable eigenvector sections ea of F , defined on a neighborhood
U of x contained in M ′, such that with Fea = λaea and, at every
y ∈ U , the ea(y) form a basis of Ey.

(iv) If, in addition, E carries a positive-definite Riemannian/Hermitian fibre
metric that makes all F (x) self-adjoint, then the eigenvector sections ea
in (iii) may be chosen orthonormal at each point.

Proof. Suppose that µ is a simple eigenvalue of F (z) : Ez → Ez at some given
point z ∈ M . Then there exist neighborhoods U of z in M and Ω of µ in the
scalar field K (R or C) with a Ck function λ : U → Ω such that, for each x ∈ U ,
λ(x) is both a simple eigenvalue of the operator F (x) : Ex → Ex, as well as its only
eigenvalue ν with the property that ν ∈ Ω. In fact, this is an obvious consequence
of the implicit function theorem applied to the function Φ : M ×K→ K given by

Φ(t, λ) =
d

dν ν=λ
det [F (x)− ν] .

(In fact, since µ is a simple eigenvalue of F (z), we have Φ = 0 at (x, λ) = (z, µ),
and ∂Φ/∂λ 6= 0 in a neighborhood of (z, µ).) Here and in the sequel we treat
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scalar-valued functions f as bundle morphisms E → E , namely, multiplication
operators; thus, ν above also stands for ν · Id.

Openness of M ′ in M is obvious. To prove its denseness, i.e., assertion (i), it
suffices to show that M ′ intersects every nonempty open subset U of M . In fact,
given such U , let z ∈ U be a point at which # specF attains its maximum value
p in U . If p = 3, F (z) has three distinct (simple) eigenvalues which, as we have
seen, give rise to Ck differentiable eigenvalue functions of F , defined and pairwise
distinct at all points of some neighborhood U ′ of z. If p = 2, F (x) has one simple
and one double eigenvalue, for every point x of some neighborhood U ′ of z with
U ′ ⊂ U . In fact, this is true at x = z, and so the simple eigenvalue at z can be
propagated, as before, to form an eigenvalue function λ1 : U ′ → K of class Ck,
while # specF = 2 everywhere in U ′, since λ is valued in simple eigenvalues. The
double eigenvalues then can similarly be organized into a Ck eigenvalue function
λ2 : U ′ → K, given by 2λ2 = TraceF−λ1. Finally, if p = 1, we have # specF = 1
and 3F = TraceF everywhere in U ′ = U , which gives us the triple-eigenvalue
function λ : U ′ → K, of class Ck, with 3λ = TraceF . Thus, M ′ and U have
a nonempty intersection (which contains U ′), and (i) follows. At the same time,
we have also established (ii). Note that, when the λa are all real-valued, we can
make them defined globally on each connected component of M ′ by ordering them
so that λ1 ≤ . . . ≤ λq.

Finally, assertion (iii) is nothing else than Lemma 2.2 for the kernel of each of
the morphisms F − λa, with λa as in (ii), while orthonormaliity in (iv) can be
achieved by orthonormalizing the original ea. This completes the proof. �

We now proceed to develop some local notations and calculations that will be
needed later in §7, §10, §20 and §22. Let (M, g) be an arbitrary oriented Rie-
mannian 4-manifold, and let M ′ denote the set of all points x ∈ M such that
the number of distinct eigenvalues of W+, regarded as a vector bundle morphism
Λ+M → Λ+M , is constant in a neighborhood of x. According to Lemma 6.15, M ′

is an open dense subset of M and, in a connected neighborhood U of any given
point of M ′, W+ has C∞ eigenvector sections αj , j = 1, 2, 3, of Λ+M defined
on U and mutually orthogonal at each point, which correspond to C∞ eigenvalue
functions λj , i.e.,

(6.24) W+αj = λjαj , 〈αj , αk〉 = 2 δjk , j, k ∈ {1, 2, 3} ,
the second relation being obtained by normalization, as in (6.11). We also have

(6.25) 2W+ =
3∑
j=1

λj αj ⊗ αj .

In fact, by (6.24) along with (5.13), (2.17) and (5.12), both sides produce the same
result when applied to the basis αj of Λ+

xM at any x ∈ U . From now on we will
also assume (6.12), which, by Corollary 6.5, can always be achieved by changing
the signs of some αj , if necessary.

In view of Remark 6.10 and (6.11), there exist 1-forms ξ1, ξ2, ξ3 such that

(6.26) ∇vαj = ξl(v)αk − ξk(v)αl , if εjkl = 1 ,

for any tangent vector v.
An oriented Riemannian 4-manifold (M, g) is called self-dual if W− = 0 iden-

tically on M , and anti-self-dual if W+ = 0 everywhere.
The following two lemmas will be proved simultaneously.
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Lemma 6.16. Let an oriented Riemannian 4-manifold (M, g) satisfy the condi-
tions W+ = 0 and s = 0 at every point of M , so that (M, g) is anti-self-dual
and its scalar curvature is identically zero. Then the Levi-Civita connection ∇ in
Λ+M is flat.

Lemma 6.17. Given an oriented Riemannian 4-manifold (M, g), let the self-dual
bivector fields αj, i.e., sections of Λ+M , as well as the functions λj, and 1-forms
ξj, j = 1, 2, 3, all defined on an open connected subset U of M , be chosen so as
to be of class C∞ and satisfy (6.24), (6.12) and (6.26). Denoting E the traceless
Ricci tensor, we have,

(6.27) dξj + ξk ∧ ξl = (λj + s/12)αj + (Eαj + αjE)/2 if εjkl = 1 .

Proof of Lemmas 6.16 and 6.17. Let βj , j = 1, 2, 3, be the 2-forms given by
βj(u, v) = 〈[R(u, v), αk], αl〉 if εjkl = 1, for tangent vectors u, v. According to
Lemma 5.3 and (6.13), we have βj = R[αk, αl] = 2Rαj , which in view of (6.22)
equals twice the right-hand side of (6.27). However, applying (4.27) to F = αk
and using (6.26), (2.15), (2.16) and (6.11), we in turn obtain, from our original
definition of βj , βj(u, v) = 2 [dξj + ξk ∧ ξl](u, v), εjkl = 1, which yields (6.27) and
hence proves Lemma 6.17.

If, moreover, s and W+ are identically zero, on any open set U as above we
have relation (6.27) with s = 0 and λj = 0, j = 1, 2, 3 (cf. (6.24)), and so the
last equality shows that β1, β2 and β3 are local sections of Λ−M . The definition
of βj now gives [R(u, v), α] = 0 for any local bivector field α in M which is a
section of Λ+M . In view of (4.27), this completes the proof of Lemma 6.16. �

Let us now introduce the vector fields uj , j = 1, 2, 3, defined, locally in M+, by
the formula

(6.28) uj = (λk − λl)αjξj , if εjkl = 1 ,

with αjξj as in (2.12).

Lemma 6.18. Given an oriented Riemannian 4-manifold (M, g), let the open
connected subset U of M , bivector fields αj, 1-forms ξj, vector fields uj and
functions λj on U , j = 1, 2, 3, be chosen so as to satisfy (6.24) (6.12), (6.26) and
(6.28). We have

(a) ∇W+ = 0 identically in U if and only if

(6.29) uj = dλj = 0 for j = 1, 2, 3 .

(b) divW+ = 0 identically in U if and only if

(6.30) dλj = ul − uk for all j, k, l with εjkl = 1 .

Proof. We have [∇vW+]αj = 〈v, dλj〉αj + (λj−λk)〈v, ξl〉αk + (λl−λj)〈v, ξk〉αl
for any tangent vector v, whenever εjkl = 1, as one easily verifies combining (6.24)
and (6.26). By (6.12) and (6.28), this can be rewritten as

(6.31)
[
∇vW+

]
αj = 〈v, dλj〉αj − 〈v, αlul〉αk − 〈v, αkuk〉αl , εjkl = 1 .
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Assertion (a) now is immediate. (Here and in the sequel we use the fact that the
αj are isomorphisms in each tangent space TxM , due to (6.12).) Furthermore, we
have [divW+]αj = αj(dλj − ul + uk), εjkl = 1 (notation of (5.31) with A = W+

and (2.12) with ξ = dλj−ul+uk), in view of (4.41), (6.31) and (6.12). This implies
(b), and completes the proof. �

We have now covered all material in this section that will be used immediately
in §7. The following paragraph will not be needed until §9 and §10.

Remark 6.19. It is worth noting that the converse of Lemma 6.2 is also true: Given
an oriented Riemannian 4-manifold (M, g) and a point x ∈ M , every pair of
positive-oriented orthonormal bases of Λ+

xM and Λ−xM is of the form (6.10) for
some positive-oriented orthonormal basis e1, . . . , e4 of TxM . The latter basis then
is unique up to an overall change of sign.

In fact, multiplying each vector of either basis by
√

2, we obtain bases α1, α2, α3

of Λ+
xM and β1, β2, β3 of Λ−xM which both satisfy the assertion of Corollary

6.5. Since each αj commutes with each βk (Corollary 6.3), the composites Fj =
αjβj are all self-adjoint and satisfy the conditions F 2

j = Id, j = 1, 2, 3, and
F1F2 = F3. According to Remark 3.2, TxM is the direct sum of the subspaces
V± = Ker (F3 ∓ Id) and dimV± = 2 since the operator α1 interchanges V+

and V− (as it anticommutes with F3). The operators F1, F2 leave the space V+

invariant (since they commute with F3) and, their restrictions to V+ coincide as
v = F3v = F1F2v and hence F1v = F1F1F2v = F2v for every v ∈ V+. Denoting
Φ : V+ → V+ the common restriction of F1 and F2, we now have Φ2 = 1, which
leads (cf. (3.2)) to a decomposition V+ = L+⊕L− with Φ = ± Id on L±. However,
since the operator α3 commutes with F3 and anticommutes with F1, it leaves
V+ invariant and interchanges L+ with L−. Hence both L± are 1-dimensional.
Picking a unit vector e1 ∈ L+ we now have Fje1 = e1 for j = 1, 2, 3. Setting
e2 = α1e1, e3 = α2e1 and e4 = α3e1, and using the stated (anti)commutation
properties of the αj , we obtain formulae for αjek and βjek for all j, k, which
show (via (2.22)) that e1, . . . , e4 have the required properties. Finally, uniqueness
of e1, . . . , e4 up to an overall sign change is clear since for e1, . . . , e4 with these
properties, e1 must be a fixed point of all Fj , which as we saw determines e1 up
to a sign, while the other vectors then must be given by e2 = α1e1, e3 = α2e1 and
e4 = α3e1.

The following consequence of Lemma 6.2 will not be used until §17. In §19, we
will need a reference to the following

Remark 6.20. Given a Riemannian 4-manifold (M, g) and a point x ∈ M , the
following three conditions are equivalent:

(a) Equality specW+ = specW− holds at x, for either local orientation;
in other words, the self-adjoint operators W+(x) : Λ+

xM → Λ+
xM and

W−(x) : Λ−xM → Λ−xM have the same eigenvalues (including multiplici-
ties).

(b) There exists an orthonormal basis e1, . . . , e4 of TxM such that all the
bivectors ej ∧ ek with 1 ≤ j < k ≤ 4 are eigenvectors of W (x). (In other
words, the Weyl tensor at x is a pure curvature operator in the sense of
Maillot, 1974).

(c) There exists an orthonormal basis e1, . . . , e4 of TxM such that each of the
three bivectors e1 ∧ e2, e1 ∧ e3, e1 ∧ e4, is an eigenvector of W (x).
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In fact, (a) implies (b): Choosing positive-oriented orthonormal bases of Λ+
xM and

Λ−xM consisting of eigenvectors of W+ and, respectively, W−, both for the same
system λ1, λ2, λ3 of eigenvalues, and then using Remark 6.19 to write those bases
in the form (6.10), we obtain the orthonormal basis e1, . . . , e4 of TxM required in
(b). On the other hand, (c) follows trivially from (b). Finally, assuming (c), that
is, Wβa = λaβa with βa = e1 ∧ ea, a = 2, 3, 4, we also have W (∗βa) = λa∗βa,
since ∗ and W commute (Lemma 6.9(i); here ∗ corresponds to the orientation
of TxM represented by the basis e1, . . . , e4. In view of (6.1), the bases (6.10) of
Λ+
xM and Λ−xM now consist of eigenvectors of W+ and W−, both with the same

system of eigenvalues: λ1, λ2, λ3. Thus, (c) implies (a).

An application of the following lemma can be found in §20.

Lemma 6.21. Let α ∈ Λ+
xM be a self-dual bivector at a point x in an oriented

Riemannian 4-manifold (M, g), and let u, v ∈ TxM be any vectors tangent to M
at x. Then

(6.32) u ∧ (αv) − v ∧ (αu) ∈ Λ+
xM , 〈u ∧ αv − v ∧ αu, α〉 = 0 .

If, in addition, 〈α, α〉 = 2, and pr : [TxM ]∧2 → Kx stands for the orthogonal
projection onto the plane Kx ⊂ Λ+

xM orthogonal to α, we have

(6.33) 2 pr (v ∧ w) = v ∧ w − (αv) ∧ (αw)

for any tangent vectors v, w ∈ TxM . Finally, if α = α1 for some basis α1, α2, α3

of Λ+
xM satisfying the hypotheses of Corollary 6.5, then

(6.34) u ∧ (αv) − v ∧ (αu) = α2(u, v)α3 − α3(u, v)α2 .

Proof. Relations (6.32) are obvious since, by (2.25), the bivector v∧(αu)−u∧(αv)
is orthogonal both to α and to all bivectors in Λ+

xM ; in fact, by Corollary 6.6,
they all commute with α. Assuming now that 〈α, α〉 = 2, let us set

γ = v ∧ w − (αv) ∧ (αw) .

Since α2 = − Id (Lemma 6.1), applying (2.31) to v and u = αw we see that
γ ∈ Kx. Also, for any bivector β ∈ [TxM ]∧2, (2.25) with u = αw yields

(6.35) 〈γ, β〉 = 〈[β, α]αw, v〉 .

In view of Corollary 6.4, elements of Kx are precisely those bivectors β ∈ [TxM ]∧2

which anticommute with α. Consequently, (6.35) along with α2 = − Id gives,
for each β ∈ Kx, 〈γ, β〉 = 2〈βααw, v〉 = − 2〈βw, v〉 which, by (2.20), equals
2〈v ∧ w, β〉. Now (6.33) follows.

Finally, to obtain (6.34), it suffices to note that, in view of (6.32), (2.20), (6.11)
and (6.12), both sides of (6.34) are linear combinations of α2 and α3, and both
give the same inner product with α2 as with α3. This completes the proof. �

The following consequences of Corollaries 6.5 and 6.3 will not be needed until
§30.
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Corollary 6.22. Given a 4-dimensional oriented Riemannian manifold (M, g),
a point x, and a self-dual bivector α ∈ Λ±xM at x with 〈α, α〉 = 2, let Nx
denote the subspace of Hom (TxM,TxM) spanned by [TxM ]∧2 and the identity
operator Id : TxM → TxM , and let K be the orthogonal complement of α in
Λ+
xM . Denoting pr : Nx → Kx the extension, with pr(Id) = 0, of the operator of

orthogonal projection [TxM ]∧2 → Kx relative to the natural inner product (2.17),
we then have

(6.36) 2 prβ = [α, β]α

for every β ∈ Nx, and

(6.37) pr (αβ) = α [prβ]

for every β in the subspace S+
x of Nx spanned by Id and Λ+

xM .

Proof. Since pr(Id) = 0, both sides of (6.36) agree when β = Id or β = α.
Choosing α1, α2, α3 ∈ Λ+

xM satisfying the hypotheses of Corollary 6.5 with α =
α1, we thus have α2, α3 ∈ Kx, and so, by (6.12), both sides of (6.36) also agree
when β = α2 or β = α3. On the other hand, when β ∈ Λ−xM , the left-hand side of
(6.36) vanishes due to the orthogonality relation in (6.4), and the right-hand side
does so by Corollary 6.3. Since Nx is spanned by Id and the direct sum (6.4),
this proves (6.36).

Finally, to establish (6.37), note that Id and α1, α2, α3 form an orthogonal
basis of S+

x and, by (6.12), the plane P spanned by Id and α1, as well as its
orthogonal complement Kx = Span {α2, α3}, are both invariant under the operator
β 7→ αβ of the composition with α = α1. Thus, both sides of (6.37) vanish when
β ∈ P while, for β ∈ Kx, both sides equal αβ. This completes the proof. �

Corollary 6.23. Let x be a point in a four-dimensional oriented Riemannian
manifold (M, g), and let α, β ∈ Λ±xM be bivectors at x which are both self-dual
or both anti-self-dual. Treated as skew-adjoint operators TxM → TxM , α and β
then satisfy the relations

(6.38) g(v, αv) = 0 , 2 g(αv, βv) = 〈α, β〉 g(v, v) .

for any vector v ∈ TxM tangent to M at x.

Proof. The first equality is nothing else than skew-adjointness of α. As for the
second, with a fixed v, it suffices to establish it when α = β = α1, or α = α1

and β = α2, with α1, α2, α3 as in Corollary 6.5. (This is clear since both sides are
bilinear and symmetric in α and β.) The equality in question now is immediate
from (6.12) and skew-adjointness of the αj . �

The remaining part of this section serves only as a source of background infor-
mation and will not be applied anywhere else in the text, except for very brief (and
inessential) references (at the beginning of Part I, and in §10).

Remark 6.24. Suppose that we are given fixed orientations of the tangent spaces
TxM , TyM at points x, y in a Riemannian 4-manifold (M, g), such that the self-
adjoint operators W±(x) : Λ±xM → Λ±xM and W±(y) : Λ±yM → Λ±yM have (for
both choices of the sign) the same eigenvalues, including multiplicities. Then there
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exists a linear isomorphism F : TxM → TyM sending one selected orientation onto
the other and g(x) onto g(y) and W (x) onto W (y). (To see this, apply Remark
6.19 to a pair of positive-oriented orthonormal bases of Λ+

xM and Λ−xM which
consist of eigenvectors of W (x) and W (y).) Combining this with (5.33) and Schur’s
Theorem 5.1, one easily verifies that any four-dimensional Riemannian Einstein
manifold whose curvature operator acting on bivectors has constant eigenvalues
must be curvature-homogeneous (as defined at the beginning of Part I).

Lemma 6.25 (Singer and Thorpe, 1969). For an oriented Riemannian 4-manifold
(M, g), the following three conditions are equivalent :

(i) (M, g) is Einstein.
(ii) The curvature tensor R and Hodge star ∗ of (M, g) commute when

treated as bundle morphisms [TM ]∧2 → [TM ]∧2.
(iii) R(Λ±M) ⊂ Λ±M .

Proof. The equivalence between (ii) and (iii) is clear since Λ±M are the eigenspace
bundles of ∗. Furthermore, (i) implies (iii) in view of (6.21), since, by (5.5), the
Einstein condition reads E = 0. Finally, let us suppose that R and ∗ commute.
The eigenspaces Λ±xM of ∗ at any x ∈M then are invariant under R and so, by
(6.21), Eα+ αE = 0 for each α ∈ Λ±xM , and hence for all bivectors α ∈ [TxM ]∧2.
If v, w ∈ TxM now are eigenvectors of E for some eigenvalues λ, µ, we obtain
0 = g([Eα + αE]v, w) = (λ+µ)g(αv,w). Choosing v, w to be unit and orthogonal
and setting α = v ∧ w, we have g(αv,w) = 1 by (2.21). Thus, λ+ µ = 0 for any
eigenvalues λ, µ of E that are either distinct, or equal and multiple. Since E is
self-adjoint, this clearly implies that E = 0, as required. �

Corollary 6.26 (Singer and Thorpe, 1969). A four-dimensional Riemannian man-
ifold (M, g) is Einstein if and only if the sectional curvature K(P ) of any plane
P ⊂ TxM , tangent to M at any point x, is equal to the sectional curvature K(P⊥)
of the orthogonal complement of P .

Proof. If (M, g) is Einstein, fixing an orientation in TxM and choosing a positive-
oriented orthonormal basis e1, . . . , e4 of TxM with e1, e2 ∈ P , we obtain K(P⊥) =
〈R(e3 ∧ e4), e3 ∧ e4〉 = 〈R(∗(e1 ∧ e2)), ∗(e1 ∧ e2)〉 = 〈∗(R(e1 ∧ e2)), ∗(e1 ∧ e2)〉 =
〈R(e1∧e2), e1∧e2〉 = K(P ), in view of Lemma 6.25, (6.1) and the fact that, by (6.1),
∗ is inner-product preserving (as it sends the orthonormal basis of [TxM ]∧2, formed
by the ej ∧ ek with j < k, onto an orthonormal basis). Conversely, assuming that
K(P⊥) = K(P ) for all tangent planes P , we see that, for bivectors α, β ∈ [TxM ]∧2,
we have 〈R(∗α), ∗β〉 = 〈Rα, β〉, since both sides are bilinear in α, β and coincide
when α, β run through the basis ej∧ek with j < k (see (6.1)). On the other hand,
〈Rα, β〉 = 〈∗(Rα), ∗β〉 since ∗ preserves the inner product. Combining these two
equalities we see that R(∗α) − ∗(Rα) is orthogonal to ∗β for each bivector β,
and so R ∗ = ∗R. Hence (M, g) is Einstein by Lemma 6.25, which completes the
proof. �

§7. Jensen’s theorem

It is fairly common that, among known examples of pseudo-Riemannian mani-
folds with a specific prescribed property, those easiest to construct are the (locally)
homogeneous spaces. The reason is clearly their algebraic nature, i.e., the fact
that such constructions, rather than involving partial differential equations, are
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reduced to solving problems in linear algebra. Of all locally homogeneous pseudo-
Riemannian manifolds, the simplest ones are in turn the locally symmetric spaces,
characterized by the condition ∇R = 0.

In 1969 Gary Jensen proved that all locally homogeneous Riemannian Einstein
4-manifolds are locally symmetric. Since locally symmetric Riemannian Einstein
4-manifolds are very easy to classify (see §14), Jensen’s theorem may be viewed as
a nonexistence result, stating that local homogeneity in this case leads to nothing
more than the obvious examples. This stands in marked contrast both with locally
homogeneous Riemannian Einstein manifolds in higher dimensions, where the clas-
sification problem is much harder (see, e.g., Kerr, 1996, and references therein),
and with the case of indefinite Einstein metrics in dimension four, some of which
are locally homogeneous without being locally symmetric (see Proposition 8.5).

Jensen’s 1969 proof was based on a case-by-case discussion of Lie algebras. In this
section we derive Jensen’s theorem from a statement with a weaker hypothesis and
a more direct argument. Specifically, instead of local homogeneity, we only assume
that the eigenvalues of the curvature operator (or the self-dual Weyl tensor) are all
constant. Then, we have

Theorem 7.1. Let (M, g) be a four-dimensional oriented Einstein manifold with
a positive-definite metric, whose self-dual Weyl tensor W+, acting on bivectors,
has constant eigenvalues. Then W+ is parallel. �

Before proving Theorem 7.1, let us list some of its consequences. First, applying
Theorem 7.1 to both local orientations of M , we obtain

Corollary 7.2. Let (M, g) be a four-dimensional Riemannian Einstein mani-
fold whose curvature operator, acting on bivectors, has constant eigenvalues. Then
(M, g) is locally symmetric.

The word ’Riemannian’ in the above statement raises an obvious question: Is an
analogue of Corollary 7.2 valid for Einstein four-manifolds (M, g) with indefinite
metrics? Note that the meaning of ’analogue’ has to be chosen carefully, since, when
the metric is indefinite, the self-adjoint operator W (x) : [TxM ]∧2 → [TxM ]∧2, x ∈
M , need not be diagonalizable (and may even fail to have any real eigenvalues; see
the classification given in §39.) The most appropriate replacement of the constant-
eigenvalues hypothesis in Corollary 7.2 therefore seems to be the condition of curva-
ture-homogeneity, as defined at the beginning of Part I; in fact, in the Riemannian
case, these two assumptions are equivalent (Remark 6.24).

With this clarification, the answer to the above question is ’no’: A curvature-
homogeneous indefinite Einstein metric in dimension four need not be locally sym-
metric (or even locally homogeneous). See Corollary 49.2 in §49.

As an immediate consequence of Corollary 7.2, we obtain Jensen’s theorem.

Corollary 7.3 (Jensen, 1969). Every locally homogeneous Riemannian Einstein
4-manifold is locally symmetric. �

Again, the assumption of positive-definiteness in Corollary 7.3 is essential, that
is, the word ’Riemannian’ cannot be replaced with ’pseudo-Riemannian’; see Propo-
sition 8.5 in §8.

Proof of Theorem 7.1. Choose αj , λj , ξj and uj , j = 1, 2, 3, satisfying (6.24),
(6.12), (6.26) and (6.28) on a nonempty open subset of M ′. Defining the symmetric
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matrix Bjk of functions by Bjk = 〈αjξj , αkξk〉, j, k ∈ {1, 2, 3}, we have, from
(6.12) and skew-symmetry of the αj ,

(7.1) 〈αjξk, ξl〉 = −〈αjξl, ξk〉 = Blk = Bkl whenever εjkl = 1 .

Taking the inner products of both sides of (6.27) with αj and using (2.20), (7.1)
and (6.11), we now obtain

(7.2) 〈αj , dξj〉 = −Blk + 2λj +
s

6
, if εjkl = 1 .

Using (4.46), (7.2), (7.1) and the relation divαj = αkξl−αlξk, εjkl = 1 (immediate
from (6.26), (4.41) and (2.12)), we now easily verify that

(7.3) div (αjξj) = −Bjk − Bjl + Blk − 2λj −
s

6
, εjkl = 1 .

Since (M, g) is Einstein, we have divW+ = 0 (Lemma 6.14). Relation (6.30)
along with the assumption that the λj are constant yields

(7.4) u1 = u2 = u3 = u

for some vector field u on U .
Our assertion easily follows in the case where two (or all three) among the λj

are equal; in fact, (6.28) and (7.4) then give (6.29), again due to constancy of the
λj , and so ∇W+ = 0 by Lemma 6.18(a). Therefore, we from now on assume that

(7.5) λ1 6= λ2 6= λ3 6= λ1 .

Setting

(7.6) vj = (λl − λk)ξj if εjkl = 1 ,

we obtain, from (7.4), (6.28), (6.12) and skew-symmetry of the αj ,

(7.7) αju = vj , 〈vj , vk〉 = 〈u, u〉 δjk , 〈u, vj〉 = 0

for j, k ∈ {1, 2, 3}, and hence, again by (6.12),

(7.8) αjvk = −αkvj = vl , αjvj = −u if εjkl = 1 .

Relations (7.1) and (7.6) – (7.8) now imply

(7.9) (λj − λk)(λk − λl)Bjl = |u|2 whenever εjkl = ±1 .

On the other hand, defining the (constant) functions Lj by

(7.10) Lj = (λk − λl)(λj + s/12) if εjkl = 1 ,

we obviously have

(7.11)
3∑
j=1

Lj = 0 .
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Let us also set

(7.12) φ = (λj − λk)(λk − λl)(λl − λj) , εjkl = 1 ,

and

(7.13) Yj = 2(λk − λl)2|u|2 − 2φLj if εjkl = 1 .

Then

(7.14) φdivu = Yj , j = 1, 2, 3 .

In fact, divu = (λk−λl) div (αjξj), εjkl = 1, in view of (6.28) and (7.4) (and since
the λj are assumed constant). Now formula (7.14) is an easy consequence of (7.3)
combined with (7.9), (7.13) and (7.10).

Furthermore,

(7.15) |u| is constant .

To see this, note that, combining (7.13) with (7.10), (7.12) and the relation Y1 =
Y2 = Y3 (immediate from (7.14)), we can express |u|2 as a specific rational function
of the λj and s, unless |λ1 − λ2| = |λ2 − λ3| = |λ3 − λ1|. However, in the latter
case the identity (λ1 − λ2) + (λ2 − λ3) + (λ3 − λ1) = 0 leads to λ1 = λ2 = λ3,
contradicting (7.5). Therefore, (7.15) follows since the λj and s are constant.

In the case where u 6= 0 we can compute divu = Trace∇u (see (4.42)) using
the orthonormal frame consisting of u/|u| and vj/|u|, j = 1, 2, 3 (cf. (7.7)).
Whether u = 0 or not, we thus have |u|2 divu = |u|2 Trace∇u =

∑
j〈vj , ∇vju〉.

(Note that 〈u , ∇uu〉 = 0 by (7.15).) Relation (4.4) for v = vj and w = u now
yields |u|2 divu =

∑
j〈vj , [vj , u]〉, since |vj | = |u| is constant in view of (7.7) and

(7.15). In other words, by (2.16) and (7.7),

(7.16) |u|2 divu = −
3∑
j=1

(dvj)(vj , u) .

However, (dvj)(vj , u) = (λl − λk)2 (dξj)(ξj , u) whenever εjkl = 1, in view of (7.6)
and constancy of the λj . Hence, by (6.27), (2.15), (2.12), (7.5) – (7.8) and (7.10),
(dvj)(vj , u) = |u|2Lj . Summing this over j = 1, 2, 3, we obtain, from (7.11),∑
j(dvj)(vj , u) = 0. Hence, by (7.16), |u|2 divu = 0. This in turn implies that

u = 0. In fact, otherwise, by (7.15), |u| would be a positive constant, and the last
equality would give divu = 0. By (7.14), we would have Yj = 0 for j = 1, 2, 3.
Summing that relation over j = 1, 2, 3 and using (7.13) and (7.11), we would in
turn get λ1 = λ2 = λ3, which is impossible in view of (7.5). This completes the
proof. �

§8. How Jensen’s theorem fails for indefinite metrics

This section deals exclusively with indefinite metrics, and the reader interested
just in the Riemannian case is advised to skip it.

An obvious question raised by Jensen’s theorem (Corollary 7.3) is whether it
remains valid for pseudo-Riemannian metrics. The answer turns out to be ’no’
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for each indefinite sign pattern of metrics in dimension four. Counterexamples,
described in the proof of Proposition 8.5 below, go back to Petrov; see Petrov
(1969), p. 185.

Throughout the whole section, our convention about indices is that

(8.1) a, b, c, d = 2, . . . , n− 1 ,

for any fixed dimension n ≥ 2. As usual, we sum over repeated indices.

Lemma 8.1. Given an integer n ≥ 2 and a (n− 1)× (n− 1) matrix [F ba ], with
indices as in (8.1), there exists a manifold M of dimension n admitting C∞

vector fields u, e2, . . . , en which are linearly independent at every point and satisfy
the Lie-bracket relations

(8.2) [u, ea] = F baeb , [ea, eb] = 0 , for a, b = 2, . . . , n .

Proof. For a fixed n-dimensional real vector space V with a basis e1, . . . , en, let
M be either connected component of V r V ′, with V ′ = Span {e2, . . . , en}. We
now define the vector field u on V by u(x) = Φx, where Φ : V → V is the
linear operator with Φe1 = e1 and Φea = −F baeb for a = 2, . . . , n. This u and
the basis vectors ea, a = 2, . . . , n (treated as constant vector fields on V ) satisfy
(8.2); in fact, (2.4) gives [v, w] = dvw − dwv for vector fields v, w on a vector
space V treated as functions V → V , and so [ea, eb] = 0, while [u, ea] = − deau =
−Φea = F baeb. Finally, for x ∈ V rV ′, Φx is a combination of e1, . . . , en but not of
e2, . . . , en, so that the vectors u(x) = Φx and e2, . . . , en are linearly independent.
This completes the proof. �

Lemma 8.2. Let M be a manifold of dimension n ≥ 3 with C∞ vector fields
u, e2, . . . , en which are linearly independent at each point, i.e., trivialize the tangent
bundle TM , and satisfy (8.2), where [F ba ] is an arbitrary (n− 1)× (n− 1) matrix
of constants, and let g be the pseudo-Riemannian metric on M defined by

(8.3) g(u, u) = ε = ± 1 , g(u, ea) = 0 , g(ea, eb) = gab

for all a, b = 2, . . . , n, where [gab] is any nonsingular, symmetric, (n−1)× (n−1)
matrix of constants. If, moreover, the matrix [Fab] with Fab = F cagcb is symmetric:

(8.4) Fab = Fba for a, b = 2, . . . , n ,

then the Levi-Civita connection ∇ of g, its curvature tensor R, and Ricci tensor
Ric satisfy the relations

(8.5) ∇uu = ∇uea = 0 , ∇eau = −F baeb , ∇eaeb = εFabu ,

(8.6)
R(ea, ec)eb = ε

[
FcbF

d
a − FabF dc

]
ed ,

R(u, ea)u = −F caF bc eb , R(ea, eb)u = 0 ,

(8.7) Ric (ea, eb) = − εF ccFab , Ric (u, u) = −F dc F cd , Ric (u, ea) = 0 ,
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and

(8.8) (∇ebR)(u, ea)u = − 2 εF caF
d
c Fdbu .

for a, b, c = 2, . . . , n.

Proof. In view of (8.2), (8.3) and (8.4), the connection ∇ defined by (8.5) is both
torsionfree and compatible with g, and hence it must coincide with the Levi-
Civita connection of g (see Remark 4.1). Now (8.6) is immediate from (4.23)
along with (8.2), (8.5) and (8.4). On the other hand, by (4.37), Ric satisfies
Ric (u, v) = gbcg(R(u, eb)v, ec) for any tangent vector v, with [gab] = [gab]

−1. Ap-
plying this to v = u and v = ea, and using the analogous relation Ric (ea, eb) =
εg(R(u, ea)u, eb) + gcdg(R(ec, ea)ed, eb) we now obtain (8.7). Finally, (8.8) follows
from (8.6) and (8.5) along with (∇vR)(u, u′)w = ∇v[R(u, u′)w] − R(∇vu, u′)w −
R(u,∇vu′)w −R(u, u′)∇vw. This completes the proof. �

Remark 8.3. Any metric obtained as in Lemma 8.2 is obviously curvature-homoge-
neous (in view of (8.3), (8.6) and the fact that gab, Fab and F ba are all constant).
However, all such metrics are also locally homogeneous; see Remark 17.23 in §17
below.

Lemma 8.4. Let C∞ vector fields u, e2, . . . , en on a manifold M with dimM =
n ≥ 3 be linearly independent at each point and satisfy (8.2), and let [F ba ] and
[gab] be (n − 1) × (n − 1) matrices of constants with det[gab] 6= 0, gab = gba and
(8.4), where Fab = F cagcb, with indices as in (8.1). Furthermore, let X be the
(n− 1)-dimensional real vector space of vector fields spanned by e2, . . . , en, and let
the inner product 〈 , 〉 in X and the linear operator F : X → X be characterized
by 〈ea, eb〉 = gab and Fea = F baeb. Finally, let g be the pseudo-Riemannian metric
on M given by (8.3).

(i) If TraceF = TraceF 2 = 0, then g is Ricci-flat.
(ii) If the operator F 3 : X → X is nonzero, then g is not locally symmetric.

In fact, the assumption in (i) means that F cc = F dc F
c
d = 0, and so (i) is immediate

from (8.7). As for (ii), it follows from (8.8), since F 3 6= 0 amounts to F caF
d
c Fdb 6= 0

for some a, b. �

It is now easy to obtain counterexamples to Jensen’s theorem for indefinite met-
rics.

Proposition 8.5. There exist pseudo-Riemannian metrics in dimension four rep-
resenting any given indefinite sign pattern, which are Ricci-flat and locally homo-
geneous, but not locally symmetric.

Proof. It suffices to exhibit a 3-dimensional real vector space X with an inner
product 〈 , 〉 of each possible indefinite sign pattern, along with a self-adjoint linear
operator F : X → X with TraceF = TraceF 2 = 0 and F 3 6= 0. In fact, self-
adjointness of F amounts to (8.4) (with Fab as in Lemma 8.4 for any fixed basis
e2, . . . , en of X ), so that the metric g given by (8.3) then will exist (by Lemma
8.1), and have the required properties as a consequence of Lemma 8.4 and Remark
8.3. Note that the sign pattern of 〈 , 〉, coupled with an arbitrarily chosen sign of
ε in (8.3), then realizes any prescribed indefinite sign pattern in dimension 4.

To this end, let us set X = R × C, 〈(r, z), (r′, z′)〉 = ± rr′ + Re (zz′) with
any fixed sign ± , and F (r, z) = (r, ωz), for r, r′ ∈ R, z, z′ ∈ C, where ω =
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e2πi/3 = (
√

3 i − 1)/2 is a fixed nonreal cubic root of unity. Thus F 2(r, z) =
(r, ω2z), F 3(r, z) = (r, z), and hence (as ω2 = ω−1 = ω), TraceF = TraceF 2 = 0,
F 3 = Id. Also, 〈F (r, z), (r′, z′)〉 = 〈(r, ωz), (r′, z′)〉 = ± rr′ + Re (ωzz′), which is
symmetric in (r, z) and (r′, z′), i.e., F is self-adjoint. This completes the proof.
�

§9. Kähler manifolds

This section is a brief introduction to Kähler manifolds. As we will see later, dis-
cussing Kähler manifolds is quite relevant to our ultimate topic of interest, which is
Einstein metrics; namely, some Einstein metrics can in turn be either found among
Kähler metrics (see §23), or obtained from the latter via a conformal deformation
(§18, §22).

Let M be a manifold with a fixed C∞ bundle morphism J : TM → TM such
that J2 = − Id. One says that J is an almost complex structure on M , or that
M along with J forms an almost complex manifold. The tangent bundle TM then
carries a natural structure of a complex vector bundle, for which J is the operator
of multiplication by i in every fibre TxM . (Cf. Remark 3.9.) As complex spaces,
the TxM are of dimension n/2, where n = dimM is necessarily even; to avoid
confusion, we will often refer to n as the real dimension of the almost complex
manifold M . Note that, according to Remark 3.6, the complex-space structure in
each TxM leads to a naturally distinguished orientation in TxM . In other words,
every almost complex manifold M carries a canonical orientation; when endowed
with that orientation, M is said to be canonically oriented.

Let (M, g) now be a pseudo-Riemannian manifold. By an almost complex struc-
ture on M compatible with g we mean any C∞ bivector field α on M which,
treated as a skew-adjoint bundle morphism TM → TM with the aid of g, satisfies
the condition

(9.1) α2 = − Id .

The triple (M, g, α) then is called a (pseudo-Riemannian) almost Hermitian man-
ifold. By a (pseudo-Riemannian) Kähler manifold we mean an almost Hermitian
manifold (M, g, α) such that the bivector field α is parallel. One then refers to α
as the Kähler form of the Kähler manifold (M, g, α); this terminology reflects the
fact that, using the metric g, one may regard α as a differential 2-form, that is, a
twice-covariant skew-symmetric tensor field on M .

Remark 9.1. Since every almost Hermitian manifold (M, g, α) (and hence every
Kähler manifold) is naturally an almost complex manifold, with J declared to α
treated as a bundle morphism TM → TM , the tangent bundles of almost Her-
mitian (and Kähler) manifolds may be treated as complex vector bundles, and all
such manifolds are canonically oriented. Note that the orientation we choose for
them is determined by the complex structure of TM (that is, α) as described in
Remark 3.6. As an example, any oriented Riemannian surface (M, g) can naturally
be turned into a Kähler manifold (M, g, α) whose canonical orientation coincides
with the original one. For details, see Remark 18.7.

Remark 9.2. By a Kähler metric on a “real” manifold M we will mean a pseudo-
Riemannian metric g on M such that, for some bivector field α on M , the triple
(M, g, α) is a Kähler manifold. It should be emphasized that this usage is different
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from the case of a Kähler metric g on a complex manifold M , discussed in §23 and
§36, where one requires (M, g, α) to be a Kähler manifold with α that is partly
fixed, that is, corresponds via g to a fixed bundle morphism J : TM → TM . Cf.
Remark 23.4.

Due to skew-symmetry of bivectors, condition (9.1) imposed on a bivector field
α in a pseudo-Riemannian manifold (M, g) is equivalent to the requirement that,
for each x ∈M , α(x) : TxM → TxM preserve the inner product g(x) in TxM in
the sense that

(9.2) g(αv, αw) = g(v, w)

for all x ∈M and v, w ∈ TxM .

Let (M, g, α) be an almost Hermitian manifold. Relation (9.2) implies, ac-
cording to Remark 3.18, that g is the real part of a unique Hermitian complex-
sesquilinear fibre metric 〈 , 〉c in the complex vector bundle TM . Explicitly, by
(3.35),

(9.3) 〈v, w〉c = g(v, w) − i g(αv,w)

for x ∈ M and v, w ∈ TxM . If, in addition, ∇α = 0 (that is, (M, g, α) is a
pseudo-Riemannian Kähler manifold), the Levi-Civita connection ∇ of (M, g) is
a connection in TM (treated as a complex vector bundle) and, obviously, it makes
the fibre metric 〈 , 〉c parallel; in other words, we have the Leibniz rule

(9.4) du〈v, w〉c = 〈∇uv, w〉c + 〈v,∇uw〉c

for any local C1 vector fields u, v, w in M .

In the four-dimensional Riemannian case, assertion (c) of the following lemma
provides an alternative description of the canonical orientation.

Lemma 9.3. Let n ≥ 2 be an even integer. Given a point x in an oriented n-di-
mensional Riemannian manifold (M, g) and a bivector α ∈ [TxM ]∧2, the following
two conditions are mutually equivalent :

(a) α2 = − Id and the orientation in TxM , determined as in Remark 9.1 by
the complex structure α, coincides with the original orientation.

(b) There exists a positive-oriented g(x)-orthonormal basis e1, . . . , en of TxM
such that

(9.5) α = e1 ∧ e2 + . . . + en−1 ∧ en .

Furthermore, (9.5) holds for any g(x)-orthonormal bases e1, . . . , en obtained by
choosing an arbitrary 〈 , 〉c-orthonormal complex basis e1, e3, . . . , e2m−1 of TxM
with the complex structure α, where 〈 , 〉c is given by (9.3), and then setting e2r =
αe2r−1 for r = 1, . . . , n/2.

Finally, when n = 4, either of (a), (b) is equivalent to

(c) α is self-dual and of length
√

2; in other words, α ∈ Λ+
xM and 〈α, α〉 = 2.



60 ANDRZEJ DERDZINSKI

Proof. Let us assume (a), and choose e1, . . . , en as described in the sentence fol-
lowing (b). We then have equality (9.5), since, by (2.22), both sides yield the same
value when applied to any of the vectors e1, . . . , en. On the other hand, the basis
e1, . . . , en has the form (3.5) (with α playing the rôle of i), and so it is positive-
oriented according to Remark 9.1. Thus, (a) implies (b). Conversely, if (b) holds,
we have e2r = αe2r−1 for r = 1, . . . , n/2 (by (2.22)), and so, using (2.22) we obtain
α2ej = − ej , j = 1, . . . , n, so that (a) follows (the statement about orientations
being immediate from Remark 9.1). From now on, let n = 4. Now (b) implies (c)
in view of (6.1) and (2.21). Finally, if (c) holds, using Lemma 6.1 with r = 1 we ob-
tain α2 = − Id and (9.5) for some positive-oriented orthonormal basis e1, . . . , e4;
in view of (9.5) and (2.22), the basis e1, . . . , e4 has the form (3.5) (with i replaced
by α), so that (a) follows. This completes the proof. �

Corollary 9.4. For any canonically-oriented almost Hermitian Riemannian man-
ifold (M, g, α) of real dimension 4, the bivector field α is a section of Λ+M .

This is obvious from the ’(a) implies (c)’ assertion in Lemma 9.3. �

Remark 9.5. Let (M, g) be an oriented Riemannian 4-manifold, and let x ∈ M .
From Lemma 9.3 we obtain the following simple characterization of the space Λ+

xM

of self-dual bivectors at x: The sphere in Λ+
xM of radius

√
2, centered at 0, coin-

cides with the set of all complex structures in TxM compatible with g and with the
orientation, that is, with the set of those skew-adjoint operators α : TxM → TxM
with α2 = − Id for which the original orientation is the same as the canonical
orientation introduced by the complex structure in TxM whose operator of multi-
plication by i is α.

We now proceed to discuss those basic curvature properties of Kähler manifolds
which follow just from the fact that the Kähler form α is parallel (rather than
involving (9.1) as well). First, we have the following fundamental commutation
formulae relating parallel bivector fields with the curvature and Ricci tensors.

Proposition 9.6. Let α be a parallel bivector field on a pseudo-Riemannian man-
ifold (M, g). Then

(9.6) [Ric, α] = 0 .

and

(9.7) [R(u, v), α] = 0 ,

In other words, the skew-adjoint bundle morphism α : TM → TM commutes both
with the Ricci tensor of (M, g) and with the curvature operator R(u, v) defined by
(4.23) for any given vectors or vector fields u, v tangent to M .

Proof. Relation (9.7) is immediate from the Ricci identity (4.27) for F = α. Con-
tracting against gjm the local-coordinate version Rjkl

pαpm + Rjkm
pαlp = 0 of

(9.7) (cf. (4.29)), and using (4.37), we obtain

(9.8) Rjklpα
pj = Rpkαpl .

However, in view of the algebraic symmetries (4.32) of R, Rjklpα
pj = Rplkjα

pj =
Rjlkpα

jp = −Rjlkpαpj , that is, Rjklpα
pj is skew-symmetric in k, l. Hence, accord-

ing to (9.8), the composite bundle morphism α(Ric) : TM → TM is skew-adjoint
and, as (Ric)∗ = Ric and α∗ = −α, we have α(Ric) = − [α(Ric)]∗ = (Ric)α,
which gives (9.6). This completes the proof. �
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Corollary 9.7. Let (M, g) be an oriented Riemannian four-manifold admitting
a parallel bivector field α which is self-dual, that is, a section of Λ+M . For any
point x ∈M and any bivector β ∈ [TxM ]∧2, we then have

(9.9) R[α, β] = 0 , W [α, β] = − s

12
[α, β] ,

where s is the scalar curvature, and [ , ] denotes the commutator of bivectors
treated, with the aid of g, as skew-adjoint operators TxM → TxM .

In fact, R[α, β] = 0 in view of Lemma 5.3 (applied to A = R) and (9.7).
Now (6.20) with α replaced by [α, β] proves our assertion about W . (Note that
[α, β] ∈ Λ+

xM since, by Corollaries 6.6 and 6.3, Λ+
xM is an ideal in the Lie algebra

[TxM ]∧2 = so(TxM).) �

Relations (5.19) and (9.9) now lead to the following well-known

Proposition 9.8. Given an orientable Riemannian four-manifold (M, g) admit-
ting a nonzero parallel bivector field α, let us choose an orientation of M such that
the Λ+M component α+ of α is nonzero. The eigenvalues of W+ : Λ+M → Λ+M ,
listed at each point with their multiplicities, then are

(9.10)
{ s

6
, − s

12
, − s

12

}
,

where s is the scalar curvature, and the eigenvalue s/6 corresponds to the eigen-
vector α+. Consequently, we have |W+|2 = TraceW 2 = s2/24.

Proof. Fixing a local orientation as above, then replacing α with α+ and, finally,
using a constant scale factor, we may assume that α = α+ and 〈α, α〉 = 2. Hence
Λ+
xM admits a basis αj , j = 1, 2, 3, with α = α1, that satisfies the assumptions

of Corollary 6.5 and hence also the commutator relations (6.13) (Corollary 6.3).
Thus, both α2, α3 are eigenvectors of W for the eigenvalue s/12. This completes
the proof. �

Corollary 9.9. Let (M, g, α) be a canonically-oriented Riemannian Kähler man-
ifold of real dimension 4, and let s be the scalar curvature of g.

(a) The eigenvalues of the self-dual Weyl tensor W+ : Λ+M → Λ+M at any
point, with multiplicities, are {s/6, − s/12, − s/12}.

(b) W+ is parallel if and only if s is constant.

In fact, (a) is obvious from Corollary 9.4 and Proposition 9.8. Denoting pr+

and prα the bundle morphisms [TM ]∧2 → [TM ]∧2 of orthogonal projections onto
Λ+M and, respectively, onto the real-line subbundle spanned by α, we now have,
by (a),

12W+ = s
[
3 prα − pr+

]
,

which clearly implies (b). �

Corollary 9.10. Let (M, g) be an oriented Riemannian four-manifold such that
W+ is parallel. Then

(i) One of the following two cases occurs:
a) W+ = 0 identically, or
b) W+ is parallel and nonzero, its eigenvalues are given by (9.10), and

the conditions W+α = sα/6 and 〈α, α〉 = 2 define, uniquely up to
a sign at every point of M , a section ±α of Λ+M .

(ii) The unique section ±α in (b) is parallel.
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Proof. Let W+ 6= 0. Since TraceW+ = 0 (see formula (6.19)), W+ then must
have at least one simple eigenvalue λ. The corresponding local C∞ eigenvector
section α of Λ+M , normalized so as to satisfy 〈α, α〉 = 2, is unique (at each
point), up to a sign. Therefore, α is parallel (since so is W+), and our assertion
is immediate from Proposition 9.8. �

§10. The “algebraic” examples

The Einstein condition (0.1) is obviously satisfied by those pseudo-Riemannian
manifolds (M, g) which are Ricci-flat in the sense that Ric = 0 identically on
M . For more on Ricci-flatness, see §15, §23, Remark 28.4, §33, §36, and Part IV.

In any given dimension greater than 3, there is an enormous wealth of examples
of local-isometry types of Einstein metrics. (In fact, they form an infinite-dimen-
sional moduli space; see Remark 49.3 in §49.) Thus, as long as no global constraints
(such as compactness) are imposed, Einstein metrics are relatively easy to find
and, in fact, there is an abundance of examples in the existing literature. (For
particularly simple constructions of Ricci-flat indefinite metrics, see Corollary 15.10
in §15 and Corollary 41.2(b) in §41.) In this section, however, we discuss only
several special classes of pseudo-Riemannian Einstein metrics, each characterized
by having a curvature tensor R of some particular algebraic type.

To be specific, these algebraic types of R, in dimension four, are described by
some explicit formulae, namely, (10.1) (for a function K), or (10.5) (for some
functions λ, µ and a bivector field α with (9.1)) or, finally, (10.13) (with (10.14),
(10.15)). In the Riemannian case, each of these types also has an equivalent, simple
characterization in terms of the spectrum of the (anti)self-dual restrictions of the
curvature operator, or the Weyl tensor, at any point; see Remark 10.11.

Our first observation is that all flat manifolds (M, g), characterized by R = 0,
are Ricci-flat, and hence Einstein. More generally, the class of Einstein manifolds
includes all spaces of constant curvature, that is, pseudo-Riemannian manifolds
(M, g) satisfying the condition

(10.1) R = K g ~ g

for some constant K (notation as in (5.9) – (5.10)), which in local coordinates
reads

(10.2) Rjklm = K (gjlgkm − gklgjm) .

In fact, contracting (10.1) we obtain the Einstein condition

(10.3) Ric =
s

n
g , with s = n(n− 1)K , n = dimM .

Note that, by Schur’s Theorem 5.1, in dimensions n 6= 2 one needs only to assume
(10.1) with a function K, as constancy of K then follows. Furthermore, by (5.10),
an Einstein metric is of constant curvature if and only if its Weyl tensor W is
identically zero. (In dimensions n ≥ 4, condition W = 0 is known as conformal
flatness. See §22 for details.)

Remark 10.1. In contrast with dimensions n 6= 2, in the case where n = 2 relations
(10.1) – (10.3) not only fail to imply constancy of the function K, but actually hold,
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with some function K, for every pseudo-Riemannian surface (M, g). In fact, both
sides of (10.2) share the algebraic symmetries (4.32) of R, and so, if n = 2, they are
uniquely determined by the component with the indices (j, k, l,m) = (1, 2, 1, 2); in
other words, (10.2) will follow if we set K = R1212/[g11g22 − g12g21]. The function
κ = K = s/2 is called the Gaussian curvature of the pseudo-Riemannian surface
(M, g). The use of the symbol κ for the Gaussian curvature is justified since (10.3)
then reads Ric = κg, just as in (5.3).

Remark 10.2. Dimension 3 is also exceptional in regard to the meaning of relation
(10.2). Specifically, denoting W the Weyl tensor (see (5.6)), we have, for any
three-dimensional pseudo-Riemannian manifold (M, g),

(a) W = 0 identically on M , and
(b) (M, g) is Einstein if and only if it is a space of constant curvature.

In fact, let us fix a point x ∈M , choose orthonormal vectors e1, e2, e3 ∈ TxM , and
set εj = g(ej , ej) = ± 1. Denoting Wjklm = g(W (ej , ek)el, em) the components of

the Weyl tensor, we have W1213 = 0, as ε1W1213 =
∑3
j=1 εjWj2j3 = 0 in view of

(5.24) and (5.25). Permuting the vectors ej , we thus see that Wjklm = 0 unless
{j, k} = {l,m}. To show that the remaining components of W also vanish, let us
now set, for j = 1, 2, 3, µj = εkεlWklkl, with k, l chosen so that {j, k, l} = {1, 2, 3}.
Now, by (5.25), µj +µk = 0 whenever j 6= k. Thus, if {j, k, l} = {1, 2, 3}, we have
µj = −µk = µl = −µj , i.e., µj = 0 for j = 1, 2, 3, as required. This proves (a).
Now (b) is immediate from (5.9) (cf. (10.1)).

Example 10.3. Let V be a pseudo-Euclidean vector space, that is, a real vector
space V with dimV <∞, equipped with a nondegenerate bilinear symmetric form
〈 , 〉 (the inner product). Then the pseudo-Riemannian manifold (M, g) formed by
M = V with the constant (translation invariant) metric g = 〈 , 〉, is flat. In fact,
expressions (4.1), (4.25) all vanish in a linear coordinate system xj , as the gjk then
are constant. (Equivalently, R = 0 by (4.23), since ∇vw = 0 for constant vector
fields v, w.) In the case where V = Rn and 〈 , 〉 is the standard positive-definite
inner product, one speaks of the standard Euclidean space Rn.

Example 10.4. Let M be a connected component of a (nonempty) pseudosphere

(10.4) Sc = {v ∈ V : 〈v, v〉 = c} ,

with a real c 6= 0, in a pseudo-Euclidean vector space V (Example 10.3), and
let g be the restriction of the inner product 〈 , 〉 to TM . Then (M, g) is a
space of constant curvature K = 1/c 6= 0. (See Proposition 14.1 below.) The
construction described here leads, in particular, to the ordinary ”round” spheres (if
〈 , 〉 is positive definite and c > 0), and the real hyperbolic spaces (obtained when
〈 , 〉 has the Lorentz sign pattern − + + . . . + , and c < 0). This includes the case
of the standard sphere Sn and the standard hyperbolic space Hn, obtained using
V = Rn+1 with the standard Euclidean (or, respecively, Lorentzian) inner product
〈 , 〉 and c = 1 (or, respecively, c = − 1).

Another interesting collection of examples can be found in the class of Kähler-
Einstein manifolds, that is, those (pseudo-Riemannian) Kähler manifolds (M, g, α)
(see §9) for which g is an Einstein metric. Specifically, by a space of constant
holomorphic sectional curvature we mean a Kähler manifold (M, g, α) such that
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the curvature tensor R of the underlying pseudo-Riemannian manifold (M, g) can
be written as

(10.5) R = λ [3α⊗ α − α ∧ α] + µ g ~ g

for some C∞ functions λ and µ (notation as in (5.9) – (5.8)), where, using the
metric g, we treat α as an exterior 2-form. The local-coordinate version of (10.5)
is

(10.6) Rjklm = λ [αjlαkm − αklαjm + 2αjkαlm] + µ [gjlgkm − gklgjm] .

A space of constant holomorphic sectional curvature is automatically a Kähler-
Einstein manifold. More precisely, we have

Lemma 10.5. Suppose that a C∞ bivector field α on a pseudo-Riemannian man-
ifold (M, g) of dimension n ≥ 4 satisfies conditions (9.1) and (10.5) for some C∞

functions λ and µ. Then

(i) (M, g) is an Einstein manifold with the Ricci tensor Ric and scalar
curvature s given by

(10.7) Ric = [3λ+ (n− 1)µ] g , s = 3nλ+ n(n− 1)µ .

(ii) At any point x ∈M , the Weyl tensor W acting on bivectors satisfies

(10.8)

(n− 1)Wα = (n2 − 4)λα ,

(n− 1)Wβ = − (n+ 2)λβ ,

(n− 1)Wγ = (n− 4)λγ

whenever β, γ are bivectors at x such that αβ = −βα and 〈α, γ〉 = 0,
αγ = γα.

Proof. Contracting (10.6) in k,m and using (9.1), we get (10.7). On the other
hand, by (5.13), (2.17), (10.5), (10.6) and (5.16), Rβ = −λαβα + 2λ〈α, β〉α + µβ.
Combining this with (9.1) and noting that condition αβ = −βα implies 〈α, β〉 = 0
(due to (2.17) and (3.1)), we now obtain Rα = [(n + 1)λ + µ]α and, for β and
γ as in (ii), Rβ = (µ − λ)β, Rγ = (µ + λ) γ. In view of (5.33) and the scalar
curvature formula in (10.7), we now obtain (10.8). �

Suppose that a a Lie group G acts by isometries on a pseudo-Riemannian man-
ifold (N,h) in such a way that the quotient set M = N/G consisting of all orbits
of the action carries a structure of a manifold for which the natural projection
pr : N → M is a submersion. Moreover, let the restriction of the metric h to
the tangent space of each orbit of G be nondegenerate. The quotient manifold
M = N/G then carries a unique pseudo-Riemannian metric g (called the quotient
metric) which makes pr : N → M into a Riemannian submersion in the sense
that, for each y ∈ N , the differential dpr y : TyN → TxM , with x = pr (y),
restricted to the orthogonal complement of Ker [dpry] in TyN , is isometric (i.e.,
sends h(y) onto g(x)). In fact, for any x ∈M we may fix y ∈ N with x = pr (y),
and then define g(x) using this Riemannian-submersion property; its independence
of the choice of y is clear since G acts by isometries.

One then refers to (M, g) as the pseudo-Riemannian quotient manifold of (N,h)
relative to the isometric action of G.
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Example 10.6. Let V be a pseudo-unitary vector space, that is, a complex vector
space V with dimV < ∞, carrying a fixed nondegenerate sesquilinear Hermitian
form 〈 , 〉, and let (M c, gc) be the pseudo-Riemannian quotient manifold of a (non-
empty) pseudosphere Sc given by (10.4) with a real c 6= 0, relative to the obvious
isometric action of the circle group S1 on Sc (through multiplications by complex
numbers of modulus one). Then (M, g) = (M c, gc) has constant holomorphic
sectional curvature with λ = µ = 1/c in (10.5). (For a proof of this statement,
see Proposition 14.3 in §14.) Hence, according to formula (10.10) below, its scalar
curvature equals

(10.9) s =
n(n+ 2)

c
, n = dimM .

As a special case of this construction we obtain the complex projective spaces
with the Fubini-Study metrics (when 〈 , 〉 is positive definite and c > 0) and the
complex hyperbolic spaces (when 〈 , 〉 has the ”complex Lorentzian” sign pattern
− + + . . . + , and c < 0). If, in addition, V = Cq+1, while 〈 , 〉 is the standard
positive-definite (or, complex Lorentzian), Hermitian inner product, and c = 1 (or,
respecively, c = − 1), one speaks here of the standard complex projective space CPq

or, respectively, the standard complex hyperbolic space, which is sometimes denoted
(CPq)∗. Note that both CPq and (CPq)∗ thus are manifolds of (real) dimension
n = 2q.

As already mentioned in §7, by a locally symmetric space (manifold) we mean a
pseudo-Riemannian manifold whose curvature tensor is parallel (∇R = 0).

Lemma 10.7. Let (M, g, α) be a space of constant holomorphic sectional cur-
vature, that is, a pseudo-Riemannian Kähler manifold satisfying conditions (9.1)
and (10.5) for some C∞ functions λ and µ. Then (M, g) is a locally symmetric
Einstein manifold, while µ and λ are both constant and equal, and given by

(10.10) λ = µ =
s

n(n+ 2)
, n = dimM .

Proof. Since (M, g) is Einstein (Lemma 10.5(i)) and α is parallel, formula (5.20)
gives n(n − 1)Wα = (n − 2) sα. Combined with the first equality of (10.8) and
the scalar curvature formula in (10.7), this yields (10.10), and our assertion is
immediate from Schur’s Theorem 5.1. �

Corollary 10.8. All pseudo-Riemannian spaces of constant curvature and spaces
of constant holomorphic sectional curvature, as well as products of locally symmetric
Einstein manifolds having equal constant Ricci curvatures κ in (5.3), are locally
symmetric and Einstein.

This is an immediate consequence of (10.1) and (10.3) or, respectively, Lemma
10.7; the product case is obvious. �

In dimension four, the conclusion of Lemma 10.7 holds even without assuming
that α is parallel, provided that we require instead that λ or µ be constant:

Corollary 10.9. Let (M, g) be an orientable Riemannian four-manifold such that
conditions (9.1) and (10.5) are satisfied by a C∞ bivector field α and some C∞
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functions λ, µ on M . Moreover, let one of λ, µ be constant. Then (M, g) is a
locally symmetric Einstein manifold and, locally, for a suitably chosen orientation,
(M, g) self-dual in the sense that

(10.11) W− = 0 .

Furthermore, unless (M, g) is a space of constant curvature, we have

(10.12) λ = µ =
s

24
,

and α must be parallel, so that the triple (M, g, α) is a Kähler-Einstein manifold.

Proof. In view of (10.7) and Schur’s Theorem 5.1, λ and µ are both constant.
Thus, (10.8) and (5.33), combined with Corollary 7.2 and Lemma 10.5(i), imply
that (M, g) is locally symmetric and Einstein. Furthermore, for a suitably chosen
local orientation, α is a section of Λ+M , and bivector fields commuting with α
and orthogonal to α are precisely the sections of Λ−M . (See Corollary 6.8.) Thus,
(10.11) follows from the last formula of (10.8). To establish (10.12), let us now
assume that (M, g) is not a space of constant curvature. Then W+ 6= 0 (by
(10.11) and (5.10)) and so Corollary 9.10 shows that its eigenvalues are given by
(9.10) while, by (10.8), these eigenvalues are 4λ,−2λ,−2λ (note that the triple
eigenvalue 0 in (10.8) must correspond to W− = 0). Hence λ = s/24, and (10.12)
is immediate from (10.7). Finally, in view of (10.8), the bivector field α appearing
in (10.5) must coincide, up to a sign, with that described in Corollary 9.10 (due to
the uniqueness assertion of Corollary 9.9(i)b)), and so, by Corollary 9.9(ii), α is
parallel, which completes the proof. �

Remark 10.10. It will be convenient for us to describe conditions similar to (10.1)
or (10.5) that would characterize those pseudo-Riemannian Einstein 4-manifolds
(M, g) which are Riemannian products of pseudo-Riemannian surfaces. As we will
see later (Theorem 14.5(iii)), in a neighborhood U of any point of M , the curvature
tensor R of such a product-of-surfaces Einstein 4-manifold (M, g) and its scalar
curvature s satisfy the relation

(10.13) R =
s

4
[δ β ⊗ β + ε γ ⊗ γ] ,

for some C∞ bivector fields β, γ on U and numbers δ, ε such that

(10.14)
〈β, β〉 = δ , 〈γ, γ〉 = ε , 〈β, γ〉 = 0 , δ , ε ∈ {1,−1} ,
βγ = 0 , δ β2 + ε γ2 = − Id , ∇β = ∇γ = 0 ,

and

(10.15) β = e1 ∧ e2 , γ = e3 ∧ e4

for some orthonormal C∞ vector fields e1, . . . , e4 on U .
Another curvature condition characterizing products of surfaces among pseudo-

Riemannian Einstein 4-manifolds (M, g) is (see Theorem 14.5(iv))

(10.16) R =
s

4
[P ~ P + Q~Q] ,
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with symmetric twice-covariant C∞ tensor fields P,Q such that

(10.17)
P 2 = P , Q2 = Q , P + Q = Id ,

∇P = ∇Q = 0 , rankP = rankQ = 2 .

Note that, conversely, conditions (10.13) – (10.14) and, separately, (10.16) – (10.17),
easily imply that (M, g) is a locally symmetric Einstein manifold.

Remark 10.11. Let (M, g) be an oriented Riemannian Einstein four-manifold, and
let specW± and specR± denote the spectra, i.e., systems of eigenvalues (listed
along with their multiplicities) of W±(x) and R±(x), which are the self-adjoint
operators Λ±xM → Λ±xM at any point x ∈ M , obtained by restricting W (x)
and R(x) to Λ±xM . (See (6.14) and Lemma 6.25(iii); the term ’system’ used here
when referring to such a spectrum {λ1, λ2, λ3} stands for an unordered system
with well-defined multiplicities, so that the repetitions of some among the λj do
matter, whereas their order does not.) For the special types of 4-dimensional Riem-
annian Einstein manifolds discussed in this section (namely, spaces of constant
curvature or of constant holomorphic sectional curvature, as well as product-of-
surfaces Einstein 4-manifolds), the spectra of W±(x) and R±(x) do not depend
on x. More precisely, for each of the specific three special types, the spectra then
are (with s standing for the scalar curvature): For spaces of constant curvature,

(10.18) specW+ = specW− = {0, 0, 0} ,

i.e.,

(10.19) specR+ = specR− = {s/12, s/12, s/12} .

For (suitably oriented) manifolds of constant holomorphic sectional curvature,

(10.20) specW+ = {s/6, − s/12, − s/12} , specW− = {0, 0, 0} ,

that is,

(10.21) specR+ = {s/4, 0, 0} , specR− = { s/12, s/12, s/12} .

Finally, for those products of oriented surfaces which are Einstein,

(10.22) specW+ = specW− = {s/6, − s/12, − s/12} ,

i.e.,

(10.23) specR+ = specR− = {s/4, 0, 0} .

In fact, (10.1), (10.3) and (5.16) give (10.19), relations (9.10) and (10.11) imply
(10.20) (which may also be obtained from Lemma 10.5(ii)), while (10.23) follows
from (10.20) applied to either (local) orientation of M separately. This establishes
three of the above six relations; the remaining three now are obvious in view of
(5.33).
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§11. Connections and flatness

As a preparation for proving some standard classification results in §14, it is
convenient to first discuss flat connections in vector bundles.

A Ck mapping F of a rectangle Ω = [a, b] × [c, d] into a manifold M may be
referred to of as a variation (family) of curves [a, b] 3 t 7→ F s(t) = F (t, s) ∈ M ,
each of which corresponds to a fixed value of the variation parameter s ∈ [c, d].
When F (a, s) = x and F (b, s) = y for some x, y ∈M and all s ∈ [c, d], F is also
called a Ck homotopy with fixed endpoints between the curves F c and F d ; if such
a homotopy exists, one says that the curves F c and F d connecting x and y are
Ck-homotopic with fixed endpoints.

Let E be a vector bundle over a manifold M , and let φ be a section of E along
a Ck mapping F : Ω → M , where Ω = [a, b] × [c, d], that is, an assignment of
an element φ(t, s) of the fibre EF (t,s) to each (t, s) ∈ Ω. We say that φ is of

class Ck if its components φa relative to any local trivialization ea of E are Ck

differentiable functions of (t, s). If k ≥ 1, we can now define the partial covariant
derivatives φt and φs relative to a fixed connection ∇ in E to be the Ck−1 sections
of E along F , obtained by covariant differentiation of φ treated as a section along
the curve F (·, s) or F (t, ·) (while s or t is kept fixed). Thus, φt and φs have the
component functions

(11.1) φat =
∂φa

∂t
+ (Γ ajb ◦ F )

∂F j

∂t
φb , φas =

∂φa

∂s
+ (Γ ajb ◦ F )

∂F j

∂s
φb .

Taking in turn the partial covariant derivatives of φt and φs (when k ≥ 2), we
obtain the second-order partial covariant derivatives φtt = (φt)t, φts = (φt)s,
φst = (φs)t and φss = (φs)s. It is now easy to verify that, if k ≥ 2,

(11.2) R∇(Ft, Fs)φ = φts − φst ,

where both sides are Ck−2 sections of E along F . (In fact, (11.1) and (4.53) yield
Rjkb

a(∂F j/∂t)(∂F k/∂s)φb = φats − φast.)
A connection ∇ in a vector bundle E over M is called flat if R∇ = 0 ev-

erywhere. A (local) C1 section φ of E is said to be parallel (relative to a fixed
connection ∇) if ∇φ = 0, that is, ∇vφ = 0 for all tangent vectors v.

Lemma 11.1. Suppose that ∇ is a flat connection in a vector bundle E over a
manifold M , while x, y ∈ M and F 0, F 1 : [a, b] → M are C2 curves in M that
connect x to y. If F 0 and F 1 are C2-homotopic with fixed endpoints, then they
give rise to the same ∇-parallel transport Ex → Ey.

Proof. Choose a fixed-endpoints C2 homotopy F : [a, b]× [0, 1]→M between F 0

and F 1. For any given ψ ∈ Ex, let φ(t, s) ∈ EF (t,s) be the image of ψ under the

parallel transport along the curve [a, t] 3 t′ 7→ F s(t′) = F (t′, s). Since R∇ = 0
and φt = 0, (11.2) yields φst = 0, i.e., φs is parallel in the t direction. Therefore
φs = 0, as φs(a, s) = 0 (due to our initial conditions F (a, s) = x, φ(a, s) = ψ).
Setting t = b, we now obtain constancy of the curve [0, 1] 3 s 7→ φ(b, s) ∈ Ey. �

The following basic classification result states that any flat connection looks,
locally, like the standard flat connection in a product bundle:
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Lemma 11.2. Any flat connection ∇ in a vector bundle E over a manifold M
admits, locally, a local trivialization ea consisting of parallel sections. In other
words, every point of M has a neighborhood U such that for each y ∈ U and
any φ ∈ Ey there exists a unique parallel local section ψ of E, defined on U , with
ψ(y) = φ.

Proof. Fix x ∈ M and identify a neighborhood U of x with an open convex
subset of Rn, n = dimM . For any given φ ∈ Ex we can construct a parallel
section ψ of E restricted to U with ψ(x) = φ be defining ψ(y), for y ∈ U , to be
the parallel translate of φ along any C2 curve connecting x to y in U ; by Lemma
11.1, this does not depend on the choice of the curve, as two such curves admit an
obvious fixed-endpoints C2 homotopy due to convexity of U . Our ea now may to
be chosen to be the parallel sections of E restricted to U with ea(x) forming any
prescribed basis of Ex. �

As a consequence, we obtain the Poincaré Lemma for C∞-differentiable 1-forms:

Corollary 11.3. Let ξ be a 1-form of class C∞ on a manifold M such that
dξ = 0 (notation of (2.16)). Then, locally, ξ can be written as ξ = df for some
C∞ function f .

Proof. The connection ∇ in the product line bundle E = M ×R given by ∇vψ =
dvψ+ ξ(v)ψ for real-valued functions ψ (i.e., sections of E) is flat in view of (4.52)
(or, (4.53)). Choosing a parallel local trivializing section e−f (see Lemma 11.2),
we now obtain dvf = ξ(v) for all tangent vectors v, as required. �

Remark 11.4. Generalizing Corollary 11.3, we arrive at the following “traditional”
(i.e., coordinate-and-trivialization dependent) interpretation of Lemma 11.2: Let us
consider any system of first-order linear homogeneous partial differential equations
with arbitrary C∞ coefficient functions (which we choose to denote −Γ ajb), imposed
on the unknown real or complex-valued functions φa, a = 1, . . . , q, of n real
variables xj in an open subset U of Rn, j = 1, . . . , n, and let us assume that the
system is “solved for the derivatives”, i.e., has the form

(11.3) ∂jφ
a = −Γ ajb φb ,

∂j = ∂/∂xj being the partial derivatives. If we regard the q-tuple φ = (φ1, . . . , φq)
as a section of the product bundle E = U ×Kq, with K = R or K = C, then
equation (11.3) characterizes those sections which are ∇-parallel for the connection
∇ in E defined by (4.49). In view of (4.53), condition R = 0 is nothing else than
the consistency requirement or integrability condition for (11.3), that is, the system
of relations on the coefficient functions −Γ ajb obtaining by applying ∂k to (11.3)
and then requiring that ∂k∂jφ

a = ∂j∂kφ
a. Now Lemma 11.2 states that this

integrability condition is not only necessary, but also sufficient in order that, for
any x ∈ U and any prescibed initial values φa(x), a = 1, . . . , q, there exist a
solution φ = (φ1, . . . , φq) to (11.3) defined near x and realizing these initial data.

Remark 11.5. We will also need the Poincaré Lemma for C∞-differentiable 2-
forms, stating that such a form α with dα = 0 has, locally, the form α = dξ
for some C∞-differentiable 1-form ξ. To prove this, we use the following standard
argument that can also easily be adapted to differential forms of any degree (see,
e.g., Sulanke and Wintgen, 1972). In fact, fixing a suitable coordinate system, we
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may assume that α lives in a convex neighborhood U of 0 in Rn; then, denoting
αjk the component functions of α, we may define ξ = ξj dx

j through its component

functions by setting ξk(x) =
∫ 1

0
txj αjk(tx) dt with x = (x1, . . . , xn). Relation

dα = 0 yields ∂kαjl − ∂lαjk = ∂jαkl and so, by (2.16), (dξ)kl = ∂kξl − ∂lξk. As

∂kξl(x) =
∫ 1

0
tαkl(tx) dt+

∫ 1

0
t2xj ∂kαjl(tx) dt (since dα = 0), this and skew-sym-

metry of the αkl in k, l implies (dξ)kl =
∫ 1

0
tαkl(tx) dt +

∫ 1

0
t2xj ∂jαkl(tx) dt. On

the other hand, αkl =
∫ 1

0
d
dt [t

2αkl(tx)] dt, so αkl = (dξ)kl, as required.

We end this section with two more important consequences of Lemma 11.2. One
characterizes those local trivializations of the tangent bundle which consist, locally,
of the coordinate vector fields for a local coordinate system; the other is a local-
structure theorem for flat torsionfree connections. They will not be needed until
Part IV.

Corollary 11.6. Let ej be a local trivialization of the tangent bundle TM of a
manifold M . Condition

(11.6) [ej , ek] = 0 , for all j, k ,

then is necessary and sufficient in order that each point of the trivialization domain
have a neighborhood with a local coordinate system xj for which the ej are the
coordinate vector fields.

Proof. Let ej be 1-forms forming at each point a basis of T ∗yM dual to the ej , so

that ej(ek) = δjk. Using (2.16) to evaluate (dej)(ek, el) for all j, k, l, we now find
that dej = 0, that is, each ej is closed. Let xj be C∞ functions (on a smaller
version of U , if necessary) with ej = dxj . (They exist by Corollary 11.3.) In view
of the inverse mapping theorem, the functions xj form, in a neighborhood of any
given point, a local coordinate system in M . Our assertion now follows from (2.3)

along with ej(ek) = δjk.

Corollary 11.7. Let ∇ be is a flat torsionfree connection in the tangent bundle
TM of a manifold M . Then every point of M has a neighborhood U with a
coordinate system xj such that the corresponding component functions Γ ljk of ∇,

characterized by (4.2), are identically zero on U .

In fact, since ∇ is torsionfree, ∇-parallel vector fields must commute by (4.4).
Our assertion now follows from Lemma 11.2 and Corollary 11.6. �

§12. Some constructions leading to flat connections

We now proceed to discuss some constructions of connections in vector bundles.
In those case where the resulting connection are flat, Lemma 11.2 will guarantee
solvability of a specific system partial differential equations (cf. Remark 11.4),
which will in turn lead to classification theorems later in §14.

Lemma 12.1. Let there be given a pseudo-Riemannian manifold (M, g), a sym-
metric twice-covariant C∞ tensor field b on M and a number ε = ±1, and
let E = TM ⊕ [M ×R] be the vector bundle over M obtained as the direct sum
of TM and the product line bundle M ×R. Also, let ∇ denote the Levi-Civita
connection of (M, g). For C1 vector fields v, u tangent to M and a C1 function
f , all defined in any given open subset of M , the symbol b(v, · ) will stand for the
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vector field w with g(w, u) = b(v, u) for all vectors u, i.e., the 1-form b(v, · ),
treated as a vector field with the aid of g ; on the other hand, the pair ψ = (u, f)
is in this case a section of E. The formula

(12.1) Dv(u, f) = (∇vu − εf b(v, · ) , dvf + b(v, u)) ,

with u, v, f as above, then defines a connection D in E. Furthermore, D is flat
if and only if b and the curvature tensor R of (M, g) satisfy the conditions

(12.2) R = ε b~ b

with ~ as in (5.7), and

(12.3) db = 0 ,

where d stands, as in (5.28), for the exterior derivative of b treated as a 1-form
valued in 1-forms.

Proof. Computing the curvature tensor RD of D via (4.52) (with the simplifica-
tions offered by Remark 4.4), we obtain, for any vector fields v, w on M and any
section ψ = (u, f) of E , RD(v, w)ψ =

(
RD

1 (v, w)ψ , RD
1 (v, w)ψ

)
with

RD
1 (v, w)ψ = R(v, w)u − ε [b(v, u)b(w, · )− b(w, u)b(v, · )]

+ ε f ([∇vb] (w, · ) − [∇wb] (v, · )) ,
RD

2 (v, w)ψ = [∇wb] (v, u) − [∇vb] (w, u) ,

where R is the curvature tensor of (M, g). This completes the proof. �

Remark 12.2. Relations (12.2) and (12.3) are known as the Gauss and Codazzi equa-
tions, respectively. Explicitly, they state that g(R(v, w)v′, w′) = ε [b(v, v′)b(w,w′)−
b(w, v′)b(v, w′)] and [∇vb] (w, u) = [∇wb] (v, u) for all points x ∈ M and vectors
u, v, w, v′, w′ ∈ TxM , while their local-coordinate versions are (cf. (5.37))

(12.4) Rjklm = ε (bjlbkm − bklbjm) , bjk,l = bjl,k .

Thus, contracting (12.2) twice in a row and using (4.36) and (4.40), we obtain

(12.5) εRic = (Trace b)b − b2 , εs = (Trace b)2 − Trace b2 ,

where the coordinate form of the first equality is εRjl = bkkbjl − bkl bkj .

Remark 12.3. Relations (10.5) (i.e, (10.6)) and (10.10), which along with condition
∇α = 0 characterize pseudo-Riemannian spaces (M, g, α) of constant holomorphic
sectional curvature, can be rewritten as follows, using the complex-sesquilinear fibre
metric 〈 , 〉c given by (9.3):

(12.6) R(v, w)u = λ [〈u, v〉cw − 〈u,w〉cv + 2α(v, w)αu] , λ =
s

n(n+ 2)
,

or, equivalently (cf. (2.19))

(12.7) R(v, w)u = λ [〈u, v〉cw − 〈u,w〉cw + 〈w, v〉cu − 〈v, w〉cu]

with λ = s/[n(n+ 2)], for all x ∈M and v, w, u ∈ TxM .



72 ANDRZEJ DERDZINSKI

Lemma 12.4. Suppose that (M, g, α) is an almost Hermitian pseudo-Riemannian
manifold and ξ is a differential 1-form of class C∞ on M such that, for some
real number c 6= 0,

(12.8) c dξ = 2α ,

where α is treated as a differential 2-form, and dξ is given by (2.16). Let E =
TM ⊕ [M ×C] be the complex vector bundle over M obtained as the direct sum of
TM , with the complex structure introduced by α, and the product line bundle M×C.
Sections of E then are pairs ψ = (u, f) formed by a vector field u tangent to M
and a complex–valued function f . Also, let ∇ denote the Levi-Civita connection
of (M, g), and let 〈 , 〉c be given by (9.3). The formula

(12.9) Dv(u, f) =
(
∇vu + i ξ(v)u + fv , dvf + i ξ(v)f − c−1〈u, v〉c

)
,

for such C1 sections ψ = (u, f), and vectors v tangent to M , then defines a
connection D in E regarded as a real vector bundle. Furthermore,

(i) If ∇α = 0, then the pseudo-Hermitian fibre metric 〈 , 〉 in E given by

(12.10) 〈(u, f), (w, h)〉 = 〈u,w〉c + cfh

is compatible with D and D is a connection in E treated as a complex
vector bundle. In other words, both 〈 , 〉 and the multiplication by i in E
are D-parallel.

(ii) D is flat if and only if the following two conditions hold :
a) ∇α = 0, and
b) The curvature tensor R of (M, g) satisfies (10.5) with λ = µ = 1/c.

Thus, flatness of D implies that (M, g, α) is a nonflat space of constant
holomorphic sectional curvature.

Proof. Assertion (i) is immediate from (9.4). On the other hand, since ∇ is tor-
sionfree, relation (12.8) can also be rewritten as

(12.11) [∇vξ] (w) − [∇wξ] (v) = 2c−1α(v, w)

for all vectors v, w tangent to M . Combining formulae (4.52) and (9.3) (with the
simplifications described in Remark 4.4), we now see that the curvature tensor RD

of D is given by RD(v, w)(u, f) =
(
RD

1 (v, w)(u, f) , RD
2 (v, w)(u, f)

)
, where

(12.12)
RD

1 (v, w)(u, f) = R(v, w)u + c−1 [〈u,w〉cv − 〈u, v〉cw + 2α(w, v)αu] ,

RD
2 (v, w)(u, f) = ic−1 [(∇wα)(u, v) − (∇vα)(u,w)] ,

for any local C2 vector fields u, v, w in M and any complex-valued C2 function
f . To prove (ii), let us first suppose that D is flat, i.e., RD

1 = RD
2 = 0. Condition

(ii)a) then follows as ∇wα)(u, v) = 0 for all u, v, w in view of the second relation
in (12.12) and Lemma 3.1, while (ii)b) is immediate from (12.6). Conversely, con-
ditions (ii)a) and (ii)b) imply flatness of D via (12.12). This completes the proof.
�
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Lemma 12.5. Suppose that P and Q are self-adjoint C∞ bundle morphisms
TM → TM in the tangent bundle TM of a pseudo-Riemannian 4-manifold
(M, g), satisfying the conditions

(12.13) P 2 = P , Q2 = Q , P + Q = Id .

Let E = TM ⊕ [M ×R2] denote the vector bundle over M obtained as the direct
sum of TM and the product plane bundle M×R2. Thus, E is the direct sum of the
subbundles P = [KerQ]⊕ [M × (R2 × {0})] and Q = [KerP ]⊕ [M × ({0} ×R2)].
Furthermore, let ∇ be the Levi-Civita connection of (M, g). Given a fixed real
number c 6= 0, let us set ε = sgn c. For a C1 vector field u tangent to M and
real-valued C1 functions ϕ, χ on M , the triple (u, ϕ, χ) is a C1 section of E.
Formulae

(12.14) 〈(u, ϕ, χ), (u′, ϕ′, χ′)〉 = g(u, u′) + ε (ϕϕ′ + χχ′)

and

Dv(u, ϕ, χ) =(
∇vu + |c|−1/2[ϕPv + χQv] , dvϕ − ε|c|−1/2P (v, u) , dvχ − ε|c|−1/2Q(v, u)

)
for vector fields v tangent to M , then define a pseudo-Riemannian fibre metric
〈 , 〉 and a connection D in E which is compatible with 〈 , 〉, that is, 〈 , 〉 is D-
parallel. Furthermore, the subbundles P and Q are mutually 〈 , 〉-orthogonal, and
the following two conditions are equivalent :

(i) D is flat and it makes the subbundles P and Q parallel.
(ii) ∇P = ∇Q = 0 and the curvature tensor R of (M, g) satisfies the follow-

ing relation, with ~ as in (5.7):

(12.15) R =
1

c
[P ~ P + Q~Q] .

Proof. The assertions about 〈 , 〉 are immediate. On the other hand, by (12.13),
P and Q are projections onto the summands P and Q of TM , and sections of
P (or Q) are precisely those sections (u, ϕ, χ) of E for which Qu = 0 and χ = 0
(or, Pu = 0 and ϕ = 0). Furthermore, multiplying the last equality in (12.13) by
P or Q, we obtain

(12.16) PQ = QP = 0 .

Thus, it is clear from the definition of D that P and Q are D-parallel if and
only if ∇P = ∇Q = 0.

Let us now assume that ∇P = ∇Q = 0. In view of (4.52) and (12.16) (along
with the simplification provided by Remark 4.4), the curvature tensor RD of D
then is given by

RD(v, w)(u, ϕ, χ)

=
(
R(v, w)u − c−1[P (v, u)Pw − P (w, u)Pv +Q(v, u)Qw −Q(w, u)Qv] , 0 , 0

)
,

which completes the proof. �
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Example 12.6. Let X be an n-dimensional vector space of C∞ vector fields on
an n-dimensional manifold M such that

(a) Each v ∈ X is either identically zero, or nonzero everywhere in M .
(b) X is closed under the Lie-bracket operation, that is, forms a Lie algebra

of vector fields on M .

Note that, for a vector space X defined to be the span of C∞ vector fields ej ,
j = 1, . . . , n, condition (a) means that the ej trivialize the tangent bundle TM , i.e.,
at each x ∈ M the ej(x) form a basis of the tangent space TxM , while (b) says
that there exist real constants c ljk such that [ej , ek] = c ljkel for all j, k ∈ {1, . . . , n},
with summation over l.

Such a Lie algebra X naturally distinguishes various flat connections in TM .
Besides the most obvious one (which makes all w ∈ X parallel), we also have the
connection D in TM uniquely characterized by

(12.17) Dvw = [v, w]

for all v, w ∈ X . In other words, for any fixed basis ej of X , Dvw = vj [djw
k +

wlckjl] ek with constants c ljk as above, where v = vjej , w = wjej now are arbitrary

C1 vector fields and dj stands for the directional derivative in the direction of ej .
Then

(i) D is flat.
(ii) The D-parallel local sections of TM are precisely those C1 vector fields

on open subsets of M which commute with every v ∈ X .

In fact, (i) is obvious if one evaluates its curvature RD using (4.23); namely, for
v, w, u ∈ X we then obtain RD(v, w)u = [w, [v, u]] − [v, [w, u]] + [[v, w], u] = 0 in
view of the Jacobi identity. As for (ii), it is immediate from (12.17).

The situation described in Example 12.6 characterizes, locally, the case where
X is the Lie algebra of all left-invariant vector fields on any given n-dimensional
Lie group M = G; the D-parallel sections of TM then coincide with the right-in-
variant vector fields on G.

See also Remark 17.23 in §17.

§13. Submanifolds

Given a C1 mapping F : M → N between manifolds, by the rank of F we mean
the integer-valued function rankF on M , which assigns to each x the number
dim [dttFx(TxM)]. The following classical result is known as the rank theorem.

Theorem 13.1. Any C∞ mapping F : M → N between manifolds of dimensions
m = dimM , n = dimN , such that rankF is constant and equal to r in a neigh-
borhood of a given point z ∈M , has the form (x1, . . . , xm) 7→ (x1, . . . , xr, 0 , . . . , 0),
with n − r zeros, in suitable local coordinate systems xj for M , defined near
z, and yα for N , defined near F (z). In other words, the component functions
Fα = yα(F ) of F in such coordinates are

(13.1) FA = xA for A ≤ r , Fλ = 0 for λ > r .

Proof. Let us fix the following ranges for indices: 1 ≤ j, k ≤ m, 1 ≤ α, β ≤ n,
1 ≤ A,B ≤ r, r < λ, µ ≤ n, and start from arbitrary local coordinates xj and yα,
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which we then modify in three successive steps (keeping the notation unchanged).
First, by permuting the xj and the yα, we may assume that det [∂AF

B ] 6= 0.
Second, we may require that FA = xA and Fλ = Ψλ(x1, . . . , xr) with some C∞

functions Ψλ of r variables, by replacing x1, . . . , xm with the new coordinates
F 1, . . . , F r, xr+1, . . . , xm defined near z (this is a coordinate system in view of
the inverse mapping theorem). Then, in the new coordinates, FA = xA, and so
∂µF

λ = 0 as rankF = r. Finally, to achieve FA = xA and Fλ = 0, let us replace
the yλ by yλ − Ψλ(y1, . . . , yr) with Ψλ as above, leaving the yA unchanged. In
the new coordinates, (13.1) holds, which completes the proof. �

A C∞ mapping F : M → N between manifolds is called an immersion if its
differential dFx : TxM → TF (x)N is injective at each point x ∈ M . Since that
condition amounts to rankF = dimM everywhere in M , it follows from Theorem
13.1 that any immersion must locally injective. By an embedding F : M → N
we mean an immersion that is also globally injective. A submanifold of a manifold
N is a manifold M such that the underlying set of M is a subset of N and the
inclusion mapping M → N is an embedding (i.e., is both of class C∞, and an
immersion). Note that the manifold topology of M then need not be the subset
topology inherited from N .

Corollary 13.2. Suppose that F : M → N is a C∞ mapping between manifolds
and P ⊂ M is a submanifold equipped with the subset topology. If F is an
embedding, while dimM = dimP and F (M) ⊂ P , then F (M) is open as a subset
of P , and F is a diffeomorphism of M onto F (M) treated as an open submanifold
of P .

Proof. Set m = dimM = dimP and n = dimN , and fix z ∈ M . Choosing local
coordinate systems xj for M (near z) and yα for N (with a coordinate domain U
conataining F (z)) as in Theorem 13.1, we can make F appear as (x1, . . . , xm) 7→
(x1, . . . , xm, 0 , . . . , 0), with n−m zeros. Since the inclusion mapping P → N is a
C∞ immersion and the differentials dy1, . . . , dym are linearly independent in the
cotangent space T ∗xN for any x ∈ U , it is clear that the intersection P ∩ U is
open in P and the differentials of the restrictions of y1, . . . , ym to P ∩ U (treated
as functions on an open subset of P ) are also linearly independent in T ∗xP for any
x ∈ P ∩ U . Since dimP = m, we may therefore assume, replacing U with a
smaller neighborhood of F (z) if necessary, that the functions y1, . . . , ym restricted
to P ∩ U form a coordinate system for P (with its own manifold structure). Thus,
F as a mapping M → P is locally diffeomorphic, since suitable local coordinates
make it look like the identity mapping. This completes the proof. �

Let F : M → N be a C1 mapping between manifolds. Given a fixed pseudo-
Riemannian metric h on N , we will say that F is nondegenerate (as a mapping
of M into the pseudo-Riemannian manifold (N,h)), if the pullback tensor field
F ∗h given by (2.30) is nondegenerate at each point, that is, if g = F ∗h is a
pseudo-Riemannian metric on M . A nondegenerate mapping F is necessarily an
immersion, since, for v ∈ TxM , dFxv = 0 only if v is (F ∗h)x-orthogonal to all of
TxM . Conversely, if h is a Riemannian metric on N , every immersion M → N
is a nondegenerate mapping into (N,h).

Let F : M → N now be a nondegenerate C∞ mapping of a manifold M into
a pseudo-Riemannian manifold (N,h). The second fundamental form of F is the
object B associating with each x ∈M a bilinear symmetric mapping B = B(x) :
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TxM × TxM → Nx into the normal space of F at x (that is, the h-orthogonal
complement Nx of dFx(TxM) in TF (x)N ; in other words, B is a section of the

vector bundle [T ∗M ]�2⊗N ). Specifically, for x ∈M and v, w ∈ TxM , let us choose
a C1 curve t 7→ x(t) ∈M and a C1 tangent vector field t 7→ w(t) ∈ Tx(t)M along
it in such a way that, for some fixed parameter t0, x(t0) = x, ẋ(t0) = v and
u(t0) = w. This gives rise to the C1 tangent vector field t 7→ w(t) ∈ Tx(t)N along

the C1 curve t 7→ x(t) = F (x(t)) ∈ N , given by w(t) = dFx(t)[w(t)]. Denoting
D the Levi-Civita connection of (N,h), we then set

(13.2) B(v, w) = [Dẋw]norm .

In other words, we declare B(v, w) to be the component of Dẋw ∈ TF (x)N (at
t = t0) normal to dFx(TxM), that is, the Nx-part of Dẋw (at t = t0) relative to
the decomposition

(13.3) TF (x)N = dFx(TxM) ⊕ Nx .

For any local coordinates xj in M and yλ in N , defined near x and F (x),
respectively, and any normal vector u ∈ Nx, we then have

(13.4) h(B(v, w), u) = hλµu
λvjwk

(
∂j∂kF

µ + Γµρσ[∂jF
ρ] ∂kF

σ
)
,

where, as usual, the component functions hλµ = h(eλ, eµ) of h and the second-
order partial derivatives ∂j∂kF

µ of the component functions Fµ of F are evaluated
at x and F (x), respectively, while u = uλ eλ, and Γµρσ are the Christoffel symbols

of (N,h) (cf. (4.1)). In fact, extending u to a C1 normal vector field t 7→
u(t) ∈

[
dFx(t)(TxM)

]⊥ ⊂ Tx(t)N along the C1 curve t 7→ x(t) = F (x(t)) ∈ N ,
we obtain h(B(v, w), u) = h(Dẋw, u), which equals the right-hand side of (13.4)
since, according to (4.13), Dẋw = [dwµ/dt + Γµρσẋ

ρwσ] eµ, with ẋλ = ẋj ∂jF
λ,

wλ = wj ∂jF
λ, while the vector field [ẇj ∂jF

λ] eλ is tangent to the F -image of M
and hence h-orthogonal to u.

Formula (13.4) clearly shows that B(v, w) is bilinear and symmetric in v and
w, and also well-defined, that is, independent of the choices of x(t) and w(t). Due
to symmetry, B is completely determined by its quadratic restriction, so that,
choosing w(t) = ẋ(t), we may characterize it by

(13.5) B(ẋ, ẋ) = [Dẋẋ]norm

for any C2 curve t 7→ x(t) ∈M with the F -image x(t) = F (x(t)). If, in addition,
dimM = dimN − 1, we may choose (at least locally) a unit normal vector field for
F , that is, a local C∞ section n of the normal bundle N of F with h(n,n) = ±1.
Then, for some symmetric twice-covariant C∞ tensor field b in M , we have

(13.6) B = b⊗ n ,

that is, Bx(v, w) = [bx(v, w)]n(x) for all x ∈ M and v, w ∈ TxM . One also calls
b the (real-valued) second fundamental form of F . Formula (13.4) now becomes
the expression

(13.7) bjk = ε hλµu
λ
[
∂j∂kF

µ + Γµρσ(∂jF
ρ) ∂kF

σ
]
, h(n,n) = ε = ±1 ,

for the component functions of b relative to any local coordinates xj in M .
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Lemma 13.3. Suppose that F is a nondegenerate C∞ mapping of a manifold M
into a pseudo-Riemannian manifold (N,h), and let D and ∇ be the Levi-Civita
connections of h and, respectively, of the pullback pseudo-Riemannian metric g =
F ∗h on M . Given a C1 tangent vector field t 7→ w(t) ∈ Tx(t)M along a C1 curve
t 7→ x(t) ∈ M , let us set x(t) = F (x(t)) ∈ N and w(t) = dFx(t)[w(t)] ∈ Tx(t)N .
Then, for every t we have, at x = x(t),

(13.8) dFx(∇ẋw) = [Dẋw]tang

[v]tang being the dFx(TxM)-component of v ∈ TxN relative to the decomposition
(13.3).

Proof. Every point of M has a neighborhood U such that the immersion F
restricted to U is an embedding, while U is the domain of both a local coordinate
system xj for M (j = 1, . . . , n = dimM) and a local trivialization ua of the
normal bundle of F . From now on we will identify each x ∈ U with x = F (x) ∈
F (U), i.e., treat U as a submanifold of N , for which F is the inclusion mapping.
Using a suitable neighborhood U ′ of (0, . . . , 0) in Rq, we may define a mapping Φ :
U × U ′ → N by Φ(x, ξ1, . . . , ξq) = expx[ξaua(x)] ∈ N , where q = dimN −dimM
and exp denotes the geodesic exponential mapping of (N,h). From the inverse
mapping theorem it follows that, if U and U ′ are chosen sufficiently small, Φ
is a diffeomorphism onto a neighborhood U ′′ of the given point in N . Using Φ
to identify U ′′ with U × U ′, we can now regard x1, . . . , xn, ξ1, . . . , ξq as a local
coordinate system in N . The corresponding coordinate vector fields then have the
property that, at each point of U ⊂ N , ej are tangent to U and eaξ are normal
to U , i.e., the components of h relative to these coordinates satisfy

(13.9) hjk = gjk , hja = 0

for j, k = 1, . . . , n and a = 1, . . . , q, where gjk are the components of g relative
to the coordinates xj in M . Hence, by (4.1), the Christoffel symbols of h with
all three indices j, k, l in the range {1, . . . , n} coincide with the corresponding

Christoffel symbols Γ ljk of g. Thus, by (4.13) and (13.9), [∇ẋw]
j

= [Dẋw]
j
, j =

1, . . . , n. This completes the proof. �

Corollary 13.4. Suppose that M is a nondegenerate submanifold of a pseudo-
Riemannian manifold (N,h) and w is a parallel vector field on N which is
tangent to M at each point of M . Then

(a) The restriction of w to M , treated as a tangent vector field on M , then
is parallel relative to the Levi-Civita connection of the submanifold metric
g that M inherits from V

(b) The geodesic t 7→ x(t) ∈ N of (N,h), defined for t near 0 in R and
satisfying the initial conditions x(0) = x ∈M and ẋ(0) = w(x(0)), lies
in M for all t sufficiently close to 0, and forms a geodesic of (M, g).

In fact, (a) is obvious from (13.8), while (b) follows from the uniqueness-of-
solutions theorem for ordinary differential equations applied to the geodesics on
(N,h) and (M, g) satisfying the given initial conditions: Since w is parallel (in
both M and N , its integral curve through x must coincide with both of these
geodesics. �
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Remark 13.5. Let F : M → V be a nondegenerate C∞ mapping of a manifold M
into a pseudo-Euclidean vector space V with a constant metric. In the codimen-
sion-one case (i.e., when dimM = dimV − 1), the following traditional notations
conveniently summarize the preceding discussion. First, let us use the dot symbol
· (rather than 〈 , 〉) for the inner product of V . As before, let n be a fixed C∞

unit normal vector field, so that n ·n = ε with ε = ± 1, and let b denote the
real-valued second fundamental form of F (see (13.6)) relative to the unit normal
field n. Instead of F , one may use the traditional generic symbol r. For any fixed
local coordinate system xj in M , one represents the partial derivatives ∂/∂xj of
V -valued functions (such as n or r) by subscripts, as in rj = ∂r/∂xj . Each rj
then is tangent to M , namely, it coincides with the coordinate vector field ej in
the direction of xj (see (2.1)). The metric g on M obtained as the pullback under
F of the constant metric in V is traditionally referred to as the first fundamental
form of the immersion F , and its component functions gjk can also be expressed
as gjk = rj·rk. Applying (13.2) and (13.8) to w = rj along a curve t 7→ x(t) ∈M
which is a coordinate line (i.e., for some k, xk(t) = t and xl(t) is constant whenever
l 6= k), we now obtain the second-derivative formula

(13.10) rjk = Γ ljkrl + bjkn , gjk = rj·rk , bjk = εn·rjk ,

where the Γ ljk are the Christoffel symbols of g (see (4.1)). A more general version

of (13.10), for higher codimensions, may be obtained by choosing normal vector
fields na that locally trivialize the normal bundle of F ; then, (13.10) will remain
valid if we replace the last term with Bajkna, with suitable functions Bajk = Bakj .

Theorem 13.6 (Gauss, Codazzi, Bonnet). Let b be a symmetric twice-covariant
C∞ tensor field on a pseudo-Riemannian manifold (M, g), and let ε = ±1. The
following two conditions then are equivalent :

(i) The curvature tensor R of (M, g) along with b and ε satisfy the Gauss
and Codazzi equations (12.4), i.e., (12.2) and (12.3).

(ii) Every point x ∈ M has a neighborhood U that admits a codimension-
one isometric embedding F into a pseudo-Euclidean vector space V with
a constant metric 〈 , 〉 such that b is the real-valued second fundamental
form of F relative to a C∞ normal vector field n, as in (13.6), and
〈n, n〉 = ε.

Proof. Necessity: If F with these properties exists, then the connection D in
E = TM⊕ [M×R], given by (12.1), must be flat since, in view of (13.2) and (13.8),
it is the pullback under F of the Levi-Civita connection of (V, 〈 , 〉). Sufficiency (this
part is known as Bonnet’s theorem): Using flatness of D and Lemma 11.2, we may
select, in a neighborhood of any point x of M , a local trivialization ea = (ua, fa)
of E consisting of parallel sections. Since D is obviously compatible with the pseu-
do-Riemannian fibre metric in E (also denoted 〈 , 〉), which is obtained as the direct
sum of g and ε dt2 (where t is the standard coordinate in the fibre R of M ×R),
we may also require that the ea be h-orthonormal. Then, with εa = 〈ea, ea〉 = ±1,

(13.11) g =
∑
a

εa ua ⊗ ua

in the sense that g(v, w) =
∑
a εag(v, ua)g(w, ua) for any vector fields v, w tangent

to M near x. (In fact, as the ea are 〈 , 〉-orthonormal, g(v, w) = 〈(v, 0), (w, 0)〉 =
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a εa〈(v, 0), ea〉·〈(w, 0), ea〉.) On the other hand, in view of (12.1), relation Dea =

0 implies ∇vwa = εfab(v, · ) for all vectors v tangent to M at points near x.
Thus, symmetry of b yields dwa = 0, where wa is identified with the 1-form
g( · , wa) in M . Hence, by Corollary 11.3, near x we have 〈 · , wa〉 = dFa for some
functions Fa, a = 0, 1, . . . , n (n = dimM). Setting F = (F0, F1, . . . , Fn), we then
obtain g =

∑
a εa dFa ⊗ dFa in view of (10.31), i.e., g is the pull-back under F

of the standard inner product in Rn+1 with the sign pattern (ε0, . . . , εn). This
completes the proof. �

Let B be the second fundamental form of a nondegenerate immersion F : M →
(N,h). One says that F is totally geodesic if B is identically zero. More generally,
F is called totally umbilical if there exists a section u of the normal bundle N of
F with

(13.12) B = g ⊗ u with g = F ∗h

(notation as in (2.29)), in the sense that Bx(v, w) = [gx(v, w)]u(x) for all x ∈M
and v, w ∈ TxM . This normal vector field u then is referred to as the mean
curvature vector (field) of F .

We say that a submanifold M of a pseudo-Riemannian manifold (N,h) is non-
degenerate if so is the inclusion mapping F : M → N . Both the second fundamental
form, and the properties of being totally umbilical (or, totally geodesic) thus make
sense for nondegenerate submanifolds. In particular, by a nondegenerate subspace
of a pseudo-Euclidean vector space V (see (3.22)) is nothing else than a vector
subspace which is nondegenerate as a submanifold of V .

Lemma 13.7. Given a finite-dimensional real or complex vector space V and C1

curves I 3 t 7→ wa(t) ∈ V of vectors in V , a = 1, . . . ,m, defined on an interval I
and such that, for each t ∈ I, the vectors w1(t), . . . , wm(t) are linearly independent,
the following two conditions are equivalent :

(a) The subspace W =W(t) spanned by w1(t), . . . , wm(t) is the same for all
t ∈ I.

(b) For some continuous functions I 3 t 7→ f ba(t), we have

(13.13) ẇa(t) = f ba(t)wb(t) , a = 1, . . . ,m ,

with a summation over b = 1, . . . ,m.

Proof. If W =W(t) does not depend on t, (13.13) follows since the wb(t) form a
basis of W and ẇa(t) ∈ W. Conversely, let us assume (b) and fix t0 ∈ I. Solving
(13.13) as a system of linear ordinary differential equations with the unknown func-
tions wa valued in the space W(t0) rather than V , with the initial values wa(t0)
at t = t0, we obtain a solution with wa(t) ∈ W(t0) for all a and t, and so (i)
follows from the uniqueness-of-solutions theorem for ordinary differential equations.
This completes the proof. �

Lemma 13.8. The totally geodesic nondegenerate submanifolds of any fixed di-
mension n in a given pseudo-Euclidean vector space V with the constant metric
h = 〈 , 〉 (Example 10.3) are precisely the open submanifolds of arbitrary cosets of
n-dimensional nondegenerate vector subspaces of V .
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Proof. Let M be a nondegenerate submanifold of V , and let t 7→ w(t) ∈ Tx(t)M

be a C1 tangent vector field along a C1 curve t 7→ x(t) ∈ M . Thus, at any t,
B(ẋ(t),w(t)) equals the [Tx(t)M ]⊥-component of Dẋw = dw/dt.

Suppose now that M = x0 +W is a coset of a nondegenerate vector subspace
W of V . Thus, we have Tx(t)M = W, and so dw/dt ∈ W for all t, i.e., its

W⊥-component is zero, which shows that B = 0.
Conversely, let B = 0, and let wj(t), j = 1, . . . , n, be C1 tangent vector fields

along any C1 curve t 7→ x(t) ∈ M , forming at each t a basis of at Tx(t)M .

Now, as B = 0, (13.2) implies that dwj/dt ∈ Tx(t)M , i.e., dwj/dt = fkj (t)wj(t)

(summed over k = 1, . . . , n), with some continuous functions t 7→ fkj (t). By
Lemma 13.7, the tangent space Tx(t)M of M is constant along the curve t 7→ x(t)
and, M is connected (by definition), TxM is the same for all points x ∈ M .
Thus, the normal space of M is the same at all points; choosing its basis ua
(a = n + 1, . . . ,m = dimV ), we see that, for suitable constants ca, every x ∈ M
obeys the system of m−n equations 〈ua,x〉 = ca (since 〈ua, dx/dt〉 = 0 for every
C1 curve t 7→ x(t) ∈M). In view of Corollary 13.2, this completes the proof. �

Lemma 13.9. Given an n-dimensional nondegenerate submanifold M , n ≥ 2,
of a pseudo-Euclidean vector space V of any dimension, with the constant metric
h = 〈 , 〉 (Example 10.3), the following two conditions are equivalent :

(i) M is totally umbilical and its mean curvature vector u appearing in
(13.12) is not null, that is, 〈u,u〉 6= 0 somewhere in M .

(ii) M is contained as an open submanifold in the intersection Σ ∩ (W +o)
of a pseudosphere

(13.14) Σ = {x ∈ V : 〈x− o, x− o〉 = c}

in V , with some center o and some real c 6= 0, and the coset through o
of an (n+ 1)-dimensional nondegenerate vector subspace W of V .

Furthermore, for M , o, c as in (ii), formula

(13.15) n(x) = |c|−1/2(x− o) , x ∈M ,

defines a unit normal vector field n for M with 〈n,n〉 = ε, where ε = sgn c =
±1, and the second fundamental form B of M is given by

(13.16) Bx(v, w) = − ε|c|−1/2〈v, w〉n(x) ,

for all x ∈M and v, w ∈ TxM ⊂ V .

Proof. Assume (ii). For any fixed C2 curve t 7→ x(t) ∈ M , let us write x instead
of x(t) and set v = v(t) = cẍ − 〈ẍ,x − o〉[x − o] with ẍ = d2x/dt2. Since
TxM = (x−o)⊥∩W and v ∈ W is clearly orthogonal to x−o, we have v ∈ TxM
and, as cẍ = v + 〈ẍ, x−o〉[x−o], we see that 〈ẍ, x−o〉[x−o] is the component
of cẍ = cDẋẋ normal to M . Thus, by (13.5), cB(ẋ, ẋ) = 〈ẍ,x − o〉[x − o].
However, applying d/dt twice in a row to the relation 〈x−o,x−o〉 = c, we obtain
〈ẋ, x − o〉 = 0 and 〈ẍ, x − o〉 = −〈ẋ, ẋ〉 for all t. Consequently, cB(ẋ, ẋ) =
−〈ẋ, ẋ〉[x− o] and so (i) and (13.16) are immediate from symmetry of B.
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Conversely, let us assume (i) and fix a local coordinate system xj in M . Using
the traditional notations described in Remark 13.5, we can express (13.12) as

(13.17) rjk = Γ ljkrl + gjku , gjk = rj·rk ,

where the Γ ljk are the Christoffel symbols of g (see (4.1)), and u is the mean

curvature vector field of M . Differentiating (13.17) and taking the component
normal to M , we thus get [rjkl]

norm = (Γ sjkgsl+ ∂lgjk)u +gjk[ul]
norm, as [rl]

norm =

0. Hence 0 = [rjkl − rjlk]norm = [gjk ul − gjl uk]norm. (Note that Γ sjkgsl + ∂lgjk −
Γ sjlgsk − ∂kgjl = 0 in view of (4.1).) Contracting this against gjk, we obtain

(n− 1)[ul]
norm = 0.

Consequently, the partial derivatives uj = ∂u/∂xj are all tangent to M , i.e.,

(13.18) uj = hkj rk

for some C∞ functions hkj . In view of the second formula in (13.17), this gives

hljglk = uj·rk = −u·rkj (as u·rk = 0) and so the first relation in (13.17) implies

hljglk = − [u ·u] gjk, i.e., hkj = − [u ·u] δkj . Now, using (13.18) and the equality
(u·u)j = 2uj·u, we obtain

(13.19) uj = − (u·u) rj , (u·u)j = 0 ,

with the subscripts still standing for partial derivatives.
On the other hand, in view of (13.17) and (13.18), we can apply Lemma 13.7

to r1, . . . , rn and u (n = dimM) along any C1 curve in M , concluding that the
vector space W ⊂ V spanned by r1, . . . , rn and u is the same at all points of
M . Choosing a basis wa of W (a = n + 2, . . . ,m = dimV ), we see that M is
contained in a coset of W consisting of all x with wa·x = ca for some constants
ca (since wa·ẋ = 0, with ẋ = dx/dt, for every C1 curve t 7→ x(t) ∈M).

Furthermore, according to (13.19), u·u is constant on M . The assumption that
u is not null (which we have not used yet) now allows us to define real numbers
c 6= 0 and ε by u·u = 1/c and ε = sgn c = ±1, and a unit normal vector field
n for M with n·n = ε, by n = |c|−1/2 u. The first relation in (13.19) now states
that the V -valued function r − cn is constant on M . Denoting o its constant
value, we thus see that M is contained in the pseudosphere Σ with (13.14). Also,
as o = r − cn, the coset of W containing M must contain o, i.e., is nothing else
than the set W + o. Hence M is a subset of Σ ∩ (W + o). Finally, openness of
M in Σ follows from Corollary 13.2. This completes the proof. �

Remark 13.10. In the case where the inner product 〈 , 〉 of V is positive definite,
condition (i) in Lemma 13.9 states that M is totally umbilical, but not totally
geodesic. However, for spaces V with indefinite inner products 〈 , 〉, there exist non-
totally geodesic, totally umbilical submanifolds which are not of the type described
in Lemma 13.9(ii). Namely, let us choose a degenerate subspace W of W such
that W ∩ W⊥ = Ru for some nonzero vector u ∈ V (cf. (3.22)) and select
a subspace X of W which is complementary to Ru (that is, W = X ⊕ [Ru]).
Furthermore, let f : X → R be any quadratic polynomial function whose second-
degree homogeneous part is 〈 , 〉 (i.e., f(x) = 〈x − o, x − o〉 + a for all x ∈ X ,
with some fixed o ∈ X and a ∈ R). Then the pseudo-paraboloid

(13.20) M = {x + f(x)u : x ∈ X}
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(i.e., the “graph” of f realized in W) is a nondegenerate totally umbilical sub-
manifold of V , for which our u is its (constant) mean curvature vector field. Note
that u is null, being both in W and orthogonal to W.

The proof of Lemma 13.9 can be easily modified to show that for any non-totally
geodesic, totally umbilical nondegenerate submanifold M of a pseudo-Euclidean
vector space V , the mean curvature vector field is either non-null at every point, or
null and constant, and in the latter case M must be contained as an open subman-
ifold in a translation image of a pseudo-paraboloid of the type just described. In
fact, without using the assumption that 〈u,u〉 6= 0, we found that M is contained
in a coset of the subspace W of V spanned by r1, . . . , rn and u, while (13.19)
with u·u = 0 shows that u is constant. Thus, up to a translation in V , M has
the form (13.20) for some function f : X → R. A fixed basis ej of X leads to the
coordinates xj in M , for which the numbers x1, . . . , xn, n = dimM associated
with the point r = x + f(x)u ∈ M are characterized by x = xjej . In these
coordinates, rj = ej , and so rjk = (∂j∂kf)u. Thus, in view of (13.17), f now
must have constant second-order partial derivatives ∂j∂kf = gjk = ej·ek, i.e., f
has to be a quadratic polynomial with the required second-degree part.

§14. The simplest classification theorems

In this section we show that the examples described in §10 have the properties
they were claimed to have and, in addition, are uniquely (up to a local isometry)
characterized by them. The classification result in question is a special case of a
theorem due to Cartan (see Cartan, 1926, and Helgason, 1978).

Proposition 14.1. Given a real number c 6= 0, any connected component of a
nonempty pseudosphere {v ∈ V : 〈v, v〉 = c} in a pseudo-Euclidean vector space
V (Example 10.3) is a space of constant curvature K = 1/c.

In fact, formula (13.16) gives (13.6) with b = − ε|c|−1/2g, where g is the sub-
manifold metric of the pseudosphere, b is its real-valued second fundamental form,
and ε = sgn c = ±1. Theorem 13.6 now implies the Gauss equation (12.2), which
is nothing else than (10.1) with K = 1/c. �

Theorem 14.2. Every pseudo-Riemannian space (M, g) of constant curvature K
is locally isometric to

(i) a pseudosphere with a metric obtained as in Example 10.4, if K 6= 0, or
(ii) a pseudo-Euclidean vector space with the constant metric provided by its

inner product as in Example 10.3, if K = 0.

Proof. Let ε = ±1 be either arbitrary (if K = 0), or equal to sgn(K) (if K 6= 0),

and let us set, in both cases, b =
√
|K| g. We thus have (12.2) and (12.3) (that is,

(12.4)) in view of (10.1) and the obvious relation ∇b = 0. According to Bonnet’s
Theorem (i.e., the sufficiency part of Theorem 13.6), a connected neighborhood
U of any point of (M, g) can be isometrically embedded as a codimension-one
submanifold of a pseudo-Euclidean vector space for which b is the real-valued
second fundamental form relative to a unit normal vector field n with 〈n, n〉 = ε.
Since b is a multiple of g, this submanifold is totally umbilical, and so it must be
contained as a relatively open subset in an affine hyperplane (when b = 0; Lemma
13.8), or in a pseudosphere (when b 6= 0; Lemma 13.8). This completes the proof.
�
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Proposition 14.3. A pseudo-Riemannian manifold (M c, gc) obtained as in Ex-
ample 10.6, for any c 6= 0, is a nonflat space of constant holomorphic sectional
curvature. In particular, it satisfies (10.5) with a suitable α and with λ = µ = 1/c.

Proof. The construction in Example 10.6, leading to a manifold (M c, gc) of some
(even) real dimension n, begins with a complex vector space V of complex di-
mension (n/2) + 1. We then denote P (V ) ≈ CPn/2 the projective space of V ,
formed by all complex lines through 0 in V , and let pr : V r {0} → P (V ) be the
natural projection. Next, we fix a pseudo-Hermitian inner product 〈 , 〉 in V and
a real number c 6= 0. Denoting Sc the pseudosphere in V given by (10.4), i.e.,
Sc = {v ∈ V : 〈v, v〉 = c}, we then define M c to be the pr -image

(14.1) M c = pr (Sc) ⊂ P (V )

of Sc. Obviously, M c depends only on sgn (c), and is a manifold (namely, an
open subset of P (V )). Furthermore, M c carries the quotient pseudo-Riemannian
metric gc induced by the metric of Sc, as described in Example 10.6. Specifically,
given v ∈ Sc and w ∈ TvSc (i.e., any vector w ∈ V with Re 〈w, v〉 = 0), denoting
u = dprvw, we have gc(u, u) = 〈w′, w′〉, where w′ is the component of w 〈 , 〉-
orthogonal to v. Thus,

(14.2) gc(u, u) = 〈w,w〉 − c−1|〈w, v〉|2 .

For any fixed v ∈ Sc, let us choose a codimension-one complex vector subspace
V ′ of V with v /∈ V ′, and let M be the open set in V ′ formed by all y with
c〈v + y, v + y〉 > 0. The mapping

(14.3) M 3 y 7→ pr (v + y)

now equals the composite

M → V ′ → Sc → M c

(with V ′ = {x ∈ V : c〈x, x〉 > 0}) of the shift y 7→ y + v followed by the

Sc-valued normalization mapping w 7→ (v + y)/|w| (with |w| =
√
|〈w,w〉|) and

then by the restriction of pr to Sc. Clearly, (14.3) is a diffeomorphism of M
onto an open subset M ′ of M c (in fact, it is the inverse of a standard projective
coordinate system). Identifying M ′ with M via (14.3), we now obtain an almost
Hermitian pseudo-Riemannian manifold (M, g, α) (with g corresponding, under
(14.3), to gc), and one easily verifies that (12.8) is satisfied by the 1-form ξ on
M given by [ξ(y)]w = i Im 〈v + y, w〉/〈v + y, v + y〉. The complex vector bundle
E = TM⊕[M×C] over M now can be naturally identified with the product bundle
M × V in such a way that the standard flat connection in M × V corresponds
to the connection D in E given by formula (12.9). In fact, a direct computation
show that this can be achieved if the identification in question is chosen to be
(ẏ, z) 7→ ẏ + z(v + y) ∈ V for any y ∈ M , z ∈ C and any ẏ ∈ V ′ = TyM . By
Lemma 12.4(ii), (M, g) thus is a nonflat space of constant holomorphic sectional
curvature, which completes the proof. �

We have the following converse to Proposition 14.3, which is a local classification
theorem for nonflat spaces of constant holomorphic sectional curvature. Note that
flat pseudo-Riemannian manifolds are already classified by Theorem 14.2(ii).
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Theorem 14.4. Every nonflat pseudo-Riemannian space of constant holomorphic
sectional curvature is locally isometric to one of the manifolds (M c, gc) described
in Example 10.6.

Proof. Let (M, g, α) be a nonflat pseudo-Riemannian space of constant holomor-
phic sectional curvature. Thus, (10.5) holds with λ = µ = s/[n(n+2)], n = dimM
(see (10.10)), and we may define a real number c 6= 0 by c = 1/λ. Furthermore,
since the Kähler form α is parallel, we have dα = 0 (see the paragraph following
formula (4.22) in §4) and so, according to Poincaré’s Lemma for 2-forms (Remark
11.5), any point of M has a neighborhood U ′ with a differential 1-form ξ satis-
fying (12.8). Thus, by According to Lemma 12.4(ii), the connection D given by
(12.9) in the complex vector bundle E = TU ′ ⊕ [U ′ × C] over U ′ is flat. Let us
now choose, for any given point x ∈M , a neighborhood U of x contained in U ′

and satisfying the assertion of Lemma 11.2 with ∇ = D, and let us denote V the
set of all D-parallel sections of E , defined on U . Due to our choice of U , this V
is a complex vector space of complex dimension (n/2) + 1. Moreover, V carries a
pseudo-Hermitian inner product 〈 , 〉 given by formula (12.10) (which, by Lemma
12.4(i), yields a constant value for a pair of parallel sections (u, f) and (w, h)).
Denoting Sc the pseudosphere in V given by Sc = {v ∈ V : 〈v, v〉 = c}, we may
now define a mapping Φ : U → Sc by declaring Φ(y), for any y ∈ U , to be the
unique parallel section (u, f) of E (notation of Lemma 12.4) defined on U and
satisfying the initial conditions

(14.4) u(y) = 0 , f(y) = 1 .

In view of the dependence-on-parameters theorem for ordinary differential equa-
tions, Φ is of class C∞. Furthermore, let P (V ) ≈ CPn/2 be the projective space
of V , formed by all complex lines through 0 in V , and let pr : V r {0} → P (V )
be the natural projection. We now define a mapping F : U → P (V ) to be the
composite

(14.5) F = pr ◦ Φ .

Note that the pr -image pr (Sc) of the pseudosphere Sc, which depends only on
sgn (c), is a manifold (being an open subset of P (V )), and it carries the quotient
pseudo-Riemannian metric gc induced by the metric of Sc, and described in Ex-
ample 10.6.

Let us now consider any C1 curve I 3 t 7→ y(t) ∈ U , where I ⊂ R is an interval.
Thus, for y ∈ U , [Φ(y(t))](y) = (u(t, y), f(t, y)) (notation of Lemma 12.5), with

(14.6) u(t, y(t)) = 0 , f(t, y(t)) = 1

for all t ∈ I (in view of (14.4)). Applying d/dt to (14.6), we see that

(14.7) ∂u/∂t = −∇ẏu ∂f/∂t = − dẏf

along the curve (t, y(t)). (To see this, use the chain rule and (4.12), which then
yields [∇ẏu]j = uj,kẏ

k ∂ku
j , as u(t, y(t)) = 0.) On the other hand, Φ(y(t)) is, for

each t, a D-parallel section of E . Therefore, formulae (12.9) and (14.6), (14.7) give,
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along the curve t 7→ (t, y(t)), ∂u/∂t = ẏ and ∂f/∂t = iξ(ẏ). Thus, at y = y(t),
we have dΦy ẏ = [Φ(y)]˙ = (∂u/∂t, ∂f/∂t) = (ẏ, iξ(ẏ)). This shows that

(14.8) [Φ(y)](y) = (0, 1) , [dΦyw] (y) = (w, iξ(w))

for any y ∈ U and w ∈ TyM . (Note that dΦyw ∈ V , as Φ is V -valued, while
Re 〈dΦyw,Φ(y)〉 = 0 by (14.8), which expresses the fact that dΦyw is tangent to
the pseudosphere Sc.)

To evaluate gc(dFyw, dFyw) for y ∈ U and w ∈ TxM , we may use the descrip-
tion of a quotient metric given in the paragraph preceding Example 10.6. Thus,

(14.9) gc(dFyw, dFyw) = 〈v′, v′〉 = 〈dΦyw, dΦyw〉 − 〈v, v〉 ,

with v′ ∈ V uniquely characterized by the existence of a decomposition dΦyw =
v + v′ ∈ V such that v is an imaginary multiple of Φ(y) and 〈v′, Φ(y)〉 = 0.
Consequently, v = c−1〈dΦyw,Φ(y)〉Φ(y), and so, by (14.9) and (9.3), (12.10),
gc(dFyw, dFyw) = 〈w,w〉c = g(w,w). In other words, F is isometric, i.e.,
g = F ∗gc, and so it is a nondegenerate immersion of U into V (cf. the para-
graph following Corollary 13.2). Replacing U with a smaller neighborhood of x,
we may thus assume that F : U → pr (Sc) is an isometric embedding (see the
beginning of §13). Thus, by Corollary 13.2, F (U) is open as a subset of pr (Sc),
while F is an isometry between U and F (U). This completes the proof. �

The next result is a local classification of those Einstein 4-manifolds which are
Riemannian products of surfaces.

Theorem 14.5. For any pseudo-Riemannian 4-manifold (M, g), the following
four conditions are equivalent :

(i) Every point of M has a neighborhood isometric to the Riemannian prod-
uct of two pseudo-Riemannian surfaces with equal constant curvatures.

(ii) (M, g) is an Einstein manifold and the tangent bundle TU of some
neighborhood U of any point of M can be decomposed as a direct sum
TU = P ⊕Q of two mutually orthogonal plane bundles P, Q, which are
parallel as subbundles of TU , i.e., invariant under parallel transports.

(iii) Every point of M has a neighborhood U on which (10.13) holds for some
C∞ bivector fields β, γ, numbers δ, ε, and orthonormal C∞ vector fields
e1, . . . , e4 with (10.14) and (10.15).

(iv) In a neighborhood U of any point x ∈ M we have (10.16) with some
symmetric twice-covariant C∞ tensor fields P,Q satisfying (10.17).

Proof. Condition (i) clearly implies (ii), with the subbundles P, Q in (ii) chosen
so as to be tangent to the factor surfaces in (i). (To see this, use (4.1) in a product
coordinate system.) Let us now assume (ii) fix a point x ∈ M . We may choose
orthonormal C∞ vector fields e1, . . . , e4 defined on neighborhood U of x and
such that P = Span {e1, e2} and Q = Span {e3, e4}, and set, for j = 1, . . . , 4,

(14.10) εj = gjj = g(ej , ej) = ± 1 , δ = ε1ε2 , ε = ε3ε4 .

Let P,Q : TU → TU now be the bundle morphisms of orthogonal projections onto
P and Q. Thus,

(14.11) ∇P = ∇Q = 0 .
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Applying (4.27) to F = P or F = Q we see that, for any j, k ∈ {1, 2, 3, 4}, the
operator R(ej , ek) commutes with both P and Q, and hence leaves the spans
P of e1, e2 and Q of e3, e4 invariant. Denoting Rjklm = g(R(ej , ek)el, em) the
component functions of the curvature tensor R, and using skew-symmetry of Rjklm
in l,m (see (4.32)), we thus see that Rjklm = 0 unless {l,m} = {1, 2} or {l,m} =
{3, 4}. Hence, by (4.33), R1234 = −R1342 − R1423 = 0. Moreover, Rjklm = Rlmjk
by (4.32), and so Rjklm must be zero unless {j, k} = {l,m} = {1, 2} or {j, k} =
{l,m} = {3, 4}. Let us now set λ = ε1ε2R1212 and µ = ε3ε4R3434, with εj as in
(14.10). The components Rjk = Ric (ej , ek) of the Ricci tensor Ric thus satisfy
the relations Rjj = λgjj if j ∈ {1, 2} and Rkk = µgkk if k ∈ {3, 4}. Since (M, g)
is Einstein, it follows that µ = λ, Ric = λg, and the scalar curvature s is given
by s = 4λ. Formula

(14.12) β = e1 ∧ e2 , γ = e3 ∧ e4

now defines bivector fields β, γ on U which are uniquely (up to a sign) determined
by P and Q, and hence parallel. Using (14.10), (2.21) and (2.27), we easily obtain
(10.14) and (10.15). Furthermore, (10.13) holds, since both sides have the same
components Rjklm. (Note that, by (14.10) and (2.21), the only nonzero components
of β and γ are β12 = −β21 = ε1ε2 and γ34 = −β43 = ε3ε4.) Thus, (ii) implies
(iii).

Let us now assume (iii) and define the vector subbundles P, Q of TU by
P = Span {e1, e2} and Q = Span {e3, e4} In view of (14.12) and (2.22), P and
Q are the kernels of γ and β (as well as the images of β and γ), and so they
are parallel as subbundles of TU . Setting P = ε1e1 ⊗ e1 + ε2e2 ⊗ e2 and Q =
ε3e3⊗e3 + ε4e4⊗e4, we easily see that P,Q : TU → TU are the bundle morphisms
of orthogonal projections onto P and Q, so that (14.11) follows, and so P,Q satisfy
(10.17), Furthermore, applying (5.39) to A = δP , v = e1 and w = e2, or A = εQ,
v = e3 and w = e4, we can rewrite (10.13) as (10.16). We thus showed that (iv)
follows from (iii).

Finally, to prove that (iv) implies (i), let us suppose that (iv) holds. In the case
where s = 0, (M, g) is flat and (i) is obvious (cf. Theorem 14.2(i)). Thus, from
now on we may assume that s 6= 0. We thus have (12.15) with c = 4/s, and so
the connection D in the vector bundle E over M , introduced in Lemma 12.5,
is flat. Let us now choose, for any given point x ∈ M , a neighborhood U of x
satisfying the assertion of Lemma 11.2 with ∇ = D. The set V of all D-parallel
sections of E , defined on U , thus is a six-dimensional real vector space. Moreover,
V carries the pseudo-Euclidean inner product 〈 , 〉 given by (12.14) (which gives
a constant value for a pair of parallel sections), and has a pair of mutually 〈 , 〉-
orthogonal three-dimensional subspaces V ′, V ′′ consisting of those parallel sections
on U which are valued in the parallel subbundle P (or, respectively, Q). Let us
now define a mapping F : U → V in such a way that, for y ∈ U , F (y) is the
unique parallel section (u, ϕ, χ) of E (notation as in Lemma 12.5), defined on U ,
with

(14.13) u(y) = 0 , ϕ(y) = χ(y) = |c|1/2

and let F ′(y), F ′′(y) be the components of F (y) relative to the direct-sum de-
composition V = V ′ ⊕ V ′′. Both F ′(y) and F ′′(y) thus are parallel sections of
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E , defined on U , with the values at y equal to (0, |c|1/2, 0) and, respectively,
(0, 0, |c|1/2). Evaluating the inner product (12.14) at the point y, we thus get
〈F ′(y), F ′(y)〉 = 〈F ′′(y), F ′′(y)〉 = c, i.e., the image F (U) is contained in subman-
ifold N of V given by

(14.14) N = {ψ′ + ψ′′ : ψ′ ∈ V ′, ψ′′ ∈ V ′′, 〈ψ′, ψ′〉 = 〈ψ′′, ψ′′〉 = c} .

Clearly, N with the submanifold metric induced by 〈 , 〉 is the Riemannian product
of pseudospheres with the same constant curvature K = 1/c (Proposition 14.1).
Finally, for any y ∈ U and w ∈ TyM , we have

(14.15) [dFyw] (y) = (w, 0, 0) .

(Note that dFyw ∈ V , as F is V -valued; thus, dFyw is a parallel section of E ,
defined on U , and so its value at y is an ordered triple, namely, an element of
TyM ×R ×R.) To establish (14.15), let us consider any C1 curve t 7→ y(t) ∈ U
and set F (y) = (u, ϕ, χ) (notation of Lemma 12.5), where y = y(t) and, similarly,
each of u, ϕ, χ also depends both on t and on y ∈ U . Applying d/dt to the
relations

(14.16) u(t, y(t)) = 0 , ϕ(t, y(t)) = χ(t, y(t)) = |c|1/2

(immediate from (14.13)), we obtain

(14.17) u̇ = −∇ẏu ϕ̇ = − dẏϕ , χ̇ = − dẏχ

along the curve (t, y(t)), where we write u̇ = ∂u/∂t and similarly for ϕ and χ ;
in fact, this is clear from the chain rule and (4.12), (which then yields [∇ẏu]j =
uj ,kẏ

k ∂ku
j , as u(t, y(t)) = 0). However, since F (y) = (u, ϕ, χ) is D-parallel, as a

section of E , for each fixed t, the definition of D in Lemma 12.5, combined with
(14.17) and (14.16), gives, along the curve (t, y(t)), u̇ = P ẏ+Qẏ = ẏ (cf. (12.13))
and ϕ̇ = χ̇ = 0. Thus, dFy ẏ = [F (y)]˙ = (u̇, ϕ̇, χ̇) = (ẏ, 0, 0), which proves (14.15).

Evaluating the (constant) inner product of parallel sections at the point y, we
now get, from (14.15), 〈dFyv, dFyw〉 = g(v, w). In other words, F is isometric,
i.e., g = F ∗h, and so it is a nondegenerate immersion of U into V (cf. the
paragraph following Corollary 13.2. Replacing U with a smaller neighborhood
of x, we may thus assume that F : U → V is an isometric embedding (see the
beginning of §13). As F (U) ⊂ N , Corollary 13.2 implies that F (U) is open as a
subset of F (U) and F is an isometry between U and F (U). This completes the
proof. �

Remark 14.6. The assertion of Theorem 14.5 can also be derived from de Rham’s
Theorem 4.10.

We can now prove the main result of this section.

Theorem 14.7 (Cartan, 1926). Let (M, g) be a Riemannian four-manifold which
is both locally symmetric and Einstein. Then, every point in M has a neighborhood
isometric to an open subset of (N,h), where (N,h) is either one of the manifolds
listed in Examples 10.3, 10.4 and 10.6, or the Riemannian product of two Riem-
annian surfaces with equal constant curvatures, both obtained as in Example 10.4.
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Proof. If W+ = 0 for both local orientations, we have W = 0, so that (5.10)
implies (10.1), and the assertion follows from Theorem 14.2. Therefore, we may
now assume that every of point M has a neighborhood U with an orientation such
that W+ 6= 0 everywhere in U . Choosing αj , λj , ξj and uj , j = 1, 2, 3, satisfying
(6.24), (6.12), (6.26) and (6.28) on a nonempty open subset of U , let us first note
that the λj cannot be all equal (as λ1 + λ2 + λ3 = 0 by (6.19), while W+ 6= 0).
Let us now fix the values of j, k, l in such a way that {j, k, l} = {1, 2, 3} and λj
is a simple eigenvalue of W+. Then let us set α = αj . In view of Proposition 9.8
and Corollary 9.9(ii), α is parallel, λj = s/6, and λk = λl = − s/12.

The parallel tensor W− may or may not be identically zero. If it is, W has
the spectrum (10.20), with s 6= 0 (as W+ 6= 0) and so, by (5.33), the spectrum
of R is given by (10.21), with the parallel bivector field α = αj corresponding
to the eigenvalue s/4. Since the curvature operator acting on bivectors via (5.13)
uniquely determines the curvature tensor, the latter must equal (10.5) with λ and
µ given by (10.10). Thus, the Kähler manifold (U, g, α) has constant holomorphic
sectional curvature, and our assertion follows from Theorem 14.4.

Finally, let us suppose that W− 6= 0. Applying the above argument to the
opposite orientation we see that Λ−U admits, locally, a parallel section α−, which
can be normalized so that 〈α−, α−〉 = 2. Since α+ = α and α−, treated as skew-
adjoint bundle morphisms TU → TU , commute by Corollary 6.3, and [α±]2 =
− Id (see (6.7)), their composite F = α+α− is a self-adjoint and satisfies F 2 = Id.
This gives rise to a direct-sum decomposition TU = P+⊕P− with subbundles P±
of TU such that F = ± Id on P± (see Remark 3.2). Moreover, the subbundles
P± are parallel, since so if F (cf. Remark 4.7). Also, since α = αj anticommutes
with αk and αl, for j, k, l as above (see (6.12)), while α− commutes with them
(Corollary 6.3), it follows that F anticommutes with αk and so both eigenspace
bundles P± of F must have the same fibre dimension 2 (as αk interchanges them).
Finally, self-adjointness of F implies that the subbundles P = P+ and Q = P−
are mutually orthogonal (see Remark 3.17(i)). Thus, P and Q satisfy condition
(ii) of Theorem 14.5. By Theorem 14.5, this leads to the product-of-surfaces case
of our assertion, which completes the proof. �

Remark 14.8. Due to their algebraic provenience, all of the examples of Einstein
manifolds described in this section are (real) analytic. This is more than a coin-
cidence: According to a result of DeTurck and Kazdan (1981), every Riemannian
Einstein metric g on a manifold M is analytic in suitable local coordinate sys-
tems whose domains cover M . It follows that the C∞ differentiable structure of
M then contains a unique real-analytic structure that makes g analytic; in fact,
transitions between the coordinate systems just mentioned are isometries between
analytic Riemannian metrics, and as such they must be analytic (since, in normal
geodesic coordinates, an isometry appears as a linear operator).

DeTurck and Kazdan’s analyticity theorem cannot, however, be generalized to
indefinite Einstein metrics; see Remark 15.15.

§15. Einstein hypersurfaces in pseudo-Euclidean spaces

In this section we classify, locally, those Einstein four-manifolds (M, g) which
are isometric to hypersurfaces in 5-dimensional pseudo-Euclidean vector spaces. In
the case where g is positive-definite or Lorentzian, there are no surprises: (M, g)
then is necessarily a space of constant curvature (Proposition 15.6). However, there
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is a large class of other Ricci-flat metrics with this property, having the neutral sign
pattern − − + + . See Example 15.14.

The results presented here are due to Fialkow (1938).
Codimension-one submanifolds of a pseudo-Euclidean vector space (with a con-

stant metric) seem to be a natural place to look for further examples of Einstein
manifolds (M, g). In view of Theorem 13.6, this amounts to imposing on an Ein-
stein metric g the Gauss and Codazzi equations (12.4) with some (unknown) tensor
field b. The resulting problem is easy to solve, at least in those cases of most in-
terest to us: It turns out (see Proposition 15.6 below) that nothing new can be
obtained in this way if we insist that dimM = 4 and the metric g be positive
definite.

Lemma 15.1. Let A : T → T be a linear operator in a 4-dimensional real vector
space T such that (TraceA)A − A2 is a multiple of Id, i.e, for some c ∈ R,

(15.1) A2 − pA + c = 0 with p = TraceA .

If SpecA denotes the complex spectrum of A, that is, the family of all complex
roots of its characteristic polynomial, listed with their multiplicities, then one of the
following five cases occurs, with a suitable real number µ :

(a) SpecA = {µ, 0, 0, 0}, µ 6= 0, while c = 0, p = TraceA = µ in (15.1),
and dimA(T ) = 1, dim(KerA) = 3, A2 = pA.

(b) SpecA = {µ, µ, µ, µ}, µ 6= 0, while c = 3µ2, p = TraceA = 4µ and
A = µ · Id, so that A2 = µ2 · Id = c · Id/3.

(c) SpecA = {µ, µ,−µ,−µ}, µ 6= 0, while c = −µ2, p = TraceA = 0 and
A2 = µ2 · Id = − c · Id.

(d) SpecA = {µi, µi,−µi,−µi}, µ 6= 0, while c = µ2 and p = TraceA = 0
and A2 = −µ2 · Id = − c · Id.

(e) SpecA = {0, 0, 0, 0}, while c = 0, p = TraceA = 0, as well as

(15.2) A2 = 0 , that is, A(T ) ⊂ KerA ,

and three subcases are possible:
(i) A = 0.
(ii) A(T ) ⊂ KerA and dimA(T ) = 1, dim(KerA) = 3.
(iii) A(T ) = KerA and dimA(T ) = dim(KerA) = 2. �

Remark 15.2. Any linear operator A : T → T in a finite-dimensional vector space
T , such that dimA(T ) ≤ 1 (see cases (a), (e)i) and (e)ii) of Lemma 15.1), must
have the form

(15.3) A = ξ ⊗ v

for some vector v ∈ T and a linear function ξ ∈ T ∗, in the sense that Aw = ξ(w)v
for all w ∈ T . To see this, just choose any v which spans A(T ).

Remark 15.3. It is an easy exercise to verify that A with (15.1) must be diago-
nalizable in cases (a), (b), (c), (e)i), and nondiagonalizable in cases (d), (e)ii) and
(e)iii).
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Proof of Lemma 15.1. Applying both sides of (15.1) to any eigenvector of A in
the complexified space T C = T + iT , we see that every complex root µ of the
characteristic polynomial P of A satisfies the quadratic equation

(15.4) µ2 − pµ + c = 0 , p = TraceA .

Hence P may have at most two distinct complex roots.
If P it has just one (quadruple) root µ, then p = TraceA = 4µ, and so, by

(15.4), c = 3µ2, i.e., (15.1) reads (A−3µ)(A−µ) = 0. Thus, the image of A−µ is
contained in the kernel of A− 3µ. If, in addition, µ = 0, this becomes (15.2) and,
as as dim(KerA) + dimA(T ) = dim T = 4, r = dimA(T ) satisfies r ≤ 4− r, that
is, r equals 0, 1 or 2, which leads to the cases (e)i), (e)ii), (e)iii). On the other
hand, in the case where the quadruple root µ of P is nonzero, A− 3µ is injective
(since 3µ is not an eigenvalue of A), and so the image of A−µ is {0} (case (b)).

However, if P has two distinct complex roots µ and ν, we may order them so
that µ has the lowest multiplicity. By (15.4), µ+ ν = p = TraceA. Consequently,
two cases are possible, namely (I): SpecA = {µ, µ, ν, ν}, and (II): SpecA =
{µ, ν, ν, ν}. Since SpecA is invariant under complex conjugation, in case (I) µ
and ν are either both real, or both nonreal and mutually conjugate, while in case
(II) they must both be real. Furthermore, in case (I), µ+ ν = TraceA = 2µ+ 2ν,
i.e., µ+ ν = 0, while in case (II), µ+ ν = TraceA = µ+ 3ν, i.e., ν = 0. Thus, in
case (I), (15.4) gives p = µ + ν = 0 and c = µν = −µ2, and hence (15.1) implies
assertion (c) (when µ, ν are real), or assertion (d) (when they are not real). In
the remaining case (II), let us choose v ∈ T with v 6= 0 and Av = µv. We have
dim[Ker (A − µ)] = 1 ; in fact, µ is a (real) eigenvalue of A, and the dimension
of the eigenspace cannot be higher than 1, since µ is a simple root of P . (Note
that µ 6= ν = 0.) Thus, dimA(T ) ≤ 1, since A(T ) ⊂ Ker (A− µ) ; namely, (15.4)
yields p = µ + ν = µ and c = µν = 0, so that, by (15.1), (A − µ)A = 0. Finally,
dimA(T ) = 1, since A 6= 0, as A has the eigenvalue µ 6= 0. This completes the
proof. �

Remark 15.4. Let b be any symmetric twice-covariant tensor field on a pseudo-
Riemannian manifold (M, g). Using the index-raising operation corresponding to
g, we may treat b as a self-adjoint bundle morphism TM → TM . Thus, if b is
of class C1, we can form, for any x ∈ M and v ∈ TxM , the composite b∇vb of
b and ∇vb, viewed as operators TxM → TxM . For the same reason, b sends any
tangent vector field w to a vector field denoted bw, and has a well-defined trace,
Trace b = gjkbjk, which is a function M → R, as well as a square b2, which is
a symmetric twice-covariant tensor field with the local components [b2]jk = bjlb

l
k.

Finally, we can speak of rank b, which at any x ∈M equals the dimension of the
image b(TxM) (and coincides with the matrix rank of [bjk(x)]). If rank b = r
is constant, we can form the vector subbundles b(TM) and Ker b of TM , of the
respective fibre dimensions r and dimM − r.

By a Codazzi tensor field on a pseudo-Riemannian manifold (M, g) we mean any
symmetric twice-covariant tensor field b on M which is of class C∞ and satisfies
the Codazzi equation (12.4) (or (12.2)), that is, bjk,l = bjl,k.

Lemma 15.5. With notations as in Remark 15.4, for any Codazzi tensor field b
on a pseudo-Riemannian manifold (M, g) such that b2 is parallel. Then

(a) We have b∇vb = 0 for all points x ∈ M and tangent vectors v ∈ TxM ;
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in other words,

(15.5) bsjbsk,l = 0 .

(b) If b is nondegenerate at some point of M , then b itself is parallel.
(c) If b2 = ag for some nonzero constant a, while b and the curvature tensor

R of (M, g) satisfy the Gauss equation Rjklm = ε (bjlbkm − bklbjm) with
ε = ±1, i.e., (12.2), then b = µg with a constant µ 6= 0 and (M, g) is a
space of nonzero constant curvature.

(d) If n = dimM is even, while b2 = 0, rank b = n/2 everywhere in M ,
and b along with the curvature tensor R satisfy the Gauss equation as in
(c), then b(TM) = Ker b and in a neighborhood of any point x ∈M there
exist n/2 linearly independent, mutually orthogonal, null parallel vector
fields, which all are sections of the subbundle b(TM).

Proof. Taking the covariant derivative of b2 and using (12.4), we obtain 0 =
bsjbsk,l + bskbsj,l = 0. Thus, bsjbsk,l is skew-symmetric in j, k, while by (12.4) it
is symmetric in k, l, and hence it must be zero (Lemma 3.1), which proves (a).
Furthermore, if b is nondegenerate at some point, then both b2 and b are nonde-
generate at every point (as ∇[b2] = 0), and so ∇b = 0 in view of (15.5), so that (b)
follows. To establish (c), let us assume (12.4) with b2 = ag for a constant a 6= 0.
Now (b) gives bjk,l = 0, so that, combining (4.29) (for A = b) and (12.4), we obtain
0 = blm,jk − blm,kj = Rjkl

sbsm +Rjkm
sbls = εa [bjlgkm− bklgjm + bjmgkl− bkmgjl],

as bjsb
s
k = agjk. Contracting this against gjl we see that 0 = εa [pgkm − nbkm]

with p = Trace b and n = dimM , since gjkgjk = n. Therefore b = µg with
µ = p/n, and so µ is constant as µ2 = a. Now (12.4) gives (10.2) with K = εµ2,
which proves (c). Finally, under the assumptions of (d), the subbundle E = b(TM)
of TM satisfies E ⊂ Ker b and so E = Ker b since both bundles have the same
fibre dimension n/2. Furthermore, for any local C1 vector fields v, w in M , we
have ∇v(bw) = b(∇vw) + [∇vb]w and hence b(∇v(bw)) = 0 as b2 = 0 and, by
(a), b∇vb = 0 . Thus, ∇v(bw) is a local section of E = Ker b. Since the sub-
bundle E = b(TM) is spanned, locally, by such bw, it follows that E is parallel,
i.e., closed under taking covariant derivatives of its sections in all directions. (See
Remark 4.7(i).) This gives rise to a connection ∇ in E obtained by restricting
to local sections of E the ordinary covariant derivative operation for vector fields
corresponding to the Levi-Civita connection of TM (also denoted ∇; cf. Remark
4.7(ii)). Denoting R∇ and R the curvature tensors of this connection ∇ in E
and, respectively, of (M, g), we have, from (4.52), R∇(v, w)u = R(v, w)u for any
local vector fields u, v, w in M such that u is a section of E . As E = Ker b, the
Gauss equation (see (c)) now shows that R∇ = 0 identically. From Lemma 11.2
we thus obtain, locally, the existence of trivializations of E consisting of parallel
sections. These sections must in turn be null and mutually orthogonal, since each
fibre Ex = b(TxM) of E is a null subspace of TxM ; in fact, as b2 = 0, we have
g(bw, bw) = g(b2w,w) = 0 for all w ∈ TxM . This completes the proof. �

Proposition 15.6 (Fialkow, 1938). Spaces of constant curvature are the only Rie-
mannian or Lorentzian Einstein 4-manifolds that can be isometrically embedded
into a 5-dimensional pseudo-Euclidean vector space V with a constant metric.

This is an immediate consequence of Lemma 15.7 below. �
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The remainder of this section (except for the proof of Lemma 15.7) deals with in-
definite metrics, and can be skipped by the reader interested just in the Riemannian
case.

Lemma 15.7. Suppose that (M, g) is a pseudo-Riemannian Einstein 4-manifold
which admits an isometric embedding F : M → V into a 5-dimensional pseudo-
Euclidean vector space V with a constant metric. Then (M, g) must be a space
of constant curvature, unless g is a Ricci-flat indefinite metric of the neutral sign
pattern −−+ + and there exists a nonempty open set U ⊂M such that, denoting
b the real-valued second fundamental form of F relative to a unit normal vector
field, we have

(i) b2 = (Trace b)b everywhere in M ,
(ii) Trace b = 0, b2 = 0 and rank b = 2 everywhere in U ,

(iii) R(x) = 0 and rank b(x) ≤ 1 at all points x with x /∈ U .

Proof. Let b denote the real-valued second fundamental form of F relative to a
unit normal vector field n with 〈n, n〉 = ε = ± 1. By Theorem 13.6, b satisfies
(12.4). Thus, (12.5) combined with the Einstein condition (0.1) shows that (15.1)
holds for T = TxM and A = b(x), at any point x ∈M , with

(15.6) c = ε s/4 .

Therefore, by Schur’s Theorem 5.1, c is constant, i.e., the same at all points of M .
Suppose first that c 6= 0. Then, at each x ∈ M , A = b(x) satisfies one of

assertions (b), (c) or (d) of Lemma 15.1 with b2 = cg/3 (case (b)) or b2 = − cg
(cases (c), (d)). By Lemma 15.5(c), b is a constant multiple of g, so that cases
(c) and (d) cannot really occur at any point x, and (M, g) must have a nonzero
constant curvature.

Let us now consider the remaining case, with c = 0. In view of (15.6), (M, g)
then is Ricci-flat. At every x ∈ M , A = b(x) and T = TxM must satisfy
one of assertions (a), (e) of Lemma 15.1. Denoting U the open set of all points
x ∈ M at which rank b(x) = 2, i.e., dimA(T ) = 2, we see that points x ∈ U are
characterized by condition (e)iii), while x with x /∈ U are those points satisfying
(a), (e)i) or (e)ii). If U is nonempty, i.e., case (e)iii) occurs at some x ∈M , then
A(T ) = KerA is a null plane in T = TxM , since A(T ) is orthogonal to KerA
due to symmetry of A = b(x). This can happen only if g has the sign pattern
− − + + (see (3.27)). Our assertion (ii) now is immediate from Lemma 15.1(e).
On the other hand, if a fixed x is not in U , that is, satisfies (a), (e)i) or (e)ii)
in Lemma 15.1, then our assertion (iii) holds at x. In fact, according to Remark
15.2, we have, at x, bjk = ξjvk and, as bjk = bkj , this becomes bjk = avjvk for
some a ∈ R. From (12.2) and (5.39), we now obtain R(x) = 0. Finally, the rank
condition dimA(T ) ≤ 1 at x is obvious from Lemma 15.1(a), (e)i), (e)ii). This
completes the proof. �

Let us now consider a pseudo-Euclidean inner product 〈 , 〉 in a real vector space
V of dimension n. Following Law (1991), we will continue to refer to 〈 , 〉 as
neutral if it is indefinite and has a sign pattern of the form (q, q) (q minuses, q
pluses); then, n = 2q is even. Similarly, we will speak of neutral pseudo-Riemanni-
an manifolds (M, g) or neutral indefinite metrics g, in even dimensions, to indicate
that g(x) is neutral at every, or some, point x ∈M .



EINSTEIN METRICS IN DIMENSION FOUR 93

Lemma 15.8. Let a linear operator A : T → T in a finite-dimensional vector
space T and a vector subspace W ⊂ T satisfy the conditions A(T ) ⊂ W and
A(W) = {0}. Then TraceA = 0.

In fact, this is immediate if we evaluate TraceA in a basis of T containing a
basis of W. �

The following proposition leads (via Corollary 15.10 and Example 15.14 below)
to easy constructions of examples of Ricci-flat pseudo-Riemannian metrics of the
neutral sign pattern (n/2 minuses, n/2 pluses), in any even dimension n.

Proposition 15.9. For any integer q ≥ 1, let (M, g) be any 2q-dimensional pseu-
do-Riemannian manifold that admits q linearly independent, mutually orthogonal,
null parallel vector fields. Then g is a neutral Ricci-flat metric.

Proof. Let wa, a = 1, . . . , q, be the vector fields in question. For any fixed point
x ∈ M , let us set T = TxM , and define W ⊂ T be the subspace spanned by
all wa(x), a = 1, . . . , q. By (4.26), R(u, v)wa = 0 for any tangent vectors u, v ∈
T . The algebraic symmetries (4.32) of R now imply that g(R(u, u′)v, v′) = 0
whenever one of the four vectors u, u′, v, v′ ∈ T lies in W. In particular, R(u, u′)v
is always orthogonal to W, and hence R(u, u′)v ∈ W. (Note that, since W is
null and dimW = dimW⊥ = dim T /2, we have W⊥ = W by (3.26).) Similarly,
R(u, u′)v = 0 if u, v ∈ T and u′ ∈ W.

Let us now fix arbitrary vectors u, v ∈ T = TxM and define A : T → T to be
the operator with Au′ = R(u, u′)v for all u′ ∈ T . Thus, A, T and W satisfy
the hypotheses of Lemma 15.8, and so TraceA = 0, i.e., by (4.34), Ric (u, v) = 0.
Finally, g has the neutral sign pattern (q, q) in view of (3.27). This completes the
proof. �

Given a submanifold M of a vector space V with dimV < ∞ and a vector
subspace W ⊂ V , we will say that M is W-ruled if it is a union of cosets (transla-
tion images) of W. This means that M is closed under all translations by vectors
in W, that is, denoting M +W the set {x+ w : x ∈M, w ∈ W}, we have

(15.7) M + W = M .

On the other hand, if V carries a fixed pseudo-Euclidean inner product 〈 , 〉, we
will say that a submanifold M of V is nondegenerate if it is a nondegenerate
submanifold (see §13) of N = V regarded as a pseudo-Riemannian manifold with
the constant metric h = 〈 , 〉. Among nondegenerate submanifolds of V , we have
those which happen to be vector subspaces of V . (Recall that nondegeneracy of a
vector subspace T of V is equivalent to (3.22), as well as (3.24).)

Corollary 15.10. Let W be a q-dimensional null vector subspace of a pseudo-
Euclidean vector space V of any finite dimension dimV ≥ 2q + 1, and let M be
any 2q-dimensional nondegenerate W-ruled submanifold of V , as defined above.
Then, the pseudo-Riemannian metric g that M inherits from V is Ricci-flat and
has the neutral sign pattern (q, q).

Proof. The constant vector fields on V provided by any fixed basis of W are null,
mutually orthogonal and tangent to M at each point of M , and so their restrictions
to M are parallel vector fields on (M, g) in view of Corollary 13.4. Thus, g is
neutral and Ricci-flat by Proposition 15.9, which completes the proof. �
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We can now give a complete local classification of Einstein hypersurfaces in 5-
dimensional pseudo-Euclidean spaces.

Theorem 15.11 (Fialkow, 1938). Let (M, g) be a pseudo-Riemannian Einstein
4-manifold which admits an isometric embedding F : M → V into a 5-dimension-
al pseudo-Euclidean vector space V with a constant metric. Then, either (M, g) is
a space of constant curvature, or g is a Ricci-flat indefinite metric of the neutral
sign pattern − − + + and every point x ∈M with R(x) 6= 0 has a neighborhood
whose F -image coincides with an open subset of a W-ruled submanifold of V for
some 2-dimensional null vector subspace W ⊂ V .

Proof. Suppose that (M, g) is not a space of constant curvature. Thus, the open
subset U ′ of M formed by all x with R(x) 6= 0 is nonempty. Let b now denote
the real-valued second fundamental form of F restricted to U ′, relative to a (local)
unit normal vector field n with 〈n, n〉 = ε for some ε = ± 1. Now b and g satisfy
the part of the assertion of Lemma 15.7 starting from the word ’unless’, and so, by
Lemma 15.7(iii), U ′ is contained in the set U appearing in Lemma 15.7. Thus,
according to Theorem 13.6 and Lemma 15.7(ii), b satisfies the hypotheses of Lemma
15.5(d) with n = 4. Thus, the F -image Y = F (U ′′) of a suitable neighborhood of
any given point in U ′ is a nondegenerate 4-dimensional submanifold of V which,
in view of Lemma 15.5(d), admits two tangent vector fields u, w which are null,
mutually orthogonal and linearly independent at each point of Y , as well as parallel
in Y (relative to the Levi-Civita connection of the metric that Y inherits from
V ). Furthermore, also by Lemma 15.5(d), u and w are sections of Ker b, i.e.,
b( · , u) = b( · , w) = 0. Applying (13.2) (with (13.6)) and (13.8) to w (or, u)
along any C1 curve t 7→ x(t) in Y , we see that u and w are constant as
V -valued functions on Y . Therefore, Y is contained in a W-ruled 4-dimension-
al submanifold Y ′ of V , where W ⊂ V is the null vector subspace spanned by
u and w. In fact, applying Corollary 13.4(b) to the parallel (constant) vector
field on V given by any constant-coefficient combination of u and w, we see
that Y contains, along with any given point x, all points x + v with v ∈ W
sufficiently close to 0. Finally, openness of Y in Y ′ follows from Corollary 13.2.
This completes the proof. �

Lemma 15.12. Let W be a q-dimensional null subspace of a pseudo-Euclidean
vector space V with dimV = 2q + k, k ≥ 1, and let pr : V → V/W denote the
quotient projection of V onto the quotient vector space V/W. The image

(15.8) pr (W⊥) = W⊥/W

then is a subspace of V/W with

(15.9) dim [W⊥/W] = k .

Moreover, for any integer p with 0 ≤ p ≤ k there exists a natural bijective cor-
respondence between the set of those (q + p)-dimensional vector subspaces T of
V which contain W, and the set Grp(V ) of all p-dimensional vector subspaces
Z of the quotient space V/W, given by Z = pr (T ) = T /W or, equivalently,
T = pr−1 (Z) =

⋃
Z, the last object being the union of all cosets of W forming

Z. For T and Z related in this manner, T is nondegenerate as a subspace of the
pseudo-Euclidean space V if and Z and the space (15.8) together span V/W.
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Proof. Bijectivity of the assignment T 7→ Z is clear, while (15.8) and (15.9) follow
from (3.26). The last assertion is immediate from the fact that nondegeneracy of a
subspace T ⊂ V is equivalent to (3.24). This completes the proof. �

Proposition 15.13. Let W be a q-dimensional null subspace of a pseudo-Euclid-
ean vector space V of dimension 2q + r, r ≥ 1, and let us choose a subspace
Y ⊂ W⊥, complementary to W in W⊥, and a subspace X ⊂ V , complementary
to W⊥ in V , so that dimY = r, dimX = q, W⊥ = Y ⊕ W and

(15.10) V = X ⊕ Y ⊕ W .

Then

(a) For any open subset U of X and any C∞ function Φ : U → Y, the
mapping

(15.11) U ×W 3 (x,w) 7→ x + Φ(x) + w ∈ V = X + Y + W ,

is an embedding and its image is a 2q-dimensional nondegenerate W-ruled
submanifold of V .

(b) Conversely, any given 2q-dimensional nondegenerate W-ruled submani-
fold of V is, locally, obtained as in (a) for some U and Φ.

Proof. The assignment (15.11) is obviously an embedding and its image M is a
submanifold of V with dimM = 2q, which is W-ruled, that is, satisfies (15.7).
Let us now consider any W-ruled 2q-dimensional submanifold M of V . Thus,
M is the preimage, under the quotient projection pr : V → V/W, of a q-di-
mensional submanifold Q of the quotient vector space V/W. Relation (15.10)
now leads to an identification V/W = X ⊕ Y, under the isomorphism obtained
by restricting pr to X ⊕ Y, and Y then becomes identified with r-dimensional
subspace W⊥/W of V/W. In view of Lemma 15.12, the requirement that M be
nondegenerate amounts to the transversality condition Span (Y ∪ TzQ) = X ⊕ Y
for every point z ∈ Q, which can also be rewritten as Y ∩ TzQ = {0}, since
dim [X ⊕ Y] = q + r = dimY + dimQ. The q-dimensional submanifolds Q of
X ⊕ Y with this property are precisely those for which the projection operator
X ⊕ Y → X restricted to Q is locally diffeomorphic. Such submanifolds thus are,
locally, nothing else than the graphs {x+Φ(x) : x ∈ U} of arbitrary C∞ functions
Φ : U → Y, U being an open subset of X .

On the other hand, still treating Q as a submanifold of X ⊕ Y, we clearly have

M = Q + W = {z + w : z ∈ Q, w ∈ W} .

In view of the graph representation of Q just mentioned, this completes the proof.
�

Example 15.14. The local parametrizations (15.11) of all possible W-ruled 2q-
dimensional nondegenerate submanifolds M of V (with V , W as in Proposition
15.13) leads to an easy description of the curvature tensor R of the pseudo-Riem-
annian metric g that M inherits from V . Note that, by Corollary 15.10, g then
is automatically a Ricci-flat metric with the neutral sign pattern (q minuses, q
pluses). To simplify our description of R (obtained via the Gauss equation (12.2)),
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we now assume that r = 1 in Proposition 15.15, so that M is a codimension-one
submanifold of V .

Specifically, let us choose V with its inner product 〈 , 〉 in such a way that
dimV = 2q+ 1 and 〈 , 〉 has the “almost neutral” sign pattern with q+ 1 minuses
and q pluses (or vice versa). From now on we use the dot symbol · , rather than
〈 , 〉, for the inner product in V , and fix the following ranges for indices:

j, k ∈ {1, . . . , q} , a, c ∈ {q + 1, . . . , 2q} .

Given a q-dimensional null subspace W of V , let us choose a basis e0, e1, . . . , e2q

of V such that, for j = 1, . . . , q and a = q + 1, . . . , 2q,

ea ∈ W , e0 ·ej = e0 ·ea = 0 , e0 ·e0 = ε = ± 1 .

This can be done by starting from any basis ea of W, then finding e0 ∈ W⊥
with e0 ·e0 = ± 1 (such e0 always exists; otherwise, W⊥ would be null, con-
tradicting (3.27)) and, finally, selecting the ej so as to complete the ea to a
basis of e⊥0 . Let the subspaces X and Y in Proposition 15.13 now be given by
X = Span {e1, . . . , eq} and Y = Re0. Thus, a Y-valued function on an open
subset U of X may be written as U 3 x 7→ Φ(x) = f(x1, . . . , xq) e0 ∈ Y, where the
xj are the linear coordinates in X associated with the basis ej . Using the tradi-
tional notations described in Remark 13.5, we can rewrite the local parametrization
(15.11) of M as

(15.12) (x1, . . . , x2q) 7→ r = xjej + f(x1, . . . , xq) e0 + xaea ,

and so its partial derivatives are rj = ej + (∂jf) e0, ra = ea, rjk = (∂j∂kf) e0,
rja = rac = 0. The “mixed” components gaj = rj · ra of the metric g thus are
constant, with gaj = ej·ea, and the corresponding components of the gaj reciprocal
metric form the (constant) inverse matrix [gaj ] = [gja]−1, as ga0 = g0j = 0. A unit
normal vector field n with n·n = ε now can be defined by

n = e0 − ε gaj(∂jf) ea .

From the last equality in (13.10) combined with the Gauss equation, we now obtain

(15.13)
bjk = ∂j∂kf , ba0 = b0j = bac = 0 ,

Rjklm = ε (bjlbkm − bklbjm) , R ... a ... = 0 ,

where the last equality states that all curvature components that involve at least
one index a in the range {q + 1, . . . , 2q} are identically zero. Consequently, this
construction provides examples of Ricci-flat codimension-one submanifolds M of
V , in all even dimensions n = dimM starting from n = 2 ; and, if n ≥ 4, many of
those examples are not flat (and so, being Ricci-flat, they are not spaces of constant
curvature). See Remark 15.15 below.

The assertion of Proposition 15.6 thus fails in the case of Einstein metrics with
the neutral sign pattern − − + +.

Remark 15.15. In contrast with the Riemannian case (cf. Remark 14.8), an indef-
inite Einstein metric g on a manifold M is not always analytic in suitable local



EINSTEIN METRICS IN DIMENSION FOUR 97

coordinates. Namely, in all dimensions n ≥ 4, the construction summarized in
Example 15.14 produces some neutral Ricci-flat metrics g whose curvature tensor
vanishes on a nonempty open subset of M without being identically zero on M
(while M is connected); in particular, the construction in question leads to some
non-flat metrics.

To achieve this, note that f in (15.12) can be just any C∞ function of the
variables x1, . . . , xq. Therefore, we may select f to be identically zero on U ′ and
equal to x1x2 on U ′′, where U ′ and U ′′ are two suitably chosen, disjoint, nonemp-
ty open subsets of the (connected) set U . We then have, from (15.13), R = 0
everywhere in U ′ and R 6= 0 on U ′′, where U ′, U ′′ ⊂ M are the images of U ′
and U ′′ under the parametrization (15.12).

§16. Conformal changes of metrics

This section deals with the question of what happens with curvature-related
invariants when the metric in question undergoes a conformal change, with the
ultimate goal of using such a procedure to construct Einstein metrics (in §18). The
results presented here go back to Weyl (1918) and Schouten (1921).

Any two connections ∇, ∇̃ in a given vector bundle E over a manifold M differ
by a tensor. More precisely, we have

(16.1) ∇̃ = ∇ + F ,

where F is a section of Hom (TM, Hom (E , E)). Thus, F associates with each
v ∈ TxM , x ∈ M , a linear operator Fv : Ex → Ex, and relation (16.1) reads

∇̃vψ = ∇vψ + Fv(ψ(x)) for all x ∈ M , v ∈ TxM and local C1 sections of E
defined near x. To see that Fv(ψ(x)) really depends on ψ only through ψ(x), note

that, by (4.49), (∇̃vψ)a − (∇vψ)a = F ajbψ
b, where Γ bja and Γ̃ bja are the component

functions of ∇ and, respectively, ∇̃, while F ajb (the component functions of F ) are
characterized by

(16.2) Γ̃ bja = Γ bja + F bja .

Let us now suppose that, besides E , ∇, ∇̃ and F as above, we are also given a
fixed torsionfree connection in TM . Combined with ∇, this torsionfree connection
then induces a connection in Hom (TM, Hom (E , E)) (for which we use the same
symbol ∇). Any fixed vector w tangent to M thus gives rise to the covariant
derivative ∇wF . Using (4.52), it is easy to see that the curvature tensors R of ∇
and R̃ of ∇̃ then are related by

(16.3) R̃(v, w) = R(v, w) + (∇wF )v − (∇vF )w + [Fw, Fv]

for v, w ∈ TxM , x ∈M , the last term being the commutator of operators Ex → Ex.
The component version of (16.3) is (cf. (4.48), (4.53))

(16.4) R̃jka
b = Rjka

b + F bja,k − F bka,j + F bkcF
c
ja − F bjcF

c
ka .

Let g now be a pseudo-Riemannian metric on a manifold M . Any fixed C∞

function f : M → R gives rise to a new metric

(16.5) g̃ = e2fg .
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One then says that g and g̃ are conformally related. For objects naturally associ-
ated with metrics g (such as the Levi-Civita connection ∇, the curvature tensor
R, Ricci tensor Ric and its components Rjk, the scalar curvature s, Weyl tensor

W , and divergence operator div), we will use the self-explanatory symbols ∇̃, R̃,

R̃ic, R̃jk, s̃, W̃ and d̃iv to denote the analogous objects corresponding to g̃. The

symbols ∇ and ∇̃ will, as usual, stand not only for the Levi-Civita connections of
g and g̃, but also for their gradient operators.

Remark 16.1. Discussing various methods that lead to constructions of pseudo-
Riemannian Einstein metrics in dimension 4, in §19 and §18 we will take a look at
metrics on product manifolds N ×N ′ which are conformally related to Riemanni-
an-product metrics, that is, have the form

(16.6) e−2f [h + h′] ,

where (N × N ′, h + h′) is the Riemannian product of two pseudo-Riemannian
manifolds (N,h) and (N ′, h′), while f : N × N ′ → R is a C∞ function. One
particularly prominent special case of this situation is that of warped-product met-
rics (Kručkovič, 1957; Bishop and O’Neill, 1969), given by (16.6) with a function
f that is constant in the direction of one of the factors (N or N ′), i.e., is just a
function on the remaining factor manifold. For instance, a surface metric is, locally,
a warped product if and only if it admits a non-null Killing field (see Corollary 19.3
in §19). Cf. Gȩbarowski (1992).

Lemma 16.2. Let there be given two conformally related pseudo-Riemannian met-
rics g and g̃ = e2fg on an n-dimensional manifold M .

(i) The Christoffel symbols Γ ljk of g and Γ̃ ljk of g̃ satisfy

(16.7) Γ̃ ljk = Γ ljk + F ljk with F ljk = δlk∂jf + δlj∂kf − gjkg
ls∂sf .

In other words, the Levi-Civita connections ∇ of g and ∇̃ of g̃ are
related by ∇̃vw = ∇vw + (dvf)w + (dwf)v − g(v, w)∇f , i.e.,

(16.8) ∇̃vw = ∇vw + g(v,∇f)w + g(w,∇f)v − g(v, w)∇f ,

for any C1 vector fields v, w, where dv is the directional derivative corre-
sponding to v, and ∇f stands for the g-gradient of f . Also, for any C1

bundle morphism α : TM → TM and a tangent vector u,

(16.9)
g((∇̃vα)w, u) = g((∇vα)w, u) − g(αv, u)dwf − g(αw, v)duf

+ g(v, w)g(α(∇f), u) + g(v, u)g(∇f, αw) .

(ii) For any once-contravariant, three-times covariant tensor field A of class
C1 on M such that the corresponding four-times covariant tensor with
the components Ajklm = gjsA

s
klm has the algebraic symmetries (5.23) –

(5.25) of the Weyl tensor, the g-divergence and g̃-divergence of A, defined
as in (5.26), are related by

(16.10) d̃ivA = divA + (n− 3)A(df, · , · , · ) .

In local coordinates, this reads ∇̃jAjklm = ∇jAjklm + (n− 3)f,jA
j
klm.
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Proof. Relation (16.7) is clear from (4.1), and it easily leads to (16.8). The local-
coordinate version

∇̃lαjk = ∇lαjk − αjl ∂kf + αjsgklg
sp∂pf + αskδ

j
l ∂sf − αskglsg

jp∂pf

of (16.9) is also immediate from (4.1). Finally, (16.10) then follows since, in terms
of the Christoffel symbols Γ ljk of any metric g, we have Ajklm,j = ∂jA

j
klm +

Γ jjsA
s
klm−Γ sjkAjslm−Γ sjlAjksm−Γ sjmAjkls while, for F ljk as in (16.7), F jjk = n∂kf .

�

Lemma 16.3 (Weyl, 1918). Let g and g̃ = e2fg be two conformally related met-
rics on an n-dimensional manifold M . Then W , viewed as a once-contravariant,
three-times covariant tensor field, is a conformal invariant in the sense that

(16.11) W̃ = W ,

i.e., W̃ j
klm = W j

klm. Moreover, treating divW as a three-times covariant tensor
field and denoting d̃iv W̃ the analogous object corresponding to g̃, we have

(16.12) d̃iv W̃ = divW + (n− 3)W (df, · , · , · ) .

In other words, ∇̃jW̃ j
klm = ∇jW j

klm + (n − 3)f,jW
j
klm. Also, if the relation

between g and g̃ is written as g̃ = g/ϕ2, with ϕ = ± e−f , then

(16.13) R̃ic = Ric + (n− 2)ϕ−1∇dϕ +
[
ϕ−1∆ϕ − (n− 1)ϕ−2g(∇ϕ,∇ϕ)

]
g ,

where ∇f again denotes the g-gradient of f , i.e., in component form,

(16.14) R̃jk = Rjk + (n− 2)ϕ−1ϕ,jk +
[
ϕ−1∆ϕ − (n− 1)ϕ−2g(∇ϕ,∇ϕ)

]
gjk .

Finally, for g(W,W ) given by 4 g(W,W ) = WjklmW
jklm, as in (5.32),

(16.15) g̃(W̃ , W̃ ) = ϕ4 g(W,W ) .

Proof. Combining (16.7) with (16.4), we find that

(16.16)
R̃jkl

m = Rjkl
m + δmj [f,kl − f,kf,l + g(∇f,∇f)gkl] + gjl (f,kf,

m − f,km)

− δmk [f,jl − f,jf,l + g(∇f,∇f)gjl]− gkl (f,jf,
m − f,jm) .

Contracting this, we obtain

(16.17) R̃jk = Rjk − (n− 2) (f,jk − f,jf,k) − [∆f + (n− 2)g(∇f,∇f)] gjk

and

(16.18) s̃ = e−2f [s− 2(n− 1)∆f − (n− 1)(n− 2)g(∇f,∇f)] .

Now we can easily verify (16.11) (using (5.8)). Consequently, (16.12) follows from
(16.10), and (16.15) is obvious since 4 g(W,W ) = − glrgmsW j

klmW
k
jrs. Finally,
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(16.13) and (16.14) are immediate from (16.17), as f,j = −ϕ−1ϕ,j and f,jk =
ϕ−2 [ϕ,jϕ,k − ϕϕ,jk] whenever f = − log |ϕ|. This completes the proof. �

Remark 16.4. For oriented Riemannian 4-manifolds (M, g), each of the following
objects/conditions is conformally invariant, i.e., remains the same (for objects),
or remains satisfied (for conditions), whenever the metric g is replaced with a
conformally related metric g̃ = e2fg :

(a) The Hodge star ∗ acting on bivectors;
(b) The self-dual and anti-self-dual Weyl tensors W+ and W−, both treated

as once-contravariant, three-times covariant tensor fields;
(c) The subbundles Λ+M and Λ−M of [TM ]∧2;
(d) The functions # specW± : M → {1, 2, 3} (see (20.1) in §20);
(e) Conditions such as (16.35) and (20.2) below.

In fact, conformal invariance of ∗ is clear from (6.1). Combined with (16.11), this
establishes the conformal invariance in (b), and hence (c). On the other hand, cases
(d), (e) are now obvious since, for W , W+ and W− treated as bundle morphisms
[TM ]∧2 → [TM ]∧2 or Λ±M → Λ±M , the conformal transformation rule is

(16.19) W̃ = e−2fW , W̃± = e−2fW± ,

whenever g̃ = e2fg. (To see this, note that the corresponding components then

are W jk
lm = gksW j

slm, and similarly for W±.) Note that the formula for W̃ in
(16.19) holds in all dimensions n ≥ 3, whether or not M is orientable.

A pseudo-Riemannian manifold (M, g) is called conformally flat if g is locally
conformally related to a flat metric, that is, if every x ∈ M has a neighborhood
U with a C∞ function f : U → R such that the metric g̃ = e2fg is flat.

It will be useful to rewrite the identity (5.28), i.e., (5.29), in the form

(16.20) divW = (n− 3)Z , n = dimM ≥ 3 ,

or, in local coordinates,

(16.21) W j
klm,j = (n− 3)Zklm ,

where Z is the three-times covariant tensor field defined by

(16.22) 2(n− 1)(n− 2)Z = d [2(n− 1) Ric − s g]

whenever n = dimM ≥ 3, that is,

(16.23) (n− 2)Zklm = Rkm,l − Rkl,m +
1

2(n− 1)
(s,mgkl − s,lgkm) .

As an obvious consequence of (16.20) and (16.12), we obtain the transformation
rule

(16.24) Z̃ = Z + (n− 3)W (df, · , · , · )

for Z under conformal changes of the metric with g̃ = e2fg in all dimensions
n ≥ 4. (Relation (16.24) is in fact valid in dimension 3 as well; see Remark 16.6
below.)



EINSTEIN METRICS IN DIMENSION FOUR 101

Theorem 16.5 (Schouten, 1921). A pseudo-Riemannian manifold (M, g) of any
dimension n ≥ 4 is conformally flat if and only if W = 0 identically on M , where
W is the Weyl tensor of (M, g).

Proof. Let E = TM ⊕ [M ×R2] denote the vector bundle over M obtained as the
direct sum of the tangent bundle TM of M and the product plane bundle M×R2.
Using the Levi-Civita connection ∇ of (M, g), we can now define a connection D
in E by the formula

Dv(u, ϕ, χ)

=

(
∇vu +

ϕRic v − χv
n− 2

, dvϕ− g(u, v) , dvχ+ Ric (u, v)− 2 s g(u, v) + ϕdvs

2(n− 1)

)
for vectors v tangent to M , where, for any C1 tangent vector field u on M and
real-valued C1 functions ϕ, χ on M , the triple (u, ϕ, χ) is treated as a C1 section
of E . Using (4.52) and (5.8) (and taking advantage of the shortcuts suggested by
Remark 4.4), we easily verify that the curvature tensor RD of D is given by

(16.25) RD(v, v′)(u, ϕ, χ) = (W (v, v′)u + ϕZ( · , v′, v) , 0 , Z(u, v′, v)) ,

with Z as in (16.22), (16.23).
Let us now suppose that (M, g) is conformally flat. We then have W = 0 in

view of conformal invariance of the Weyl tensor (relation (16.11)) along with the
fact that W = 0 whenever g is flat (by (5.6), (4.34), (4.40)). Conversely, let us
assume that W = 0 everywhere. From (16.20) it then follows that Z = 0 and so,
by (16.25), the connection D in E defined above is flat. Thus, as a consequence
of Lemma 11.2, every point x ∈ M has a neighborhood on which E admits a
D-parallel section (u, ϕ, χ) that, in addition, may be chosen so as to realize any
prescribed value (u(x), ϕ(x), χ(x)) at x. On the other hand, according to the
definition of D, (u, ϕ, χ) is D-parallel if and only if

(16.26)
(n− 2)uj,k = χgjk − ϕRjk , ϕ,j = uj ,

2(n− 1)χ,j = 2 suj + ϕ sj − 2(n− 1)Rjku
k .

Let us choose the D-parallel section (u, ϕ, χ) so that ϕ(x) = 1 (while u(x) and
χ(x) are still arbitrary, and will be chosen later). The metric g̃ = g/ϕ2 then is

well-defined in a neighborhood of x and has, by (16.13), the Ricci tensor R̃ic =
κ̃ g̃ with κ̃ = ϕχ + ϕ∆ϕ − (n − 1)g(u, u). (In fact, by (16.26), ∇ϕ = u, while
(n − 2)∇dϕ = (n − 2)∇u = χg − ϕRic.) In view of Schur’s Theorem 5.1, κ̃
must be constant. We can now make κ̃ identically equal to zero by picking u(x)
and χ(x) for which κ̃(x) = 0. Specifically, let us note that, in view of (16.26),
(n − 2)∆ϕ = uk,k = nχ − ϕ s, so that our formula for κ̃ can be rewritten as
(n−2)κ̃ = − 2ϕχ+ϕ2s − (n−1)(n−2)g(u, u). Now u(x) may be fixed arbitrarily;
as ϕ(x) = 1, condition κ̃(x) = 0 then will be satisfied by a unique value of χ(x).
Consequently, with this choice of (u, ϕ, χ), the metric g̃ is Ricci-flat.

On the other hand, by (16.11), g̃ also satisfies W̃ = 0. Hence g̃ is flat in view
of (5.9). This completes the proof. �

Remark 16.6. In dimension 3 we always have W = 0 (Remark 10.2(a)). This does
not mean that pseudo-Riemannian 3-manifolds are all conformally flat; specifically,
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a tensorial condition characterizing conformal flatness of 3-dimensional pseudo-
Riemannian manifolds is Z = 0, where Z is given by (16.22) (i.e., (16.23)). In
fact, a direct computation based on (16.7), (16.17), (16.18), (4.26), (4.39) and (5.8)
shows that (16.24) holds in dimension 3 as well (which, as W = 0, then means that
Z is a conformal invariant). With this additional information, the above proof of
Theorem 16.5 obviously works in the 3-dimensional case as well.

Let (M, g) be a pseudo-Riemannian 4-manifold obtained as the Riemannian
product of two pseudo-Riemannian surfaces with the Gaussian curvatures λ and
µ. In product coordinates xj , ya the components of R and Ric satisfy the
relations (cf. Remark 10.1)

(16.27) Rjklm = λ (gjlgkm − gklgjm) , Rabcd = µ (gacgbd − gbcgad) ,

(16.28) Rjk = λ gjk , Rab = µ gab , Rja = Raj = 0 ,

and they vanish unless all the indices are of the same kind. Let us denote P and
Q the vector subbundles of TM which are tangent to the factor surfaces, and let
P,Q : TM → TM be the self-adjoint bundle morphisms of orthogonal projections
onto P and Q. Using the index-lowering operation corresponding to g, we can
also treat P and Q as symmetric twice-covariant tensor fields on M . Since P,
Q are parallel as subbundles of TM (i.e., invariant under covariant derivatives in
all directions, cf. Remark 4.7(i)), P and Q are parallel tensor fields on M . In
product coordinates xj , ya as above, the components of P and Q are Pjk = gjk,
Paj = Pja = Pab = 0 and Qab = gab, Qaj = Qja = Qjk = 0. Thus, by (16.27),
(16.28) and (5.7),

(16.29)
R = λP ~ P + µQ~Q , Ric = λP + µQ ,

g = Id = P + Q , s = 2 (λ + µ) .

Since ~ is bilinear and symmetric (see (5.7)), using (5.6) we now obtain the follow-
ing relation satisfied by the Weyl tensor W and scalar curvature s of the product
of any two pseudo-Riemannian surface metrics:

(16.30) W = sA , with ∇A = 0 and A 6= 0 ,

where A is given by

(16.31) 6A = P ~ P + Q~Q − P ~Q .

Lemma 16.7. Let (M, g) be a pseudo-Riemannian 4-manifold obtained as the
Riemannian product of two pseudo-Riemannian surfaces. Then the following three
conditions are equivalent :

(a) (M, g) is conformally flat.
(b) The scalar curvature s of g is identically zero.
(c) The Gaussian curvatures λ, µ of the factor surfaces are both constant and

λ+ µ = 0.
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This is clear from (16.30) and the last equality in (16.29). (Note that, if λ+µ = 0
identically on M , then λ and µ must both be constant, as one sees using an obvious
separation-of-variables argument.) �

Before stating the next lemma let us recall that a bivector at a point x in a
pseudo-Riemannian manifold (M, g) is called nondegenerate if it is an isomorphism
when treated as a skew-adjoint operator TxM → TxM . A parallel bivector field on
(M, g) which is nondegenerate at one point must be nondegenerate everywhere.

Lemma 16.8. Let W and s denote, as usual, the Weyl tensor and the scalar
curvature of a given pseudo-Riemannian 4-manifold (M, g), and let (M, g) admit
a parallel bivector field α which is nondegenerate. Suppose that U is a connected
open subset of M such that s 6= 0 everywhere in U , and ϕ : U → R is any
nowhere-zero C∞ function, defined on U , and having the property that the confor-
mally related metric g̃ = g/ϕ2 on U satisfies the condition

(16.32) d̃iv W̃ = 0 .

Then ϕ must be a constant multiple of the scalar curvature s.

Proof. By (5.19), 6Wα = sα. Taking the divergence of both sides of this relation,
(i.e., applying ∇j to its local-coordinate version 3Wjklmα

lm = sαjk), we obtain

(16.33) 6 [divW ]α = α(∇s) ,

that is, 3W j
klm,jα

lm = s,jα
j
k. On the other hand, (16.12) for n = 4 along with

(16.32) yields divW = −W (df , · , · , · ), which, with f = − log |ϕ|, becomes
divW = ϕ−1W (dϕ , · , · , · ). Combining this with (16.33) and (5.19), we obtain
ϕα(∇s) = 6ϕ[divW ]α = 6 [Wα](∇ϕ) = sα(∇ϕ), that is, αξ = 0 (in local coordi-
nates, ξjα

jk = 0), for the 1-form ξ = s dϕ − ϕds = s2d(ϕ/s). Nondegeneracy of
α now implies that ξ = 0, i.e., ϕ/s is constant, which completes the proof. �

Remark 16.9. The assertion of Lemma 16.8 holds for those Riemannian products
(M, g) of two pseudo-Riemannian surfaces for which s 6= 0 everywhere. In fact,
locally in M , we can define a nondegenerate parallel bivector fields α+ and α− by

(16.34)
√

2α± = e1 ∧ e2 ± e3 ∧ e4 ,

where the e1, . . . , e4 are fixed orthonormal C∞ vector fields such that e1 and e2

are tangent to the first factor surface. However, in this case the converse statement
holds as well: Namely, the metric g̃ = g/s2 now actually must satisfy condition
(16.32). This is an obvious consequence of relations (16.12) (with f = − log |s|)
and (16.30).

Remark 16.10. Since we devote a whole section (§18 below) to Einstein metrics
in dimension four that are locally conformally related to products of two surface
metrics, it may be worth noting that, in the Riemannian case, the Einstein metrics
with that property are characterized by the requirement that

(16.35) specW+ = specW− , # specW+ ≤ 2

at every point, for either local orientation of the underlying manifold M (notation
as in Remark 10.11 and Lemma 6.15; see also (20.1), (20.2) in §20 below). Note
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that (16.35) is an algebraic condition on the eigenvalues of the operators W±

acting on bivectors. Since the characterization (16.35) will not be used in the
sequel, the proof we give here will rely on de Rham’s Theorem 4.10 the uses of
which, as stated at the end of §4, we are trying to avoid. First, (16.35) is satisfied
by all products of two surface metrics: The nonzero parallel bivector field α±

defined, locally, as in (16.34), is a section of Λ±M (Lemma 6.2), and so (16.35) is
immediate from Proposition 9.8 applied to either local orientation. Furthermore,
(16.35) is a conformally invariant property (Remark 16.4(e)). Consequently, (16.35)
is necessary for any Riemannian metric (Einstein or not) to be locally conformally
related to a product of two surface metrics. Conversely, let an oriented Riemannian
Einstein 4-manifold (M, g) satisfy (16.35). To show that g is locally conformally
related to a product of two surface metrics, let us first suppose that W+ and W−

both vanish identically. Thus, W = 0, and so g is conformally flat (Theorem
16.5), as required. On the other hand, if one of W+, W− is nonzero somewhere,
then, by Proposition 20.1(i) and (16.35), they are both nonzero everywhere and,
in view of Proposition 22.3(iii) in §22, a metric g̃ conformally related to g admits
nonzero parallel local sections of both Λ+M and Λ−M . (Note that, by (16.35)
and (5.32) for W+ instead of R, we have |W+| = |W−|). According to Lemma
6.1(ii) such sections, when suitably normalized, may be written as α+ and α−

in (16.34), with some g̃-orthonormal local vector fields e1, . . . , e4 of class C∞,
defined on a neighborhood U of any given point in M . Treating α ± α− as
skew-adjoint bundle morphisms TM → TM (with the aid of g̃), we now obtain
g̃-parallel vector subbundles P and Q of TU given by P = Ker (α+ − α−) and
Q = Ker (α+ + α−). Thus, Px = Span {e1, e2} and Qx = Span {e3, e4} for all
x ∈ U . We can now apply Theorem 4.10 to the g̃-parallel vector-bundle direct-sum
decomposition TU = P ⊕Q.

§17. Killing fields

This section covers basis facts on Killing fields. For more details, see, e.g.,
Kobayashi and Nomizu (1963).

By a Killing field on a pseudo-Riemannian manifold (M, g) we mean any C1

tangent vector field w on M such that the bundle morphism ∇w : TM → TM
is skew-adjoint at every point, that is, [∇w](x) ∈ so(TxM) for all x ∈ M (with
the form 〈 , 〉 = g(x) in TxM). This means, in other words, that the bilinear form
(u, v) 7→ 〈∇uw, v〉 on each tangent space TxM is skew-symmetric or, equivalently,
that

(17.1) 〈∇vw, v〉 = 0 for all x ∈M and v ∈ TxM .

Therefore, in local coordinates, Killing fields are characterized by

(17.2) wj,k + wk,j = 0 .

Suppose that w is any C1 vector field on a pseudo-Riemannian manifold (M, g).
Using (4.20) we obtain wk,l+wl,k = ∂lwk+ ∂kwl− 2Γklsw

s, which, as wk = gksw
s,

becomes wk,l + wl,k = gks∂lw
s + gls∂kw

s + [∂lgks + ∂kgls − 2Γkls]w
s. Therefore,

by (4.6), we have

(17.3) wj,k + wk,j = gjs∂kw
s + gks∂jw

s + ws ∂sgjk .

The statements made in Examples 17.1 – 17.3 and Lemma 17.4 below are proved
directly, but can also be obtained as obvious consequences of the flow interpretation
of Killing fields described in Lemma 17.16.
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Example 17.1. Let xj be a local coordinate system in a pseudo-Riemannian
manifold (M, g), with some coordinate domain U . Then, for any fixed index l,
the coordinate vector field el is a Killing field on (U, g) if and only if all components
of g are locally constant in the direction of xl, that is, ∂lgjk = 0. In fact, by (2.1)
and (17.3), the left-hand side of (17.2) for w = el coincides with ∂lgjk.

Example 17.2. Any two given Killing fields w and w′ on pseudo-Riemann-
ian manifolds (N,h) and, respectively, (N ′, h′), may be combined, in an ob-
vious manner, into a Killing field w + w′ on the Riemannian-product manifold
(M, g) = (N ×N ′, h+ h′).

Example 17.3. Let w be a Killing field on a pseudo-Riemannian manifold (M, g).

(a) If N is a nondegenerate submanifold of (M, g) (see §13) and w is tangent
to N along N (that is, w(x) ∈ TxN for every x ∈ N), then the restriction
w′ of w to N is a Killing field on (N,h), where h is the submanifold
metric of N .

(b) If g̃ = e2fg is a metric conformally related to g (§16), with some C∞

function f such that dwf = 0, then w is a Killing field for (M, g̃) as
well.

In fact, in case (a), let D and ∇ be the Levi-Civita connections of (M, g) and
(N,h), respectively. Then w′ satisfies (17.1) since, by (13.8), we have 〈∇vw′, v〉 =
〈[Dvw]tang, v〉 = 〈Dvw, v〉 = 0 for any x ∈ N and v ∈ TxN ⊂ TxM . As for (b), it
follows immediately from (17.3) along with (17.2).

Lemma 17.4. Let w be a Killing vector field on a pseudo-Riemannian manifold
(M, g) and let s stand, as usual, for the scalar curvature of g. Then dws = 0.

Proof. On the other hand, skew-adjointness of ∇w implies divw = 0 (see (4.42);
in other words, wj , j = 0 by (17.2). This in turn gives (by (4.39) or (4.45)) Ricw =
div (∇w), that is, Rjkw

k = wk,jk. Taking the divergences of both sides, we now
obtain div (Ricw) = div div (∇w), or (Rjkw

k)j = wjk,j
k. However, applying

(4.47) to α = ∇w we see that the right-hand side of the last equality is zero;
its left-hand side, however, equals Rjk,jw

k + Rjkwk,j and, by (5.2), 2Rjk,jw
k =

wks ,k = dws, while, from (4.38) and (17.2), Rjkwk,j = 0. This completes the proof.
�

It follows from (17.2) that every Killing field w on a pseudo-Riemannian mani-
fold (M, g) satisfies the relation

(17.4) wj,kl = Rjklpw
p .

In fact, (4.26) gives wj,kl − wj,lk = Rlkjpw
p and, by permuting the indices, we

also have wl,kj − wl,jk = Rjklpw
p, wk,lj − wk,jl = Rjlkpw

p. Adding these three
equalities, we obtain (17.4) from (17.2) and the first Bianchi identity (4.33).

Remark 17.5. In view of (17.4) and (4.32), a Killing field w on (M, g) restricted
to any geodesic t 7→ x(t) ∈ M becomes a Jacobi field, that is, satisfies the Jacobi
equation (4.51). This is obvious since [∇ẋ∇ẋw]j = wj,klẋ

kẋl (as ∇ẋẋ = 0.

Furthermore, relation (17.4) allows us to identify Killing vector fields on (M, g)
with parallel sections of a specific vector bundle over M . See Remark 17.25.



106 ANDRZEJ DERDZINSKI

Remark 17.6. Formula (4.51) has the following immediate consequences, for any
pseudo-Riemannian manifold (M, g):

(i) There can be at most one Killing vector field w on a given connected
neighborhood of any point x ∈ M realizing any prescribed initial data
w(x) and [∇w](x) at x. In other words, if we denote isom(M, g) the
vector space of all Killing fields on (M, g), then, for any fixed x ∈M , the
linear operator

(17.5) isom(M, g) 3 w 7→ (w(x), [∇w](x)) ∈ TxM × so(TxM)

is injective. Consequently, by (3.31),

(17.6) dim [isom(M, g)] ≤ n(n+ 1)

2
, n = dimM .

(ii) For any vector space W of Killing fields on a nonempty connected open
subset U of M such that dimW ≥ n(n+ 1)/2 (where n = dimM), we
necessarily have W = isom(U, g) and dim [isom(U, g)] = n(n+ 1)/2.

(iii) Every Killing field is automatically of class C∞.
(iv) Killing fields have a unique continuation property : Two Killing fields w, u

on a pseudo-Riemannian manifold (M, g), such that w = u on a nonemp-
ty open subset of M , must coincide everywhere in M .

In fact, (i) and (iii) are obvious from (4.51) combined with the uniqueness and
regularity theorem for ordinary differential equations, and (ii) is immediate from
(i). As for (iv), note that, by (i), the set of points at which w = u and ∇w = ∇u
is both closed and open in M , while our manifolds are connected by definition.

Killing fields are actually even more “rigid” than Remark 17.6(iv) indicates;
namely, a Killing field w on (M, g) is uniquely determined by its behavior along a
codimension-one submanifold N of M (where w is not assumed tangent to N).
More precisely, we have

Lemma 17.7. Let w and w′ be Killing vector fields on a pseudo-Riemannian
manifold (M, g) such that, for some codimension-one submanifold N of M , we
have w(x) = w′(x) whenever x ∈ N . Then w = w′ everywhere in M .

Proof. It suffices to show that a Killing field w on (M, g) with w(x) = 0 for all
x ∈ N must vanish identically on M . To this end, let us note that, for any C1

curve t 7→ x(t) ∈ N we obviously have ∇ẋw = 0 (by (4.13)), since w vanishes
along the curve; here ∇ is the Levi-Civita connection of (M, g). Comparing (4.13)
with (4.12), we see that ∇vw = 0 for every x ∈ N and every v ∈ TxN . Let us
now fix x ∈ N and set A = [∇w](x). Thus, A : TxM → TxM is a skew-adjoint
linear operator vanishing on the codimension-one subspace V = TxN . Choosing
u ∈ TxM r V we now obtain 〈Au, u〉 = 0 and 〈Au, v〉 = −〈u,Av〉 = 0 for
all v ∈ V , so that Au = 0 and, consequently, A = 0. Hence w(x) = 0 and
[∇w](x) = 0, so that w = 0 identically (see Remark 17.6(i)). This completes the
proof. �

For Killing fields w, u on any pseudo-Riemannian manifold (M, g) we have

(17.7) ∇[w, u] = [∇u,∇w] + R(u,w) ,
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as one sees using (17.4) and relation (4.4). On the other hand, given a pseudo-
Riemannian manifold (M, g), a point x ∈M , and vectors v, w ∈ TxM , we always
have

(17.8) R(v, w) ∈ so(TxM)

in view (4.32). Thus, the vector space isom(M, g) of all Killing fields on (M, g),
with the Lie-bracket operation, is a Lie algebra; cf. also Remark 17.6(iii).

Example 17.8. Let (M, g) be a pseudo-Euclidean vector space V with the flat
constant metric g provided by its inner product 〈 , 〉 (Example 10.3). The Killing
fields on any nonempty connected open subset U of M = V then are precisely
those vector fields w on U which, treated as mappings U → V , have the form
w(x) = Ax + v with A ∈ so(V ) and v ∈ V . In fact, Killing fields w in any flat
manifold satisfy wj,kl = 0 in view of Lemma 3.1, since wj,kl then is symmetric in
k, l (by (4.26)) and skew-symmetric in j, k (by (17.2)). In linear coordinates, this
becomes ∂l∂kw

j = 0, and so w(x) must be a (possibly nonhomogeneous) linear
function of x, as required. Consequently,

(17.9) dim [isom(U, g)] = n(n+ 1)/2 , n = dimM = dimV .

Finally, the Lie bracket of two such Killing fields w and w′ with w(x) = Ax+ v,
w′(x) = A′x+ v′, is given by

(17.10) [w,w′](x) = (A′A−AA′)x + (A′v −Av′) .

This is clear from (4.4) since, in this case, (∇uw)(x) = (duw)(x) = Au.

Example 17.9. Let (M, g) be a space of constant curvature obtained as a (non-
empty) pseudosphere M = Sc = {v ∈ V : 〈v, v〉 = c} in a pseudo-Euclidean vector
space V (Example 10.4). Every skew-adjoint linear operator A : V → V may be
regarded as a vector field on V , given by V 3 x 7→ Ax ∈ V = TxV . The vector
field A then is tangent to M = Sc at each x ∈ M , since Ax ∈ x⊥ = TxM due
to skew-adjointness of A. The restriction of A to M thus constitutes a tangent
vector field w = wA on M , which, according to Example 17.3, must be a Killing
field for (M, g). Conversely, according to Remark 17.6(ii), every Killing field on
any connected open subset U of (M, g) arises in this way from some A ∈ so(V )
and, as in (17.9), we have

(17.11) dim [isom(U, g)] = n(n+ 1)/2 , n = dimM = dimV − 1 .

(The assignment A 7→ wA is clearly injective.) Moreover,

(17.12) [wA, wB ] = wBA−AB ,

as one easily sees using (13.8) and (4.4). Note that, in this case, [ ]tang becomes
redundant in formula (13.8), i.e., by (17.7), ∇vw = DvA, since Ax ∈ x⊥ = TxM .

Remark 17.10. Let (M, g) be a Riemannian surface of constant Gaussian curvature
K = κ (cf. Remark 10.1), obtained as in Example 10.3 (with κ = 0) or Example
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10.4 (κ 6= 0), using a suitable pseudo-Euclidean vector space V . The Lie algebra
isom(M, g) then has a basis w1, w2, w3 satisfying the Lie-bracket relations

(17.13) [w1, w2] = δw3 , [w2, w3] = w1 , [w3, w1] = w2 ,

where δ = sgn (κ) ∈ {−1, 0, 1}. In fact, when κ = 0, we may choose an orthonor-
mal basis u, v of the Euclidean plane M = V and set, for all x ∈ M , w1(x) = u,
w2(x) = v and w3(x) = Ax, with A ∈ so(V ) characterized by Au = − v, Av = u.
(See Example 17.8.) On the other hand, if κ 6= 0, then dimV = 3, M is a pseu-
dosphere in V , and V admits an orthonormal basis u, v, w with the sign pattern
+ + ± (up to an overall sign change), the last sign ± being that of δ = ± 1.
We then set wj = wA(j) (see Example 17.9), with with A(j) = Aj ∈ so(V ),
j = 1, 2, 3, characterized by A1v = w, A1w = − δv, A2u = w, A2w = − δu,
A3u = v, A3v = −u, and A1u = A2v = A3w = 0. According to Examples 17.8
and 17.9, the wj then form, in both cases, a basis of isom(M, g). Finally, relations
(17.13) easily follow from (17.10) and, respectively, (17.12).

The next two results establish some natural relations between Killing vector
fields and parallel bivector fields in pseudo-Riemannian manifolds (M, g). In both,
we will use the metric g to treat a bivector field α on M as a (skew-adjoint)
bundle morphism TM → TM , as in (2.12).

For any C2 function f : M → R on a pseudo-Riemannian manifold (M, g),
the second covariant derivative or Hessian of f is the symmetric twice-covariant
tensor field ∇df , with the local components f,jk = ∂j∂kf − Γ ljk∂lf (which is just

(4.19) for ξ = df). Using the index-raising operation corresponding to g, we may
regard ∇df as a self-adjoint bundle morphism TM → TM which, at any point
x ∈M , acts by

(17.14) TxM 3 v 7→ (∇df)v = ∇v(∇f) ∈ TxM .

Lemma 17.11. Let α be a parallel bivector field on a pseudo-Riemannian man-
ifold (M, g), and let f : M → R be a C2 function such that α and the second
covariant derivative ∇df commute as bundle morphisms TM → TM . Then the
vector field w = α(∇f) is a Killing field on (M, g), and its covariant derivative is
the composite of α and ∇df :

(17.15) ∇w = α(∇df) = (∇df)α .

Proof. Since α is parallel, (17.14) gives ∇vw = α(∇v(∇f)) = [α(∇df)]v for any
tangent vector v, which proves (17.15). On the other hand, the composite AB
of two operators A,B in a Euclidean space, which satisfy A∗ = −A, B∗ = B
and AB = BA, is necessarily skew-adjoint, as (AB)∗ = (BA)∗ = A∗B∗ = −AB.
Hence, by (17.15), ∇w is skew-adjoint at every point, i.e., w is a Killing field, as
required. �

Proposition 17.12. Let α be a parallel bivector field on a pseudo-Riemanni-
an manifold (M, g). Any of the following five conditions then implies that α
commutes, as a bundle morphism TM → TM , with the covariant derivative ∇w
of every Killing vector field w on (M, g):

(a) (M, g) admits no other parallel bivector fields except constant multiples of
α, and α is non-null, i.e., 〈α, α〉 6= 0;
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(b) (M, g) is four-dimensional, oriented and Riemannian, α is a section of
Λ+M , and the only parallel sections of Λ+M are constant multiples of α;

(c) (M, g) is four-dimensional, oriented and Riemannian, α is a section of
Λ+M , and the scalar curvature s is nonzero everywhere;

(d) (M, g, α) is a nonflat space of constant holomorphic sectional curvature;
(e) (M, g, α) is a Riemannian Kähler manifold of real dimension 4 and its

scalar curvature s is nonzero everywhere.

Proof. We may assume that n = dimM ≥ 2. The commutator β = [α,∇w] =
α(∇w)− (∇w)α is skew-adjoint (since so are α and ∇w) and, obviously, satisfies
the anticommutator relation

(17.16) αβ + βα = [α2,∇w] .

Furthermore,

(17.17) 〈α, β〉 = 0 , ∇β = 0 .

In fact, the first equality is immediate from (17.16) since, by (2.17), − 4〈α, β〉 =
2 Traceαβ = Trace (αβ + βα), which equals zero by (3.1). To show that ∇β = 0,
note that β has the twice-covariant components βjk = αskws,j − αj

swk,s (cf.
(2.12)). Therefore, as ∇α = 0, we have βjk,l = αskws,jl − αjswk,sl. Consequently,
(17.4) and (4.32) yield βjk,l = wp[Rsjlpα

s
k −Rkslpαjs] = wp[Rplj

sαsk +Rplk
sαjs],

which vanishes in view of (4.29) with F = α.
The uniqueness assumption of (a), applied to β, now yields our assertion in view

of (17.17).
On the other hand, in each of the remaining cases (b) – (e), α2 is a multiple

of Id (as a consequence of Lemma 6.1 or, respectively, (9.1)), and so (17.16) and
(17.17) give

(17.18) αβ + βα = 0 .

In case (b), (17.18) combined with Corollary 6.4 shows that β is a section of Λ+M ,
and so our assertion now follows from (17.17) and the uniqueness condition in (b).

Furthermore, either of assumptions (c), (e) implies (b) (and hence our assertion),
as one sees using Proposition 9.8 or, respectively, Corollary 9.4.

Finally, in case (d), (17.18) along with Lemma 10.5(ii) shows that, unless β = 0,
we would have (n2 − 4)λ = − (n + 2)λ with n = dimM (since (5.20) applies to
both α and β, cf. Lemma 10.5(i)). As n = dimM ≥ 2, this could happen only
if λ = 0 which, via (10.10) and (10.5), would in turn imply that (M, g) is flat,
contrary to (d). Thus, β = 0, which completes the proof. �

Remark 17.13. The assertion of Proposition 17.12 in cases (d), (e) can be rephrased
as ”every Killing vector field w in (M, g, α) is holomorphic”. More precisely,
any pseudo-Riemannian Kähler manifold (M, g, α) naturally constitutes a complex
manifold (see Remark 23.5 in §23 below). On the other hand, given a vector field
w and a bundle morphism α : TM → TM , both of class C1, in a pseudo-Riem-
annian manifold (M, g), the commutator β = [α,∇w] is nothing else than the Lie
derivative Lwα.
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Example 17.14. Let (M, g) be the Riemannian product of two pseudo-Riemann-
ian surfaces (Σ, h) and (Σ′, h′) with Gaussian curvatures λ and µ, such that the
scalar curvature s of (M, g) is nonzero everywhere, i.e., λ+ µ 6= 0 (cf. (16.29)).
Let us also fix a connected open subset U of M . We then have

(17.19) dim [isom(Σ, h)] + dim [isom(Σ′, h′)] ≤ dim [isom(U, g)] ≤ 6 .

In fact, the first inequality is immediate from injectivity of the operator

(17.20) isom(Σ, h)× isom(Σ′, h′) → isom(U, g)

that combines Killing fields w,w′ on Σ, Σ′ into a Killing field w+w′ on M (Ex-
ample 17.2), which we then restrict to U (the latter step being injective by Remark
17.6(iv)). To establish the second inequality in (17.19), note that assumption (c)
in Proposition 17.12 holds for (M, g) with either fixed orientation along with one
or the other of the parallel bivector fields α± defined, locally, as in (16.34) (since,
by Lemma 6.2, α± is a section of Λ±M). The assertion of Proposition 17.12 then
shows that, for any Killing field w defined on U , the skew-adjoint bundle morphism
∇w : TU → TU leaves invariant the vector subbundles P = Ker (α+ − α−) and
Q = Ker (α+ + α−) of TU tangent to the factor surfaces. Due to ∇w-invariance
of P and Q, for each x ∈M the injective linear operator (17.5) takes values in the
space TxM × so(Px)× so(Qx) of dimension at most six (with elements of so(Px)
acting trivially on Qx, and vice versa). Thus, (17.19) follows. Let us now suppose
that, in addition, the factor surfaces have constant Gaussian curvatures and each
of them is obtained as in Example 10.3 or 10.4. Then, for any fixed connected open
subset U of M , we have

(17.21) dim [isom(U, g)] = 6 ,

and (17.20) is an isomorphism, i.e., every Killing field on U is of the form w+w′

as described above. This is immediate from (17.19), since, according to Examples
17.8 and 17.9, we have dim [isom(Σ, h)] = 3 for either factor surface (Σ, h).

Let V now be a finite-dimensional complex vector space endowed with a fixed
sesquilinear Hermitian complex-valued form 〈 , 〉. We then denote u(V ) the (real)
Lie subalgebra of glC(V ) = HomC(V, V ) consisting of all complex-linear operators
A : V → V that are skew-adjoint relative to 〈 , 〉, i.e., satisfy (3.30), and use the
symbol su(V ) for the ideal in u(V ) formed by all such A which, in addition, are
(complex) traceless. We obviously have

(17.22) dim u(V ) = so(V ) ∩ glC(V ) ⊂ so(V ) ,

the real-valued form needed to define so(V ) being Re 〈 , 〉. If 〈 , 〉 is nondegenerate,
we have, for reasons analogous to those in (3.31),

(17.23) dim u(V ) = m2 , dim su(V ) = m2 − 1 , m = dimCV .

The symbol u(TxM) also makes sense whenever x is a point in an almost Her-
mitian pseudo-Riemannian manifold (M, g, α). In fact, TxM then is a complex
vector space and carries the pseudo-Hermitian complex inner product 〈 , 〉c, the real
part of which is g(x). See Remark 3.18.
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Corollary 17.15. If a pseudo-Riemannian manifold (M, g) admits a non-null
parallel bivector field α satisfying one of conditions (d), (e) in Proposition 17.12,
then, for each x ∈ M , the injective linear operator (17.5) takes values in the sub-
space TxM × u(TxM), cf. (17.22), and we have

(17.24) dim [isom(M, g)] ≤ n(n+ 4)

4
, n = dimM .

Proof. For any Killing field w and any x ∈ M , we have [∇w(x)] ∈ u(TxM) in
view of Proposition 17.12 and the equality in (17.22). Now (17.23) with m = n/2
gives (17.24), as required. �

We can now discuss the main reason why Killing fields are important for ge-
ometry. That reason lies in the relation between them and local isometries of
the underlying manifold (M, g), that is, isometries between open submanifolds of
(M, g). (By an isometry between pseudo-Riemannian manifolds (M, g) and (N,h)
we mean here, as usual, any C1 diffeomorphism F : M → N such that F ∗h = g,
cf. §2.)

Let us recall that the flow of a C1 vector field w on a manifold M is the mapping
(t, x) 7→ etwx ∈ M characterized in the paragraph following formula (2.31) in §2.
Also, note that, according to (17.2), a C1 vector field w in a pseudo-Riemannian
manifold (M, g) is a Killing field if and only if

(17.25) Lwg = 0 ,

where Lwg denotes the symmetric twice-covariant tensor field with the local com-
ponents

(17.26) [Lwg]jk = wj,k + wk,j .

It is also worth noting that, for a Killing field v and any C1 vector fields u,w we
have

(17.27) dv〈u,w〉 = 〈[v, u], w〉 + 〈[v, w], u〉 .

(This means that the Lie derivative given by Lvu = [v, u] and Lvf = dvf for
vector fields u and functions f satisfies, for Killing fields v, the Leibniz rule
〈Lvu,w〉+〈u,Lvw〉 = 0.) In fact, by (4.4) and skew-adjointness of ∇v, 〈[v, u], w〉+
〈[v, w], u〉 = 〈∇vu−∇uv, w〉+ 〈∇vw−∇wv, u〉 = 〈∇vu,w〉+ 〈u,∇vw〉 = dv〈u,w〉, as
required.

Lemma 17.16. A C2 vector field w on a pseudo-Riemannian manifold (M, g)
is a Killing field if and only if its flow consists of local isometries of (M, g).

Proof. Set φ(t, y) = φt(y) = etwy for (t, y) in a suitable open subset of R ×M .
Our assertion is an obvious consequence of the relation

(17.28)
d

dt
[φ∗t g] = φ∗t [Lwg]

with Lwg given by (17.26). To prove (17.28), let us rewrite it in local coordinates,
using (2.30):

(17.29)
d

dt

[
gjk(φ)φjaφ

k
b

]
= [wj,k(φ) + wk,j(φ)]φjaφ

k
b ,
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where, for any fixed z ∈ M and τ ∈ R, ya and xj are local coordinates for M
defined near z and eτwz, respectively, while t varies near τ , φja = ∂φj/∂ya,
and the composites gjk(φ), wj,k(φ) depend on t via φ(t, y). Thus, wj(φ) =
∂φj/∂t, and so, by the chain rule, ∂φja/∂t = ∂ [wj(φ)]/∂ya = φka(∂kw

j)(φ), while,
again from the chain rule and (4.1), we have d [gjk(φ)]/dt = wl(φ)(∂lgjk)(φ) =
(wlΓ sljgsk + wlΓ slkgjs)(φ). Since, by (4.12), wj,k = gjl(∂kw

l + Γ lksw
s), equality

(17.29) now follows from the product rule and symmetry of Γ ljk in j, k. �

Every C1 vector field w on a compact manifold M is complete (in the sense
described in Remark 2.3), i.e., gives rise to a flow homomorphism (2.33). As a con-
sequence of Lemma 17.16, in the case of a Killing field w on a compact Riemannian
manifold (M, g), (2.33) is a group homomorphism

(17.30) R 3 t 7→ etw ∈ Isom (M, g) ,

valued in the group Isom (M, g) of all isometries of (M, g) onto itself.

Example 17.17. Let (M c, gc) be a nonflat pseudo-Riemannian space of constant
holomorphic sectional curvature obtained as in Example 10.6 using a complex vector
space V with a pseudo-Hermitian complex inner product 〈 , 〉 and a real number
c 6= 0, and let Sc be the (nonempty) pseudosphere Sc = {v ∈ V : 〈v, v〉 = c}.
Every traceless skew-adjoint complex-linear operator A : V → V , restricted to
Sc, is a tangent vector field wA on Sc (Example 17.8, with the real inner product
Re 〈 , 〉). Since A(zx) = zAx for all x ∈ V and z ∈ C, both wA and its component
orthogonal to the S1 orbits in Sc is invariant under the multiplicative action on
Sc of the circle S1 of unit complex numbers. As a result, wA is projectable onto
a vector field w(A) tangent to M c = Sc/S

1. Furthermore, w(A) is a Killing field
in (M c, gc). To see this, note that the flow of the linear vector field A in V
obviously coincides with the one-parameter family t 7→ etA of linear operators
given by etA =

∑∞
r=0[(tA)n/n!]. Restricted to Sc these operators are isometries,

commuting with the S1 action and forming the flow of wA; therefore, they descend
to M c so as to become a one-parameter family of isometries, which obviously
constitute the flow of w(A), and so w(A) is a Killing field in view of Lemma 17.16.
Let us now fix any connected open subset U of M c. Restricting each w(A) to U ,
we thus obtain a linear operator

(17.31) su(V ) 3 A 7→ w(A) ∈ isom(U, gc) ,

which is injective. (In fact, if w(A) = 0 on U , then every vector in V is an
eigenvector of A, so that A is a multiple of Id and, being traceless, it has to be
zero.) The w(A) thus obtained now form a subspace W of isom(U, gc), namely,
the image of (17.31), which, by (17.23), satisfies dimW ≥ n(n + 4)/4, where n
is the real dimension of M c (so that m = (n/2) + 1 is the complex dimension of
V ). Thus, by (17.24), W = isom(U, gc) and, for any connected open subset U of
M c,

(17.32) dim [isom(U, gc)] = n(n+ 4)/4 , n = dimM c .
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Proposition 17.18. Let (M, g) denote a Riemannian manifold of dimension n
which is either obtained by one of the constructions described in Examples 10.3,
10.4, 10.6, or the Riemannian product of two such manifolds, and let us set m =
dim [isom(U, g)], where U is any fixed connected open subset of M .

(i) If (M, g) is a space of constant curvature, then m = n(n+ 1)/2;
(ii) If (M, g) is a nonflat space of constant holomorphic sectional curvature,

we have m = n(n+ 4)/4;
(iii) If n = 4 and (M, g) is the Riemannian product of two Riemannian sur-

faces with equal nonzero constant curvatures, both obtained as in Example
10.4, then m = 6.

In fact, this is nothing else than the dimension formulae (17.9), (17.11), (17.21)
and (17.32). �

We will say that a pseudo-Riemannian manifold (M, g) is infinitesimally homo-
geneous if for every x ∈M we have TxM = {v(x) : v ∈ g}, with g = isom(M, g).

Example 17.19. Every locally symmetric Riemannian Einstein 4-manifold is in-
finitesimally homogeneous, as one easily verifies using the description of Killing
fields in Examples 17.8, 17.9 and 17.14 along with the fact that these examples,
locally, represent all possible isometry types of the manifolds in question (Theo-
rem 14.7). For the same reason, in all dimensions, spaces of constant curvature,
as well spaces of constant holomorphic sectional curvature, are all infinitesimally
homogeneous. (Here we may use the classifications provided by Theorems 14.2 and
14.4.)

Lemma 17.20. Any infinitesimally homogeneous pseudo-Riemannian manifold
(M, g) is also locally homogeneous.

Proof. Let n = dimM . Given x ∈ M , let wj , j = 1, . . . , n, be Killing fields on
a connected neighborhood U of x such that the wj(x) form a basis of TxM ,
and let h be the subspace of isom(U, g) spanned by the wj . The assignment
w 7→ ewx ∈ M (notation as in Remark 2.4) is defined on a neighborhood of 0 in
h and, in view of the inverse mapping theorem, it sends some neighborhood of 0
in h diffeomorphically onto a neighborhood U ′ of x in M . Since the ew are local
isometries of (M, g) (Lemma 17.16), we have x ∼ y for all y ∈ U ′, where ∼ is
the equivalence relation introduced in Remark 2.1. The equivalence classes of ∼
thus are all open and hence all closed, so that, as M is connected (by definition),
there is only one such class. This completes the proof. �

Corollary 17.21. Every locally symmetric Riemannian Einstein manifold of di-
mension four is locally homogeneous.

This is clear from Example 17.19 and Lemma 17.20. �

Remark 17.22. The assertion of Corollary 17.21 is well-known to be valid in all
dimensions and sign patterns; cf. also Remark 42.7. (This is usually proved using
the characterization of locally symmetric metrics via geodesic symmetries; see, e.g.,
Helgason, 1978.)

Remark 17.23. Let an n-dimensional Lie algebra X of C∞ vector fields on an
n-dimensional manifold M satisfy conditions (a), (b) in Example 12.6, and let
〈 , 〉 be a (possibly indefinite) inner product in the underlying vector space of X .
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A pseudo-Riemannian metric g on M now can be defined by requiring that, for
any u, v ∈ X , g(u, v) be the constant function 〈u, v〉. (Given a basis ej of X ,
j = 1, . . . , n, this amounts to setting g(ej , ek) = gjk for all j, k, with any fixed
nonsingular symmetric matrix [gjk] of constants.) The resulting pseudo-Riem-
annian manifold (M, g) then is infinitesimally homogeneous, and hence (Lemma
17.20) also locally homogeneous. In fact, let x ∈ M and u ∈ TxM . According to
assertions (i), (ii) in Example 12.6 and Lemma 11.2, there exists a C∞ vector field
w on a neighborhood U of x such that w(x) = u and w commutes, on U , with
every v ∈ X . Thus, by (4.4) and (4.5), 2g(∇vw, v) = 2g(∇wv, v) = dw〈v, v〉 = 0
whenever v ∈ X , and since such v realize every tangent vector at any point, (17.1)
shows that w is a Killing field with the arbitrarily prescribed value w(x) = u, as
required.

Metrics g as above are well-known to be, locally, nothing else than left-invariant
metrics on n-dimensional Lie groups.

Remark 17.24. Property (i) of Killing fields in Remark 17.6 is closely related to the
fact that, given pseudo-Riemannian manifolds (M, g) and (N,h), points x ∈ M ,
y ∈ N and a linear operator A : TxM → TyN , there can exist at most one isometry
F : M → N with F (x) = y and dFx = A. In other words, for any fixed z ∈ M ,
an isometry F is uniquely determined by the initial data F (z) and dFz. In fact,
since F sends geodesics onto geodesics, these data at any given point z determine
what F is at every point that can be joined to z by a geodesic in (M, g). Thus, for
two isometries F, F ′ : M → N , the set U of all points z ∈M with F (z) = F ′(z)
and dFz = dF ′z is both closed and open in M , so that it must coincide with M
or be empty.

Remark 17.25. Given a pseudo-Riemannian manifold (M, g), let us define the vec-
tor bundle E over M to be the direct sum E = TM ⊕ so(TM) of the tan-
gent bundle TM and the subbundle so(TM) of Hom (TM, TM) with the fibres
so(TxM), x ∈ M , defined as in §3 (see the paragraph preceding formula (3.31)).
Sections of E thus are pairs (u, F ) consisting of a vector field u on M and a
bundle morphism F : TM → TM , skew-adjoint at every point. Formula

(17.33) Dv(u, F ) = (∇vu − Fv , ∇vF + R(v, u)) ,

with (u, F ) and v tangent to M , obviously defines a connection D in E , such
that the D-parallel sections are precisely those (u, F ) formed by a Killing field
u in (M, g) with F = ∇u. (See (17.2) and (17.4).) Using formula (4.52) (with
the simplifications described in Remark 4.4), along with (4.27) and the Bianchi
identities (4.33) and (5.1), we now easily verify that the curvature tensor RD of
D can be expressed as

(17.34)
RD(v, w)(u, F )

= (0 , (∇uR)(v, w) + [F,R(v, w)] + R(Fv,w) + R(v, Fw)) .

One might combine this formula with Lemma 11.2 trying to prove a local existence
theorem for Killing fields; however, flatness of D in the bundle E as described
here characterizes the case where (M, g) is a space of constant curvature, which is
far too special to be of much interest. Instead, we may (in a suitable situation) try
to find a vector subbundle C of E such that

(a) C is D-parallel, as defined in Remark 4.7, and
(b) RD(v, w)(u, F ) = 0 for (u, F ) in C and any v, w tangent to M .
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In fact, by (a), D has a natural restriction to a connection in C and, by (b) along
with (4.52), that restriction is flat. We thus are free to use Lemma 11.2 to obtain
existence of specific (local) Killing fields.

Using this above argument, we obtain the following result, some applications of
which are described in Remark 42.6 (§42).

Proposition 17.26. Let (M, g) be a locally symmetric pseudo-Riemannian man-
ifold, and let R([TM ]∧2) denote the subbundle of the bivector bundle [TM ]∧2

whose fibre R([TxM ]∧2) over each x ∈ M is the image of the curvature tensor
R of (M, g) acting on bivectors at x. Suppose that for some, or any, point
x ∈ M , any two elements of R([TxM ]∧2) commute when treated, with the aid
of g, as a skew-adjoint operators TxM → TxM . Furthermore, let Cx be the
centralizer of R([TxM ]∧2) in [TxM ]∧2 at any x ∈ M , that is, the set of all
F ∈ [TxM ]∧2 = so(TxM) which commute with all elements of R([TxM ]∧2).
Then every point of M has a connected neighborhood U such that, for any
x ∈ U , any v ∈ TxM , and any F ∈ Cx, there exists a unique Killing vector field
w ∈ isom(M, g), defined on U , with w(x) = v and [∇w](x) = F . In particular,
(M, g) is infinitesimally homogeneous and, consequently, locally homogeneous.

Proof. Since R is parallel, the Cx are the fibres of a parallel subbundle C of
[TM ]∧2 (see Remark 4.7). The restriction to C of the connection (17.33) is flat
in view of (17.34). To see this, note that ∇uR)(v, w) = 0 as ∇R = 0, while
[F,R(v, w)] = 0 since the F in question commute with the image of R. Finally,
for any tangent vectors u, u′, g(R(Fv,w)u + R(v, Fw)u, u′) = g(R(u, u′)Fv,w) +
g(R(u, u′)v, Fw) = g(R(u, u′)[Fv]−F [R(u, u′)v], w) (due to the identity Rjklm =
Rlmjk in (4.32) and skew-adjointness of F ) which equals g([R(u, u′), F ]v, w), and
hence is zero since F commutes with all R(u, u′). Our assertion is now immediate
from Lemma 11.2 (along with Lemma 17.20), which completes the proof. �

§18. Extremal metrics on surfaces

Most results presented here go back at least five decades, and seem to have been
independently discovered by various authors (see Petrov, 1969, pp. 348 – 350). The
only newer result is Theorem 18.14, due to Calabi (1982).

We will say that a pseudo-Riemannian metric g is locally conformally Einstein if
every point of the underlying manifold has a neighborhood U with a C∞ function
f : U → R such that the metric g̃ = e2fg is Einstein.

In this section (and, later, in §19 and §22) we will study metrics in dimension
four that are locally conformally Einstein and at the same time belong to other
special classes (such as product or Kähler metrics). We begin here with products
of surfaces. More precisely, our goal is to provide a local classification, at “generic”
points, of those pseudo-Riemannian Einstein metrics in dimension four that are
locally conformally related to Riemannian products of two surface metrics. (See
the paragraph following Remark 18.10.) It will be useful to introduce, after the
following general remark, the class of extremal surface metrics, which turn out to
be the possible factors in such products.

Remark 18.1. Here and in sections 19 and 22 we deal with the question of classifying
metrics of some specific “class X” that are also locally conformally Einstein. Such
a question can be approached from two “ends”. One, the class X end, consists in
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asking which class X metrics are in fact locally conformally Einstein; an answer
to this part of the problem will lead to a specific construction of Einstein metrics.
The other, Einstein-metric end centers around characterizing those Einstein metrics
that are conformally related to class X metrics. A solution to the second problem
will, if nothing else, enhance our understanding of Einstein metrics in general.

It turns out that in all three instances of different “classes X” a common pattern
emerges: The Einstein metrics conformal to class X metrics turn out to have a
very simple and natural characterization, while a description of class X metrics
conformal to Einstein metrics turns out much less satisfactory, i.e., more difficult
to understand.

Let (Σ, h) be a pseudo-Riemannian surface. Following Calabi (1982), we will
say that the metric h is extremal if its Gaussian curvature function κ has the
property that ∇dκ = σh for some function σ. (See also Remark 18.8 below.)
Contracting both sides, we then see that 2σ = ∆κ, i.e., extremal surface metrics
h are characterized by

(18.1) ∇dκ = σh , 2σ = ∆κ

or, in local coordinates xj ,

(18.2) κ,jl = σhjl , 2σ = κ,j
j .

We define the classifying parameters of an extremal pseudo-Riemannian metric h
on a surface Σ to be the first parameter c and the second parameter p with

(18.3) c = ∆κ + κ2 , p = cκ − h(∇κ,∇κ) − κ3/3 .

Thus, by (18.1) and (18.3),

(18.4) 2∇dκ = (c− κ2)h ,

and

(18.5) ∆κ = c − κ2 , h(∇κ,∇κ) = cκ− p − κ3/3 .

Example 18.2. Any surface metric having a constant Gaussian curvature κ is
obviously extremal, with the classifying parameters c = κ2 and p = 2κ3/3.

Lemma 18.3. For any extremal pseudo-Riemannian metric h on a surface Σ,
the classifying parameters c and p with (18.3) are constant as functions on Σ.

Proof. In view of the contracted Ricci-Weitzenböck formula (4.39) and the relation
Rjl = κhjl (see Remark 10.1), we have c,j = (∆κ + κ2),j = κ,s

s
j + 2Rj

sκ,s =
κ,s

s
j+2(κ,sj

s−κ,ssj) = 2κ,sj
s−κ,ssj . However, taking the divergences of both sides

of (18.1), (i.e., applying ∇l to (18.2)), we obtain 2κ,sj
s = (∆κ),j = κ,s

s
j . Thus,

c is constant. On the other hand, both sides of (18.1) may be treated as bundle
morphisms TΣ → TΣ (with g corresponding to the identity). Applying them to
∇κ and using (18.3), we obtain 0 = (∆κ),j − 2κ,j

sκ,s = (c− κ2)κ,j − 2κ,j
sκ,s, i.e.,

p in (18.3) is constant. This completes the proof. �
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Lemma 18.4. Let (M, g) be a pseudo-Riemannian 4-manifold, obtained as the
Riemannian product of two pseudo-Riemannian surfaces, and such that the scalar
curvature s of g is nonzero everywhere. Then, the following two conditions are
equivalent :

(i) g is locally conformally Einstein;
(ii) Both factor-surface metrics are extremal and have the same first classifying

parameter c, defined as in (18.3).

Furthermore, if (i) or (ii) is satisfied, then an Einstein metric g̃ conformally related
to g is unique up to a constant factor and, up to a factor, must be given by

(18.6) g̃ = 4 g/s2 = g/(λ+ µ)2 ,

and the scalar curvature s̃ of the metric (18.6) then equals

(18.7) s̃ = 3 (p+ q) ,

where λ and µ are the Gaussian curvatures of the factor surfaces, while p and q
stand for their second classifying parameters.

Proof. Assume (i) and let g̃ = g/ϕ2 be an Einstein metric. According to Lemma
5.2 and Remark 16.9, we can now apply Lemma 16.8, concluding that, ϕ is a
constant multiple of s = 2(λ+ µ), where λ, µ are the Gaussian curvatures of the
factor surfaces (cf. the last equality in (16.29)). Combining (16.14) (for n = 4) with
(16.28), in product coordinates xj , ya, we now see that, on each factor surface, the
second covariant derivative of the Gaussian curvature must be equal to a function
times the metric. In other words, both factor metrics then are extremal. Relations
(18.4) and (18.5) for κ = λ and κ = µ (with, possibly, different pairs (c, p) for
the two factors), substituted into (16.14) with ϕ = s/2 = λ + µ, along with the

requirements that R̃jk = κ̃g̃jk, R̃ab = κ̃g̃ab, (with the same κ̃ in both, cf. (5.3)),
now easily imply equality between the first classifying parameters of both factor
metrics and relation (18.7) (as s̃ = 4κ̃). This proves (ii) and the last part of our
assertion.

Conversely, let us assume (ii). Using (16.28) and (16.14), in product coordinates
(where n = 4, ϕ = λ + µ, and λ, µ again stand for the Gaussian curvatures of
the factor surfaces), along with (18.4) and (18.5) (for κ = λ or κ = µ), we obtain

R̃ic = s̃ g̃/4, with s̃ given by (18.7). This completes the proof. �

Remark 18.5. Lemma 18.4 offers a simple construction leading to Einstein metrics
on products of surfaces. One might be tempted to try it for compact surfaces, with
the purpose of finding easy new examples of compact Riemannian Einstein four-
manifolds. Any such hopes are, however, quickly dashed by a theorem of Calabi
(1982), presented at the end of this section.

Remark 18.6. Any oriented pseudo-Riemannian surface (Σ, h) carries a natural
nonzero parallel bivector field α given by α(x) = e1 ∧ e2 for any positive-oriented
orthonormal basis e1, e2 of TxΣ. (See (3.34), where α is denoted vol.) Regarded
as a skew-adjoint bundle morphism TΣ → TΣ (see (2.12), (2.19)), α then satisfies

(18.8) αe1 = ε1e2 , αe2 = − ε2e1 , with εj = h(ej , ej) ,
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and

(18.9) α2 = − ε · Id ,

where the number ε = ± 1 is the sign factor of the pseudo-Riemannian surface
metric h, defined to be 1 when h is positive or negative definite and to − 1 when
it is indefinite. Also, for vectors v, w tangent to Σ,

(18.10) h(αv, αw) = ε h(v, w) ,

and

(18.11) v ∧ (αv) = h(v, v)α .

In fact, (18.8) is immediate from (2.22), and it in turn implies (18.9) as ε1ε2 = ε.
Now (18.10) follows from (18.9) and skew-symmetry of α, while (18.11) can be
easily verified by writing v as a combination of e1 and e2.

Remark 18.7. Note that, according to (18.9), any oriented Riemannian surface
(M, g), along with parallel bivector field α introduced in Remark 18.6, forms a
Kähler manifold (M, g, α).

Remark 18.8. Let h be an extremal pseudo-Riemannian metric on an oriented
surface Σ, and let α be the parallel bivector field introduced in Remark 18.6.
Since ∇dκ, treated as a bundle morphism TΣ → TΣ, equals a function times
the identity, it commutes with α. As a consequence of Lemma 17.11 and (18.4),
formula w = α(∇κ) then defines a Killing vector field w on (Σ, h). Furthermore,
by (17.15), α also commutes with ∇w. If, in addition, h is Riemannian, the
last property, according to Remark 17.13, can be rephrased as saying that w (and
hence also ∇κ) is a holomorphic vector field. This amounts to a special case (for
oriented Riemannian surfaces) of the original definition of extremal Kähler metrics
introduced by Calabi (1982).

The following lemma amounts to a local classification of extremal surface metrics;
see also Remark 18.10 below.

Lemma 18.9. Let κ, c, p and ε = ± 1 be the Gaussian curvature function, the
classifying parameters (18.3) and the sign factor, described in Remark 18.6, of an
extremal pseudo-Riemannian metric h on a surface Σ, and let Ψ be the cubic
polynomial

(18.12) Ψ(κ) = cκ− p− κ3/3

in the variable κ. In a neighborhood of any point at which Ψ(κ) 6= 0, there exists
a local coordinate system θ, κ in Σ such that κ is the second coordinate function
and the metric h is given by

(18.13) h = ε Ψ(κ) dθ2 +
1

Ψ(κ)
dκ2 .

Conversely, given real numbers c, p, ε with ε = ± 1, let h be the metric defined by
(18.13), with Ψ(κ) as in (18.12), on any connected component of the open subset
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of R2 given by Ψ(κ) 6= 0 in the Cartesian coordinates θ, κ. Then h is an extremal
pseudo-Riemannian surface metric with the sign factor ε and the classifying pa-
rameters c and p, while the Gaussian curvature of h coincides with the coordinate
function κ.

Proof. Let h be an extremal pseudo-Riemannian surface metric with κ, ε, c
and p as in the initial clause of the lemma, and let α be the parallel bivector
field, described in Remark 18.6, on a neighborhood of any given point with a fixed
orientation. The 1-form ξ with

(18.14) ξ =
α(∇κ)

Ψ(κ)
, i.e., ξj =

1

Ψ(κ)
κ,sα

s
j

is closed, that is, dξ = 0. In fact, using (2.16) and (18.4) we obtain [Ψ(κ)]2dξ =
Ψ(κ)α − (∇κ) ∧ [α(∇κ)], which is zero in view of (18.11) along with (18.12) and
(18.5). By Corollary 11.2 we have, locally, ξ = dθ for some function θ. Relations
(18.12), (18.5), (18.14) and (18.10) now imply

(18.15) h(∇κ,∇κ) = Ψ(κ) , ε h(∇θ, ∇θ) = 1/Ψ(κ) , h(∇θ, ∇κ) = 0 .

(Note that ∇θ and ∇κ are orthogonal due to (18.14) and skew-symmetry of α.)
Thus, locally, in the set Ψ(κ) 6= 0, κ and θ form a coordinate system. In general,
for functions f , coordinates xj , and any pseudo-Riemannian metric g, we have
(∇f)j = gjk ∂kf . Applying this to coordinate functions themselves, we obtain
g(∇xj , ∇xk) = gjk, with gjk as in (2.8). In our case, with g = h and x1 = θ,
x2 = κ, this gives, by (18.15), h11 = ε/Ψ(κ), h22 = Ψ(κ) and h12 = 0, so that
h11 = ε Ψ(κ), h22 = 1/Ψ(κ) and h12 = 0, which proves (18.13).

Conversely, let h denote the metric (18.13) in a region of R2 with the Cartesian
coordinates θ, κ satisfying Ψ(κ) 6= 0 (with Ψ(κ) given by (18.12)), and let t =
t(κ) be any function of the variable κ such that dt/dκ = |Ψ(κ)|−1/2. Setting
δ = sgn [Ψ(κ)] = ± 1, we can rewrite (18.13) as

(18.16) h = εδ Φ2dθ2 + δ dt2 , Φ = |Ψ(κ)|1/2 .

Hence, in the new coordinates x1 = θ, x2 = t, we have ∂κ/∂θ = 0 and, with
( )˙ = d/dt or ( )˙ = ∂/∂t,

(18.17) κ̇ = Φ > 0 , δκ̇2 = Ψ(κ) = cκ− p− κ3/3 , 2δκ̈ = c − κ2 .

In fact, the first two relations are obvious from our choice of t and (18.16), while
applying d/dt to the second relation we obtain 2δκ̇κ̈ = (c − κ2)κ̇, and the third

one follows. These equalities now give 2Φ̈ = 2κ
...

= δ(c− κ2)˙ = − 2κΦ, and so

(18.18) Φ̈ = − δκΦ .

(We treat κ here as a function of the coordinate t, without assuming that it coin-
cides with the Gaussian curvature of h.) Let us now define the vector fields u, v, w
to be the coordinate fields w = e1 and u = e2 in the directions of, respectively,
θ and t, and the unit vector field v = |h(w,w)|−1/2w = w/Φ be obtained by
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normalizing w. Since, by (18.16), the components of h do not depend on θ, the
coordinate vector field w = e1 is a Killing field (see Example 17.1). Furthermore,

(18.19) h(u, u) = δ , h(u,w) = h(u, v) = 0 , ∇uu = ∇uv = 0 ,

i.e., the coordinate vector field u is unit, orthogonal to w (and v ), its integral
curves t 7→ x(t) (given by x1(t) = θ, x2(t) = t with any fixed value of θ) are
geodesics, and v is parallel along each of them. To see this, note that the first two
equalities amount to the metric-component formulae h22 = δ, h12 = 0 (immediate
from (18.16)), while ∇uu must vanish since it is orthogonal both to u (as u is unit)
and w (as h(∇uu,w) = −h(u,∇uw) = 0 due to the fact that h(u,w) = 0 and
∇w is skew-adjoint at every point, i.e., w is a Killing field). Finally, ∇uv = 0 since
∇uv is orthogonal to v (note that v is unit) and h(∇uv, u) = −h(v,∇uu) = 0 as
u, v are orthogonal and ∇uu = 0.

Using the symbol K for the Gaussian curvature of h, we now have

(18.20) ∇u∇uw = − δKw .

In fact, according to Remark 17.5, the restriction of the Killing field w to any
integral curve of u satisfies the Jacobi equation (4.51), so that ∇u∇uw = R(w, u)u,
which in turn equals − δKw in view of formula (10.1) for g = h (cf. Remark 10.1)
along with (18.20). However, since w = Φv and v is parallel along u (by (18.19)),

equality (18.20) becomes − δKΦv = ∇u∇u(Φv) = Φ̈v which, in view of (18.18),
equals − δκΦv. Thus, K = κ.

To show that ∇dκ is a functional multiple of h, note that, according to Remark
18.6, formula α = u ∧ v defines a nonzero parallel bivector field. On the other
hand, ∇κ = δΦu. In fact, ∇κ = fu for some function f , since h(∇κ,w) = dwκ =
∂κ/∂θ = 0, while (cf. (18.19)), δf = fh(u, u) = h(∇κ, u) = duκ = κ̇ = Φ in view
of (18.17). Since, by (18.8), αu = δv, this implies α∇κ = Φv = w and, as α is
parallel, ∇w = α(∇dκ) (notation as in (17.15)). Since w is a Killing field, ∇w
is skew-adjoint at every point, and so, ∇w = σα for some function σ. Now, by
(18.9), εσh = α∇w = α2(∇dκ) = ε∇dκ, and (18.1) follows. This completes the
proof. �

Remark 18.10. Lemma 18.9, along with Theorem 14.2, provides a complete local
classification, up to an isometry, of extremal pseudo-Riemannian metrics h on
surfaces Σ, valid at all points of an open dense subset U of Σ. Specifically, given
an extremal metric h on Σ, we may define U to be the set of all points x ∈ Σ
such that either

(a) h(∇κ,∇κ) = 0 identically in a neighborhood of x, or
(b) h(∇κ,∇κ) 6= 0 at x.

Note that U then is dense in Σ, since it obviously intersects every nonempty open
subset of Σ. To see that the results mentioned actually yield a local classification
of h, let us fix any x ∈ U . In case (b), Ψ(κ) 6= 0 at x (due to (18.5) and (18.12)),
and so Lemma 18.9 gives (18.13) in a neighborhood of x. On the other hand,
if h(∇κ,∇κ) = 0 on some nonempty open connected set U ′ ⊂ Σ, the Gaussian
curvature κ of (Σ, h) must be constant (which, in turn, is a case classified by
Theorem 14.2, as κ = K according to Remark 10.1). In fact, κ is locally constant
on U ′ since, by (18.5), the values assumed by κ in U ′ are roots of the polynomial
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Ψ given by (18.12). Consequently, the Killing field w = α(∇κ) defined as in
Remark 18.8 (up to a sign, since α depends on the choice of an orientation) vanishes
on U ′. As U ′ is nonempty, by Remark 17.6(iv) we have w = 0 everywhere and
so κ is constant, as ∇κ = − εαw by (18.9).

In view of Lemma 18.4, one can also use Lemma 18.9 combined with Theorem
14.2 to obtain a local classification, at all points of an open dense subset U of
M , of those pseudo-Riemannian Einstein four-manifolds (M, g) which are locally
conformally related to Riemannian products of surfaces. Specifically, U is the
union of the open sets Ux described as follows. First, let U ′ be the (obviously
dense) open set in M consisting of all points x such that either W = 0 identically
in a neighborhood Ux of x, or W (x) 6= 0 (where W is, as usual, the Weyl tensor).
Given x ∈ U ′, in the former case (W = 0 on Ux) it follows that (Ux, g) is a space
of constant curvature, since (5.10) then implies (10.1) on Ux; hence, we can use
Theorem 14.2. If, on the other hand, W 6= 0 at x (and hence in a neighborhood U ′x
of x, on which g is conformally related to a product-of-surfaces metric g̃), the same

property ( W̃ 6= 0 on U ′x) will, by (16.11), also hold for g̃. According to (16.30), the
scalar curvature s̃ of g̃ then is nonzero everywhere in U ′x. Applying Lemma 18.4
to (U ′x, g̃), we see that (up to a constant factor), g = g̃/(κ1 +κ2)2, where κj is the
Gaussian curvature of the factor surface (Σj , hj). (Note that the roles of g and g̃
have been switched here, compared to Lemma 18.4.) The phrase ’up to a constant
factor’ may actually be omitted, i.e., the “constant factor” just mentioned can
always be made equal to 1 (or any given positive real number), since multiplying
g̃ by a constant a 6= 0 results in multiplying g = g̃/s̃2 by a3 (Remark 4.2). Lemma
18.4 also shows that the metrics of the factor surfaces (Σ1, h1), (Σ2, h2) of (U ′x, g̃)
are both extremal (and have the same first classifying parameter c). Denoting Uj
the open dense subset of Σj , j = 1, 2, defined as in Remark 18.10, we can now
declare Ux to be the open dense subset of U ′x corresponding to U1 × U2 under
our fixed diffeomorphic identification U ′x ≈ Σ1 × Σ2.

By a Kottler metric we mean any pseudo-Riemannian Einstein metric on a 4-
manifold M with the property that every every point of M has a neighborhood U
with a C∞ function f : U → R such that the metric g̃ = e2fg on U , conformally
related to g, is isometric to the Riemannian product of two pseudo-Riemannian
surface metrics, one of which has a constant Gaussian curvature. A Kottler metric
will be called a Schwarzschild metric if it is Ricci-flat. See Schwarzschild (1916),
Kottler (1918) and Petrov (1969).

Remark 18.11. The classes of Kottler and Schwarzschild metrics deserve a more
detailed discussion, due to their significance both for geometry (in the context of
mobility of Riemannian Einstein four-manifolds, §20) and for physical applications
(since they provide interesting spacetime models in general relativity; see §48).
The classification described in the preceding paragraph is valid at points of an
open dense subset U of the manifold in question; here we will refer to such points
as being in general position. That classification, when applied to the special case
of Kottler metrics g on 4-manifolds M , can be spelled out as follows. First, let us
simplify our discussion by assuming that all points of M are in general position,
which is equivalent to replacing M with a connected neighborhood of any fixed
point x ∈ U . Second, let us leave aside the case where the Kottler metric g is of
constant curvature, which now amounts to requiring that W 6= 0 everywhere in
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M (cf. (5.10) and (10.1)). As in the previous paragraph, we then have

(18.21) g = g̃/(κ+ λ)2 ,

where g̃ is a pseudo-Riemannian metric obtained as the Riemannian product of two
pseudo-Riemannian metrics h and h′ on surfaces Σ and Σ′ such that the Gaussian
curvature κ of h satisfies (18.1), while h′ is of constant Gaussian curvature λ.
(Note that κ+ λ 6= 0 everywhere in Σ, since the scalar curvature s̃ of g̃ equals
s = 2(κ+ λ).) In view of Lemma 18.3, h also satisfies (18.5) with some constants
c and p, while the corresponding constants for h′ are λ2 and 2λ3/3 (Example
18.2). If we now define the real-valued function r on M by r = (κ + λ)−1, we
obtain

(18.22) κ =
1

r
− λ , c = λ2 , p =

s

3
− 2

3
λ3 , 3Ψ(κ) =

3λ

r2
− 1

r3
− s ,

where s is the scalar curvature of g and Ψ(κ) is given by (18.12). (In fact, by
(18.7), s = 3p+ 2λ3.) Also, (18.21) now can be rewriten as

(18.23) g = r2(h + h′) ,

the symbol h+ h′ being used for the Riemannian product of h and h′ (since it is
the sum of their pull-backs to the product manifold). To further rewrite formula
(18.23), let us combine (18.13) with a local-coordinate expression for h′:

(18.24) h′ = h
[λ]
jk (x1, x2) dxjdxk

with some C∞ functions h
[λ]
jk of the variables x1, x2. (Here we assume that Σ′

is covered by a single coordinate system xj , j = 1, 2, while the superscript [λ]
is to remind us that the Gaussian curvature of this surface metric is constant and
equal to λ.) In addition, let us replace the local coordinates θ, κ in Σ, appearing
in (18.13), by t, r with r = (κ + λ)−1 (as above) and t = θ. The reason why we
now use the symbol t rather than θ is that, in physical applications, this function
serves as a time coordinate. (The new t is not the same parameter t as in our
proof of Lemma 18.9.) We thus have dκ = − dr/r2, dθ = dt, and so (18.13) yields
the following expression for our Kottler metric g (with summation over j, k = 1, 2):

g = ε

[
λ− 1

3r
− s

3
r2

]
dt2 +

[
λ− 1

3r
− s

3
r2

]−1

dr2 + r2h
[λ]
jk (x1, x2) dxjdxk ,

where (18.24) is a surface metric of constant Gaussian curvature λ. This is an
explicit description of g in the coordinate system t, r, x1, x2 for M , depending on
three parameters

(18.25) s ∈ R , λ ∈ R ε = ±1 ,

namely, the (constant) scalar curvature of g, the (constant) Gaussian curvature
of (18.24), and the sign factor of the other surface metric h. (A fourth discrete
parameter involved here is the sign pattern of the metric (18.24).) Conversely, for
any choice of the parameters (18.25), the above formula defines a Kottler metric.
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The local-isometry types of those Kottler metrics g which are not of constant
curvature thus are, at points in general position, classified by the parameters (18.25)
along with the sign pattern of (18.24). Since Schwarzschild metrics are those Kottler
metrics for which s = 0, we also obtain the following universal description of all
Schwarzschild metrics g, other than those of constant curvature:

(18.26) g = ε (λ− 1/3r) dt2 + (λ− 1/3r)−1 dr2 + r2h
[λ]
jk (x1, x2) dxjdxk ,

in the coordinates t, r, x1, x2, depending on the parameters λ ∈ R and ε = ±1
and the surface metric (18.24) with the constant Gaussian curvature λ.

The remainder of this section is devoted to a proof of Calabi’s Theorem 18.14.
Recall that for a Killing field w on a pseudo-Riemannian manifold (M, g), ∇w

may be treated as a bundle morphism TM → TM , skew-adjoint at every point
x ∈ M . By rank [∇w](x) we then mean, as usual, the dimension of the image of
[∇w](x) : TxM → TxM .

The following lemma remains valid (with the same proof) if compactness of M
is replaced by completeness of (M, g). To derive the existence of a flow homorphism
(17.30), one then has to use, instead of Remark 2.3, the fact that every Killing field
w in a complete Riemannian manifold is complete (as a vector field). For details,
see e.g., Kobayashi and Nomizu (1963).

Lemma 18.12. Let w be a Killing field on a compact Riemannian manifold
(M, g), and let x ∈ M be a point such that w(x) = 0 and rank [∇w](x) < 4.
If w is not identically zero, then [∇w](x) 6= 0 and the kernel of the flow homor-
phism (17.30) is given by

(18.27) {t ∈ R : etw = Id} =
2π

a(x)
Z , a = |∇w| ,

the scale-factor convention about |∇w| being such that

(18.28) 2 |∇w|2 = wj,kw
j,k = −Trace (∇w ◦ ∇w) .

Proof. According to Remark 17.24, for t ∈ R we have etw = Id : M → M if and
only if d[etw]x = Id : TxM → TxM . On the other hand, the assignmentR 3 t 7→
F (t) = d[etw]x is a C1 homomorphism into the group of all linear isomorphisms

TxM → TxM , and hence F (t) = etA with A = Ḟ (0). (This is obvious from the
uniqueness-of-solutions theorem for ordinary differential equations, since for such a
homomorphism we clearly have Ḟ (t) = AF (t), F (0) = Id.) Furthermore, A 6= 0,
or else it would follow that F (t) = Id for all t and so, by Remark 17.24, etw = Id
for all t, contrary to the hypothesis that w 6= 0 somewhere. Our assumption about
the rank of A = [∇w](x) means that the image L = A(TxM) is of dimension r
with r ≤ 3. It now follows that r = 2. In fact, r > 0 as A 6= 0 and r is necessarily
even. (To see this, note that, if r were odd, L would contain an eigenvector of
A, as it is A-invariant, with the eigenvalue equal to zero due to skew-adjointness
of A; that is in turn impossible as KerA = L⊥.) We can thus identify L with a
complex line in such a way that A restricted to L is the multiplication by ic for
some real c 6= 0. Hence TxM = L⊥ ⊕ L, with A(v + u) = icu for v ∈ L⊥ and
u ∈ L. Consequently, etA(v + u) = v + eictu, and so etA = Id if and only if
ct ∈ 2πZ. However, by (18.28) with A = [∇w](x), 2[a(x)]2 = −TraceRA

2 = 2c2.
Thus, |c| = a(x), which completes the proof. �
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Corollary 18.13. Suppose that we are given a Killing field w on a compact
Riemannian manifold (M, g) of dimension 2 or 3 and points x, y ∈ M with
w(x) = w(y) = 0. Then |[∇w](x)| = |[∇w](y)|.

In fact, according to (18.27), |[∇w](x)| then is the same for all x ∈ M with
w(x) = 0. �

Theorem 18.14 (Calabi, 1982). An extremal positive-definite metric h on a com-
pact surface Σ must have a constant Gaussian curvature.

Proof. Let us set b = maxκ, a = minκ and choose x, y ∈ Σ with κ(x) = b,
κ(y) = a. As κ,jl = ∂j∂lκ at points where dκ = 0, we have ∇dκ ≤ 0 at x and
∇dκ ≥ 0 at y and so, by (18.4),

(18.29) c − b2 ≤ 0 , c − a2 ≥ 0 .

By passing to a two-fold covering surface of Σ, if necessary, we may assume that
Σ is orientable, and choose an orientation. According to Remark 18.8, formula
w = α(∇κ) (with the nonzero parallel bivector field α introduced in Remark
18.6) then defines a Killing field w on (Σ, h) such that w(x) = w(y) = 0 and
2∇w = 2α(∇dκ) = (c− κ2)α. Thus, |[∇w](x)| = |[∇w](y)| in view of Corollary
18.13, which, since |α| is constant, means that |c − b2| = |c − a2|. Therefore, by
(18.29), b2 − c = c− a2, i.e.,

(18.30) b2 + a2 − 2c = 0 .

As ∇κ = 0 both at x and at y, (18.3) gives 3p = 3cb − b3 and 3p = 3ca − a3.
Subtracting, we obtain (b − a)(3c − b2 − ba − a2) = 0. Therefore, (b − a)3 =
(b − a) [2(3c − b2 − ba − a2) + 3(b2 + a2 − 2c)] = 0 in view of (18.30), and so
maxκ = b = a = minκ. This completes the proof. �

§19. Other conformally-Einstein product metrics

This section deals with the pseudo-Riemannian Einstein 4-manifolds (M, g)
which are locally conformal to (1 + 3)-dimensional products in the sense that every
point of M has a neighborhood on which g is conformally related to a product
metric g̃ = e2fg with factors of dimensions 1 and 3. The results presented here
are well-known; see, e.g, see Petrov (1969, p. 345).

Recall that in §18 we discussed the four-dimensional Einstein manifolds (M, g)
that are locally conformally related to products of surfaces. Somewhat surprisingly,
each of those (M, g) turns out to have a dense open subset on which g is locally
conformal to a (1 + 3)-dimensional product metric. (See Remark 19.4 below.) The
subsequent discussion may therefore be regarded as a natural generalization of §18.

Let (M, g) be a pseudo-Riemannian manifold. By a steady-state field in (M, g)
we mean any Killing vector field w on (M, g) such that 〈w,w〉 6= 0 everywhere in
M (with 〈 , 〉 standing for g) and

(19.1) dξ = 0 , where ξ =
w

〈w,w〉
,

that is, w/〈w,w〉 is closed when regarded, with the aid of g, as a differential 1-
form on M . According to Poincaré’s Lemma (Corollary 11.3), this amounts to
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requiring that locally, i.e., in a suitable neighborhood of any given point of M , we
have ξ = dt or, equivalently,

(19.2) w = 〈w,w〉∇t

for some C∞ function t (where ∇t is the g-gradient of t). Any such t will be
referred to as a (local) time function for w.

The terminology just introduced suggests that steady-state fields appear in cos-
mological models. (See §48.) They also appear naturally in geometry, as illustrated
by this section and Lemma 21.1(c) in §20.

Example 19.1. In dimension 2, every Killing vector field w such that 〈w,w〉 6= 0
everywhere is a steady-state field. To see this, let us fix such a field w on a pseu-
do-Riemannian surface and choose, locally, a C∞ unit vector field u orthogonal to
w. Then [u,w] = 0. In fact, from (4.4) and (17.1) we obtain 〈[u,w], u〉 = 〈∇uw −
∇wu, u〉 = −〈∇vu, u〉, which is zero as 〈u, u〉 = ± 1 is constant; similarly, skew-
adjointness of ∇w along with the relation 〈u,w〉 = 0 gives 〈[u,w], w〉 = 〈∇uw −
∇wu,w〉 = −〈∇ww, u〉 + 〈∇ww, u〉 = 0. Setting ξ = w/〈w,w〉 and computing
dξ via (2.16) (with ξ(v) = 〈ξ, v〉 for all tangent vectors v), we now find that
(dξ)(u,w) = 0 (as 〈ξ, w〉 = 1). Thus, dξ = 0, as required.

Let us now return to the case of steady-state fields w in manifolds (M, g) of
any dimension n. As we will see next, the metric |〈w,w〉| g, conformally related
to g, then admits, in a suitable neighborhood U of any given point of M , a
Riemannian-product decomposition

(19.3) |〈w,w〉| g = ε dt2 + h , ε = ±1 ,

whose first factor manifold is an open interval I ⊂ R, while t, the natural coordi-
nate for I (i.e., the Cartesian-product projection U → I) is just any fixed local
time function for w. More precisely, we have the following easy classification result.

Lemma 19.2. Let w be a C∞ vector field on an n-dimensional pseudo-Riem-
annian (M, g), n ≥ 2. Then, the following two conditions are equivalent :

(i) w is a steady-state Killing field on (M, g);
(ii) Every point y ∈ M has a neighborhood U which can be diffeomorphi-

cally identified with a product I × N of an open interval I ⊂ R and a
manifold N of dimension n− 1, in such a way that

a) g restricted to U = I ×N has the warped-product form

(19.4) g = e−2f
[
ε dt2 + h

]
, ε = ±1 ,

cf. Remark 16.1, with some function f : I×N → R that is constant
in the direction of I and some product metric ε dt2 + h with factors
ε dt2 and h that are metrics on I and, respectively, on N . Here t
is the natural coordinate for the I factor, i.e., the projection I×N →
I ; and

b) w restricted to U = I ×N is the “coordinate field” in the direction
of I, that is, for any fixed y ∈ N , formula I 3 t 7→ (t, y) defines
an integral curve of w. In other words, dw = ∂/∂t.
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Furthermore, in (b), e2f = |〈w,w〉| and the function t is a local time function for
w.

Proof. Throughout this argument, the indices a, b are assumed to range over the
set {1, . . . , n− 1}.

Let us suppose that (i) holds, and let t be a local time function for w. In local
coordinates chosen for t and g as in Lemma 2.6, we thus have g00 = 〈∇t,∇t〉 =
1/〈w,w〉 and g0a = 0, while t = x0 and w coincides with the coordinate vector
field e0 in the direction of t. Setting ε = sgn〈w,w〉 and defining the function f by
e2f = |〈w,w〉|, we now have ∂f/∂t = dwf = 0, as dw〈w,w〉 = 2〈∇ww,w〉 = 0 by
(17.1). Also, the metric g̃ = e2fg satisfies g̃00 ε and g̃0a = 0, so that g̃ = ε dt2 + h
with h00 = h0a = 0, hab = e−2fgab. Finally, since the coordinate vector field w =
e0 is a Killing field for g and ∂f/∂t = 0, we have ∂gab/∂t = 0 and ∂hab/∂t = 0
(see Example 17.1). Thus, ε dt2 + h is a Riemannian-product decomposition of g̃,
which proves (ii).

Conversely, let us assume (ii) and let xj , j = 0, 1, . . . , n− 1, be a local product-
coordinate system on U = I × N , consisting of the coordinate x0 = t on I and
some coordinates xa in N . In view of (19.4) with ∂f/∂t = 0, we have ∂gjk/∂t = 0,
and so (cf. Example 17.1) the coordinate vector field w = e0 in the direction of
t is a Killing field for g. Also, ε e−2f = g00 = 〈e0, e0〉 = 〈w,w〉. The 1-form
ξ = dt = dx0 has the components ξj = ∂jx

0 = δ0
j , and so the components of the

correspoding vector field v = ∇t satisfy vj = gjkξk = g0j , that is, v0 = g00 =
1/g00 = 1/〈w,w〉 and va = 0. Since w = e0 has the components w0 = 1 and
wa = 0, relation (19.2) follows. Hence (ii) implies (i), as required. �

Corollary 19.3. Given a pseudo-Riemannian surface (Σ, h) and a point x ∈ Σ,
the following two conditions are equivalent :

(i) h restricted to some neighborhood of x is a warped-product metric;
(ii) There exists a Killing field w in (Σ, h) defined on a neighborhood of x,

with 〈w,w〉 6= 0 at x.

In fact, if h has, near x, the warped-product form h = A(t) dt2 + B(t) dr2 in
some coordinates (t, r) = (x1, x2) (so that A(t)B(t) 6= 0), the coordinate vector
field w in the direction of t is a Killing field for h (Example 17.1; note that
h11 = A(t), h12 = 0, h22 = B(t)), and 〈w,w〉 = A(t). Conversely, (ii) implies (i)
in view of Lemma 19.2 along with Example 19.1. �

Remark 19.4. Every pseudo-Riemannian Einstein metric in dimension four that is
locally conformally related to a product of surface metrics must, at all points “in
general position” (as defined in the paragraph following Remark 18.10 in §18), be
also locally conformal to a (1 + 3)-dimensional product metric.

To see this, let us first note that the latter conclusion is valid, more generally, for
a product g′ = h1 + h2 of two surface metrics, one of which (say, h1) is a warped
product. In fact, all we have to do is write, in product coordinates t, θ, y3, y4,

(19.5) g′ = A(t) dθ2 + B(t) dt2 + h′νρ dy
r dys , ν, ρ ∈ {3, 4} ,

with h′νρ (the components of h2) depending only on y3, y4 ; dividing g′ by e2f =
|A(t)|, we obtain a (1 + 3)-dimensional product metric. On the other hand, if an
Einstein metric is conformal to a product of two surface metrics, then, at points in
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general position, these factor metrics are both extremal (see §18, as quoted above),
and so they are, locally, warped products (by (18.13) or, for constant-curvature
surfaces, by Example 17.19 along with Corollary 19.3).

Remark 19.5. Let us consider a pseudo-Riemannian product metric

(19.6) g̃ = ε dt2 + h , ε = ±1 ,

on an n-dimensional Cartesian-product manifold M = I ×N , n ≥ 4, with factor
metrics ε dt2 (on an interval I ⊂ R), and h (on a manifold N with dimN = n−1).
Here t is the natural coordinate for I which, treated as a function on M = I×N ,
is the projection I×N → I. Let us also fix a product coordinate system xj , in M ,
j = 0, 1, . . . , n− 1, consisting of the coordinate x0 = t on I and some coordinates
xa in N , a = 1, . . . , n− 1. Denoting R, Ric, ∇Ric, s, ds and W the curvature
tensor, the Ricci tensor and its covariant derivative, the scalar curvature and its
differential and, finally, the Weyl tensor of h, and using the symbols R̃, R̃ic, ∇̃R̃ic,
s̃, ds̃ and W̃ for their analogues corresponding to g̃, we obviously have

(19.7) R̃ = R , R̃ic = Ric , ∇̃R̃ic = ∇Ric , s̃ = s , d s̃ = ds ,

where (covariant) tensors in N are identified with their pull-backs to M = I ×N .
In terms of components relative to product coordinates as above, this means that
R̃jklm are given by R̃abcd = Rabcd and R̃jklm = 0 whenever at least one of the
indices is 0, and similarly for the other quantities in (19.7). The situation is not
so simple for the Weyl tensor, however; for instance, using (5.8) with g00 = ε, we
obtain

(19.8) (n− 2) W̃0a0b = − ε [Rab − shab/(n− 1)] , W̃0abc = 0 .

More precisely, substituting (19.6), (19.7) into the “tilde version” of (5.6), we obtain

(19.9) W̃ = R − s

(n− 1)(n− 2)
h~ h − 2

n− 2
g̃ ~ E ,

where E = Ric − s g/(n−1) is the traceless Ricci tensor of h, given by (5.5) (with
n replaced by n− 1). It follows now that, in dimensions n ≥ 4, the product metric
g̃ in (19.6) is conformally flat if and only if the (n− 1)-dimensional factor metric

h is of constant curvature. In fact, conformal flatness of g̃ means that W̃ = 0
identically (Theorem 16.5). Thus, if g̃ is conformally flat, we have E = 0 (by
(19.8)); combined with (19.9), this gives (n− 1)(n− 2)R = sh~ h, that is, (10.1)
with (10.3) (in dimension n − 1 rather than n), as required. Conversely, if h is
of constant curvature, (10.1) and (10.3) (in dimension n − 1), along with (19.9),

imply W̃ = 0. Finally, the g̃-divergence d̃iv W̃ of W̃ (cf. (5.28), (5.29)) satisfies

(19.10) [d̃iv W̃ ]a0b = 0 ,

as one easily sees using (5.29) and (19.7).
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Lemma 19.6. Let (M, g̃) pseudo-Riemannian 4-manifold obtained as the Riem-
annian product with factors of dimensions 1 and 3 and such that, for some C∞

function f : M → R, the metric g = e−2f g̃ conformally related to g̃ satisfies
the condition divW = 0, where W stands for the Weyl tensor of g. If the Weyl
tensor W̃ of g̃ is not identically zero, then f is constant in the direction of the
one-dimensional factor of M .

Proof. Suppose that g is an Einstein metric on M and g̃ = e2fg is of the form
(19.6). Using (16.12) (and noting that, by (16.11), W (df, · , · , · ) = W̃ (df, · , · , · ),
where W̃ denotes the Weyl tensor of g̃), we obtain, from (19.10) and (19.8), 0 =

[d̃iv W̃ ]a0b = (n − 3)W̃ 0
a0bf,0, and so 0 = W̃ 0

a0bf,0 = ε W̃0a0bf,0. We now must
have f,0 = 0. In fact, otherwise (19.8) would imply that h appearing in (19.6) is a
3-dimensional Einstein metric, and hence a metric of constant curvature (Remark

10.2(b)), so that g̃ would have W̃ = 0 identically (Remark 19.5), contrary to our
hypothesis. This completes the proof. �

The following result addresses the ”Einstein-metric end” of the question stated
in Remark 18.1. (See also Remark 19.9 below.)

Proposition 19.7. Let x be a point in a pseudo-Riemannian Einstein 4-mani-
fold (M, g) such that the Weyl tensor W is nonzero at x. Then, the following
two conditions are equivalent :

(a) g restricted to a neighborhood of x is conformally related to a product
metric with factors of dimensions 1 and 3;

(b) A neighborhood of x admits a steady-state Killing vector field.

Proof. Assume (b) and let g̃ = e2fg be as in Remark 19.5. In view of (5.30),
Lemma 19.6 implies that f is constant along the I factor, i.e., we have the situation
described in Lemma 19.1(ii). Therefore, assertion (i) of Lemma 19.1 holds with w
defined in Lemma 19.1(ii)b). Hence (b) follows. Conversely, (b) implies (a) in view
of Lemma 19.1. This completes the proof. �

Remark 19.8. Proposition 19.7 and its proof remain valid in a much more general
situation. For instance, (b) implies (a) even without assuming that (M, g) is
Einstein, or 3-dimensional, or has W 6= 0 at the given point, while (b) follows
from (a) under the weaker hypothesis that the 4-manifold (M, g), instead of being
Einstein, just satisfies the condition divW = 0.

Remark 19.9. For any Riemannian 4-manifold (M, g) (Einstein or not), condition

(19.11) specW+ = specW−

(at every point and for either local orientation) is necessary in order that (M, g)
be locally conformal to a (1 + 3)-dimensional product. In fact, since (19.11) is
conformally invariant (Remark 16.4(e)), it is sufficient to verify it for positive-
definite (1 + 3)-dimensional product metrics. To this end, let us replace (M, g)
with (M, g̃), where g̃ is a product metric (19.6) on M = I × N , as discussed in
Remark 19.5, with n = 4, i.e., dimN = 3. For a fixed point x = (t, y) ∈ M ,
let the local coordinates xa in N , a = 1, . . . , 3, used for calculations in Remark
19.5, defined on a neighborhood of y and such that the coordinate fields ea in N
are orthonormal at the point y and form, at y, eigenvectors of the traceless Ricci
tensor E = Ric − s g/(n−1) of (N,h) with some eigenvalues µa. Let βa ∈ Λ+

xM ,
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a = 1, . . . , 3, now denote bivectors at x = (t, y) in M given by βa = e0 ∧ ea at
x = (t, y), where e0 is the coordinate field in the direction of x0 = t. In view
of (19.6) combined with (5.13) and (2.15), the βa are eigenvectors of the Weyl

tensor W̃ of g̃, acting on bivectors, with the respective eigenvalues λa = − εµa/2.
Relation (19.11) now follows in view of Remark 6.20.

Finally, we have to deal with the ”other-metric end” of the ”conformal question”
of Remark 18.1. As in previous cases, it is more convoluted than the ”Einstein-
metric end”.

Proposition 19.10. Let (M, g̃) be a pseudo-Riemannian product 4-manifold with
M = I ×N and the product metric

(19.12) g̃ = ε dt2 + h , ε = ±1 ,

whose factor metrics are ε dt2, on an interval I ⊂ R, and h on a 3-manifold N .
As before, t stands for the Cartesian-product projection function M = I×N → I.
Given a point x = (t, y) ∈ M at which the Weyl tensor W̃ of g̃ is nonzero, the
following two conditions are equivalent :

(i) g̃ restricted to some neighborhood of x is conformally related to an Ein-
stein metric;

(ii) There exists a C∞ function φ defined on a connected neighborhood U
of y in N such that φ 6= 0 everywhere in U and

(19.13) ∇dφ = − 1

2
φ · Ric ,

∇ and Ric being the Levi-Civita connection and Ricci tensor of (N,h).

More precisely, for a nowhere-zero C∞ function φ defined on a neighborhood of
x in M , the metric

(19.14) g = g̃/φ2

is Einstein if and only if φ is constant in the direction of I that is,

(19.15) ∂φ/∂t = 0 ,

and, treated as a function on an open set in N , φ satisfies (19.13). In that case,
we also have

(19.16) φ∆φ − 3h(∇φ,∇φ) = κ ,

where κ is the constant Ricci curvature of the Einstein metric (19.14), cf. (5.3),
and ∆ stands for the Laplacian of (N,h).

Proof. Let φ 6= 0 be a C∞ function defined and near x in M and satisfying
(19.15). Then (19.14) is an Einstein metric if and only if φ satisfies (19.13) and
(19.16) for some constant κ (which is the Ricci curvature of (19.14)).

To see this, write condition (5.3) for the metric (19.14) using (16.14) for n = 4
(with switched rôles of g and g̃, and with ϕ replaced by φ), in product coordinates

such as those in Remark 19.5. We then have R̃00 = R̃0a = 0, cf. (19.7), and φ00 =
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φ0a = 0 as ∂φ/∂t = 0, while g00 = g̃00/φ
2 = ε/φ2. Thus, the result is condition

(19.16) plus φ2Rab + 2φφ,ab + [φ∆φ − 3h(∇φ,∇φ)]hab = κhab, a, b = 1, 2, 3,
(with Rab and φ,ab referring to the geometry of (N,h)). Due to the form of
(19.16), these two relations amount to (19.16) and φ2Rab + 2φφ,ab = 0, that is,
(19.16) and (19.13), as required.

Suppose now that φ is a nowhere-zero C∞ function on a neighborhood of x in
M such that (19.14) is an Einstein metric. By Lemma 19.6, we have (19.15). The
above discussion thus shows that φ satisfies (19.13) and (19.16) with a constant
κ (the Ricci curvature of (19.14)). Conversely, let a C∞ function φ 6= 0 on a
neighborhood of x in M satisfy (19.13) and (19.15). Then, as established above,
(19.14) is an Einstein metric. This completes the proof. �

Remark 19.11. The class of pseudo-Riemannian 3-manifolds (N,h) with nowhere-
zero C∞ functions φ satisfying (19.13) does not seem to have a usable local clas-
sification. However, one easily obtains following examples and partial classification
results:

(a) Relation (19.13) holds whenever h is flat and so (see Theorem 14.2(ii)),
(N,h) looks, locally, like a pseudo-Euclidean 3-space V with a constant
metric, while the function φ on N = V is affine (that is, “linear”, but
not necessarily homogeneous).

(b) Let h be a metric of constant curvature K 6= 0, so that, locally, (N,h)
may be identified with a pseudosphere Sc in pseudo-Euclidean 4-space V
(Theorem 14.2(i)). A function φ with (19.13) then can be obtained by
restricting to M = Sc any linear (homogeneous) function V → R.

(c) Those (N,h) and φ obtained by combining Remark 19.4 above with our
classification (given in the paragraph following Remark 18.10 in §18) of
pseudo-Riemannian Einstein metrics g in dimension four which are locally
conformal to products g′ = h1 +h2 of surface metrics with some Gaussian
curvatures κ1, κ2. In fact, we may rescale h1, h2 so that g = g′/(κ1 +κ2)2

(cf. §18). Writing g′ in the specific product form (19.5), we thus obtain
a (1 + 3)-dimensional product metric g̃ = g′/|A(t)|; the 3-dimensional
factor metric h of g̃ admits, according to Proposition 19.10, a function
φ with (19.13), namely, the function φ such that g = g̃/φ2, i.e.,

(19.17) φ = (κ1 + κ2)/
√
|A(t)| .

(d) A partial classification result: The examples of 3-manifolds (N,h) de-
scribed in (a) – (c), all satisfy the condition

(19.18) # spec Ric ≤ 2 .

(Notation as in Lemma 6.15 or Remark 16.10.) Conversely, at suitably
defined “points in general position”, these examples represent all possible
local-isometry types of pseudo-Riemannian 3-manifolds (N,h) admitting
nonzero functions φ with (19.13) and simultaneously satisfying (19.18).

In fact, due to symmetry of the Hessian ∇dφ, equation (19.13) is always equivalent
to the requirement that 2 d 2φ(y(t))/dt2 + φ · Ric (ẏ, ẏ) for every geodesic t 7→
y(t) of (N,h). It is therefore easy to verify (19.13) in cases (a) and (b) using an
explicit description of geodesics as straight lines in V or, respectively, great “pseu-
docircles” in Sc. Note that, in cases (a), (b) the product metric (19.6) satisfies
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the condition W̃ = 0 (see Remark 19.5), contrary to the assumption about W̃
in Proposition 19.10. In other words, (a) and (b) are completely irrelevant to our
quest of constructing interesting Einstein metrics by conformal changes of (1 + 3)-
dimensional product metrics.

As for (d), it follows easily from Remarks 16.10 and 19.9.

§20. Riemannian Einstein 4-manifolds and mobility

This section presents well-known facts on the Lie algebra of Killing fields in
Riemannian Einstein 4-manifold. See also Petrov (1969), Chapters 4 and 5.

Any given 4-dimensional Riemannian manifold (M, g) gives rise to two inter-
esting numbers. One of them is the dimension of the full isometry group G =
Isom (M, g) of (M, g); the other is the dimension of the principal (i.e., highest-di-
mensional) orbits of G. The aim of this and the next section is to list all possible
values of these numbers in the case where (M, g) is Einstein. (See Proposition
21.6.) However, since our discussion is local, we will replace the numbers just men-
tioned by their infinitesimal counterparts m and o, which are related but different
invariants, using local Killing fields rather than global Killing fields or isometries.

This local-global distinction may be significant. For instance, according to The-
orem 24.8(i) in §24, a compact n-dimensional Riemannian manifold of negative
constant curvature admits no (global) nontrivial Killing fields while, by Proposi-
tion 17.18 combined with Theorem 14.7, its sufficiently small open subsets have
m-dimensional spaces of Killing fields with m = n(n + 1)/2. Throughout this sec-
tion we will ignore such discrepancies, keeping our focus entirely local. In other
words, our classification procedure is not designed to detect any “purely global”
effects.

Let (M, g) be a Riemannian 4-manifold. Its Weyl tensor W then may be
treated, in the usual fashion, as an operator acting on bivectors via (5.13), which
makes it a self-adjoint bundle morphism W : [TM ]∧2 → [TM ]∧2. If M is oriented,
W leaves invariant the subbundles Λ±M of [TM ]∧2 (see (6.14)). The symbol

(20.1) # specW± : M → {1, 2, 3}

then will stand for the function that assigns to each x ∈M the number of distinct
eigenvalues of the self-adjoint operator W±(x) : Λ±xM → Λ±xM . (Similar notations
were used in Lemma 6.15 and Remark 10.11.) We often encounter the condition

(20.2) # specW+ ≤ 2 ,

which means that the self-adjoint bundle morphism W : [TM ]∧2 → [TM ]∧2, re-
stricted to Λ+M , has fewer than three distinct eigenvalues at every point. (See,
for instance, Remark 16.4(e), formula (16.35), Proposition 20.1 and Lemma 20.9
below, as well as Proposition 22.4 in §22.)

Specific simple conditions imposed on the eigenvalue functions of W acting in
[TM ]∧2 on a given Riemannian Einstein four-manifold sometimes have the effect of
“forcing” the existence of nontrivial Killing fields on a neighborhood of any point
in M . One example is the requirement of constancy for the eigenvalue functions of
W ; in view of Corollary 7.2 combined with Theorem 14.7 and Proposition 17.18, it
leads, locally, to a space of Killing fields of dimension 10, 8 or 6.
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The following result states that condition (20.2) has a similar property (unless
W+ is parallel). The lengthy proof given here can be simplified by studying a
Kähler metric conformally related to the Einstein metric in question; see Remark
22.5 in §22.

Proposition 20.1 (Derdziński, 1983). Let (M, g) be an oriented Riemannian
Einstein 4-manifold satisfying (20.2). Then

(i) Either W+ = 0 identically, or W+ 6= 0 everywhere in M .
(ii) In the case where W+ is not identically zero, there exists a unique C∞

function λ : M → Rr {0} and a unique C∞ bivector field ±α defined,
up to a sign, at each point of M , such that W+α = λα, 〈α, α〉 = 2 and,
at each point x ∈ M , λ(x) is a simple eigenvalue of W+(x) acting on
Λ+
xM . Furthermore, |W+|2 = TraceW 2 = 3λ2/2 and the vector field
±w on M defined up to a sign by the formula

(20.3) w = λ−4/3 α(∇λ) ,

has the following properties:
a) ±w is a Killing field ;
b) ±w is not identically zero unless W+ is parallel .

Finally, for any vector v tangent to M ,

(20.4) 3λ∇vα = (∇λ) ∧ (αv) − v ∧ [α(∇λ)] .

Proof. Let M ′ be the open subset of M consisting of all points with W+ 6= 0.
Assuming that M ′ is nonempty, we will first prove (ii) with M replaced by any
connected component of M ′. To this end, let us choose objects αj , λj , ξj and uj
of class C∞, j = 1, 2, 3, satisfying (6.24), (6.12), (6.26) and (6.28) on a nonempty
open subset of M ′. The existence and uniqueness of λ and ±α in (ii) now is
obvious from (20.2) and (6.19) while, rearranging indices, we may also assume that

(20.5) α = α1 , λ = λ1 = − 2λ2 = − 2λ3 .

In view of (6.28), we therefore have

(20.6) u1 = 0 , 2u2 = − 3λα2ξ2 , 2u3 = 3λα3ξ3 ,

and so, using Lemmas 6.14 and 6.18(b) and (20.5), we obtain dλ = − 2dλ2 =
2u3 − 2u1 = 3λα3ξ3 and dλ = − 2dλ3 = 2u1 − 2u2 = 3λα2ξ2. Thus, by (6.12),

(20.7) 3λ ξ2 = −α2(dλ) , 3λ ξ3 = −α3(dλ) .

Now (6.26) with j = 1 becomes

(20.8) 3λ∇α = [α2(dλ)]⊗ α3 − [α3(dλ)]⊗ α2

(cf. (2.12)) which, in view of (6.34), is nothing else than (20.4).
Since the local components of [α(dλ)] are given by [α(dλ)]j = αljλ,l, it follows

that 3λ7/3 wj,k = −4λ,k[α(dλ)]j + 3αljλ,lk + 3αlj,kλ,l, with w given by (20.3). By
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(20.8), the last term is skew-symmetric in j, k, and so it does not contribute to the
symmetrized version

(20.9) 3λ7/3Lwg = 3λ[α,∇dλ] + 4 dλ⊗ [α(dλ)] + 4 [α(dλ)]⊗ dλ

of the preceding equality, with Lwg as in (17.26). (Here [α,∇dλ] stands for the
commutator of α and ∇dλ viewed as bundle morphisms TU → TU .)

On the other hand, ∇α2 = ξ1⊗α3−ξ3⊗α and ∇α3 = ξ2⊗α−ξ1⊗α2 (by (6.26)
and (20.5)), and so (20.7) gives 3λ∇ξ2 = −3 dλ⊗ ξ2 − 3λ ξ3 ⊗ ξ+ 3λ ξ1 ⊗ ξ3 +α2h
(the last multiplication being the composite) and, similarly, 3λ∇ξ3 = − 3 dλ⊗ ξ3 +
3λ ξ2 ⊗ ξ − 3λ ξ1 ⊗ ξ2 + α3h, where we have set

(20.10) ξ =
1

3λ
α(dλ) , h = ∇dλ .

Skew-symmetrizing the last two relations, we obtain 3λ [dξ2 + ξ3 ∧ ξ1]= −{α2, h}−
3λ ξ3 ∧ ξ− 3 dλ∧ ξ2 and 3λ [dξ3 + ξ1 ∧ ξ2] = −{α3, h}+ 3λ ξ2 ∧ ξ− 3 dλ∧ ξ3. (Here
{ , } is the anticommutator, with {α3, h} = α3h+ hα3.)

Expressing the left-hand sides of the last two equalities via (6.27) and then using
the commutator-anticommutator relation [α, h] = [βγ, h] = β{γ, h}−{h, β}γ, valid
whenever α = βγ (here β = α2, γ = α3), as well as using the obvious composition
relations α(ξ ∧ ξ′) = (αξ) ⊗ ξ′ − (αξ′) ⊗ ξ, (ξ ∧ ξ′)α = ξ′ ⊗ (αξ) − ξ ⊗ (αξ′), we
obtain [α, h] = 4 [dλ ⊗ ξ + ξ ⊗ dλ]. Consequently, in view of (20.10) and (20.9),
w is a Killing field. Furthermore, if w = 0, i.e., λ is locally constant in M ′, then
u1 = u2 = u3 = 0 by (20.6), (6.30) and (20.7), and hence ∇W+ = 0 in view of
Lemma 6.18(a). This proves (ii) for M replaced by any connected component of
M ′.

Finally, to establish (i), suppose that W+(x) 6= 0 at some fixed x ∈ M . Since
every point can be joined to x by a broken geodesic, the conclusion that W+ 6= 0
everywhere will follow immediately if we show that, for any geodesic [a, b] 3 t 7→
x(t) ∈ M with W+(x(a)) 6= 0, we have W+(x(t)) 6= 0 for all t ∈ [a, b]. To this
end, let b′ be the supremum of those c ∈ [a, b] with W+(x(t)) 6= 0 for all t ∈ [a, c].
Since [a, b′) 3 t 7→ w(x(t)) with w given by (20.3) (with a suitably chosen sign) is a
solution to the Jacobi equation (4.51), it has a limit as t→ b′, and so it is bounded.
Thus, by (20.3) and (6.27), setting µ(t) = λ(x(t)) we have µ−4/3|dµ/dt| ≤ 3ε with
some constant ε > 0. Hence |dµ−1/3/dt| ≤ ε and so µ−1/3 is bounded on [a, b′),
i.e., the limit of λ(x(t)) as t→ b′(−) is positive. (The limit exists since, by (20.5),
λ is a constant multiple of |W+|.) Due to the supremum definition of b′ we thus
have b′ = b, i.e., W+(x(t)) 6= 0 for all t ∈ [a, b]. This completes the proof. �

Remark 20.2. Assertion (i) is known to follow from condition (20.2) for Riemannian
4-manifolds under various assumptions weaker than the Einstein condition (0.1);
see, e.g., Derdziński (1988) and Apostolov (1997).

Given a pseudo-Riemannian manifold (M, g) and a point x ∈M , let us denote
gx the set of the pairs (w(x), [∇w](x)) obtained using all Killing fields w defined
on all possible neighborhoods of x. Note that, for any nonempty connected open
subset U of M and any x ∈M , the formula

(20.11) Fx(w) = (w(x), [∇w](x))
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defines, according to Remark 17.6(i), an injective mapping

(20.12) Fx : isom(U, g)→ gx .

Obviously, gx is the union of the images of the operators (20.12) as U runs through
all connected neighborhoods of x in M . Intersecting the domains of the Killing
fields in question, we see that gx is closed under addition, and so it is a vector
space, with the vector-space inclusion

(20.13) gx ⊂ TxM × so(TxM) ,

while (20.12) is an injective linear operator.

Remark 20.3. Every point x in a pseudo-Riemannian manifold (M, g) has a con-
nected neighborhood U such that (20.12) is a linear isomorphism. In fact, by
(20.13), gx is finite-dimensional; any fixed basis of gx consists of Fx-images of
Killing fields whose domains are connected neighborhoods of x, and we then may
choose our U to be the connected component, containing x, of the intersection of
these domains. For such U , the injective operator (20.12) is obviously surjective
as well.

By the degree of mobility m(x) of a pseudo-Riemannian manifold (M, g) at a
point x ∈M we mean the dimension

(20.14) m(x) = dim gx

of the vector space gx appearing in (20.12). We thus have defined a function

(20.15) m : M → {0, 1, 2, . . . , n(n+ 1)/2} , n = dimM .

In fact, (20.13) along with the inequality dim so(TxM) = n(n− 1)/2 (see (3.31))
show that, at every point x ∈M ,

(20.16) 0 ≤ m(x) ≤ n(n+ 1)/2 , n = dimM .

Note that m is also lower semicontinuous, that is, given a point x ∈M , we have

(20.17) m(x) ≤ m(y) for all y near x .

To see this, choose U as in Remark 20.3. Thus, for each y ∈ U , the operator Fy
defined by (20.11) is injective (Remark 17.6(i)), while for y = x it is an isomor-
phism. Hence m(x) = dim [isom(U, g)] ≤ m(y), as required.

By a continuation domain in a pseudo-Riemannian manifold (M, g) we will
mean any nonempty connected open subset U of M such that every Killing field
w′ on any nonempty connected open set U ′ ⊂ U can be extended to a Killing field
w on U .

Remark 20.4. Given a pseudo-Riemannian manifold (M, g),

(i) For every continuation domain U and any x ∈ U , the operator (20.12)
is a linear isomorphism.

(ii) A nonempty connected open subset U of M is a union of continuation
domains if and only if the function m is constant on U , and then

(20.18) m = dim [isom(U, g)] .

(iii) The union of all continuation domains in (M, g) is a dense open subset
of M .
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In fact, (i) is clear since (20.12) is always injective. The ’only if’ assertion of (ii) is
obvious from (i) and (20.14). As for the ’if’ part, fix x ∈ U ′ and choose a connected
neighborhood of x with the property stated in Remark 20.3, calling it U ′ (rather
than U). In view of Remark 17.6(i), that property of U ′ will still hold if U ′ is
replaced by a smaller, connected neighborhood of x. Hence we may assume that
U ′ ⊂ U . The operators Fy : isom(U ′, g) → gy defined by (20.11) are injective for
all y ∈ U ′ (Remark 17.6(i)) and act between spaces of the same dimension m
(since this is the case for y = x, due to our choice of U ′). Therefore, all these
Fy are isomorphisms, i.e., U ′ is a continuation domain, as required. Finally, to
establish (iii), all we need to verify is that every nonempty open set U ′ ⊂ M
intersects some continuation domain U . To see this, let us choose x ∈ U ′ at
which m assumes its maximum value in U ′ (cf. (20.16)). Hence, by (20.17), m
is constant on some neighborhood U ′′ of x contained in U ′. Thus, according to
(ii), there is a continuation domain U with x ∈ U ⊂ U ′′.

Let us again consider a fixed nonempty connected open set U in a pseudo-
Riemannian manifold (M, g), and let g = isom(U, g) denote the Lie algebra of
all Killing fields on U . For any vector subspace h of g, we define the h-orbit at
any point x ∈ U to be the vector space

(20.19) h[x] = {v(x) : v ∈ h} ⊂ TxM .

The number

(20.20) s(x) = dim h[x]

Then will be referred to as the h-orbit dimension at x. This defines the h-orbit
dimension function

(20.21) s : U → {0, 1, 2, . . . , n} , n = dimM .

A point x ∈ U will be called h-generic if this function s is constant in some
neighborhood of x.

Remark 20.5. Since linear independence of continuous vector fields is an open con-
dition, the functions s with (20.20) for any given h (including the special case
o given by (20.23) below) is lower semicontinuous (cf. (20.17)). Consequently, the
open set U ′ of all h-generic points in U then is dense in U . This follows from
the same argument as the one we used to establish Remark 20.4(iii), with m is
replaced by s.

In the case where h is the whole space g = isom(U, g), we will skip the prefix
’g-’ and simply speak of the orbit dimension function of U , which we will denote

(20.22) o : U → {0, 1, 2, . . . , n} , n = dimM .

Thus,

(20.23) o(x) = dim g[x] , g[x] = {v(x) : v ∈ isom(U, g)} .

For U and h as above, we then have, at every point of U ,

(20.24) 0 ≤ s ≤ o ≤ min (n,m) , n = dimM .

In fact, each h[x] is contained both in TxM and in the image of gx under the
projection pr : gx → TxM given by pr (w(x), [∇w](x)) = w(x) (notation as in
(20.11)).
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Lemma 20.6. Suppose that U is a nonempty connected open subset of a pseu-
do-Riemannian manifold (M, g), h is a vector subspace of isom(U, g), and s is
the h-orbit dimension function with (20.20), (20.21). If s = ε everywhere in U ,
with a constant ε ∈ {0, 1}, then dim h = ε.

This is clear since, by (17.2), for a Killing field w and a C1 function f , the
product fw is not a Killing field unless f is constant or w = 0 identically. �

Applied to h = isom(U, g), Lemma 20.6 yields

Corollary 20.7. Let U be a nonempty connected open subset of a pseudo-Riem-
annian manifold (M, g), and let g = isom(U, g). If the orbit dimension function
o given by (20.23) satisfies o = ε on U for some constant ε ∈ {0, 1}, then
dim g = ε. �

Remark 20.8. An n-dimensional pseudo-Riemannian manifold (M, g) such that,
for some vector subspace h of isom(U, g), the h-orbit dimension function s
satisfies s = n everywhere in M , must be locally homogeneous. This is immediate
from Lemma 17.20.

We also have the following result (see Derdziński, 1983, Lemma 9)

Lemma 20.9. Let (M, g) be a Riemannian four-manifold such that the degree of
mobility and orbit dimension functions m and o, given by (20.14) and (20.23) for
U = M , satisfy

(20.25) m > o

at every point. Then # specW+ ≤ 2 and # specW− ≤ 2 for any local orienta-
tion of M , i.e., (M, g) satisfies condition (20.2) for both local orientations.

Note that condition (20.25) amounts to requiring that, for each x ∈ M , there
exist a Killing field w, defined in a neighborhood of x, which is not identically zero
and vanishes at x.

Proof. By (20.24), all we need to do is assume that # specW+ = 3 everywhere
in some orientable open submanifold U of M , for one fixed orientation, and show
that we then must have m = o somewhere in U . To do this, let us choose αj , λj ,
ξj and uj , j = 1, 2, 3, satisfying (6.24), (6.12), (6.26) and (6.28) on a nonempty
open subset of U . If the ξj were all identically zero, the αj would be parallel and
so, by (5.19), we would have λj = s/6 for all p, contradicting the assumption that
# specW+ = 3. Therefore, we have ξ 6= 0 on some nonempty open connected
subset U ′ of U , where ξ = ξj for some fixed j. Now, in view of (6.12), (6.27) and
skew-symmetry of the αj , the vector fields u = ξ/|ξ| and αju, j = 1, 2, 3, form an
orthonormal basis of TxM at every point x ∈ U ′.

On the other hand, the αj and the ξj are unique up to permutations and sign
changes, and so u and the αju must be invariant under the local isometries etw

constituting the flow of any Killing field w in U ′ (Lemma 17.16). Therefore, a
Killing field w cannot vanish somewhere in U ′ without being identically zero. In
fact, if x ∈ U ′ and w(x) = 0, then, for all t, d [etw]x : TxM → TxM must be the
identity operator, as it keeps u(x) and the αj [u(x)] fixed; applying Remark 17.24
to the isometries etw : U → U , where U ⊂ U ′ is a ball of a sufficiently small radius
centered at x, we see that etw = Id on U , and hence w = 0 on U . Consequently,
the set of zeros of w in U ′ is both open and closed.
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Thus, for any x ∈ U ′, the assignment gx 3 (w(x), [∇w](x)) 7→ w(x) ∈ tx, with
gx, tx as in (20.14), is an isomorphism and so, by (20.14), m = o on U ′. This
contradiction completes the proof. �

§21. Degree of mobility: Possible values

In this section we continue the discussion of §20. Most results presented here
go back at least six decades; see Petrov (1969), Chapters 4 and 5 (especially pp.
136–143), and references therein.

Lemma 21.1. Let h be a Lie subalgebra of g = isom(M, g) for an n-dimen-
sional pseudo-Riemannian manifold (M, g) such that all points of M are h-
generic, with the constant h-orbit dimension function (20.20) given by s = n− 1,
and let u be a C∞ unit vector field on M normal, at every point x, to the h-orbit
h[x] defined by (20.19). Then

(i) [u, v] = 0 for all v ∈ h.
(ii) du = 0, that is, u is closed when treated, with the aid of g, as a differential

1-form on U .

Proof. To prove (i), let us note that u satisfies the conditions

(21.1) 〈u, u〉 = ± 1 and 〈u, v〉 = 0

everywhere in M , for every v ∈ h (where 〈 , 〉 stands for g). Now, using (4.4)
and (17.1), we obtain, for any v ∈ h, 〈[u, v], u〉 = 〈∇uv−∇vu, u〉 = −〈∇vu, u〉 = 0,
which is zero in view of (21.1). On the other hand, for any two Killing fields
v, w ∈ h, formula (17.27) gives 〈[u, v], w〉 = −〈[v, u], w〉 = 〈[v, w], u〉 as 〈u,w〉 = 0
by (21.1). Since [v, w] ∈ h, (21.1) thus yields 〈[u, v], w〉 = 0. Now assertion (i)
follows, since u and all w ∈ h together span the tangent space TxM at each
point x.

To establish (ii), note that the exterior derivative du is given by (2.16) (with
ξ(v) = 〈u, v〉 for all vector fields v). As an obvious consequence of (21.1), (i) and
the fact that [v, w] ∈ h, we thus have (du)(u, v) = (du)(v, w) = 0 for all v, w ∈ h.
Hence du = 0, as required. �

Lemma 21.2. Let U be a continuation domain in a Riemannian 4-manifold
(M, g), and let h be a Lie subalgebra of g = isom(U, g) such that all points
of U are both g-generic and h-generic, with the constant values o of the orbit
dimension and s of the h-orbit dimension. Let us also assume that

(21.2) dim g = 4 , dim h = 3 , o = 3 , s = 2 ,

and let w ∈ g be a Killing field on U which commutes with h and, along with
h, spans g, i.e., g = h + Rw. Then

(a) At every point x ∈ U , w is orthogonal to the h-orbit h[x] ⊂ TxM .
(b) w is a steady-state field, as defined in §19. In other words, ξ = w/〈w,w〉

is closed when treated, with the aid of g, as a differential 1-form on U .

Proof. In view of (20.19), (20.20) and (21.2), for any given x ∈ U we may choose
v ∈ h r {0} with v(x) = 0. Then A = [∇v](x) is a skew-adjoint operator
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TxM → TxM and A 6= 0 in view of Remark 17.6(i). Setting w0 = w(x), we now
have Aw0 = 0; in fact, in view of (4.4) with v(x) = 0, Aw0 is the value at x of

(21.3) ∇wv = ∇wv − ∇vw = [w, v] ,

while [w, v] = 0 since w commutes with h. On the other hand, A leaves the plane
P = h[x] ⊂ TxM invariant, as one sees replacing w in (21.3) by an arbitrary
element of h and using the fact that h is closed under the Lie-bracket operation.
Hence the plane P⊥ ⊂ TxM is A-invariant as well. Writing w0 = w1 + w2 with
w1 ∈ P , w2 ∈ P⊥, we now have Aw1 = Aw2 = 0. Moreover, w(x) along with
the plane P = h[x] span the three-dimensional g-orbit g[x] (as g = h + Rw),
so that w(x) = w0 /∈ P and, consequently, w2 6= 0. Using the obvious fact that
a nonzero skew-adjoint operator in a Euclidean plane must be injective, we now
conclude that A(P⊥) = {0}, and so A restricted to P is nonzero (as A 6= 0).
This in turn implies injectivity of A : P → P . Consequently, w1 = 0, i.e., w(x) =
w2 ∈ P⊥. This gives (a).

To prove (b), let us choose, locally in U , a C∞ unit vector field u normal at
each point x of its domain to the g-orbit g[x] ⊂ TxM defined in (20.23). For
ξ = w/〈w,w〉, the exterior derivative dξ is given by (2.16) (with ξ(v) = 〈ξ, v〉
for all vector fields v). We thus have (dξ)(u,w) = (dξ)(u, v) = (dξ)(v, w) =
(dξ)(v, v′) = 0 for all v, v′ ∈ g, which is an obvious consequence of the relations
〈ξ, u〉 = 0 (due to our choice of u), 〈ξ, v〉 = 〈ξ, v′〉 = 0 (from (a)), 〈ξ, w〉 = 1,
[u, v] = [u,w] = 0 (from Lemma 21.1(i)), [v, w] = 0 (from our hypothesis), and
〈ξ, [v, v′]〉 = 0 (from [v, v′] ∈ h along with (a)). Hence dξ = 0. This completes
the proof. �

Lemma 21.3. Let h be a three-dimensional vector space of C∞ vector fields on
a surface Σ, and let there exist a pseudo-Riemannian metric h on Σ such that
every v ∈ h is a Killing field for (Σ, h). Then

(a) The space h determines such a metric h uniquely up to a constant factor.
(b) The Gaussian curvature of (Σ, h) is constant.
(c) h = isom(Σ, h).
(d) TxΣ = {v(x) : v ∈ h} for every x ∈ Σ, i.e., (Σ, h) is infinitesimally

homogeneous, as defined in §17.

Proof. Fix x ∈ Σ. Since dim so(TxΣ) = 1 by(3.31), the restriction to h of the
injective operator Fx : isom(Σ, h) → TxΣ × so(TxΣ), given by (20.12), must be
a linear isomorphism. This implies (c), (d) as well as the existence, for any given
x ∈ Σ, of a vector field v ∈ h with v(x) = 0 and [∇v](x) 6= 0. Let us fix such
a vector field v. In any fixed coordinate system xj at x, j = 1, 2, we then have
vj(x) = 0 while, by (17.2), the 2 × 2 matrix B = [vj,k(x)] is nonzero and skew-
symmetric, so that it must have the form B = λC for some real λ 6= 0 and the
matrix C = [cjk] with c12 = − c21 = 1 and c11 = c22 = 0. On the other hand,
vj,k = gjsv

s
,k, which amounts to the matrix-product relation B = λC = GA for

the 2 × 2 matrices A = [vj,k(x)] = [(∂kv
j)(x)] (see (4.12)) and G = [gjk(x)].

Since λC is invertible, so is A, and we have G = λCA−1. This yields (a). Finally,
(b) is immediate from (d) in view of Remark 20.8, which completes the proof. �

Lemma 21.4. Using the ranges of indices given by

(21.4) j, k ∈ {1, 2} , a, b ∈ {3, 4} ,
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let us suppose that (M, g) is a pseudo-Riemannian 4-manifold forming the domain
of a coordinate system x1, . . . , x4 such that the component functions of g satisfy

(21.5) gja = 0 ,

and let (M, g) admit a three-dimensional vector space h of Killing fields such that
every v ∈ h satisfies the component relations

(21.6) va = 0 ,

i.e., is tangent, at each point, to the span of the first two coordinate directions.
Then

(i) There exist functions hjk of the variables x1, x2 and a function φ of
x3, x4, such that gjk = φ(x3, x4)hjk(x1, x2).

(ii) The components gab are functions of x3, x4 alone, that is, ∂j gab = 0.
(iii) The metric g̃ conformally related to g, given by g̃ = e2fg with f such

that ϕ(x3, x4) = e−2f is, locally, the Riemannian product of two pseudo-
Riemannian surface metric, such that x1, x2 and, respectively, x3, x4 are
coordinates for the factor surfaces.

(iv) The first factor metric of the Riemannian product in (iii), with the com-
ponents hjk, has a constant Gaussian curvature.

Proof. Let us fix any v ∈ h. By (21.6) and (21.5), we have va = 0. Hence,
combining (4.20) with (21.6) and (17.2), we obtain 0 = va,b + vb,a = − 2Γabjv

j and
0 = va,j + vj,a = ∂avj − 2Γajkv

k = gjk∂av
k + [∂agjk − 2Γajk] vk. Combined with

(4.9) and (21.5), these two relations give

(21.7) vj ∂jgab = 0 , gjk ∂av
k = 0 .

As det[gjk] 6= 0, the last equality implies that the components vj of any v ∈ h
satisfy ∂av

j = 0, that is, are functions of x1, x2. Combined with (21.6), this allows
us to treat h as a three-dimensional vector space of vector fields on a surface
Σ ⊂ M obtained by arbitrarily fixing the values of x3 and x4. According to
Example 17.3(a), all v ∈ h then are Killing fields on (Σ, h), where h is the metric
on Σ whose components in the coordinates x1, x2 are gjk (with x3, x4 fixed). The
first equality in (21.7), combined with Lemma 21.3(d) for any such Σ (that is,
any fixed x3, x4) now implies assertion (ii), while (i) and (iv) are immediate from
Lemma 21.3(a), (b) (where hjk is defined to be gjk with fixed x3, x4). Finally, (iii)
is obvious from (i) and (ii), which completes the proof. �

Lemma 21.5. Suppose that z is a one-dimensional ideal in a three-dimensional
Lie algebra g such that the quotient Lie algebra q = g/z has a basis u1, u2, u3

with

(21.8) [u1, u2] = δu3 , [u2, u3] = u1 , [u3, u1] = u2

for some δ ∈ {−1, 0, 1}, while [z, g] = {0}, in the sense that [v, w] = 0 whenever
v ∈ g and w ∈ z.

(i) If δ = ± 1, then g has a basis e0, e1, e2, e3 with

(21.9) e0 ∈ z , [e0, e1] = [e0, e2] = [e0, e3] = 0
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and

(21.10) [e1, e2] = δe3 , [e2, e3] = e1 , [e3, e1] = e2 .

(ii) If δ = 0, then g has a basis e0, e1, e2, e3 which satisfies condition (21.9)
and either (21.10), or

(21.11) [e1, e2] = e0 , [e2, e3] = e1 , [e3, e1] = e2 .

In either case, g contains a unique three-dimensional ideal h, spanned by e1, e2,
e3 in case (21.10), and by e1, e2, e0 when we have (21.9) and (21.11).

Proof. Denoting pr : g → q the quotient projection, we may choose a basis
e0, e1, e2, e3 with e0 6= 0 satisfying (21.9) and pr ej = uj , j = 1, 2, 3. Hence, by
(21.8), [e1, e2] = δe3 + a3e0, [e2, e3] = e1 + a1e0, [e3, e1] = e2 + a2e0 for some real
numbers a1, a2, a3. Let us set δ1 = δ, δ2 = δ3 = 1. Replacing each ej , j = 1, 2, 3,
by ej + δjaje0 if δj 6= 0 (and leaving it unchanged when δj = 0), we now obtain
(21.9) and (21.10) in the cases where either δ 6= 0, or δ = a3 = 0. Finally, when
δ = 0 and a3 6= 0, we can obtain (21.9) and (21.11) if, in addition, we replace e0

by a3e0. This completes the proof. �

The following result may be viewed as a crude classification theorem for Lie
algebras of all germs of Killing fields in Riemannian Einstein of dimension four.
(See also Remark 21.7 below.) The notion of a h-generic point appearing in the
statement was defined immediately before Remark 20.5.

Proposition 21.6. Given a Riemannian Einstein 4-manifold (M, g), let U be
a continuation domain in (M, g) such that all points of U are g-generic, with
g = isom(U, g); according to Remarks 20.4(iii) and 20.5, the union of such U is
an open dense subset of M . The functions s and o given by (20.20) and (20.23)
thus are both constant on U . The constant value of the pair (m, o) on U then
must be one of

(21.12) (10, 4) , (8, 4) , (6, 4) , (4, 3) , (3, 3) , (2, 2) , (1, 1) , (0, 0) .

More precisely, one of the following three cases occurs.

(i) o = 4 and (U, g) is locally symmetric, i.e., locally isometric to one of
a) S4 , R4 , H4, with m = 10; or,
b) CP2 , (CP2)∗, with m = 8; or,
c) S2 × S2, H2 ×H2 with m = 6,

each carrying a constant multiple of its standard Einstein metric obtained
as in Example 10.3, 10.5 or 10.6.

(ii) (m, o) = (4, 3). Then the Lie algebra g = isom(U, g) contains a unique
3-dimensional ideal h. Let U ′ now be any subset of U consisting of
h-generic points; by Remark 20.5, the union of such U ′ is an open dense
subset of U . If we denote s the constant value of the h-orbit dimension
function on U ′, only two subcases are possible:

a) s = 3; see Remark 21.7 below, or,
b) s = 2 and g restricted to U ′ is a Kottler metric, cf. Remark

18.11, while h has a basis e1, e2, e3 satisfying (21.10) for some
δ ∈ {−1, 0, 1}.

(iii) m = o ≤ 3; see Remark 21.7.
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Proof. If o = 4, (i) is obvious from Remark 20.8 combined with Jensen’s theorem
(Corollary 7.3), Theorem 14.7 and Proposition 17.18. On the other hand, Corollary
20.7 along with (20.18) implies that m = o whenever o ≤ 1. Since, by (20.24),
we always have o ≤ 4 and o ≤ m, our assertion thus has already been established
whenever o = m, and the only remaining case is

(21.13) o ∈ {2, 3} , with m > o .

Assume (21.13). By Lemma 20.9 and Proposition 20.1, a nonempty open subset of
U admits a Killing field ±w, which is defined explicitly, up to a sign, by formula
(20.3), and hence is invariant under the local isometries etv constituting the flow
of any Killing field v (Lemma 17.16). Note that w 6= 0 for at least one choice of
the orientation; otherwise, Proposition 20.1(ii)b) would give ∇W+ = 0 for both
orientations, i.e., ∇W = 0, and so (M, g) would be locally symmetric, with o = 4
(Example 17.19), contradicting (21.13).

The Riemannian metric g now gives rise to a quotient metric g′ on the 3-mani-
fold N obtained, locally, as the quotient of U modulo w (so that the points of N
are suitable short segments of integral curves of w), and the action of the flow etv

of any Killing field v in U obviously descends to the quotient N . The resulting
“quotient flow” in N leaves invariant the quotient metric g′ on N (defined in as in
the paragraph preceding Example 10.6), and hence, by Lemma 17.16, it constitutes
the flow of a Killing field in N . This gives rise to a linear operator Φ from
g = isom(U, g) into isom(N, g′), the kernel of which is clearly spanned by w.

If we now had o = 2, applying Lemma 20.6 to the subspace Φ(g) of isom(N, g′)
(with the Φ(g)-orbit dimension function equal to 1), we would conclude that
dim [Φ(g)] = 1 and hence (cf. (20.18)) m = dim g = 2 = o, which contradicts
(21.13). Hence o 6= 2 and so, by (21.13), o = 3.

Let us now choose, locally in U , a C∞ unit vector field u normal, everywhere in
its domain, to the g-orbits given by (20.23). (As we just saw, they are all 3-dimen-
sional). By Lemma 21.1(ii) and Poincaré’s Lemma (Corollary 11.3), u is, locally,
the gradient of some C∞ function f . Any fixed nonempty level set f−1(c) of f
thus is a 3-dimensional submanifold of U and, since u = ∇f is, at each point,
both normal to f−1(c) and orthogonal to every Killing field v ∈ g, it follows that
every v ∈ g is tangent to f−1(c) at all points of f−1(c). Restricting each v ∈ g
to f−1(c), we thus obtain a Killing field on f−1(c) with the submanifold metric
(Example 17.3). However, this restriction procedure is injective (Lemma 17.7), and
so it gives rise to a vector space g′ of Killing fields on the 3-manifold f−1(c) with
dim g′ = dim g = m. The operation of forming the quotient modulo w described
above now can be applied to f−1(c) with its metric and the space g′ of Killing fields,
resulting in some quotient surface Σ with a quotient metric h and a linear operator
Φ, defined as before, from g′ into isom(Σ, h), the kernel of which is again spanned
by w. Since m ≥ 4 (by (21.13) with o = 3), the image Φ(g′) ⊂ isom(Σ, h) is of
dimension m − 1 ≥ 3 while, by (17.6) with n = 2, dim [isom(Σ, h)] ≤ 3. Hence
m−1 = 3 and so (m, o) = (4, 3). Thus, Φ(g′) = isom(Σ, h) is 3-dimensional, and
so the Gaussian curvature κ of the Riemannian surface (Σ, h) is constant. (In fact,
(Σ, h) is infinitesimally homogeneous, as defined in §17, since in the case of (Σ, h)
the injective linear operator (17.5) must, for dimensional reasons, be surjective as
well; that in turn implies constancy of κ, either by Lemma 17.4 and Remark 10.1,
or as a consequence of Lemma 17.20.)
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Since Φ(g′) is Lie-algebra isomorphic to the quotient g/z with g = isom(U, g)
and z = Rw, Remark 17.10 shows that the pair g, z satisfies the hypotheses of
Lemma 21.5. The conclusion of Lemma 21.5 now states that g represents one of
four possible Lie-algebra isomorphism types and that it contains a unique 3-dimen-
sional ideal h. For this ideal h, the h-orbit dimension function s, with 0 ≤ s ≤ 3,
is constant on a set U ′ chosen as in (ii) and, in view of Lemma 20.6, its value
cannot be 0 or 1. Hence s = 3 or s = 2.

Since our assertion is true by default when s = 3, we may now assume that
s = 2 on U ′. We can choose u and f as above, defined on a neighborhood in
U ′ of any given point x ∈ U ′ and such that f(x) = 0. In view of Lemma 21.2(b)
combined with the Poincaré Lemma (Corollary 11.3), we can also find a function
t defined near x with t(x) = 0 and ∇t = w/〈w,w〉. Applying Lemma 2.6 to
the submanifold t−1(0) (rather than M) and the function f restricted to it, we
find coordinates x2, x3, x4 in t−1(0) such that, near x in t−1(0), we have x2 = f ,
e2 = u and g(e2, e3) = g(e2, e4) = 0. Applying Lemma 2.6 once again, this time
to M itself and the function t, we can find local coordinates x1, x2, x3, x4 near
x in M such that in on the submanifold t−1(0) the “new” coordinate functions
x2, x3, x4 are the same as the old ones, and g12 = g13 = g14 = 0 everywhere in
the coordinate domain. Also, the coordinate vector field e1 now coincides with w,
which also satisfies (2.36). Since w = e1 is a Killing field, according to Example 17.1
we have ∂1gjk = 0 for all j, k. Thus, since relations g23 = g24 = 0 hold wherever
x1 = 0, they must hold everywhere in the coordinate domain. Furthermore, the
coordinate vector field e2 now coincides with u, also on the whole coordinate
domain. To see this, we may use the component characterization (2.1) of cvf2, so
that all we need to show is the equalities u2 = 1 and u1 = u3 = u4 = 0. However,
due to our choice of the coordinates x2, x3, x4 in t−1(0), we already have these
equalities at points with x1 = 0 (with u1 = 0 there since u is tangent to the
submanifold t−1(0), given by x1 = 0). On the other hand, since u commutes with
the Killing field w = e1 (see Lemma 21.1(i)), its components are, by (2.5), locally
constant in the direction of x2. We have thus shown that u = e2. The span of
the coordinate vector fields e3, e4 at any point y near x now must coincide with
the h-orbit h[y] ⊂ TyM , since both are 2-dimensional and orthogonal to u and
w : The former, since (as we have seen) gja = 0 for j = 1, 2 and a = 3, 4, and
the latter in view of our choice of u and Lemma 21.2(a). Consequently, Lemma
21.4 may be applied to h, giving assertion (ii)b) (the statement on the structure of
h being immediate from Lemma 21.3(c), along with Lemma 21.3(b) and Remark
17.10). This completes the proof. �

Remark 21.7. The meaning of Proposition 20.14 can be summarized as follows.
Given a continuation domain U in a Riemannian 4-manifold (M, g), and a Lie
subalgebra h of g = isom(U, g), one says that h acts locally freely on U if
the h-orbit dimension function s (see (20.19), (20.20)) is constant on U (i.e., all
points of U are h-generic) and, in addition, s = dim h. Each of the (sub)cases
in Proposition 20.14 contains a conclusion stating that either

(a) The metric is explicitly known, or
(b) Some Lie subalgebra h of g acts locally freely on the open set in question.

(In this case we also have h = g unless dim h = 3 and dim g = 4.)

The phrase ’explicitly known’ refers to classes of metrics for which a complete local
classification was provided; namely, by Theorem 14.7 for locally symmetric Einstein
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metrics (case (i) of Proposition 20.14), and by Remark 18.11 for Kottler metrics
(case (ii)b) of Proposition 20.14).

Of course, Proposition 20.14 does not include a classification for case (b) above.
It is clear, however, that case (b) leads to large families of metrics, parametrized
by solutions to some system of partial differential equations in 4− s real variables.
(Again, s = dim h.) When s = 3, these become ordinary differential equations.

§22. Einstein metrics conformal to Kähler metrics

This section is devoted to those oriented Riemannian Einstein 4-manifolds which
are locally conformally Kähler in a manner compatible with the orientation (as de-
fined below). The reasons why we take a look at them are threefold. First, this class
includes all those (suitably oriented) Einstein manifolds which have a pseudogroup
of local isometries whose dimension is greater than that of its orbits. (See Remark
22.6 below; the pseudogroup of isometries is there treated infinitesimally, that is,
replaced with Killing fields.) In other words, the manifolds in question include a
familiar and geometrically natural category. Second, they are characterized (among
Riemannian Einstein 4-manifolds) by a pointwise algebraic condition imposed on
the curvature tensor (see Proposition 22.4). Finally, we already encountered a
special case of this situation, as explained next.

Specifically, in §18 we discussed Einstein metrics on 4-manifolds that are ob-
tained by applying a conformal change (16.5) to a product of surface metrics. Such
a construction turned out to be possible when the factor metrics were both extremal
(Lemma 18.4).

Since oriented Riemannian surfaces constitute Kähler manifolds (Remark 18.7),
so do their products. More precisely, the Riemannian product of two orientable
Riemannian surfaces can be made into a Kähler manifold in a manner compatible
with either orientation, using the Kähler forms α+ and α− defined as in (16.34).
Thus, at least in the Riemannian case, we can now generalize the above idea by
replacing product-of-surfaces metrics with (Riemannian) Kähler metrics. More
precisely, we will say that an oriented pseudo-Riemannian manifold (M, g̃) (of
any dimension) is locally conformally Kähler (as an oriented manifold) if every
point of M has a neighborhood U with a C∞ function f : U → R and a
C∞ bivector field α defined on U , such that the triple (U, g, α), with the metric
g = e−2f g̃, is a Kähler manifold whose canonical orientation (§9) coincides with the
original orientation. For positive-definite metrics in dimension four, the orientation
condition amounts to requiring α to be a section of Λ+U (cf. Corollary 9.4).

Our main interest here lies clarifying what being locally conformally Kähler
means for oriented Riemannian Einstein manifolds of dimension four. (In the ter-
minology of Remark 18.1, this is the ”Einstein-metric end” of the question.) The
answer turns out to be (at least in the case where W+ 6= 0) the familiar eigenvalue
condition (20.2), which follows the general pattern of simplicity at the Einstein-
metric end, mentioned in Remark 18.1.

However, for completeness, we begin with a discussion of the “Kähler-metric
end” of the problem. The presentation in this section follows Derdziński (1983).

Proposition 22.1. Let (M, g, α) be a Riemannian Kähler manifold of real di-
mension four and let U be a nonempty connected open set in M with W 6= 0
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everywhere in U . Then

(a) (U, g) locally conformally Einstein if and only if it satisfies the condition

(22.1) 2∇ds + s · Ric = φ g , i.e., 2 s,jk + sRjk = φ gjk ,

for some function φ : U → R, where s is the scalar curvature of g.
(b) An Einstein metric on U conformally related to g, if it exists, must, up

to a constant factor, be given by

(22.2) g̃ = g/s2 .

Proof. Condition W+ 6= 0 on U , for the canonical orientation, amounts to s 6= 0
on U (cf. Corollary 9.9). Assertion (b) now follows from Lemma 16.8 combined
with Lemma 5.2. As a consequence of (b), (U, g) locally conformally Einstein if and

only if (22.2) is an Einstein metric, that is, its Ricci tensor R̃ic equals a function
times g. Therefore, (a) is immediate from (16.13) with n = 4 and ϕ = s. This
completes the proof. �

Remark 22.2. Relation (22.1) implies, by contraction, 4φ = s2 + 2 ∆s. Another
consequence of (22.1) is that

(22.3) s3 + 6 s ∆s − 12 g(∇s,∇s) = q

for some real constant q. Although this can be verified directly (using the con-
tracted Ricci-Weitzenböck formula (4.39) and the Bianchi identity (5.2)), it also
follows from the fact that, according to Schur’s Theorem 5.1, the scalar curvature
of any Einstein metric is constant. In fact, in the open set U where s 6= 0, q
is nothing else than the scalar curvature of the Einstein metric (22.2) (as one sees
contracting (16.14) with n = 4 and ϕ = s). Also, the left-hand side of (22.3)
equals zero in the interior U ′ of the set of points in M at which s 6= 0. Since
the union of the sets U and U ′ is obviously dense in M (while one of them may
be empty) and, as we just saw, the function q defined by (22.3) satisfies dq = 0
everywhere in U ∪ U ′, we have dq = 0 identically on M , i.e., q is constant.

Remark 22.3. If a Riemannian Kähler manifold (M, g, α) of real dimension 4
satisfies (22.1), then

(i) The vector field ∇s holomorphic, i.e., g is an extremal Kähler metric in
the sense of Calabi (1982); see also Remark 18.8.

(ii) α(∇s) is a Killing vector field on (M, g).

In fact, (i) amounts to the claim that ∇ds commutes with α, which in turn is clear
from (22.1), since so do g (i.e., Id) and Ric (by (9.6)). Now (ii) is an obvious
consequence of Lemma 17.11.

We now proceed to study the ”Einstein-metric end” of the question mentioned
above.

Proposition 22.4. Let (M, g̃) be an oriented Riemannian Einstein 4-manifold

whose self-dual Weyl tensor W̃+ is not identically zero. Then, the following two
conditions are equivalent :

(i) (M, g̃) is locally conformally Kähler ;

(ii) Condition (20.2), that is, # spec W̃+ ≤ 2, is satisfied at every point of
the oriented manifold (M, g̃).
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Furthermore, if (i) or (ii) is satisfied, then W̃+ 6= 0 everywhere and a Kähler
metric g conformally related to g̃ is, locally, unique up to a constant factor and,
up to a factor, must be given by

(22.4) g = [24 g̃(W̃+, W̃+)]1/3g̃ ,

with notations analogous to (5.32), while a skew-adjoint C∞ bundle morphism
±α : TM → TM serving as the multiplication by i for a Kähler manifold
(M, g, α) is, locally, unique up to a sign and, at each point x ∈ M , the bivec-

tor corresponding to ±α(x) via g̃ is an eigenvector of length
√

2 for W̃+(x)
associated with the unique simple eigenvalue λ(x). The function λ : M → R thus
defined is of class C∞ and

(22.5) g̃(W̃+, W̃+) = 3λ2/2 ,

Finally, the scalar curvature s of g is given by

(22.6) s = (6λ)−1 ,

so that relation (22.4) is equivalent to

g̃ = g/s2 ,

where s is the scalar curvature of g.

Proof. Condition (20.2) is conformally invariant (Remark 16.4(e)) and holds for
Kähler manifolds of real dimension 4 (by Corollary 9.9(a)). Therefore, (i) implies
(ii). Conversely, let us assume (ii). Applying Proposition 20.1 to a metric which
is now denoted g̃ (rather than g), let us choose, in a neighborhood U of any
given point of M , a function λ and bivector field α described in assertion (ii)
of Proposition 20.1. Treating α as a skew-adjoint bundle morphism TU → TU
(with the aid of g̃), we now see that, according to (16.9), relation (20.4) states
that α is ∇-parallel, where ∇ stands for the Levi-Civita connection of the metric
g′ = (6λ)2/3g̃. We also have (22.5) (see Proposition 20.1) and so g′ coincides with
g given by (22.4), i.e., α is parallel in (M, g). Since α2 = − 1 by the ’(c) implies
(a)’ assertion in Lemma 9.3, this shows that (M, g, α) is a Kähler manifold, and
hence proves (i).

Let us now consider any nonempty connected open set U in M with a C∞

function f and a section α of Λ+U such that, for g = e−2f g̃, (M, g, α) is a Kähler
manifold. With λ as above, (16.19) implies that the function e2fλ provides the
unique simple eigenvalue of self-dual Weyl tensor W+ of g at any point of U .
Thus, by Corollary 9.9(a), e2fλ = s/6 (where s is the scalar curvature of g).
Since the metric g′ = g = (6λ)2/3g̃ given by (22.4) is obtained in this way for f
characterized by e−2f = (6λ)2/3, relations (22.6) and (22.2) follow.

On the other hand, the remaining uniqueness assertion now can be established
as follows. For any f as above, since g̃ = e2fg is an Einstein metric conformal to
g, the uniqueness assertion of Proposition 22.1(b) shows that the function e2f s2 =
(6e3fλ)2 is constant. Thus, e2f is, up to a constant factor, uniquely determined by
λ, as required. �
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Remark 22.5. Propositions 22.1 and 22.4 give rise to a proof of Proposition 20.1
which is much more concise than the argument in §20. Specifically, the part of that
proof consisting of the three paragraphs following formula (20.8) is devoted just
to showing that w defined by (20.3) has the properties a), b) in the assertion of
Proposition 20.1. This can also be established as follows. Under the assumptions
of Proposition 20.1, let the symbols g and λ originally appearing in Proposition
20.1 be replaced with g̃ and λ, just as it is done in Proposition 22.4. The Kähler
metric g given by (22.4) (wherever W̃+ 6= 0) now is locally conformally Einstein,
so that, by Proposition 22.1, it satisfies (22.1). Consequently, according to Remark
22.3(ii), α(∇s) is a Killing field in (M, g). However, in view of (22.2), the g̃-

gradient of any C1 function f is related to its g-gradient by ∇̃f = s2∇f , and so,
by (22.6), α(∇s) = α(∇̃s/s2) = α[∇̃(s−1)] = 6α(∇̃λ). Hence w is a Killing field
in (M, g), and so dws = 0 (Lemma 17.4), which, according to Example 17.3(b)
with (22.2), w is a Killing field for the original Einstein metric g̃ as well. Finally,
if w is identically zero, so is α(∇s), so that s is constant. Therefore, in view

of Corollary 9.9(b), W+ is g-parallel, and hence W̃+ is g̃-parallel, as g̃ now is a
constant multiple of g (by (22.2)).

Remark 22.6. Suppose that (M, g̃) is an orientable Riemannian Einstein 4-mani-
fold with the property that every point x ∈ M has a connected neighborhood U
with a Killing field w defined on U such that w(x) = 0 and w 6= 0 somewhere
in U . Then, suitably oriented, (M, g̃) is locally conformally Kähler. In fact, by

Lemma 20.9, we have # spec W̃+ ≤ 2 for either choice of an orientation and so
our assertion follows from Proposition 22.4. (Note that, if W̃+ and W̃− are both
identically zero, then, by Theorem 16.5, g̃ is conformally flat, and hence still locally
conformally Kähler.)

The remainder of this section is devoted to an alternative presentation of the
above discussion, namely, in the context of an important conformal invariant known
as the Bach tensor. Since the concepts discussed here will not be used elsewhere in
the text, we omit computational details.

By the Bach tensor of a pseudo-Riemannian manifold (M, g) we mean the sym-
metric twice-covariant tensor field Bac with the local components Bjk given by

(22.7) Bjk = Wpjks,
ps +

1

2
RpsWpjks .

(See Bach, 1921.) In dimension four, the Bach tensor of a metric g̃ = e2fg confor-
mally related to g then has the components

(22.8) B̃jk = e−2fBjk .

To prove (22.8), one can use a straightforward but tedious direct computation based
on (16.7), (16.11), (16.12) and (16.17).

Proposition 22.7. Vanishing of the Bach tensor Bac of a pseudo-Riemannian
metric g on a 4-manifold M is a necessary condition in order that g be locally
conformally related to an Einstein metric.

In fact, according to (16.8), vanishing of Bac is a conformally invariant con-
dition, while, by Lemma 5.2 and (5.25), Bac = 0 identically whenever (M, g) is
Einstein. �
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On the other hand, for a Kähler manifold of real dimension 4, condition Bac = 0
is equivalent to (22.1) (see, e.g., Lemma 5 in Derdziński, 1983). This in a way
explains “the real meaning” of the ’only if’ part in Proposition 22.1(a).

§23. Potentials for Kähler-Einstein metrics

A Kähler metric g on a complex manifold is locally described by a single real-val-
ued C∞ function φ, called a potential for g. A sufficient condition for such a metric
to be Einstein is provided by a single nonlinear second-order partial differential
equation imposed on φ, namely, the Monge-Ampère equation (see (23.29) below).
In the Ricci-flat case, the equation takes the much simpler form (23.30).

The construction just outlined can be used to produce a large variety of examples
of Einstein metrics. Its detailed description is the subject of this section.

Our presentation follows standard sources such as Weil (1958) and Wells (1979).
Let M be a manifold. Besides ordinary “real” tangent and cotangent vectors

(or vector fields) in M , it is sometimes convenient to use complex, or complexi-
fied, (co)tangent vectors at any point x ∈M , that is, elements of the complexified
(co)tangent space [TxM ]C or [T ∗xM ]C. Complexified tangent (or, cotangent) vec-
tors at x thus should be thought of as formal combinations v + iw (or, ξ + iη),
where v, w (or, ξ, η) are ordinary (“real”) tangent or, respectively, cotangent vec-
tors at x. Note that complexified cotangent vectors ξ+ iη just described may also
be identified with arbitrary real-linear functions ξ + iη : TxM → C. An obvious
example of a complexified cotangent vector field is the differential ξ + iη = df of
any complex-valued C1 function f , with ξ = d [Re f ], η = d [Im f ].

The complexification V C = V + iV of any real vector space V carries the anti-
automorphism u 7→ u of complex conjugation, with v + iw = v− iw for v, w ∈ V .
Applied to complexified (co)tangent vectors at x ∈ M as above this gives, for
instance, df = df for complex-valued C1 functions f , where f is the valuewise
complex conjugate of f .

Let us also recall that a ρ times contravariant and σ times covariant tensor
at a point x in any manifold M is a (ρ + σ)-linear real-valued function of σ
tangent and ρ cotangent vectors. Every such tensor B now can be extended to a
complex-valued function of σ complexified tangent and ρ complexified cotangent
vectors, the extension being uniquely characterized by the requirement of complex-
multilinearity. In this way, ordinary “real” tensors form a special case of a complex
(or complexified) tensors just described. Among the complex tensors B, the real
ones are characterized by B = B, where

B(vj1 , . . . , vjσ , ξ
k1 . . . ξkρ) = B(vj1 , . . . , vjσ , ξ

k1 . . . ξkρ) .

Remark 23.1. All natural multilinear operations involving tensor fields (of appro-
priate regularity) will from now on, without further comments, be also applied to
complexified tensor fields, the extension being made unique by the requirement of
complex (multi)linearity. This includes the natural pairing ξ(v), directional deriv-
ative dvf , Lie bracket [v, w], exterior product ξ ∧ η, exterior derivatives dξ and
dα, as well as the inner product g(v, w) and covariant derivative ∇vw, applied
to C1-differentiable complex 1-forms ξ, η, vector fields v, w, functions f , 2-forms
α. In the last two examples, we use a given pseudo-Riemannian metric g on the
manifold in question and its Levi-Civita connection ∇. Note that g(v, w) then is



148 ANDRZEJ DERDZINSKI

complex bilinear and symmetric in v, w, rather than sesquilinear and Hermitian;
the latter will be the case if we use the expression g(v, w). Due to uniqueness of
this extension, all algebraic relations valid in the real case still hold: For instance,
dvf = (df)(v) for any f and v as above.

For the remainder of this section, we adopt the following conventions about
ranges of indices:

(23.1)
p, q, r, s ∈ {1, . . . ,m} , p̄, q̄, r̄, s̄ ∈ {1̄, . . . , m̄} ,
j, k, l ∈ {1, . . . ,m, 1̄, . . . , m̄} ,

where m ≥ 1 is a fixed integer, and the sets {1, . . . ,m} and {1̄, . . . , m̄} are
regarded as disjoint. The disjoint index sets {1, . . . ,m} and {1̄, . . . , m̄} are not
to be treated as unrelated; in other words, given p ∈ {1, . . . ,m}, the symbol p̄ is
“tied” to p, that is, stands for the same numeral in {1̄, . . . , m̄}. In particular, m
and m̄ represent the same numeral (which, in the subsequent discussion, will be
the complex dimension of the complex manifold in question).

Let M now be a complex manifold of complex dimension m, that is, a real
2m-dimensional manifold along with a maximal atlas of Cm-valued coordinate
systems zp, p = 1, . . . ,m, such that the transition mappings between them are all
complex-analytic. Such complex-analytic coordinates zp lead to the real coordinates
x1, y1, . . . , xm, ym, with xp = Re zp, yp = Im zp. However, it is often convenient
to use instead of xp, yp the coordinates z1, . . . , zm, z1̄, . . . , zm̄, where

(23.2) zp̄ = zp

is the valuewise complex conjugate of the coordinate function zp. The coordinate
system zp, zp̄ just described is valued in the real 2m-dimensional vector subspace
of Cm, consisting of all (z1, . . . , zm, z1̄, . . . , zm̄) with (23.2) for all p = 1, . . . ,m.
Given such complex coordinates zp, let us provisionally denote e1, h1, . . . , em, hm
the coordinate vector fields in the directions of the corresponding real coordinates
x1, y1, . . . , xm, ym (cf. (2.1)). Formulae

(23.3) ep =
1

2
(ep − ihp) , ep̄ =

1

2
(ep + ihp) ,

(23.4) dzp = dxp + i dyp , dzp̄ = dxp − i dyp ,

now describe bases e1, . . . , em, e1̄, . . . , em̄ and dz1, . . . , dzm, dz1̄, . . . , dzm̄ of the
complex spaces [TxM ]C and, respectively, of [T ∗xM ]C at any point x of the coor-
dinate domain. Obviously,

(23.5) dzp = dzp̄ , dzp̄ = dzp , ep = ep̄ , ep̄ = ep ,

and we have the duality relations (cf. (2.3))

(23.6) (dzk)(ej) = δkj ,

i.e., with (23.1), (dzp)(eq) = δpq , (dzp̄)(eq̄) = δp̄q̄ , (dzp̄)(eq) = (dzp)(eq̄) = 0.
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Let us now define the Cauchy-Riemann partial-derivative operators relative to
the coordinates zp to be the directional derivatives ∂/∂zp and ∂/∂zp̄ in the di-
rection of ep and, respectively, ep̄. We have, by (23.3),

(23.7)
∂

∂zp
=

1

2

[
∂

∂xp
− i

∂

∂yp

]
,

∂

∂zp̄
=

1

2

[
∂

∂xp
+ i

∂

∂yp

]
.

Remark 23.2. Conditions ∂f/∂zp̄ = 0 for p = 1, . . . ,m, imposed on a complex-
valued C1 function f defined in the coordinate domain are the familiar Cauchy-
Riemann equations; their solutions are precisely those functions f which are holo-
morphic (i.e., complex-analytic). Similarly, equations ∂f/∂zp = 0 characterize
the antiholomorphic functions, that is, conjugates of holomorphic functions. It
will also be useful later to note that a complex-valued C∞ functions f satisfies
∂p∂q̄ f = 0 for all indices p, q̄ with (23.1) if and only if, locally, f is the sum of a
holomorphic and an antiholomorphic function. In fact, the ’if’ part is now obvious.
Conversely. let ∂p∂q̄ f = 0. Then ∂p f = 0 is holomorphic for each p, and so we
can find a holomorphic function ϕ with ∂p f = ∂p ϕ for all p. Thus, f − ϕ is
antiholomorphic, as required.

Any ρ times contravariant and σ times covariant complexified tensor (field) B
on our complex manifold of M now can be described via its components relative
to a complex coordinate system zp, which arise by the same formal operations
involving the dzj and ej as in the case of an ordinary real coordinate system.
Specifically, these components are

(23.8) Bj1...jσ
k1...kρ = B(ej1 , . . . , ejσ , dz

k1 . . . dzkρ) .

Thus, for instance, an ordinary (real) tangent vector v can be expanded as

(23.9) v = vjej = vpep + vp̄ep̄ ,

with the (complex) components vp = (dzp)(v), vp̄ = (dzp̄)(v) related by vp̄ = vp.
The corresponding expansion in the real coordinates x1, y1, . . . , xm, ym is v =
(Re vp) ep + (Im vp)hp.

Let us denote J : TM → TM the real vector-bundle morphism of multiplication
by i in our complex manifold M . We then have

(23.10) Jep = iep , Jep̄ = − iep̄ .

This is immediate from the relations Jep = hp, Jhp = − ep. In fact, just as in the
real case, multiplying a tangent vector v ∈ TxM by a scalar λ can be realized by
choosing a differentiable curve t 7→ x(t) ∈ M with x(0) = x, ẋ(0) = v and then
replacing it with t 7→ x(λt) ∈M . For ep at x, we may use the curve characterized
by the components zq(t) = zq (for q 6= p) and zp(t) = zp + t, with zq = zq(x) for
all q.

More generally, let us consider any finite-dimensional complex vector space V
which we chose to treat as a real vector space endowed with the fixed operator
J : V → V of complex multiplication by i, satisfying the condition J2 = − Id.
(Cf. Remark 3.9.) Also, let h : V × V → R be a real-bilinear function. We
will say that h is a Hermitian tensor (or, an anti-Hermitian form) in V if it
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is symmetric (or, respectively, skew-symmetric) and, for all v, w ∈ V , we have
h(Jv, Jw) = h(v, w). Both the Hermitian tensors in V and, separately, the anti-
Hermitian forms in V , form real vector spaces. These two spaces are canonically
isomorphic, under the assignment

(23.11) b 7→ β

that sends each Hermitian tensor b to the anti-Hermitian form β with

(23.12) β(v, w) = b(Jv,w) .

In the case of alomost complex manifolds M (see the the beginning of §9) we
will speak of Hermitian tensor fields and anti-Hermitian (differential) forms on M ,
that is, tensor fields or forms whose value at each point x is a Hermitian tensor
(or, an anti-Hermitian form) in TxM . Our primary examples of such M will be
almost Hermitian manifolds and complex manifolds.

Example 23.3. Let (M, g, α) be an almost Hermitian pseudo-Riemannian mani-
fold (§9). Thus, J = α turns each tangent space V = TxM into a complex vector
space (§9), and then

(a) g is a Hermitian tensor field on M .
(b) α, treated (with the aid of g) as a twice-covariant tensor field on M , is an

anti-Hermitian form on M .
(c) At every point x, α(x) is the image of g(x) under the isomorphism (23.11)

(see (2.19)).
(d) If we use g(x) to identify real-bilinear functions on TxM with real-linear

operators TxM → TxM (see (2.12)), then Hermitian tensors (or, anti-
Hermitian forms) in TxM correspond precisely to those self-adjoint (or,
skew-adjoint) operators in TxM that commute with J , i.e., are complex-
linear. Note that the operators corresponding in this way to g(x) and
α(x) are Id and J , that is, the complex multiplications by 1 and i.

(e) If, in addition, (M, g, α) is a (pseudo-Riemannian) Kähler manifold (see
§9), then the Ricci tensor Ric is a Hermitian tensor field on M and,
for any point x and any vectors v, w ∈ TxM , the “curvature operator”
R(v, w) is an anti-Hermitian form in TxM . This is immediate from (c)
combined with Proposition 9.6.

Let (M, g, α) now be any pseudo-Riemannian Kähler manifold. We define the
Ricci form of (M, g, α) to be the differential 2-form on M whose value at each
point x ∈ M is the image of Ric(x) under the isomorphism (23.11) for TxM .
Thus,

(23.13) ρ(v, w) = Ric (αv,w)

for vectors v, w tangent to M at any point.
On the other hand, let M now be a complex manifold. By a Hermitian metric

on M we then mean any pseudo-Riemannian metric g on M which at the same
time is a Hermitian tensor field on the complex manifold M . In other words, for
each x ∈ M , the operator J : TxM → TxM of multiplication by i is assumed to
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be be g-isometric. (Since J2 = − Id , this is the same as requiring the real vector-
bundle morphism J : TM → TM to be skew-adjoint relative to g, cf. Remark
3.18.)

Remark 23.4. A triple (M, g, α) obtained from a Hermitian metric g on a complex
manifold M by declaring α to be the bivector field corresponding to J via g is
called a Hermitian manifold ; this clearly is a special case of an almost Hermitian
manifold as defined in §10. On the other hand, let us defined a Kähler metric
on a complex manifold M to be any Hermitian pseudo-Riemannian metric g on
M such that the bivector field α just described is parallel relative to the Levi-
Civita connection ∇ of g. In other words, Kähler metrics on the given complex
manifold M are precisely those Hermitian metrics g for which the Hermitian
manifold (M, g, α) defined above is a Kähler manifold in the sense of §9.

Remark 23.5. The adverb ‘almost’ as in an “almost Hermitian manifold” is essen-
tial; not every almost Hermitian manifold is a Hermitian manifold, that is, comes
from a complex manifold, as described above. On the other hand, it is well-known
(see, e.g., Kobayashi and Nomizu, 1963) that a Kähler manifold defined as in §9
is automatically “complex”, that is, the complex-bundle structure of its tangent
bundle TM is induced by a complex-manifold structure in M .

Let b and β now be arbitrary real, twice-covariant tensors at a point x in
a complex manifold M , and let zp be a fixed complex coordinate system whose
domain contains x. Then b is a Hermitian tensor in TxM if and only if

(23.14) bpq = bp̄q̄ = 0 , bpq̄ = bq̄p = bp̄q ,

while β is an anti-Hermitian form in TxM if and only if

(23.15) βpq = βp̄q̄ = 0 , βpq̄ = −βq̄p = −βp̄q ,

for all indices with (23.1). If b and β satisfy (23.14) and (23.15), then β corre-
sponds to b under the isomorphism (23.11) if and only if

(23.16) βpq̄ = i bpq̄

(indices as in (23.1)) or, equivalently,

(23.17) β = bpq̄ dz
p ∧ dzq̄ .

In fact, the components of b are given by the usual formula

(23.18) bkl = b(ek, el)

(and analogously for β, with indices as in (23.1)), and so the symmetry and Her-
mitian symmetry conditions bkl = blk and b(ek, el) = b(Jek, Jel) combined with
(23.10) and reality of b, amount to (23.14). The other two assertion can be verified
similarly. As for (23.17), note that in general, for any 2-form β we have 2β =
βjk dx

j ∧ dxk in any real coordinates xj (cf. (2.15)) and so, according to Remark
23.1, the same will hold with the dxj replaced by the dzj . Using the ranges of
indices given by (23.1), we can now rewrite (23.16) in the form (23.17).
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Lemma 23.6. Let b be a Hermitian tensor field of class C∞ on a complex man-
ifold M , and let β be the the anti-Hermitian differential 2-form on M which
corresponds to b under the isomorphism (23.11). Then the following three condi-
tions are equivalent :

(a) β is closed as a differential form, i.e., dβ = 0.
(b) In any complex coordinates zp, the components of b satisfy

(23.19) ∂pbqr̄ = ∂qbpr̄ .

with indices as in (23.1).
(c) Every point of M has a neighborhood U on which there exists a potential

for b, that is, a C∞ function φ : U → R with

(23.20) bpq̄ = ∂p∂q̄ φ

in any complex coordinates zp, for all indices p, q̄ with (23.1).

Proof. (a) and (b) are equivalent in view of (23.15) and (23.16), along with the
component description of dβ in the paragraph following formula (4.22) in §4. (One
could also verify this by applying d to (23.17).) Also, (b) follows from (c) since
all partial derivatives commute. Conversely, let us assume (b). In view of the
Poincaré Lemma (Remark 11.5), we can find, locally in M , a C∞ 1-form ϑ with
α = dϑ. Writing ϑ = ϑp dx

p +ϑp̄ dy
p̄, we easily see that relation α = dϑ amounts,

locally, to the existence of functions ψ, χ with ϑp = ∂pψ, ϑp̄ = ∂pχ (cf. Corollary
11.3), and setting φ = ψ − χ we obtain (23.20). This function φ need not be
real-valued. However, reality of b (i.e., the second relation in (23.14)) shows that
∂p∂q̄ (φ−φ) = 0, so that, according to Remark 23.2 we have, locally, Imφ = θ+χ,
where θ is holomorphic and χ is antiholomorphic. Replacing φ with φ− i(θ+χ)
we now get a new potential for b (cf. Remark 23.2), which this time is real-valued.
This completes the proof. �

Before proceeding further, let us observe that the full analogy between real and
complex coordinate formulae on a complex manifold M (cf. Remark 23.1) extends
to the Christoffel symbols Γ ljk of any metric g on M , and their modified versions

(4.6). For instance, we still have relation (4.9). This is of particular interest for Her-
mitian metrics g, for which we have relations (23.14) with b = g. Since analogous
relations then hold for the reciprocal metric components (with superscripts), we
have, for instance, by (4.9),

(23.21) Γpqr = Γp̄q̄r̄ = 0 ,

and so Γ r̄pq = 0 (as Γ r̄pq = Γpqsg
sr̄), etc.

Lemma 23.7. Let g be a fixed Hermitian metric on a complex manifold M , and
let α : TM → TM be the morphism of multiplication by i. In other words, α
corresponds to g under the isomorphism (23.11), cf. Example 23.3(c). Then the
following four conditions are equivalent :

(i) g is a Kähler metric on the complex manifold M , as defined in Remark
23.4.

(ii) α is closed as a differential 2-form, i.e., dα = 0.
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(iii) Locally, g has a potential, as defined in Lemma 23.6(c).
(iv) In any complex coordinates, the only Christoffel symbols Γjkl of g that

are not automatically zero are those of the form Γpqr̄ and Γp̄q̄r, with
indices as in (23.1).

Proof. Equivalence between (ii) and (iii) is immediate from Lemma 23.6. Further-
more, (i) obviously implies (ii) (see the paragraph following formula (4.22) in §4).
Also, (ii) implies (iv), as one sees using (23.14) and (23.19) for b = g and (4.9),
as well as (23.21). Finally, let us assume (iv). Combining the usual coordinate
formula for αjk,l with (23.15) for β = α, we now obtain ∇α = 0. This completes
the proof. �

Relation (23.20) for a Hermitian tensor field b on a complex manifold, which
admits a potential, and the potential function itself, is often written in terms of
the anti-Hermitian differential 2-form β corresponding to b under (23.11), and it
then reads

(23.22) β = i ∂∂φ .

Here ∂ and ∂ are two operators, one taking 1-forms to 2-forms, the other sending
functions to 1-forms, and they are given by ∂φ = (∂p̄φ) dzp̄, ∂ ξ = (∂pξq) dz

p ∧
dzq+ (∂pξq̄) dz

p∧ dzq̄, whenever ξ = ξp dz
p+ξp̄) dz

p̄. (These operators are actually
independent of the complex coordinates used, which will not really matter in our
discussion).

Let b again be a Hermitian tensor field of class C∞ on a complex manifold M .
The determinant det b = det[bpq̄] then is a C∞ function (real-valued by (23.14)),
defined on the coordinate domain and, of course, depending on the choice of the
complex coordinate system zp used. However, if b is assumed nondegenerate (i.e.,
det b 6= 0 everywhere), a Hermitian tensor field h for which the natural logarithm
log |det b| of the absolute value of this determinant is a potential is defined globally
and coordinate-independent; in fact, when complex coordinates are changed, det b
becomes multiplied by FF , where F is the (holomorphic) Jacobian determinant of
the coordinate transition, and so log |det b| is replaced by log |det b|+ logF + logF
(with some complex-analytic local branch of log). The coordinate-independence of
h now is obvious (cf. Remark 23.2). Denoting γ the anti-Hermitian differential
2-form on M which corresponds to b under (23.11), we will now write

(23.23) γ = i ∂∂ log |det b| .

Proposition 23.8. Let g be a Kähler metric on a complex manifold M , as defined
in Remark 23.4. Then

(23.24) ρ = − i ∂∂ log |det g| ,

i.e., relation (23.23) holds when b = g and γ = − ρ, where ρ denotes the Ricci
form of the Kähler manifold (M, g, α), defined by (23.13).

Proof. Using assertion (iv) of Lemma 23.7 and (4.25), we see that the curvature
components all vanish, except maybe those of the form

(23.25) Rpq̄r
s = ∂q̄Γ

s
pr , Rp̄qr̄

s̄ = ∂qΓ
s̄
p̄r̄ , Rq̄pr

s = −Rpq̄rs , Rqp̄r̄ s̄ = −Rp̄qr̄ s̄ .
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In view of (4.36) and Example 23.3(e), the components of the Ricci tensor Ric
now are Rpq = Rp̄q̄ = 0, Rpq̄ = Rq̄p = Rq̄rp

r = − ∂q̄Γ rrp. Thus, by (4.11), 2Rpq̄ =
− ∂p∂q̄ log |det[gjk]| = − ∂p∂q̄ log |det[grs̄]| = − ∂p∂q̄ log |det g|, since det[gjk] =
(det[grs̄])

2 by (23.14) with b = g. This completes the proof. �

Formula (23.24) can be used to produce examples of Kähler-Einstein metrics
on complex manifolds. More precisely, assuming that our discussion is local, and
a complex coordinate system has been chosen zp, all we need to do to create a
Kähler metric g, is to provide a potential for g, which is just any real-valued C∞

function φ. The metric g then has the components functions

(23.26) gpq = gp̄q̄ = 0 , gpq̄ = gq̄p = ∂p∂q̄φ

(indices as in (23.1); see (23.14) and Lemma 23.7(iii). The requirement that this
metric be Einstein, i.e., satisfy (5.3) with some constant κ ∈ R, is nothing else
than

(23.27) ρ = κα ,

to be satisfied by the Ricci form ρ and the Kähler form α. (In fact, ρ corresponds
to Ric, and α to g, under the isomorphism (23.11); see Example 23.3(c),(e).) As
in (5.4), we then have

(23.28) κ = s/n , n = 2m = dimRM ,

where s is the scalar curvature of (M, g).
In view of (23.24) and (23.26) with αpq̄ = igpq̄ (cf. (23.16)), the Einstein con-

dition (23.27) will automatically follow if we choose φ such that log |det[gpq̄]| =
−κφ, i.e., if φ is a solution to the Monge-Ampère equation

(23.29) |det[∂p∂q̄φ]| = e−κφ ,

with a given constant κ. For Ricci-flat metrics, the equation becomes

(23.30) |det[∂p∂q̄φ]| = 1 .
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PART II : SOME TOPOLOGICAL OBSTRUCTIONS

This part describes various obstructions to the existence of, or nonexistence
results for, Riemannian Einstein metrics on compact 4-manifolds. We present the
well-known theorems of Bochner (1946), Berger (1965), Thorpe (1969[a]), Myers
(1935) and Lichnerowicz (1963); see Corollary 28.2, Theorem 26.1, formula (26.5),
Theorem 28.7 and Theorem 31.3. Also, in §27, we describe various arguments
due to Sambusetti (1998), which provide generalizations of the Berger and Thorpe
inequalities based on a powerful result of Besson, Courtois and Gallot (1995).

Four of the following nine sections contain exposition of necessary background
material; these are §24, §25, §29, and §30. Finally, in §32 we present a brief argu-
ment showing that the U(2)-invariant Riemannian Einstein metric on the compact

complex surface M = CP2 # CP2, discovered by Page (1978), must be globally
conformal to a Kähler metric; the latter metric was independently found by Calabi
(1982).

§24. The Ricci curvature and Bochner’s theorems

By a volume density in an n-dimensional real vector space V we mean any
nonzero n-linear skew-symmetric function ± ν : V × . . . × V → R, defined only
up to a sign. For instance, any nondegenerate symmetric bilinear form g = 〈 , 〉
in a real vector space V with dimV = n, 1 ≤ n < ∞, gives rise to a naturally
distinguished volume density ± ν, defined up to a sign by the requirement that

(24.1) ν(e1, . . . , en) = ± 1

for some (or any) g-orthonormal basis ej of V . Thus,

(24.2) ν = ± e1 ∧ . . . ∧ en ,

ej being the dual of any g-orthonormal basis ej . (Note that ± ν is well-defined
according to by (3.11).) For an arbitrary basis ej of V , we can use the component
matrix [gjk] = [g(ej , ek)] of g, to write

(24.3) ν(e1, . . . , en) = ±
√
|det[gjk]| .

In fact, both sides obey the same transformation rule under a change of basis, and
coincide when the ej are orthonormal. Applied to a pseudo-Riemannian metric g
on an n-dimensional manifold M , this construction gives the Riemannian volume
density volg of g, which assigns to each x ∈ M the volume density ± νx of gx
in the tangent space TxM . Note that volg is “almost” a section ± ν of [T ∗M ]∧n

(except that it is defined at each point only up to a sign). Formula (24.3) shows
that ν is of class C∞, since so is its essential component ± ν 1...n = ± ν(e1, . . . , en)
in any local coordinate system xj for M ; ignoring the ambiguity of sign, we may
express this as

(24.4) ν 1...n =
√
|det[gjk]| .

Remark 24.1. If, in the above discussion, the vector space V and the pseudo-Riem-
annian manifold (M, g) are oriented, the the ambiguity of sign can be removed.
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All we need to do is require the bases e1, . . . , en in (24.1) – (24.4) to be positive-
oriented, and replace all the ± signs with pluses. In this way, ν becomes just
a nonzero n-linear skew-symmetric function (in the case of V ), or a differential
n-form on M , i.e., a section of [T ∗M ]∧n. The resulting n-form ν on M is called
the volume form or volume element of the oriented pseudo-Riemannian manifold
(M, g). (See also (3.34).) Note that the sign of ν changes when the orientation of
M is reversed.

Remark 24.2. The Riemannian volume density volg gives rise to a Borel measure
on the underlying manifold M , which can be briefly described as follows. (For more
details, see, e.g., Sulanke and Wintgen, 1972.) To integrate functions f of suitable
regularity (e.g., continuous ones) over reasonably simple sets Ω ⊂ M , let us first
assume that Ω is contained in the domain of a local coordinate system x1, . . . , xn,
n = dimM ; then,

∫
Ω
f volg is by definition the integral in Rn of f

√
|det[gjk]|

treated as a function of the x1, . . . , xn, over the set in Rn which is the coordinate
image of Ω. (Independence of the coordinate system used is clear from the change-
of-variables formula for multiple integrals.) For more general sets Ω, one can first
decompose Ω into a countable union

⋃
s Ωs of disjoint sets, each contained in a

coordinate domain, and then define
∫

Ω
f volg by additivity. (To see that the result

is the same for another decomposition
⋃
s′ Ω
′
s′ of Ω, consider the decomposition

Ω =
⋃
s,s′(Ωs ∩ Ω′s′) and use countable additivity of the Lebesgue integral as a

function of the integration domain.)

The following clasical result is known as the divergence theorem or the integra-
tion-by-parts formula.

Theorem 24.3 (Gauss). Let (M, g) be a pseudo-Riemannian manifold, and let
w be a C1 vector field on M which vanishes outside a compact set. Then

(24.5)

∫
M

(divw) volg = 0 .

Proof. Let us assume that w has a small support , that is, vanishes outside a com-
pact set contained in the domain of a local coordinate system x1, . . . , xn. Then, by
(4.42), divw = wj ,j and so, in view of (4.12) and (4.11), (divw)

√
|det[gkl]| = ∂jv

j

with vj = wj
√
|det[gkl]| . Relation (24.5) then is an obvious consequence of the def-

inition of
∫

Ω
f volg for sets Ω contained in a coordinate domain (see Remark 24.2),

combined with iterated integration. The general case now follows since, due to an
obvious argument involving a finite partition of unity, every C1 vector field vanish-
ing outside a compact set is a finite sum of C1 vector fields with small supports.
This completes the proof. �

As an immediate consequence of the divergence theorem, we obtain the following
result known as Bochner’s Lemma:

Corollary 24.4 (Bochner, 1946). Let f : M → R be a C2 function on a compact
Riemannian manifold (M, g) such that ∆f ≥ 0. Then f is constant.

In fact, using (4.43) and (24.5), we obtain

(24.6)

∫
M

∆f volg = 0 ,
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and so ∆f ≥ 0 implies that ∆f = 0. We also have, in general,

(24.7) f∆f = div (f∇f) − 〈∇f,∇f〉 ,

or, in local coordinates, ff,j
j = (ff,j)

j − f ,jf,j , as one sees using differenti-
ation by parts and (4.44). Integrating (24.7) we thus find that, in our case,
0 =

∫
M
f ∆f volg = −

∫
M
|∇f |2 volg, and so f is constant, as required. �

Remark 24.5. The divergence formula (24.5) remains valid in a much more general
situation, such as when the manifold M , instead of carrying a fixed metric g,
is just endowed with a nowhere-zero continuous volume density ± ν (that is, a
continuous “section” ± ν of [T ∗M ]∧n, n = dimM , defined at each point only up
to a sign). Such ± ν then gives rise to a divergence operator div assigning to
each C1 vector field w on M the function divw given by the local-coordinate
expression divw = ∂jw

j +wj ∂j log |ν 1...n|, with ± ν 1...n = ± ν(e1, . . . , en) in any
given local coordinate system xj . (This is independent of the coordinate system
used, just as it was in the special case (24.4), due to the transformation rule for
± ν 1...n.) On the other hand, ± ν leads to a Borel measure on M , which in turn
allows us to form integrals

∫
Ω
f ν, exactly as in the case where ± ν = volg. For

instance, for sets Ω contained in a coordinate domain
∫

Ω
fν if defined to be the

integral in Rn of fν 1...n, as a function of the x1, . . . , xn, over the coordinate image
of Ω. The divergence theorem

(24.8)

∫
M

(divw) ν = 0 .

for compactly supported C1 vector fields w now follows, as before, from the local-
coordinate relation (divw)ν 1...n = ∂jv

j with vj = wjν 1...n.

Remark 24.6. In an n-dimensional manifold M which is oriented one can, besides
integrals

∫
Ω
f ν of functions f relative to a fixed nowhere-zero continuous volume

density ± ν (Remark 24.5), also form so-called oriented integrals
∫

Ω
ω of continu-

ous differential n-forms ω over “reasonably simple” sets Ω ⊂M . To this end, one
first assumes that Ω is contained in a connected open set U which is the domain of
a local coordinate system x1, . . . , xn, and sets

∫
Ω
ω equal ± 1 times the integral in

Rn of ω 1...n = ω(e1, . . . , en) treated as a function of the x1, . . . , xn, over the coor-
dinate image of Ω. The sign factor ± 1 equals 1 (or, − 1) depending on whether
the coordinates x1, . . . , xn are (or, are not) compatible with the given orientation
of M . For the remaining details (independence of the coordinates used, integration
over more general sets Ω), see Remark 24.2. To describe how both integrations
are related, let us assume that we are given ± ν as in Remark 24.5 on an oriented
n-manifold M , a set Ω and a function f as before. Then, we may “choose a sign”
for ν by requiring that ν(e1, . . . , en) > 0 for some (any) positive-oriented basis
e1, . . . , en of TxM at any x ∈ M . In this way, ν is a differential n-form on M ,
and the “nonoriented” integral of f over Ω relative to ± ν coincides with the
oriented integral, over Ω, of the differential n-form ω = fν.

Let (M, g) be a Riemannian manifold. We denote P(TM) the projectivized
tangent bundle of M , that is, the set of all pairs (x, L) formed by a point x ∈M
and a 1-dimensional vector subspace L of the tangent space TxM . The Ricci
tensor Ric of (M, g) gives rise to the Ricci curvature function of (M, g), which is
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a function P(TM)→ R sending each (x, L) to Ric (v, v)/g(v, v), where v ∈ TxM
is any nonzero vector in L.

Remark 24.7. The Ricci curvature function of a Riemannian manifold (M, g) u-
niquely determines its Ricci tensor Ric (due to symmetry of Ric), and is constant
if and only if (M, g) is Einstein; in fact, κ appearing in (5.3) then is the constant
value of the Ricci curvature. Also, positivity/nonnegativity of the Ricci curva-
ture corresponds to positive definiteness/semidefiniteness of Ric, and similarly for
its negativity and nonpositivity. The conditions just named will from now on be
written as Ric > 0, Ric ≥ 0, Ric < 0, etc.

The sign of the constant Ricci curvature κ in (5.3) leads to specific global con-
sequences for compact Einstein manifolds, that are valid in general for manifolds
whose Ricci curvature has a fixed sign. For instance, let (M, g) be a compact pseu-
do-Riemannian manifold. From the contracted Ricci-Weitzenböck formula (4.39)
we obtain

(24.9) Rjkw
jwk = wjwk,jk − wjwk,kj

for C2 vector fields w on M . Integrating this by parts (i.e., using Theorem 24.3),
we obtain the following relation due to Bochner (1946):

(24.10)

∫
M

Ric (w,w) volg =

∫
M

(divw)2 volg −
∫
M

Trace (∇w ◦ ∇w) volg ,

valid for all C2 vector fields w on M .
The following classical result of Bochner is an obvious consequence of (24.10).

Theorem 24.8 (Bochner, 1946). Let Ric denote the Ricci curvature function of
a compact Riemannian manifold (M, g), with the same notational conventions as
in Remark 24.7.

(i) If Ric < 0 (or, Ric > 0), then (M, g) admits no nontrivial Killing fields
(or, respectively, harmonic 1-forms).

(ii) If Ric ≤ 0 (or, Ric ≥ 0), then every Killing field (or, respectively,
harmonic 1-form) on (M, g) is parallel.

In fact, for a Killing field w, ∇w is skew-adjoint at every point (see §17), and
so divw = 0, while harmonic 1-forms on compact Riemannian manifolds may be
identified with those vector fields w for which ∇w is self-adjoint at every point
and divw = 0. �

Later in §36 we will need the Stokes formula, which is, basically, an alternative
version of Gauss’s divergence formula (24.5). It states that, given a differential
(n − 1)-form γ of class C1 on an n-dimensional manifold M , such that γ = 0
outside a compact set, we have

(24.11)

∫
M

dγ = 0 ,

the integral being taken in the sense of oriented integration of n-forms. To prove
it, we proceed as in the proof of Theorem 24.3, first using a finite partition of
unity to reduce the problem to the case where γ has a small support, and then
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observing that the assertion in that case is completely straigtforward, since dγ has
the essential component (dγ) 1...n = ∂1γ 2...n− ∂2γ 13...n + . . . − (−1)n∂nγ 1...(n−1).

Finally, let us note that Stokes’s formula (24.11) can also be derived directly
from (24.5) if one chooses a Riemannian metric g on M and observes that dγ =
[div (∗γ)] vol, where vol is the volume form of the oriented Riemannian manifold
(M, g) and ∗ is the Hodge star ∗ acting on (n − 1)-forms (and sending them to
vectors).

§25. Curvature and characteristic numbers

The existence of a Riemannian Einstein metric on a compact 4-manifold M
imposes topological restrictions (see §26) on the Euler characteristic χ = χ(M)
and signature τ = τ(M) of M . Formulae (25.1) and (25.6) below give the standard
Chern-Weil integral expressions for χ and τ in terms of any Riemannian metric on
M . The reader not familiar with the Chern-Weil theory may consider treating (25.1)
and (25.6) as definitions of χ and τ (which then appear to be just real numbers,
even though in fact they always are integers). The independence of χ and τ of the
metric used can easily be seen by connecting any two Riemannian metrics g, g′ on
M with a C2 curve of metrics, such as [0, 1] 3 t 7→ g(t) = (1− t)g + tg′. Applying
d/dt to the expressions (25.1) and (25.6), one then easily verifies that they are
constant in t (along any C2 curve of metrics) in view of the divergence theorem
(Theorem 24.3).

Specifically, the Euler characteristic χ(M) of a compact 4-manifold M is given
by

(25.1) 8π2 χ(M) = ‖R‖2 − ‖E‖2 .

Here ‖ ‖ is the L2 norm relative to g, while R and E are the curvature tensor
and, respectively, the traceless Ricci tensor of any Riemannian metric g on M ;
the coefficient conventions for the integrands are (5.32) and |A|2 = AjkA

jk for
curvature-like 4-tensors R and symmetric 2-tensors A. Thus, for instance, for
R, E, the scalar curvature function s and the Weyl conformal tensor W of a
Riemannian manifold of any dimension n ≥ 3, we have

(25.2) |R|2 = |W |2 +
1

n− 2
|E|2 +

s2

2n(n− 1)
, |Ric|2 = |E|2 +

s2

n
,

as one easily sees using (5.9), the relation

(25.3) 4 〈g ~A, g ~B〉 = (n− 2)〈A,B〉 + (TraceA)(TraceB) ,

for symmetric 2-tensors A,B (immediate from (5.7)), and the fact that the three
terms in (5.9) are mutually orthogonal (which in turn is clear from (25.3) and
(5.25)). In view of (25.2), with n = 4, we can rewrite (25.1) as

(25.4) 192π2 χ(M) = 24 ‖W‖2 − 12 ‖E‖2 + ‖s‖2 .

If, in addition, the compact 4-manifold M is oriented and W± are the Λ±M
components of W , we have

(25.5) ‖W‖2 = ‖W+‖2 + ‖W−‖2 ,
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and the signature τ = τ(M) of M is given by

(25.6) 12π2 τ(M) = ‖W+‖2 − ‖W−‖2 .

We also set

(25.7) τ(M) = 0 if M is nonorientable .

Finally, for any compact oriented Riemannian 4-manifold (M, g), (25.4) and (25.6)
imply the important relation

(25.8) 96π2 [2χ(M) + 3τ(M)] = 48 ‖W+‖2 − 12 ‖E‖2 + ‖s‖2 ,

which will be used later in §26 and §34.
The remainder of this section devoted to a remark that will not be needed until

§34.
Specifically, the left-hand side of (25.8) acquires an additional interpretation in

the case of compact Kähler manifolds (M, g, α) (see §10) of real dimension four.
The almost complex structure α then is integrable, that is, comes from a complex-
manifold structure in M (Remark 23.5). According to formula (36.2) in §36, the
(real) first Chern class c1(M) of M is represented in the de Rham cohomology
(§36) by the closed 2-form ρ/2π, where ρ is the Ricci form given by (23.13). Since
Ric, treated as a bundle morphism TM → TM , is complex-linear by (9.6), we may
choose, at any given point x, a complex-orthonormal basis u, v of TxM which
diagonalizes Ric so that Ricu = λu, Ric v = λv for some λ, µ ∈ R. Now we
have s = 2(λ+µ) and ρ = λu∧ (αu) + µv∧ (αv), and so ρ∧ρ equals the volume
form u∧(iu)∧v∧(iv) (Remark 24.1) times 2λµ = s2/4−|Ric|2/2 = s2/8−|E|2/2.
As c21(M) =

∫
M
ρ ∧ ρ and |W+|2 = s2/24 (see (10.10)), (25.8) yields

(25.9) c21(M) = 2χ(M) + 3 τ(M) .

§26. The Berger and Thorpe inequalities

The simplest restrictions that the existence of a Riemannian Einstein metric on
a compact 4-manifold M imposes on its topology are inequalities involving its
Euler characteristic χ = χ(M) and signature τ = τ(M), due to Berger (1965)
and Thorpe (1969[a]); see also Hitchin (1974). Further generalizations of these
inequalities are immediate from a result of Besson, Courtois and Gallot (1995), as
observed by Sambusetti (1998); see §27.

Theorem 26.1 (Berger, 1965). Every compact 4-manifold M carrying an Ein-
stein metric g satisfies the inequality

(26.1) χ(M) ≥ 0 ,

and then

(26.2) χ(M) = 0 if and only if g is flat.

This is immediate from (25.1) with E = 0. �
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Following Sambusetti (1998), let us now set, for a compact 4-manifold M ,

(26.3) [M ] = 2χ(M) − 3|τ(M)| .

Applying (25.8) and (26.3) to a fixed Einstein (E = 0) metric g on a compact
orientable 4-manifold M with an orientation chosen so that τ(M) ≤ 0, we find
that

(26.4) 96π2 [M ] = 48 ‖W+‖2 + ‖s‖2 ≥ ‖s‖2 ≥ 0 .

By (26.3), this leads to the Thorpe inequality (Thorpe, 1969)

(26.5) |τ(M)| ≤ 2

3
χ(M)

valid for any compact 4-manifold M admitting an Einstein metric.
Note that, even though we used orientability of M , relation (26.5) remains valid

for nonorientable manifolds as well (with (25.7)), in view of Berger’s Theorem 26.1.
(This can also be established by passing to a two-fold orientable covering of M .)

The equality case in (26.5) is in turn settled by a theorem of Hitchin; see §33.

Remark 26.2. Integral formulae analogous to (25.1) and (25.6) remain valid for
(indefinite) pseudo-Riemannian metrics on compact 4-manifolds M , which in turn
leads to estimates resembling (26.5) and (26.1). For the Lorentzian sign pattern
− + + + , these provide no further information as we then have τ(M) = χ(M) = 0
solely due to the existence of a Lorentz metric (whether Einstein or not). However,
for neutral Einstein metrics (with the sign pattern − − + +), some interesting
estimates hold. See Law, 1991, and references therein.

§27. Degrees of mappings into hyperbolic manifolds

A generalization of the Thorpe inequality (26.5) involves the concept of the
volume entropy Enth ∈ [0,∞) for a compact n-dimensional Riemannian manifold

(N,h). It is given by Enth = lim r→∞
1

r
log V (x̃, r), with V (x̃, r) denoting the

volume of the ball of radius r centered at any fixed point x̃ in the Riemannian
universal covering of (N,h). We also set

(27.1) {N}h = Volh · [Enth]n , 〈M〉g = Volg · |min Ricg |n/2

for compact Riemannian n-manifolds (M, g) and (N,h), where Volh ∈ (0,∞)
and Ricg denote the volume of (N,h) and the Ricci curvature function of (M, g)
(described in §24). For instance, Einstein n-manifolds (M, g) satisfy

nn/2〈M〉g = Volg · |sg|n/2 ,

as the Ricci curvature then is constant and equal to 1/n times the scalar curvature
sg (see (0.1)). When n = 4 (and ‖sg‖ stands for the L2 norm of the scalar
curvature function sg of the Einstein 4-manifold (M, g)), this becomes

(27.2) 16〈M〉g = ‖sg‖2 .

On the other hand, if (N,h) is a real or complex hyperbolic space of real dimension
n (Examples 10.4, 10.6), we have, respectively (see Remark 27.9 below),

(27.3) [Enth]2 =
n− 1

n
|sh| or [Enth]2 =

n

n+ 2
|sh| .

We will need the following powerful result.
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Theorem 27.1 (Besson, Courtois and Gallot, 1995). Let M and N be compact
orientable manifolds with dimM = dimN ≥ 3 and let h be a negatively curved
locally symmetric Riemannian metric on N . The inequality

(27.4) {M}g ≥ |deg f | · {N}h

then is satisfied by the degree deg f of every continuous mapping f : M → N ; in
addition, equality in (27.4) with deg f = d 6= 0 then implies that f is homotopic
to a |d|-fold covering which is homothetic, i.e., isometric up to a constant factor.

For a proof, see the paper of Besson, Courtois and Gallot. �

Formula (27.4) leads to a generalization of the Berger and Thorpe estimates
given in §26, as shown by Sambusetti (1998). Namely, we have

Corollary 27.2 (Sambusetti, 1998). Let M and N be compact orientable 4-man-
ifolds and let h be a locally symmetric Riemannian metric of negative curvature on
N . If M admits a Riemannian Einstein metric, then the degree deg f of every
continuous mapping f : M → N satisfies the estimate

(27.5)
1

108π2
{N}h · |deg f | ≤ χ(M) − 3

2
|τ(M)| .

Furthermore, inequality (27.5) is strict except when either deg f = 0, or deg f =
d 6= 0, N admits a real hyperbolic metric, and f is homotopic to a |d|-fold covering
homothety.

Proof. For any compact orientable Riemannian manifold (M, g), Bishop’s compar-
ison theorem (see Besson et al., 1995) and the first formula in (27.3) give

(27.6) (n− 1)n/2〈M〉g ≥ {M}g , n = dimM ,

with 〈M〉g as in (27.1). If g now is an Einstein metric and n = 4, combining
(26.4) and (27.2) with (27.6) and (27.4), we obtain

(27.7) 864π2 [M ] ≥ 9 ‖sg‖2 = 144〈M〉g ≥ 16{M}g ≥ 16 |deg f | · {N}h ,

which, by (26.3), implies (27.5). Finally, the equality-case assertion now is clear
from the equality-case statement for (27.4). �

Remark 27.3. Following Sambusetti (1998), we may rewrite the inequality (27.5)
in two equivalent ways, each of which becomes a convenient source of further con-
clusions. Specifically, let M and N be compact oriented 4-manifolds such that
M admits an Einstein metric, and let q be a real parameter. Furthermore, let
us assume that N admits a Riemannian metric h on N such that either q = 1
and h is a real hyperbolic metric, or q = 32/81 and h is complex hyperbolic.
(In view of Theorem 14.7, these are the only possible types of (N,h) satisfying
the hypotheses of Corollary 27.2.) The estimate (27.5) on the degree deg f of any
continuous mapping f : M → N then takes the form

(27.8) q |deg f | · χ(N) ≤ χ(M) − 3

2
|τ(M)| ,
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as well as

(27.9) |deg f | · [N ] ≤ [M ] ,

with [M ], [N ] as in (26.3). These inequalities are immediate from (27.5) and the
relations

(a) {N}h = 108π2 χ(N) if (N,h) has constant curvature K < 0.
(b) {N}h = 128π2 χ(N)/3 if (N,h) is complex hyperbolic.

To verify (a) and (b), note that in both cases (N,h) is Einstein and satisfies
W− = 0 for a suitable orientation (see (10.11)). Thus, (27.2), (27.3) and (26.5)
yield {N}h = 9〈N〉h = 54π2[N ] (case (a)), or 9{N}h = 64〈N〉h = 384π2[N ] (case
(b)), while in (a) τ(N) = 0 (by (25.6) with W = 0) and, in (b), |τ(N)| = χ(N)/3.
(The last relation is clear from (25.4) – (25.6) along with E = 0, W− = 0, and
(10.10); it also follows directly from the Hirzebruch signature formula.)

Corollary 27.4 (Besson, Courtois and Gallot, 1995). Let N be a compact ori-
entable 4-manifold admitting a locally symmetric Riemannian metric h of negative
curvature. Then, up to diffeomorphisms and constant factors, h is the unique Rie-
mannian Einstein metric on N .

In fact, the assertion follows from the equality-case conclusion in Corollary 27.2,
applied to inequality (27.5) rewritten as (27.9), with M = N , for any given Einstein
metric g on M , and for the identity mapping f . �

Corollary 27.5 (Sambusetti, 1998). Given compact orientable 4-manifolds M
and N such that N admits a real hyperbolic metric, the connected sums

kN = N # . . . #N , N #M

carry no Einstein metrics, provided that k ≥ 2 or, respectively, χ(M)− 3
2 |τ(M)| ≤

2 and M is not a topological sphere.

This in turn follows from (27.8) applied to the obvious collapsing mappings f
into N with deg f = k (or, respectively, deg f = 1); the argument also relies in
part on the equality case of (27.4) and Freedman’s solution of the 4-dimensional
Poincaré conjecture. For details, see Sambusetti (1998). �

The connected-sum examples just mentioned lead in turn to the following con-
clusion.

Corollary 27.6 (Sambusetti, 1998). Every pair (χ, τ) that can be realized as the
Euler characteristic and signature of a compact 4-manifold, can also be realized by
a compact 4-manifold admitting no Einstein metric. �

Remark 27.7. The above results can be extended to the case of nonorientable man-
ifolds, using Epstein’s notion of absolute degree and (25.7). See Sambusetti (1998).

Remark 27.8. Denoting un the volume of a unit ball in Rn, and letting V (r) be
the volume of the radius r ball with a fixed center x in a given n-dimensional
Riemannian manifold (M, g), we have, for r ≥ 0 close to zero,

(27.10) V (r) = unr
n − s(x)

6(n+ 2)
unr

n+2 + ϕ(r)rn+3
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with some continuous function ϕ of the variable r, where s(x) stands for the scalar
curvature of (M, g) at x. To see this, use geodesic normal coordinates xj at x ;

then, at x, the volume integrand
√

det[gjk] has the second order Taylor expansion

1 + ajkx
jxk with 4ajk = gls∂j∂kgls, and so s(x) = −6gjkajk (note that the cyclic

sum of the ∂j∂kgls over j, k, l is zero). At the same time,∫
|x|≤r
〈Tx, x〉 dx =

un
n+ 2

rn+2 TraceT

for any linear operator T in an n-dimensional Euclidean space. Integration now
yields the required coefficient of r2 in (27.10).

Remark 27.9. Using Lorentzian pseudosphere models (Examples 10.4, 10.6), we get

V (r) = nunc
nFn−1(r/c)

in the pseudosphere (hyperboloid) given by 〈x, x〉 = − c2 in an (n+ 1)-dimensional
real pseudo-Euclidean space of the sign pattern −+ . . .+ , with

Fn(ρ) = f(ρ) +
1

2n−1

[(n−1)/2]∑
j=0

(−1)j
(
n

j

)
Ψ((n− 2j)ρ)

n− 2j
,

where, for odd n, f(ρ) = 0 and Ψ(t) = cosh t − 1, while, for even n, f(ρ) =
2−n

(
n
n/2

)
ρ and Ψ(t) = sinh t. At the same time, the metric h in question has the

sectional curvature K = −1/c2, so that and the scalar curvature sh = n(n− 1)K.
Similarly,

V (r) = un c
n sinhn

r

c

for a complex hyperbolic space of (even) real dimension n, obtained as the Rie-
mannian quotient (under the obvious S1 action) of the pseudosphere 〈x, x〉 = −c2
in a complex pseudo-unitary space of the complex dimension 1

2n+ 1 and sign pat-
tern − + . . .+ . Induction on n shows that sinhn ρ has the Taylor expansion of
order n+ 2 given by ρn + n

6 ρ
n+2. Thus, in view of (27.10) (see also (10.9))

sh = − n(n+ 2)

c2
, Enth =

n

c

in the latter case.

§28. Positive Ricci curvature and Myers’s theorem

Bochner’s Theorem 24.8 can be rephrased as a statement about isometry groups
and Betti numbers. First, since the Killing fields on a compact Riemannian manifold
(M, g) form the Lie algebra of the compact Lie group of all isometries of (M, g),
we obtain

Corollary 28.1 (Bochner, 1946). Every compact Riemannian manifold (M, g)
with Ric ≤ 0 and an Euler characteristic χ(M) 6= 0 admits no nontrivial Killing
field, i.e., its group of isometries is finite.

In fact, a nontrivial Killing field would be parallel and hence nonzero everywhere,
thus implying χ(M) = 0. �

Since harmonic forms represent the real cohomology of M via Hodge theory
(see Wells, 1979), we similarly have



EINSTEIN METRICS IN DIMENSION FOUR 165

Corollary 28.2 (Bochner, 1946). The first Betti number of any compact Riemann-
ian manifold with Ric > 0 is zero. �

Corollary 28.3 (Bochner, 1946). Let b1 denote the first Betti number of any given
compact n-dimensional Riemannian manifold (M, g) with Ric ≥ 0.

(i) If b1 > 0, then χ(M) = 0.
(ii) If b1 ≥ n− 1, then (M, g) is flat.

Proof of Corollary 28.3. Assertion (i) follows from Theorem 24.8 just like in Corol-
lary 28.1 above. To prove (ii), select n− 1 linearly independent harmonic 1-forms
ξj , j = 1, . . . , n − 1. Since they are now parallel, we can find, locally, a parallel
1-form ξ which is unit and pointwise orthogonal to the preceding ξj . Treating all
the ξj as vector fields, we obtain R = 0 from (4.23). �

Remark 28.4. In particular, any compact Ricci-flat Riemannian n-manifold with
b1 ≥ n− 1 is flat.

Let nabla be a connection in the tangent bundle TM of a manifold M . For
any geodesic [a, b] 3 t 7→ x(t) ∈M of ∇, we define its Jacobi operator J to be the
linear operator that assigns to every C2 tangent vector field w along the geodesic
the continuous vector field Jw along it, given by

(28.1) Jw = ∇ẋ∇ẋw − R(w, ẋ)ẋ .

In the case where ∇ is the Levi-Civita connection of a pseudo-Riemannian manifold
(M, g), we will call J the Jacobi operator of (M, g).

Suppose now that F : Ω→M is a Ck mapping of a rectangle Ω = [a, b]× [c, d]
the given manifold M endowed with a connection nabla in TM . We will use the
generic symbols t and s for the variables with a ≤ t ≤ b and c ≤ s ≤ d. Thus, in
view of (11.1) and (4.3), Fst has the component functions

(28.2) F jst =
∂2F j

∂t ∂s
+ (Γ jkl ◦ F )

∂F k

∂t

∂F l

∂s
.

If F is fixed, we will simply write x(t, s) and xt, xs instead of F (t, s), ∂F/∂t and
∂F/∂s. If k ≥ 1, the partial derivatives xt, xs are Ck−1 sections of the tangent
bundle TM along the mapping Ω 3 (t, s) 7→ x(t, s) (see §11). Consequently,

(28.3) xts = xst if ∇ is torsionfree

and k ≥ 2, as one easily sees using (4.3) and (28.2) along with its analogue for Fts.
From (28.3) and (11.2) we now obtain (for k ≥ 3)

(28.4) xtts = xstt − R(xs, xt)xt if ∇ is torsionfree.

Of particular interest for us are those C3 mappings F : [a, b] × [c, d] → M for
which the curve [a, b] 3 t 7→ x(t, c) = F (t, c) is a geodesic, i.e.,

(28.5) xtt( · , c) = 0 .

Remark 28.5. A mapping F : Ω → M as above is often termed a variation of
curves in M , and then it is to be regarded as a one-parameter family of curves (a
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“curve of curves”) in M . We then think of s ∈ [c, d] as the variation parameter,
labeling the individual curves t 7→ x(t, s) of the family, while t ∈ [a, b] then is
the parameter along each curve. If these curves all are geodesics of (M, g), one
calls F a variation of geodesics in (M, g) ; clearly, this is the case if and only if
xtt = 0 everywhere in Ω. Thus, for any C3 variation of geodesics, (28.4) shows
that the vector field w = xs( · , c) along the curve t 7→ x(t, c) is a Jacobi field, that
is, satisfies the Jacobi equation (4.51) (which, by (28.1), means nothing else than
Jw = 0). The fact that any Killing field w restricted to a geodesic t 7→ x(t) in
a pseudo-Riemannian Einstein manifolds (M, g) must satisfy the Jacobi equation
(see Remark 17.5) now may be explained by applying this principle to the variation
of geodesics defined by (t, s) 7→ esw(x(t)) with s near 0, where esw denotes the
flow of w (cf. Lemma 17.16).

By the length and action functionals for a given Riemannian manifold (M, g)
one means the real-valued functions L and A, which associate with every C1 curve
γ : [a, b]→M , defined on any closed interval [a, b], the numbers

(28.6) L[γ] =

∫ b

a

|γ̇(t)| dt , A[γ] =
1

2

∫ b

a

|γ̇(t)|2 dt ,

with |v|2 = g(v, v) for tangent vectors v. Note that we then have the Schwarz
inequality

(28.7) (L[γ])2 ≤ 2 (b− a)A[γ] ,

which becomes an equality for constant-speed curves, i.e., when |γ̇| is constant.

Lemma 28.6. Given a Riemannian manifold (M, g), let us denote ( , ) the L2

inner product of vector fields along any fixed curve in M parametrized by t ∈ [a, b],

so that (w, u) =
∫ b
a
〈w, u〉 dt, and let γ : [a, b]→M be a geodesic of (M, g) with a

constant-speed parameter t. For any C3 tangent vector field w along γ such that
w(a) = 0 and w(b) = 0, we then have

(28.8) (w, Jw) ≤ 0 .

Proof. We may choose a C3 variation Ω 3 (t, s) 7→ x(t, s) of curves in M , with
Ω = [a, b] × [c, d], in such a way that γ(t) = x(t, c), w(t) = xs(t, c) and x(a, s) =
γ(a), x(b, s) = γ(b) for all t and s. (For instance, x(t, s) = expγ(t) sw(t), where

exp is the geodesic exponential mapping of (M, g).) Let us set

L(s) = L[γ(s)] , A(s) = A[γ(s)] ,

where γ(s) : [a, b] → M is given by γ(s)(t) = x(t, s). Thus, 2A(s) = (xt, xt). The
derivative A′(s) = dA(s)/ds, now is given by

(28.9) A′(s) = − (xtt, xs) ,

as one sees using (28.3) and differentiation by parts, and noting that xs(a, · ) = 0,
xs(b, · ) = 0. Thus, since γ(c) = γ is a constant-speed minimizing geodesic, we have

2 (b−a)A(c) = [L(c)]
2 ≤ [L(s)]

2 ≤ 2 (b−a)A(s) for all s ∈ [c, d] (in view of (28.7)),
while (28.5) and (28.9) give A′(c) = 0. These two relations clearly imply A′′(c) ≥ 0.
However, differentiating (28.9), we obtain A′′(s) = − (xtts, xs)− (xtt, xss), and so
(28.5), (28.4) and (28.1) yield A′′(c) = − (w,Jw). As A′′(c) ≥ 0, this proves our
assertion. �
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Theorem 28.7 (Myers, 1935). Let (M, g) be a complete Riemannian manifold of
dimension n ≥ 2, with

(28.10) Ric ≥ (n− 1) δ > 0

for some δ ∈ R. Then

(i) The diameter of (M, g) satisfies the estimate

(28.11) diam (M, g) ≤ π/
√
δ .

(ii) M is compact and its fundamental group π1M is finite.

Proof. We will establish (i), by proving that the length estimate

(28.12) (L[γ])2 ≤ π2/δ

holds for every minimizing geodesic γ : [a, b]→ M . To this end, let us fix parallel
orthonormal vector fields [a, b] 3 t 7→ eλ(t), λ = 1, 2, . . . , n − 1, tangent to M
along γ and orthogonal to γ̇. The function f(t) = sin[(b − a)−1π(t − a)] then

satisfies f(a) = f(b) = 0 and (b − a)2f̈ = −π2f . For w = wλ = feλ, formula
(28.1) becomes Jwλ = − (b − a)−2π2feλ − f R(eλ, γ̇)γ̇ ; thus, (28.8) applied to

w = wλ, λ = 1, 2, . . . , n− 1, yields 0 ≤ −
∑
λ(wλ,Jwλ) =

∫ b
a
f2ϕdt, with

(28.13) ϕ = (n− 1)(b− a)−2π2 − Ric (γ̇, γ̇) .

Since f 6= 0 in (a, b), this shows that ϕ ≥ 0 somewhere in [a, b]. On the other
hand, by (28.10), we have ϕ ≤ (n − 1)(b − a)−2δ[π2δ−1 − (b − a)−2|γ̇|2] and,
as sup ϕ ≥ 0, we obtain (L[γ])2 = (b − a)−2|γ̇|2 ≤ π2δ−1. This yields (28.12)
and hence proves assertion (i). As for (ii), note that finiteness of diam (M, g)
shows that M must be compact. Applying this last conclusion to the Riemannian
universal covering of (M, g), we see that π1M is finite, as required. �

Since the Einstein condition (0.1), in the case where s > 0, clearly implies
(28.10) with δ given by n(n− 1) δ = s, Theorem 28.7 yields

Corollary 28.8. Any complete Riemannian Einstein manifold of dimension n,
n ≥ 2, whose scalar curvature s is positive, is automatically compact, has a finite
fundamental group, and its diameter does not exceed π

√
n(n− 1) /

√
s . �

We conclude this section with a classical result establishing a relation between
Jacobi fields and the exponential mapping (4.16).

Proposition 28.9. Let ∇ be a torsionfree connection in the tangent bundle TM
of a manifold M , and let a vector v ∈ TxM lie in the domain Ux ⊂ TxM of the
exponential mapping expx : Ux → M , cf. (4.16). Then, for any u ∈ TxM , the
image of u under the differential of expx at v is given by

(28.14) d(expx)vu = w(1) ,

where [0, 1] 3 t 7→ w(t) is the Jacobi field along the geodesic [0, 1] 3 t 7→ expx tv,
uniquely determined by the initial conditions w(0) = 0 and [∇ẋw](0) = u.
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Proof. Define Φ : R2 → TxM by Φ(t, s) = t(v + su). Since Ux is open and
contains tv for all t ∈ [0, 1], we can find r > 0 such that the image under Φ of the
rectangle Ω = [0, 1]× [0, r] lies entirely in Ux. The composite F = expx ◦Φ : Ω→
M clearly is a variation of geodesics, so that, according to Remark 28.5, formula
w(t) = Fs(t, 0) defines a Jacobi field w along the geodesic [0, 1] 3 t 7→ F (t, 0) =
expx tv. On the other hand, as ∂[Φ(t, s)]/∂s = tu, we obtain (28.14), since the left-
hand side of (28.14) is nothing else than d[expx Φ(t, s)]/ds at t = 1 and s = 0.
Finally, w(0) = 0 since Φ(0, s) = 0 and F (0, s) = x for all s ∈ [0, r], while
[∇ẋw](t) = Fst(t, 0) equals u when t = 0, as one easily sees using the component
formula (28.2) in normal coordinates at x (in which F appears identical to Φ),
along with (4.18). This completes the proof. �

§29. G-structures and G-connections

Let V be a vector space over the field K of real or complex numbers, with
dimV = q, 1 ≤ q < ∞, and let B = B(V ) stand for the set of all bases of
V . The matrix group GL(q,K) then acts on B freely and transitively by matrix
multiplication from the right applied to bases treated as single-row matrices (with
vector entries). Restricted to any fixed subgroup G of GL(q,K), this becomes a
free action of G on B. Any orbit S of the action of G just defined then is called
a G-structure in V . Note that any given basis e1, . . . , eq of V belongs to a unique
G-structure in V , which may be called the G-structure determined by the basis ea,
a = 1, . . . , q.

Most geometric structures of any interest in vector spaces V of a given dimen-
sion q can equivalently be described as G-structures for suitable matrix groups
G ⊂ GL(q,K). For instance, a positive definite real or complex inner product in
V is uniquely characterized by the set of all of its orthonormal bases, which is an
O(q) or U(q)-structure. The vector space structure of V alone, without any addi-
tional distinguished geometry, corresponds to the set of all bases, i.e., a GL(q,K)-
structure; one fixed basis of V is an {Id}-structure; an orientation of V (when
K = R) is a GL+(q,R)-structure. Similarly, when K = R, a Euclidean inner
product in V coupled with an orientation of V constitutes an SO(q)-structure,
while a volume density ± ν in V (see Remark 24.1) is a SL±(q,R)-structure,
SL±(q,R) being the group of all real q × q matrices of determinant ±1. (The
corresponding bases e1, . . . , eq then are characterized by ν(e1, . . . , eq) = ±1.)

Let E now be a real or complex vector bundle of fibre dimension q over a
manifold M and let G be a Lie subgroup of the matrix group GL(q,K), with
K = R or K = C. By a G-structure in E we then mean a mapping assigning to
each x ∈M a G-structure Sx in the fibre Ex with the property that for any point
x ∈ M there exists a local C∞ trivialization ea of E defined on a neighborhood
U of x and such that, for each y ∈ U , the G-structure Sy in Ey is determined
by (i.e., contains) the basis ea(y), a = 1, . . . , q. The group G is referred to as
the structure group of the given G-structure S, while local C∞ trivializations ea
with the property just stated then are said to be compatible with (or, belong to) the
G-structure. According to the preceding paragraph, an O(n) or U(n)-structure
may be identified with a Riemannian (or, respectively, Hermitian) fibre metric 〈 , 〉
in E ; for local C∞ trivializations, compatibility with this structure amounts to
being orthonormal.

Suppose now that we are given a G-structure S in a real or complex vector
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bundle E of some fibre dimension q over a manifold M . A connection ∇ in E is
said to be compatible with the G-structure S (or, briefly, to be a G-connection) if
the set of bases forming S is invariant under the ∇ -parallel transports along all C1

curves in M . As an example, every connection in E is a GL(q,K)-connection; at
the other extreme, an {Id}-connection is one that makes the given system of global
trivializing sections parallel. (Thus, by (4.52), an {Id}-connection is necessarily
flat.)

Lemma 29.1. Let G be a Lie subgroup of a Lie group H, and let I 3 t 7→ Ψ(t) ∈
H be a C1 curve defined on an interval I ⊂ R and such that Ψ(t0) ∈ G for some
fixed parameter t0 ∈ I. Furthermore, let Φ : I → T1H be the curve of vectors
tangent to H at the unit element 1, given by Φ = Ψ̇Ψ−1, in the sense that Φ(t)

is the image of Ψ̇(t) ∈ TΨ(t)H under the differential of the right multiplication by

[Ψ(t)]−1 in H. Then, in order that Ψ(t) ∈ G for all t ∈ I, it is necessary and
sufficient that Φ(t) ∈ g for all t, where g is the Lie algebra of G, identified with
the tangent space T1G ⊂ T1H.

Proof. Necessity is obvious, as the right multiplication by [Ψ(t)]−1 then sends G

into G. Sufficiency: Solve Ψ̇(t) = Φ(t)Ψ(t) with Ψ(t0) = Ψ0 ∈ G as an initial
value problem with the unknown curve Ψ(t), and note that its solutions in G and
H must coincide, due to uniqueness of solutions in G. �

Lemma 29.2. Suppose that we are given a manifold M , a vector bundle E over
M , of some fibre dimension q over a scalar field K = R or K = C, and a fixed
G-structure S in E. For any connection ∇ in E, the following conditions are
equivalent :

(i) ∇ is a G-connection, i.e., is compatible with S;
(ii) For some, or every, family of local C∞ trivializations ea compatible with

the G-structure S and local coordinate systems xj, whose coordinate-
and-trivialization domains U cover M , all the matrices with matrix in-
dices a, b obtained by fixing j and x ∈ U in the connection compo-
nents Γ bja(x) defined by (4.48) are elements of the matrix Lie algebra
g ⊂ gl(q,K) corresponding to the matrix group G ⊂ GL(n,K).

Proof. Let ea be a fixed local trivialization of E over an open set U ⊂ M , com-
patible with S, and let I 3 t 7→ ψa(t) ∈ Ex(t), a = 1, . . . , q, be a ∇-parallel

field of bases of the fibres Ex(t) along a C1 curve I 3 t 7→ x(t) ∈ U such that,
for some t0 ∈ I, the basis ψa(t0) of Ex(t0) is compatible with Sx(t0). We thus

have dψba/dt = −Γ bjc(x(t))ẋj(t)ψca(t), ψba(t) being the components of ψa(t) char-

acterized by ψa(t) = ψba(t)ea(x(t)). In other words, the matrix-valued function

t 7→ Ψ(t) = [ψba(t)] satisfies the condition Ψ̇Ψ−1 = Φ, Φ(t) being the matrix-
valued function with the components φba(t) = −Γ bja(x(t))ẋj(t). By Lemma 29.1,
the basis ψa(t) of the fibre at x(t) is compatible with Sx(t) for all t if and only
if Φ(t) ∈ g for all t. This completes the proof. �

Corollary 29.3. For M , E, q and K as in Lemma 29.2 and a Lie subgroup G
of GL(q,K) with the Lie algebra g ⊂ gl(q,K), let ∇ be a G-connection for some
fixed G-structure S in E, and let an open set U ⊂ M be the domain of both a
local trivialization ea for E compatible with S, and a local coordinate system xj

in M . If Rjka
b are the component functions (4.53) of the curvature tensor R∇ of
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∇ corresponding to the ea and xj, then the matrix Rjka
b(x) with the indices a, b,

obtained by fixing j, k and x ∈ U , is an element of g.

In fact, this is obvious from Lemma 29.2 and (4.53) (note that the last two terms
in (4.53) represent a matrix commutator). �

Remark 29.4. The statements about “matrices with the indices a, b ” in Lemma
29.2 and Corollary 29.3 have an invariant (i.e., trivialization-independent) meaning,
which can be exhibited as follows. A fixed G-structure S in a vector bundle E
with q, M , K, G and g as above gives rise to the associated bundle G of Lie
groups and the associated bundle ϑ of Lie algebras, with the fibres Gx and ϑx over
any x ∈M such that Gx consists of all linear isomorphisms Ex → Ex which, acting
on bases of Ex, leave the set Sx invariant, while ϑx ⊂ gl(Ex) is the Lie algebra of
Gx (i.e., its tangent space at the identity). The Gx and ϑx are all (non-canonically)
isomorphic to G and, respectively, g ; in fact, from the definition of a G-structure
it is clear that, in any local trivialization ea for E compatible with S, elements
F of Gx and φ of ϑx are precisely those operators Ex → Ex whose component
matrix [F ba ] or [φba] is an element of G or, respectively, g. Corollary 29.3 thus
states that the curvature R∇ of any G-connection ∇ sends any pair of vectors
v, w ∈ TxM , x ∈M , to an element R∇(v, w) of ϑx (and not just any operator in

gl(Ex) = Hom (Ex, Ex)). Similarly, Lemma 29.2 implies that the difference ∇̃ − ∇
(which, for any two connections ∇ and ∇̃, is a “tensor”; see beginning of §16), in
the case of two G-connections must be a section of the subbundle Hom (TM, ϑ).
This last assertion is an obvious consequence of (4.49).

§30. Spinc-structures and spinor bundles

Throughout this section, G will denote the 7-dimensional Lie subgroup

(30.1) G = {(A,B, z) ∈ U(2)× U(2)× U(1) : detA = detB = z}

of the matrix group U(2) × U(2) × U(1). Note that G is also isomorphic to a
subgroup of U(2)× U(2), via the projection

(30.2) (A,B, z) 7→ (A,B) .

Remark 30.1. The group G given by (30.1) is connected. In fact, let H denote
the subgroup SU(2)× SU(2)× {1} of G (that is, the set of all (A,B, z) ∈ G with
detA = detB = z = 1). Thus, H is connected, since so is SU(2). (To verify the
latter assertion, fix a matrix A ∈ SU(2) and choose an orthonormal basis u, v of
C2 such that u is an eigenvector of A ; then, Au = eipu, Av = e−ipv for some
real p, and relations Atu = eitpu, Atv = e−itpv define a curve [0, 1] 3 t 7→ At
connecting Id to A in SU(2).) Any (A,B, eiθ) ∈ G now can be joined to
(e−iθ/2A, e−iθ/2B, 1) ∈ H by the curve

[0, 1] 3 t 7→ (e−itθ/2A, e−itθ/2B, ei(1−t)θ) ∈ G ,

and hence connectivity of G follows from that of H.

For G defined by (30.1), by a G-bundle over a manifold M we mean a triple
(S+,S−,K) formed by two complex plane bundles S± and a complex line bundle
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K over M which all carry fixed Hermitian fibre metrics (denoted 〈 , 〉) and whose
fibres over each x ∈M are endowed with skew-symmetric bilinear multiplications
S±x × S±x → Kx, both denoted (ψ, φ) 7→ ψφ, which depend C∞-differentiably on
x, and are normalized in the sense that

(30.3) |ψφ| = |ψ|·|φ| whenever ψ , φ are orthogonal.

In terms of S± alone, the above conditions simply state that there is a fixed
isomorphic identification [S+]∧2 = [S−]∧2 between the highest exterior powers of
S+ and S−, with the further identifications

(30.4) K = [S+]∧2 = [S−]∧2 ,

where ψφ equals ψ ∧ φ times a positive scaling function. On the other hand, the
normalization condition (30.3) means that this identification is norm-preserving,
which can always by achieved by a suitable choice of the scaling functions.

Remark 30.2. To verify the normalizing conditions (30.3), it suffices to verify that
|ψ±φ±‖ = 1 for some orthonormal basis ψ+, φ+ of S+

x and some orthonormal
basis ψ−, φ− of S−x , since the transition determinant between two orthonormal
bases is of modulus 1.

The direct sum S+⊕ S−⊕ K then carries a naturally distinguished G-structure
(§29), with G as in (30.1), which associates with each x ∈M the G-orbit of bases
of the fibre at x, consisting of all (ψ+, φ+, ψ−, φ−, ρ) satisfying the conditions

(30.5) ψ±, φ± ∈ S±x , |ψ±| = |φ±| = 1 , 〈ψ±, φ±〉 = 0 , ψ+φ+ = ψ−φ− ,

and ρ = ψ±φ± ∈ Kx.
For any x ∈M , let us now define the determinant mapping

(30.6) det : Hom (S+
x ,S−x )→ C

by requiring that any F ∈ Hom (S+
x ,S−x ) act on the fibre of (30.4) over x via

multiplication by det F . (Equivalently, det F is the matrix determinant of F
computed using bases (ψ±, φ±) of S±x that satisfy (30.5).) Furthermore, we will
call F ∈ Hom (S+

x ,S−x ) a homothety if it is the composite of a norm-preserving
isomorphism with the multiplication by a real scalar, i.e., if

(30.7) |Fφ| = |F | · |φ|

for some real |F | ≥ 0 and all φ ∈ S+
x (where | | also stands for the norm in S±x

corresponding to the Hermitian inner product 〈 , 〉). The set

(30.8) Vx = {F ∈ Hom (S+
x ,S−x ) : F is a homothety and det F ∈ [0,∞)} ,

with det as in (30.6), then is a 4-dimensional real vector space with a Euclidean
inner product (also denoted 〈 , 〉), whose norm | |, characterized by 〈F, F 〉 = |F |2,
coincides with that defined by (30.7), and satisfies the relations

(30.9) |F |2 = det F =
1

2
TraceF ∗F , F ∗F = |F |2 Id
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for all F ∈ Vx. In fact, one easily sees that any fixed pair (ψ+, φ+), (ψ−, φ−) of
bases with (30.5) identifies each of S+

x and S−x with C2 in such a way that Vx
corresponds to the set of all matrix operators

(30.10) Fab =

[
a − b
b a

]
with a, b ∈ C. As operators S+

x → S−x , the Fab then are characterized by

(30.11) Fabψ
+ = aψ− + bφ− , Fabφ

+ = − bψ− + aφ−.

Relations (30.9) for F given by (30.10) are immediate, and so is (30.7) with φ
replaced by a vector in C2. (Equality (30.7) then is nothing else than to multi-
plicativity of the quaternion norm.)

Remark 30.3. Each of the spaces Vx just described is, in addition, naturally ori-
ented. In fact, let B be the set of all bases (ψ+, φ+, ψ−, φ−) of S+

x ⊕ S−x satisfying
(30.5). Assigning to (ψ+, φ+, ψ−, φ−) ∈ B the orthonormal basis

(30.12) F10, Fi0, F01 F0i

of V, with Fab as in (30.11), we now obtain a natural continuous mapping Φ of
B into the set of all bases of V. On the other hand, B is connected, since it is an
orbit of the matrix group G projected into U(2)× U(2) via (30.2) (which itself is
connected according to Remark 30.1). The bases (30.12), forming a connected set
(the image of Φ), thus all represent the same distinguished orientation of Vx.

Consequently, the Vx are the fibres of a real vector bundle V carrying a natural
SO(4)-structure (§29), i.e., a Riemannian fibre metric along with an orientation.

For a G-bundle (S+,S−,K) over a manifold M as defined above, let ∇+ and
∇− be any pair of U(2)-connections (see §29) in S+ and S−, respectively, that
both induce, via (30.4), the same U(1)-connection A in K. (This simply means
that the direct sum ∇+⊕∇−⊕A is a G-connection in S+⊕S−⊕K.) Furthermore,
let ∇ be the SO(4)-connection that ∇+, ∇− and A naturally induce in V. The
assignment

(30.13) (∇+, ∇−) 7→ (A ,∇) ,

thus defined is bijective. This fact (justified by a direct argument given in the next
paragraph) really amounts to the statement that the Lie-group homomorphism
G → U(1) × SO(4), underlying the construction leading from S+ and S− to K
and V, induces an isomorphism of Lie algebras, and so (30.13) is bijective since the
local connection components constitute 1-forms valued in the appropriate matrix
Lie algebra (Lemma 29.2).

To see directly why (30.13) must be bijective, let us fix local trivializations
of S± and K, consisting of C∞ sections ψ+, φ+, ψ−, φ−, ρ of the appropriate
bundles, all defined on an open subset U of M and satisfying (30.5) with ρ(x) =
ψ±(x)φ±(x) ∈ Kx at any x ∈ U . Given ∇± as above, let us fix x ∈ U and v ∈
TxM . Then, let us apply dv to the inner products 〈ψ±, ψ±〉, 〈φ±, φ±〉, 〈ψ±, φ±〉,
and Av to ρ = ψ±φ± (A being the connection induced in K by ∇+ and ∇−).
Since 〈ρ, ρ〉 = 1, the Leibniz rule gives ∇±v ψ± = is±ψ± + z±φ±, ∇±v φ± = i(r −
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s±)φ± − z±φ± for some r, s± ∈ R and z± ∈ C (all depending on x and v),
with Avρ = irρ. Next, for any fixed (a, b) ∈ C2, let Fab be the local section of
V given by (30.11). Using the Leibniz rule (∇vF )ψ = ∇−v (Fψ) − F (∇+

v ψ) for
local C1 sections ψ of S+ and F of V, with ∇ standing for the connection in V
induced by ∇+ and ∇−, we easily verify that ∇vFab = Fcd with (c, d) ∈ C2 given

by c = ia(s+ − s−) − bz+ − bz−, d = ib(r − s+ − s−) + az− + az+, so that the

column vector [Re c, Im c, Re d, Im d]T equals

(30.14)


0 s+− s− −Re(z++ z−) − Im(z++ z−)

s−− s+ 0 Im(z−− z+) Re(z+− z−)
Re(z++ z−) Im(z+− z−) 0 s++ s−− r
Im(z++ z−) Re(z−− z+) r − s+− s− 0




Re a
Im a
Re b
Im b

.
Denoting so(4) the Lie algebra of all skew-symmetric real 4× 4 matrices, we now
easily see that the assignment

R3 × C2 3 (s+, s−, r , z+, z−) 7→ (r, M) ∈ R× so(4) ,

where M is the 4 × 4 matrix in (30.14), is bijective. This proves bijectivity of
(30.13), as required: In fact, the columns of M as above provide coefficients in the
expansion of the ∇v-derivatives of the local orthonormal trivializing sections given
by (30.12) as combinations of the sections (30.12).

Let us now suppose that (M, g) is an oriented Riemannian 4-manifold and
K is a complex line bundle over M with a fixed U(1)-structure (a Hermitian
fibre metric 〈 , 〉). By a spinc-structure for (M, g) associated with (K, 〈 , 〉) we
mean a G-bundle of the form (S+,S−,K) over M , along with a fixed, norm- and
orientation-preserving, real-isomorphic identification

(30.15) (V, 〈 , 〉) = (TM, g) .

(In particular, the bundles V and TM then are assumed isomorphic.) Every vector
v ∈ TxM thus constitutes an operator S+

x → S−x , called the Clifford multiplication
by v and denoted φ 7→ vφ. Hence, by (30.7) and (30.9) with F = v, we have
|vφ| = |v| · |φ| and v∗(vφ) = g(v, v)φ for all x ∈M , v ∈ TxM , and φ ∈ S+

x . Let us
denote S = S+⊕ S− the vector bundle over M with a Hermitian fibre metric 〈 , 〉,
obtained as the orthogonal direct sum of S+ and S−. The Clifford multiplication
by a vector v ∈ TxM then is usually extended to a skew-Hermitian operator

(30.16) v : Sx → Sx , v(S±x ) ⊂ S∓x ,

by declaring its action on S−x to be the negative adjoint − v∗ : S−x → S+
x of

v : S+
x → S−x . The preceding equalities then become the Clifford-algebra relations

(30.17) |vφ| = |v| · |φ| , v(vφ) = − g(v, v)φ ,

valid for all x ∈ M , v, w ∈ TxM and φ ∈ Sx. Consequently (see Remark 3.12),
for any such x, φ and v, w ∈ TxM ,

(30.18) v(wφ) + w(vφ) = − 2 g(v, w)φ ,

since both sides are bilinear and symmetric in v, w, and coincide when v = w.
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Example 30.4. Every almost Hermitian manifold (M, g, α) of real dimension
four, endowed with the canonical orientation (see §9), carries a distinguished spinc-
structure (S+,S−,K). Specifically,we define S− to be the tangent bundle TM
treated as a complex vector bundle, with the Hermitian fibre metric (9.3). For S+

we choose the (real) subbundle of HomR(TM, TM) spanned by Λ+M (see (6.4))
along with the identity section Id : TM → TM . As for K, we let it be the real-
plane subbundle of Λ+M obtained as the orthogonal complement of its real-line
subbundle spanned by α. The real fibre dimension of S+ thus equals four, and K is
a subbundle of S+. Moreover, HomR(TM, TM) becomes a complex vector bundle
if we declare the multiplication by i in each fibre HomR(TxM,TxM), x ∈ M , to
be the operator β 7→ αβ of the composition with α = α(x). The subbundles
S+ and K of HomR(TM, TM) are both invariant under this multiplication by
i, that is, K a complex-line subbundle of the complex-plane bundle S+. (To
see this, note that, by Corollary 9.4, α is a section of Λ+M , and choose a basis
α1, α2, α3 of Λ+

xM , x ∈ M , as in Corollary 6.5, with α1 = α(x); the required
invariance properties now are obvious from (6.12).) The Clifford multiplication by
a vector v ∈ TxM , x ∈M , now is simply the evaluation operator S+

x → S−x given
by β 7→ βv, which is complex-linear as (αβ)v = α(βv). Let 〈 , 〉• be the fibre
metric in HomR(TM, TM) given by 4〈β, γ〉• = Traceβ, γ∗. (Thus, 〈 , 〉• differs
from the inner products we normally use for twice-covariant tensors: By a factor
of two for skew-symmetric tensors, by a factor of four for symmetric ones.) Since
α = −α∗ = −α−1, we thus have 〈αβ, αγ〉• = 〈β, γ〉•, and so (as in Remark 3.18),
〈 , 〉• is the real part of a unique Hermitian complex-sesquilinear inner product,
which we will denote 〈 , 〉′. Note that Id and α2 thus form, at any x ∈M , a 〈 , 〉′-
orthonormal complex basis of S+

x , while α2 is a unit vector spanning the complex
line Kx, and Id spans the complex line K⊥x , i.e., the real span of Id and α,
which also is the 〈 , 〉′-orthogonal complement of Kx.

The Kx-valued skew-symmetric multiplications in S+
x and S−x are given by

(β, γ) 7→ β•γ) and (v, w) 7→ vw = 2 pr (v∧w), where pr : HomR(TM, TM)→ K is
the morphism of orthogonal projection, while the bivector v∧w is treated, with the
aid of g, as a (skew-adjoint) operator TxM → TxM . As for β •γ (where we use •
to distinguish it from the composite βγ of β and γ), it is uniquely characterized by
the requirement of being real-bilinear plus the conditions β •γ = βγ when β ∈ Kx
and γ ∈ K⊥x , β •γ = −βγ when β ∈ K⊥x and γ ∈ Kx, and β •γ = 0 when both β
and γ are in Kx or K⊥x (where we use • to distinguish it from the composite βγ).
Both skew-symmetric multiplications just described are complex-bilinear. Namely,
(αβ)•γ = β•(αγ) = α(β•γ) since both Kx and K⊥x are complex subspaces, that is,
are invariant under β 7→ αβ. Similarly, pr [(αv)∧w] = pr [v∧(αw)] = α[pr (v∧w)]
for v, w ∈ TxM , x ∈ M , as an immediate consequence of (6.33), (9.1), (2.23) and
(2.14).

According to Remark 30.2, to establish the normalization conditions (30.3) for
the skew-symmetric multiplications just described, it suffices to do it for the or-
thonormal bases ψ±, φ± of S±x defined by

(30.19) (ψ+, φ+, ψ−, φ−) = (Id , α2 , e1, , e3) ,

where e1, . . . , e4 is a positive-oriented orthonormal basis of TxM such that

α1/
√

2 , α2/
√

2 , α3/
√

2
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are given by (6.10) (cf. Remark 6.19). We then actually have Id • α2 = α2 and
e1e3 = 2 pr (e1 ∧ e3) = e1 ∧ e3 + e4 ∧ e2 = α2, while 〈α2, α2〉′ = 1. Similarly, the
Clifford product satisfies 〈βv, βv〉• = |v|2〈β, β〉•, as one sees writing β = r+γ with
r ∈ R standing for r times Id, and then using (6.38) to verify that |(r + γ)v|2 =
[r2 + 〈γ, γ〉/2]|v|2, as required.

Finally, the Clifford multiplication F = Fv : S+
x → S−x by any vector v ∈ TxM

has a real nonnegative determinant. Namely, writing vj = g(v, ej), we have, in

bases (30.19), Id v = ae1 +be3, α2v = − be1 + ae3, with a = v1 + iv2, b = v3 + iv4,
i.e., F has the matrix representation (30.10). Hence detF = |a|2 + |b|2, and the
corresponding basis (30.12) is nothing else than e1, . . . , e4.

Now, assigning to any v ∈ TxM , x ∈ M , the Clifford multiplication F = Fv,
we obtain a norm-preserving isomorphism and orientation-preserving vector-bundle
isomorphism TM → V.

Example 30.5. In the case where K = M × C is the trivial product line bundle
over the given oriented Riemannian 4-manifold (M, g) with the standard (con-
stant) fibre metric 〈 , 〉 (that is, 〈ρ, ξ〉 = ρξ for ρ, ξ ∈ Kx = C), a spinc-structure
for (M, g) associated with (K, 〈 , 〉) is called a spin structure for (M, g) (Milnor,
1963; Lawson and Michelsohn, 1989). Instead of (S+,S−,K), such a spin structure
will simply be denoted (S+,S−). The distinguished unit section of K formed by
the constant function 1 reduces the structure group from G given by (30.1) to the
4-dimensional group

(30.20) Spin(4) = SU(2)× SU(2) .

The orthogonal direct sum S = S+ ⊕ S− then carries a natural Spin(4)-structure
(§29). We call S the spinor bundle corresponding to the given spin structure, and
sections of S are referred to as spinor fields on M . The Clifford multiplication by a
vector v ∈ TxM then is, again, extended to a skew-Hermitian operator v : Sx → Sx
as in (30.16), which satisfies the Clifford-algebra relations (30.17) and (30.18). Let

(30.21) A = d

now stand for the standard flat connection in the product line bundle K = M × C.
(Our notation reflects the fact that, for vectors v tangent to M , the covariant
derivative Av then is nothing else than the directional derivative dv acting on
sections of K, which may be treated as functions M → C.) Furthermore, let
∇+ and ∇− be the pair of U(2)-connections in S+ and S−, respectively, that
corresponds under the bijection (30.13) to (A,∇), where A = d and ∇ denotes
the Levi-Civita connection of (M, g) (regarded, in view of (30.15), as a connection
in V). The direct-sum connection

(30.22) ∇ = ∇+ ⊕ ∇−

(also denoted ∇) in the spinor bundle S = S+⊕ S− is called the spinor connection
associated with the spin structure (S+,S−) and the Riemannian metric g on M .

Remark 30.6. Let (S+,S−) be a spin structure over a Riemannian manifold (M, g),
and let S = S+ ⊕ S− be the corresponding spinor bundle. For any point x ∈M ,
the only linear operators Q : Sx → Sx commuting with all Clifford multiplications
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by vectors v ∈ TxM are multiples of Id. In fact, every pair of nonzero spinors
χ± ∈ S±, the plane Span {χ+, χ−} in S is Q-invariant. To see this, pick φ± ∈ S±
with χ±φ± = 1 and set ψ± = χ± ∓ iφ±. Thus, ψ± ∈ S± and ψ±φ± = 1, so
that the basis (ψ+, φ+, ψ−, φ−) of Sx = S+

x ⊕ S−x satisfies (30.5). Let the vectors
v, w ∈ TxM given by v = F10, w = F01 (with (30.12), for that basis), with the
identification (30.15)), act on Sx as in (30.17). The plane Span {χ+, χ−} is the
eigenspace for the eigenvalue i of the composite vw of the Clifford multiplications
by v and w (as one easily verifies using (30.10) with χ± = ψ± ± iφ±). Since
Q commutes with vw, the plane must be Q-invariant. Furthermore, since every
1-dimensional vector subspace of S+

x or S+
x is the intersection of two such planes,

every nonzero spinor in S+
x or S+

x must be an eigenvector of Q, and so Q = λ± on
S±x for some λ± ∈ C (where λ± stands for λ± times the identity). Finally, since
vψ± = ±ψ∓ (by (30.10) with a = 1, b = 0), we have λ+ψ− = λ+vψ+ = vQψ+ =
Qvψ+ = Qψ− = λ−ψ−, and so λ+ = λ−, i.e., Q equals λ+ times the identity, as
required.

Let (M, g) again denote an oriented Riemannian 4-manifold, and let (S+,S−,K)
be a fixed spinc-structure for (M, g). Any given U(1)-connection A in K then
gives rise to the (”twisted”) Dirac operator DA, which assigns to any C1 section ψ
of S+ a continuous section DAψ of S−. To define DA, let us denote ∇ the Levi-
Civita connection of (M, g), and let ∇+ and ∇− be the connections in S+ and
S− corresponding under the bijection (30.13) to A and ∇. (Note that V = TM
by (30.15).) We now set

(30.23)
[
DAψ

]
(x) = Trace {TxM 3 (v, w) 7→ v(∇+

w ψ) ∈ S−x } ,

for any x ∈ M , where Trace stands for the gx-Trace (contraction) of a bilinear
mapping, and v in v(∇+

w ψ) stands for the Clifford multiplication by v. In other
words,

[
DAψ

]
(x) =

∑
j ej(∇+

ejψ), ej being an arbitrary orthonormal basis of TxM .

More generally, we can also extend DA to an operator taking C1 sections of the
direct-sum S = S+ ⊕ S− bundle to continuous sections of S, using an obvious
modification of formula (30.23) (with subscripts ∓ instead of ±, and with v(∇−w ψ)
defined as in (30.16)). Note that DA then sends sections of S± to sections of S∓
(since so do the the Clifford multiplications; see (30.16)).

Example 30.7. In the case where the spinc-structure (S+,S−,K) just discussed is
a spin structure (S+,S−) for (M, g), one defines the (”untwisted”) Dirac operator
D to be DA, given by (30.23), where A = d stands for the standard flat connection
(30.21) in the product line bundle K = M × C. As in the preceding paragraph,
D acts on C1 sections ψ of the spinor bundle S = S+ ⊕ S−, interchanging the
subbundles S+ and S−, and formula (30.23) for A = d can be rewritten as

(30.24) [Dψ] (x) = Trace {TxM 3 (v, w) 7→ v(∇wψ) ∈ Sx} ,

or, more explicitly,

(30.25) [Dψ](x) =
∑
j

ej(∇ejψ) ,

where ∇ now denotes the spinor connection (30.22) in S, and ej is any orthonormal
basis of TxM . Those C1 sections ψ of the spinor bundle S = S+⊕ S− for which
Dψ = 0 are called harmonic spinor fields or, briefly, harmonic spinors.
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The questions of whether and when a spinc-structure or a spin structure exists,
for a given oriented Riemannian 4-manifold (M, g), are settled by the following
classical results.

Theorem 30.8 (Hirzebruch, 1958). Let M be a compact manifold, and let G
be the matrix group defined by (30.1). Every G-bundle (S+,S−,K) over M then
satisfies the condition

(30.26) w2(V) = c1(K) mod 2 .

Conversely, given a complex line bundle K with a U(1)-structure and a real 4-
space bundle V with an SO(4)-structure, both over M , for which (30.26) holds,
there exists a G-bundle (S+,S−,K) over M realizing K and V via (30.4) and
(30.8).

Idea of proof. If one tries to construct S+ and S− for any prescribed K and V,
using induction over increasing dimensions of skeleta of a fixed CW decomposition
of M , condition (30.26) turns out to be the only obstruction. �

Two further important facts are immediate from Theorem 30.8.

Corollary 30.9 (Hirzebruch, 1958). An oriented Riemannian 4-manifold (M, g)
always admits a spinc-structure associated with some (K, 〈 , 〉). Any such line bundle
K must satisfy the relation

(30.27) w2(M) = c1(K) mod 2 .

�

Corollary 30.10 (Milnor, 1963). An oriented Riemannian 4-manifold (M, g) ad-
mits a spin structure if and only if w2(M) = 0. �

Remark 30.11. An oriented Riemannian 4-manifold (M, g) admitting a spin struc-
ture is referred to as a (4-dimensional) spin manifold. According to Corollary 30.10,
being a spin manifold is a topological property of the tangent bundle TM and hence
has nothing to do with the metric g or the orientation chosen (provided that M
is orientable). This can also be seen directly as follows. Suppose that a spin struc-
ture (S+,S−) does exist for some fixed metric g and a fixed orientation in M .
The pair (S−,S+) then becomes a spin structure for the same metric g and the
opposite orientation, if we declare the Clifford multiplication S−x → S+

x by any
v ∈ TxM , x ∈M , to be the negative adjoint − v∗ of the original Clifford multipli-
cation v : S+

x → S−x . In fact, the negative adjoints of the basis (30.12) obtained
as in Remark 30.3 from any (ψ+, φ+, ψ−, φ−) ∈ Bx then form nearly the same
thing as the basis (30.12) corresponding to the analogous basis (ψ−, φ−, ψ+, φ+)
of S+

x ⊕ S−x , the only difference being the sign of F10. That is precisely what
amounts to reversing the orientation in Vx (and TxM).

As for a change of the metric, note that any two Riemannian metrics on M are
congruent via an orientation-preserving vector-bundle isomorphism TM → TM
(see Proposition 30.14 below), and so, to obtain a spin structure for the new metric,
it suffices to replace the identification (30.15) by its composite with F , while leaving
the rest of the structure unchanged.

Remark 30.12. Given a positive-definite Euclidean/Hermitian inner product 〈 , 〉 in
a finite-dimensional real/complex vector space V , let U be the set of all positive
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self-adjoint linear operators F : V → V . Then U is a manifold (namely, an
open subset of the vector space of all self-adjoint operators in V ), and the square
mapping U 3 F 7→ F 2 ∈ U is a C∞ diffeomorphism. More precisely, since F
and F 2 commute, F is uniquely determined by F 2; specifically, F leaves each
eigenspace of F 2 invariant, and the restriction of F to the λ-eigenspace of F 2

equals
√
λ times the identity. Finally, the inverse of the square mapping, denoted

Φ 7→
√
Φ, is of class C∞ as a consequence of the inverse mapping theorem. (In fact,

the differential of the square mapping at any F ∈ U is injective: If it sends some
operator Ḟ to zero, i.e., 0 = (F 2)˙ = ḞF +FḞ , then Ḟ [Ker (F −λ)] ⊂ Ker (F +λ)

for any real λ, and hence Ḟ = 0 since all eigenvalues of F are real and positive.)

Lemma 30.13. For any finite-dimensional real/complex vector space V there ex-
ists a C∞ mapping which assigns to each pair of positive-definite Euclidean/Her-
mitian inner products 〈 , 〉 and 〈 , 〉′ in V a linear isomorphism F : V → V sending
〈 , 〉 onto 〈 , 〉′ and such that detF is real and positive.

Proof. .We have 〈v, w〉′ = 〈Φv,w〉 for all v, w ∈ V with a unique linear operator
Φ : V → V , which, in addition, is self-adjoint relative to 〈 , 〉. Thus, we may set

F =
√
Φ (notations as in Remark 30.12), which completes the proof. �

Applying Lemma 30.13 to individual fibres of a vector bundle, we now obtain

Proposition 30.14. Given two positive-definite Riemannian/Hermitian fibre met-
rics 〈 , 〉 and 〈 , 〉′ in a real/complex vector bundle over a manifold M , there exists
a C∞ vector-bundle isomorphism F : E → E such that detF is real and positive
at each point and F sends 〈 , 〉 onto 〈 , 〉′ in the sense that 〈Fψ, Fφ〉′ = 〈ψ, φ〉′
for all x ∈M and ψ, φ ∈ Ex. �

§31. Harmonic spinors and the Lichnerowicz theorem

Let (S+,S−) be a spin structure for a given oriented Riemannian 4-manifold
(M, g) (Example 30.5), and let ∇ stand both for the Levi-Civita connection in
TM and the spinor connection it induces in the spinor bundle S = S+ ⊕ S−. For
any fixed local coordinate system xj in M , denoting γj the operator of Clifford
multiplication by the coordinate vector field ej , let us set

(31.1) γj = gjkγk .

Thus, γj is the Clifford multiplication by the 1-form dxj (treated, with the aid of
the metric g, as a tangent vector field w, with the components wk = gjk). Also,
letting ∇ stand for the spinor connection in S, we can set

(31.2) ∇j = ∇ej .

In this way, both γj and ∇j are operators acting on spinor fields defined on the
coordinate domain: The former in a pointwise fashion, i.e., as a local section of
the bundle Hom(S,S), the latter as a differential operator. Furthermore, we will
identify any complex-valued function f defined on an open subset U of M with
the local section f · Id of Hom(S,S), i.e., with the operator acting on spinor fields
via multiplication by f . From now on, the composites (written multiplicatively)
and commutators involving the γj , ∇j and various functions f , will all refer to
this operator interpretation.
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Lemma 31.1. Given a spinor bundle S = S+⊕ S− over an oriented Riemannian
4-manifold (M, g) and a local coordinate system xj in M , let γj and ∇j be the
operators (31.1), (31.2) acting on spinor fields defined on the coordinate domain,

and let Γ kjl , g
jk, Rjklm = Rjkl

pgpm, Rjk = Rjlk
l and s = gjkRjk stand, as

usual, for the Christoffel symbols, the components of the reciprocal metric, curvature
tensor, Ricci tensor, and the scalar curvature function of (M, g), with (4.1), (2.8),
(4.25), (4.36) and (4.40). Then we have

(31.3) γjγk + γkγj = − 2 gjk ,

(31.4) Rlmγ
lγm = − s ,

(31.5) Rjklmγ
jγkγlγm = − 2 s ,

as well as the commutation relations

(31.6) [∇j , γk] = −Γ kjl γl ,

(31.7) 4 [∇j ,∇k] = Rjklmγ
lγm .

Finally, the curvature tensor R∇ of the spinor connection ∇ in S satisfies

(31.8) R∇(ej , ek) = − 1

4
Rjklmγ

lγm .

Proof. The left-hand side of (31.3) equals gjlgkm(γlγm + γmγl). Thus, (31.3) is
immediate from γjγk + γkγj = − 2gjk (see (30.18)). Formula (31.4) is in turn
obvious from (4.40) and (31.3) along with symmetry of the Ricci tensor (see (4.38)).

Furthermore, for any given permutation (λ, µ, ν, ρ) of {1, 2, 3, 4}, let Sλµνρ be
the local section of Hom(S,S) with

(31.9) Sλµνρ = Rjλjµjνjργ
j1γj2γj3γj4 .

By (4.32) and (4.33),

(31.10) Sλµνρ = −Sλµρν ,

(31.11) Sλµνρ + Sλνρµ + Sλρµν = 0 .

Moreover,

(31.12) Sλµνρ + Sλνµρ = − 2 s whenever |µ− ν| = 1 .

In fact, by (31.9), the left-hand side of (31.12) equals the sum over the indices
j1, . . . , j4 of the expressions

(31.13) Rjλjµjνjρ φ (γjµγjν + γjνγjµ)ψ ,
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where Φ and Ψ are local sections of Hom(S,S) such that ΦΨ = γkγl, (k, l)
being the ordered pair with (k, l) = (jλ, jρ) when λ < ρ, and (k, l) = (jρ, jλ) when
ρ < λ. Thus, (31.12) is immediate from (31.3), (4.36) and (31.4). Consequently,

(31.14) S1342 = S1234 + 2 s , S1423 = S1234 + 4 s .

To see this, note that (31.10) and (31.12) yield S1342 = −S1324 = S1234 + 2 s
and S1423 = −S1432 = S1342 + 2 s ; combining these relations, we obtain (31.14).
However, by (31.11) and (31.14), S1234 = −S1342 − S1423 = − 2S1234 − 6 s, i.e.,
S1234 = − 2 s. In view of (31.9) with (λ, µ, ν, ρ) = (1, 2, 3, 4), this yields (31.5).

On the other hand, since γk is the Clifford multiplication by dxj (treated as a
vector field), (31.6) is immediate from

(31.15) ∇j dxk = −Γ kjl dxl

and the fact the Levi-Civita connection in TM and the spinor connection in S
together make the Clifford multiplication parallel (which in turn is nothing else
than the definition of the spinor connection).

Finally, to prove (31.7) and (31.8), first note that, by (4.23) with [ej , ek] = 0,
we have

(31.16) R∇(ej , ek) = [∇k,∇j ] .

Furthermore,

(31.17) 4 [[∇j ,∇k], γp] = [Rjklmγ
lγm, γp] = 4gpmRjklmγ

l ,

and so both sides of (31.7) yield equal commutators with each γp. In fact, the
Jacobi identity for the operator commutator gives [[∇j ,∇k], γp] = − [[∇k, γp],∇j ]−
[[γp,∇j ],∇k]. Repeatedly applying (31.6), we see that this equals [Γ pklγ

l,∇j ] −
[Γ pjlγ

l,∇k] = −Γ pkl[∇j , γl] − (∂jΓ
p
kl)γ

l + Γ pjl [∇k, γl] + (∂kΓ
p
jl)γ

l = [∂jΓ
p
kl − ∂kΓ

p
jl +

Γ pjsΓ
s
kl − Γ pksΓ

s
jl]γ

l. Hence, by (4.25), [[∇j ,∇k], γp] = gpmRjklmγ
l. On the other

hand, we have, by (31.3), Rjklmγ
lγmγp = −Rjklmγlγpγm + 2gpmRjklmγ

l and
Rjklmγ

lγpγm = −Rjklmγpγlγm + 2glpRjklmγ
m. We have thus obtained the for-

mula Rjklmγ
lγmγp = Rjklmγ

pγlγm+4gpmRjklmγ
l, which may also be rewritten as

the commutator relation [Rjklmγ
lγm, γp] = 4gpmRjklmγ

l, and so (31.17) follows.
Now (31.7) is an obvious consequence of (31.17) and the fact that any traceless
linear operator Sx → Sx commuting with all Clifford multiplications by vectors
v ∈ TxM must be zero (see Remark 30.6), while both sides of (31.7) do represent
such traceless operators at each x ∈ U : Namely, Trace [Rjklmγ

lγm] = 0 since
Trace [γlγm] is symmetric as a function of j, k, and Rjklm is skew-symmetric; on
the other hand, tracelessness (as well as the pointwise character) of [∇j ,∇k] is clear
from (31.16) and Corollary 29.3.

Finally, (31.8) is obvious from (31.7) and (31.16). This completes the proof. �

For any (local) C2 spinor field ψ, the covariant derivative ∇ψ of ψ is a C1

section of Hom (TM,S) = T ∗M ⊗ S, sending every tangent vector v ∈ TxM to
∇vψ ∈ Sx. Thus, since ∇vψ = vj∇jψ (as v = vj ej) and vj = (dxj)(v), we have

(31.18) ∇ψ = dxj ⊗∇jψ .

Consequently, ∇ψ may be thought of as a differential 1-form of class C1 valued
in S, and so its divergence div (∇ψ) can be defined using (4.41). The resulting
composite operator div ◦ ∇ sends spinor fields to spinor fields. We have



EINSTEIN METRICS IN DIMENSION FOUR 181

Lemma 31.2 (Lichnerowicz, 1963). Under the assumptions of Lemma 31.1, we
have the local expressions

(31.19) div ◦ ∇ = gjk
(
∇j∇k − Γ ljk∇l

)
,

(31.20) D = γj ∇j ,

for div ◦∇ and the Dirac operator D of S, and the coordinate-free Lichnerowicz
formula

(31.21) D2 = − div ◦ ∇ +
1

4
s .

Proof. Relation (31.20) is nothing else than the definition of D (§29). To obtain
(31.19), first note that, treating w = dxj , for a fixed j, as a vector field (with
wk = gkj), we obtain, from (4.42) and (4.12), div (dxj) = ∂kg

jk + Γ kklg
jl. Thus,

since the reciprocal metric is parallel, div (dxj) = − gklΓ jkl. On the other hand,
for any (local) C1 spinor field φ and a C1 vector field w, (4.1) clearly gives
div (w ⊗ φ) = (divw)φ + ∇wφ. Applying this to φ = ∇jψ and w = dxj and
noting that then ∇wφ = gjk∇kφ = gjk∇k∇jψ, we now get (31.19). Finally, (31.20)
gives D2 = (γj∇j)γk∇k = γjγk∇j∇k + γj [∇j , γk]∇k. Thus, by (31.6), D2 =
(γj∇j)γk∇k = γjγk(∇j∇k − Γ ljk∇l). Writing γjγk = 1

2 (γjγk+ γkγj) + 1
2 (γjγk−

γkγj) and using (31.3) along with symmetry of Γ ljk in j, k (see (4.1)), we now

obtain D2 = gjk(∇j∇k − Γ ljk∇l) + 1
2γ

jγk[∇j ,∇k], and hence (31.21) is immediate

from (31.19), (31.7) and (31.5). This completes the proof. �

Theorem 31.3 (Lichnerowicz, 1963). Let M be a compact oriented 4-manifold
which admits a spin structure and has a nonzero signature τ(M). Then M carries
no Riemannian metric g whose scalar curvature s is positive everywhere. More
generally, any metric g on M with s ≥ 0 must have s = 0 identically.

Outline of proof. For any fixed metric g on M , the Atiyah-Singer index theorem,
applied to the Dirac operator D, states that τ(M) = 16 (d+ − d−), where d+

(or d−) is the dimension of the space of all positive (or negative) harmonic spinor
fields, that is, sections ψ of S+ (or, S−) with Dψ = 0. (For details, see, e.g.,
Bourguignon, 1981.) Hence, if τ(M) 6= 0, there exists a nonzero harmonic spinor
field ψ. Let us now denote ( , ) and ‖ ‖ the L2 inner product and the L2 norm.
Using (31.21) and integration by parts (Theorem 24.3), we obtain 0 = 4 (D2ψ,ψ) =
4 ‖∇ψ‖2+(sψ,ψ). If s ≥ 0, this implies that ψ = 0 at all points with s 6= 0 ∇ψ =
0 everywhere. Since ψ 6= 0 somewhere in M , we thus have ψ 6= 0 everywhere,
and so s = 0 identically on M . �

Remark 31.4. Lichnerowicz proved this result for manifolds of any dimension, with
an appropriate definition of a spin structure and with the signature replaced by the
”A-roof genus” Â(M). For spin manifolds of dimension four, Â(M) = τ(M)/16.

§32. Non-Kähler Hermitian Einstein metrics

We have the following partial classification result for those compact oriented Rie-
mannian Einstein four-manifolds (M, g) which satisfy condition (20.2), i.e., whose
self-dual Weyl tensor W+, acting as a self-adjoint bundle morphism W+ : Λ+M →
Λ+M , has fewer than three distinct eigenvalues at every point.
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Theorem 32.1 (Derdziński, 1983). Let (M, g) be a compact oriented Riemannian
Einstein four-manifold with (20.2) and such that W+ is not parallel. The following
assertions then hold for (M, g) replaced, if necessary, by a two-fold Riemannian
covering :

(i) M is diffeomorphic to S2×S2 or to a connected sum CP2# kCP2 with
0 ≤ k ≤ 8.

(ii) W+ 6= 0 everywhere in M and the metric |W+|2/3g on M , conformal
to g, is a Kähler metric for some complex structure on M , which is
compatible with the given orientation.

(iii) With that complex structure, M is biholomorphic to a compact complex
surface obtained by blowing up k points (0 ≤ k ≤ 8) in CP2, or by
blowing up k points (0 ≤ k ≤ 7) in a holomorphic CP1 bundle over
CP1.

(iv) The complex surface M admits a nontrivial holomorphic vector field,
which is a Killing field for both metrics g and |W+|2/3g, and whose
flow commutes with every transformation in the identity component of
the isometry group of (M, g).

Proof. Assertions (ii) and (iv) are immediate from Propositions 20.1 and 22.4 and
the fact that the almost complex structure of any Kähler manifold is integrable.
Now (i) and (iii) follow from the classification theorem for compact complex sur-
faces admitting nontrivial holomorphic vector fields, due to Carrell, Howard and
Kosniowski (1973). �

Remark 32.2. The assumptions of Theorem 32.1 are automatically satisfied by any
compact oriented Riemannian Einstein 4-manifold (M, g) which is not locally sym-
metric and admits an effective isometric action of a Lie group G with dimG ≥ 4,
provided that

(a) We change the orientation of M , if necessary; or,
(b) Neither (M, g) itself nor any two-fold Riemannian covering of (M, g) ad-

mits a parallel bivector field α that makes it into a Kähler manifold whose
canonical orientation coincides with the original orientation. (This last
condition amounts to requiring that α be a self-dual bivector field, cf.
Corollary 9.4.)

In fact, the principal (i.e., highest-dimensional) orbits of the action cannot be of
dimension four; otherwise, (M, g) would be locally homogeneous and hence, by
Jensen’s theorem (Corollary 7.3), locally symmetric. According to the last clause
of Lemma 20.9, condition (20.2) holds for either local orientation. Since (M, g)
is not locally symmetric, W is not parallel (see (5.10)), and so W+ and W−

cannot be both parallel, which establishes case (a). Also, by Berger’s Theorem
26.1, χ(M) > 0 (or else (M, g) would be flat and hence locally symmetric). Thus,
in view of Bochner’s Theorem 24.8(ii), the scalar curvature s of (M, g) is positive;
otherwise, M would admit a continuous vector field without zeros (namely, any
nontrivial Killing field, which exists according to Lemma 17.16). Let us now suppose
that, for the original orientation, W+ is parallel. We cannot have W+ = 0
identically (in fact, as s > 0, Hitchin’s Theorem 33.4, applied to the opposite
orientation, then would imply that (M, g) is locally symmetric). Consequently,
assertion (i)b) of Corollary 9.10 holds, for some bivector field α which satisfies
α2 = − 1 due to the ’(c) implies (a)’ assertion in Lemma 9.3. Now Corollary
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9.10(ii) contradicts the “non-Kähler” assumption in (b) above. In other words, in
case (b), W+ is not parallel, as required.

Remark 32.3. The Page manifold (M, g) consists of the compact complex surface

M = CP2 # CP2 obtained by blowing up a point in CP2, along with a Riemann-
ian Einstein metric (M, g) invariant under an effective action of U(2), which was
found by Page (1978). This (M, g) is the only known example that satisfies the
assumptions of Theorem 32.1 (other than the obvious modifications of the Page
manifold obtained by passing to finite isometric quotients or rescaling the metric).
The fact that the assumptions of Theorem 32.1 hold for the Page manifold is clear
from Remark 32.2(b), since M = CP2 # CP2 is simply connected and admits no
Riemannian Kähler-Einstein metric (Example 36.9; of course, one can also verify
directly that the Page metric is not Kähler). The reason why the Page metric,
whatever it looks like, cannot be locally symmetric is that, as M is simply con-
nected, M then would have to be diffeomorphic to one of the standard examples
(Theorem 14.7), that is, to R4, S4, or CP2, which CP2 # CP2 is not.

According to Theorem 32.1(ii), the Page metric is globally conformal to a Kähler
metric. The latter metric was independently discovered by Calabi (1982). See also
Chave and Valent (1996).
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PART III : FURTHER GLOBAL RESULTS

The following four sections contain brief descriptions of several important results
concerning conditions necessary (or, in some cases, sufficient) for a given compact
4-manifold to admit a Riemannian Einstein metric. Included are Hitchin’s theorems
on the equality case in Thorpe’s inequality and on the structure of compact self-
dual Einstein manifolds whose scalar curvature is positive (Theorems 33.3, 33.4);
LeBrun’s result on nonexistence of Einstein metrics on some complex surfaces,
based on the Seiberg-Witten theory (Corollary 34.2); Gromov’s estimate on the
simplicial volume of compact Einstein 4-manifold (Theorem 35.1); the celebrated
results of Aubin and Yau which establish existence of Kähler-Einstein metrics on
certain complex manifolds via the Calabi conjectures (Theorem 36.6); and, finally,
theorems of Matsushima, Lichnerowicz and Futaki on Kähler-Einstein manifolds
with a positive first Chern class (Theorems 36.8, 36.10).

§33. Hitchin’s theorems on compact Einstein 4-manifolds

Given a compact oriented Riemannian 4-manifold (M, g), let us denote b± the
dimension of the space of all harmonic 2-forms on (M, g) that, viewed as bivector
fields, are sections of Λ±M . According to Hodge’s theorem on the representation
of real cohomology by harmonic forms (see Wells, 1979), we then have

(33.1) b2 = b+ + b− ,

bk = bk(M) being the kth Betti number of M . In fact, for a differential form α
of any degree, being harmonic means that

(33.2) dα = 0 , divα = 0 .

Since div = − ∗ d ∗, it follows that harmonicity of a 2-form α is equivalent to
that of ∗α ; thus, by (6.5), a 2-form α is harmonic if and only if so are its Λ±M
components α+ and α−. Furthermore, the intersection form Q in H2(M,R) is,
in terms of harmonic 2-forms α, β, given by Q(α, β) =

∫
M

[α ∧ β], i.e., Q(α, β) =∫
M

(α, β) volg, where stands ( , ) for the wedge form (cf. formula (37.8) in §37);

since Λ+M and Λ−M are wedge-orthogonal at each point (§37), the sign pattern
of Q consists of b+ pluses and b− minuses. The (co)homological definitions of the
Euler characteristic χ = χ(M) and signature τ = τ(M) of the compact 4-manifold
M now lead to the relations

(33.3) τ = b+ − b− , χ = 2 − 2b1 + b+ + b− .

Lemma 33.1. Suppose that a compact, oriented, 4-dimensional Riemannian man-
ifold (M, g) is anti-self-dual in the sense that W+ = 0 and has a nonnegative
scalar curvature function s, and let b± = b±(M) be as in (33.3).

(i) If s is positive somewhere in M , then b+ = 0 and τ(M) = − b− ≤ 0.
(ii) If s = 0 identically on M , then b+ ∈ {0, 1, 3} and, for global C2

sections of Λ+M , harmonicity is equivalent to being parallel.
(iii) If s = 0 identically and M is simply connected, then b+ = 3, τ(M) =

3− b− and χ(M) = 5 + b−.
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Proof. Let α be a harmonic section of Λ+M . As W+ = 0, (6.15) gives Wα = 0
and so, in view of (33.2), relation (5.17) with n = 4 becomes 3 div (∇α) = sα.
Using integration by parts (Theorem 24.3), we thus obtain

(33.4)

0 =

∫
M

〈α, 2 sα − 6 div (∇α)〉 volg

=

∫
M

αjk
[
sαjk − 3αjk,l

l
]

volg =

∫
M

[
2 s |α|2 + 6 |∇α|2

]
volg .

Since s ≥ 0, this implies ∇α = 0. As the fibre dimension of Λ+M is 3, we thus
obtain b+ ≤ 3. On the other hand, we cannot have b+ = 2, since the bundle
Λ+M is oriented (and so two independent parallel sections would lead to a third
one via a vector-product construction). Therefore, assertion (ii) follows. Also, as
s |α|2 = 0, positivity of s at some x ∈M yields α(x) = 0 and so α must vanish
identically in virtue of being parallel. Along with (33.3), this proves (i).

Finally, suppose that s = 0 and M is simply connected. By Lemma 6.16, the
Levi-Civita connection ∇ in Λ+M is flat, and so Λ+M has a three-dimension-
al space of global parallel sections. Thus, (iii) follows from (ii) and (33.3). This
completes the proof. �

By a K3 surface we mean any compact simply connected 4-manifold M which
admits a Riemannian metric g and a bivector field α such that (M, g, α) is a
Ricci-flat Kähler manifold (as defined in §10). About the existence of K3 surfaces,
see §36.

Remark 33.2. Our definition of a K3 surface, although not standard, is equivalent
to those normally used in the literature. (See also §36.) It is well-known that all
K3 surfaces are mutually diffeomorphic as real 4-manifolds. What we can easily see
is that, for a K3 surface M , the invariants bk = bk(M), b± = b±(M), χ = χ(M)
and τ = τ(M), appearing in (33.3), have specific unique values. Namely, choosing
g, α and an orientation of M so as to make (M, g, α) a Ricci-flat Kähler manifold
for which α is a section of Λ+M , we have, for any K3 surface M ,

(33.5) χ = 24 , τ = − 16 , b1 = b3 = 0 , b2 = 22 , b+ = 3 , b− = 19 .

To see this, note that Proposition 9.8 shows that then W+ = 0, and, as s = 0,
both equalities in (26.4) are in fact equalities. (By (25.6), the orientation chosen
as above also ensures that τ(M) ≤ 0.) Hence [M ] = 0 in (26.3). In other words,
for K3 surfaces, the Thorpe inequality (26.5) becomes an equality. That equality,
i.e., 3τ + 2χ = 0, combined with Lemma 33.1(iii) and (33.1), now yields (33.5).

As we just observed, the equality case in (26.5) occurs for K3 surfaces with Ricci-
flat Kähler metrics (and, obviously, for flat Riemannian 4-manifolds; cf. (25.1) and
(25.6), (25.7)). The following result of Hitchin states that these are, basically, the
only such examples.

Theorem 33.3 (Hitchin, 1974). Let g be an Einstein metric on a compact 4-
manifold M with

(33.6) 3 |τ(M)| = 2χ(M) .

Then either g is flat, or, for some r ∈ {1, 2, 4}, (M, g) admits an r-fold Rie-
mannian covering by a K3 surface with a Ricci-flat Kähler metric.
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Proof. Suppose that (M, g) is not flat. By Berger’s Theorem 26.1, we then have
χ(M) > 0. Thus, in view of (33.6) and (25.7), M is orientable and |τ(M)| > 0.
Also, as χ(M) > 0, Corollary 28.3(i) shows that the first Betti number b1 of
M must be zero. The same is obviously true for any finite Riemannian covering
of (M, g) ; therefore, the Cheeger-Gromoll theorem (Cheeger and Gromoll, 1971)
implies that M has a finite fundamental group. Choosing the orientation of M
so that τ(M) < 0 and combining (26.3) and (26.4) with (33.6), we now see that
W+ = 0 and s = 0 everywhere in M .

Applying Lemma 33.1(ii), (iii) to the Riemannian universal covering (M̃, g) of

(M, g), we see that Λ+M̃ has a 3-dimensional space of parallel sections. One such

nonzero section α, normalized so as to satisfy 〈α, α〉 = 2, thus makes (M̃, g) into

a Ricci-flat Kähler manifold (M̃, g, α). Hence M̃ is a K3 surface.
From (33.6) and (33.3) with b1 = 0 and τ = τ(M) < 0, we now obtain

(33.7) b− = 5 b+ + 4 , χ = 6 b+ + 6 , τ = − 4 (b+ + 1) .

On the other hand, by Lemma 33.1(ii), b+ = b+(M) ∈ {0, 1, 3}. Since χ(M̃) =
r χ(M), where r is the order of π1M , (33.7) shows that the possible cases (b+

equal to 0, 1 or 3) lead to our assertion, with r ∈ {1, 2, 4}. This completes the
proof. �

Theorem 33.4 (Hitchin, 1981; Friedrich and Kurke, 1982). Let g be a self-dual
Einstein metric on a compact oriented 4-manifold M .

(a) If g has a positive scalar curvature, then (M, g) is isometric to the sphere
S4, or the complex projective plane CP2 with a multiple of the standard
metric.

(b) If g is Ricci-flat, then (M, g) satisfies the assertion of Theorem 33.3.

For a proof, see, e.g., Hitchin (1981) or subchapter 13 C in Besse (1987). �

§34. The Seiberg-Witten equations and LeBrun’s theorem

Let (S+,S−,K) be a fixed spinc-structure (§30) for an oriented Riemannian 4-
manifold (M, g). A simple alternative description of the bundles Λ±M of self-dual
and anti-self-dual bivectors in M (§6) now can be obtained as follows. For any
x ∈M , let us set

(34.1) L±x = {B ∈ Hom (S∓x ,S∓x ) : B∗ = −B , TraceB = 0} .

Diagonalizing such B, we see that L±x is a 3-dimensional real vector space con-
tained in the space V∓x defined as in (30.7) for the G-bundle (S∓,S∓, [S∓]∧2)
(rather than (S+,S−,K)). Thus, L±x carries a Euclidean norm | | satisfying (30.7)
and (30.9) for all F ∈ L±x and φ ∈ S∓x . The actions of L+

x and L−x on Vx by, re-
spectively, right and left multiplications (that is, compositions) now clearly consist
of skew-adjoint operators (since, by (30.9), 2〈F, F ′〉 = Trace F ∗F ′ for F, F ′ ∈ Vx).
As the metric g provides an identification so(Vx) = [TM ]∧2 between skew-adjoint
operators and bivectors, we thus obtain linear operators

(34.2) L±x → so(Vx) = [TM ]∧2 = Λ+
xM ⊕ Λ−xM .
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These operators are isomorphic identifications

(34.3) L±x = Λ±xM ,

as one easily sees using Lemma 6.2 and the matrix representation of L±x and Vx
based on any fixed pair of bases with (30.5).

We can now describe a natural quadratic function S+
x 3 φ 7→ φφ ∈ L+

x = Λ+
xM

by letting φφ be |φ|2i times the traceless part of the orthogonal projection operator
S+
x → Cφ (if φ 6= 0) and and setting φφ = 0 if φ = 0. In other words,

(34.4) φφ = i

[
〈 · , φ〉φ − 1

2
|φ|2 · Id

]
,

and so this is the quadratic function associated with the sesquilinear mapping
(φ, ψ) 7→ φψ given by φψ = i

[
〈 · , ψ〉φ − 1

2 〈φ, ψ〉 · Id
]
.

Finally, using the notations of (30.23) and (34.4), we can write the Seiberg-Witten
equations

(34.5) DAψ = 0 , ψψ = FA+ .

Thus, (34.5) is a system of partial differential equations imposed on a pair (ψ,A)
consisting of a C∞ section ψ of S+ and a U(1)-connection A in K. Here FA

denotes − i times the curvature RA of A, which makes FA a (real-valued) 2-
form on M , and FA+ stands for the self-dual part of FA, i.e., its Λ+M component
relative to the decomposition [TM ]∧2 = Λ+M ⊕ Λ−M . (See (6.4); as usual, we use
the metric g to identify 2-forms and bivectors.)

By a gauge transformation of the given spinc-structure (S+,S−,K) over a 4-
manifold (M, g) we mean a pair of C∞ vector-bundle isomorphisms Φ± : S± →
S± which preserve the inner product 〈 , 〉 in each fibre and, in addition, have
the property that detΦ+ = detΦ− at every point of M . (Clearly, the gauge
transformations are nothing else than arbitrary C∞ sections of a bundle of Lie
groups over M with fibres isomorphic to the group G given by (30.1).) On the
other hand, any C∞ vector-bundle isomorphism Φ : E → E in a vector bundle E
naturally acts on connections ∇ in E by transforming ∇ into a new connection
∇̃ with ∇̃vψ = Φ

[
∇v(Φ−1ψ)

]
for tangent vectors v and local C1 sections ψ and,

if Φ preserves some given G-structure in E , it will transform each G-connection
into a G-connection. By letting a gauge transformation (Φ+, Φ−) in our spinc-
structure (S+,S−,K) act on a pair ∇± of U(2)-connections in S± and using the
the bijection (30.13), where ∇ now denotes the Levi-Civita connection of (M, g),
we thus make (Φ+, Φ−) act on the U(1)-connection A in K, transforming it into
another U(1)-connection. At the same time, Φ acts in an obvious way on C∞

sections ψ of S+. Applied to a solution (ψ,A) of (34.5), our gauge transformation
will thus transform it into another such pair which, for obvious reasons of naturality,
will again be a solution to (34.5). Consequently, solutions to (34.5) are plentiful,
forming an infinite-dimensional space, and rather than the solution space itself, it
is much more interesting to study the moduli space of solutions to (34.5), that is,
the set of their equivalence classes modulo the relation of being congruent under a
gauge transformation.

It turns out that in this case, for generic metrics (where genericity can always
be achieved by a small perturbation of the original metric), the moduli space is a
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finite set and each of its elements has a well defined “sign” ± 1. The algebraic sum
of these signs is called the Seiberg-Witten invariant of M and the spinc-structure
(S+,S−,K), and denoted nc(M). (See Witten, 1994.)

For a compact oriented 4-manifold M , let us set

(34.6) [[M ]] = 2χ(M) + 3 τ(M) .

For instance, if M is obtained by blowing up k ≥ 0 points in a compact complex
surface N , we have

(34.7) [[M ]] = [[N ]] − k .

Theorem 34.1 (LeBrun, 1996). Let M be a compact complex surface obtained
by blowing up k ≥ 1 points in a minimal complex algebraic surface N of general
type. Every Riemannian metric g on M then satisfies the estimates

(34.8) ‖s‖2 > 32π2 [[N ]] ,

(34.9) 24π2 k < 3 ‖E‖2 + 16π2 [[N ]] ,

where ‖s‖ and ‖E‖ stand for the L2 norms of the scalar curvature function
s and, respectively, the traceless Ricci tensor E, of the Riemannian 4-manifold
(M, g). In particular, if M carries an Einstein metric, we have

(34.10) 3 k < 2 [[N ]] .

Idea of proof. One can always find a bivector field α on M such that (M̃, g, α)
is an almost Hermitian manifold and the Seiberg-Witten invariant nc(M) of M
and the spinc-structure (S+,S−,K) associated with α as in Example 30.4 satisfies
nc(M) 6= 0. The assertion then follows from a Weitzenböck-formula argument. �

Corollary 34.2 (LeBrun, 1996). Let M be a compact complex surface obtained
by blowing up k ≥ 1 points in a minimal complex algebraic surface N of general
type. If

(34.11) k ≥ 2

3
[[N ]] ,

then M does not admit a Riemannian Einstein metric.

In fact, set [M ]+ = 2χ(M) + 3τ(M). For an Einstein metric on M , (34.15) and
(34.1) yield c21(N) = [N ]+ = [M ]+ + k < (32π2)−1 ‖s‖2, so by (25.8), c21(N) <
(32π2)−1 ‖s‖2 ≤ 3[M ]+ = 3c21(N)− 3k, as required. �

Note that, in view of (34.6) and (25.9), relation (34.11) can also be rewritten as

(34.12) k ≥ 2

3
c21(N) .
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§35. Gromov’s estimate for Einstein 4-manifolds

The simplicial volume of a compact orientable manifold M (Gromov, 1981) is
the infimum of all sums

∑
r |ar| over all combinations σ =

∑
r arσr of n-dimen-

sional singular simplices in M , with ar ∈ R and n = dimM , such that σ is a
cycle (that is, ∂σ = 0) and its homology class in Hn(M,R) is the fundamental
class of M (for whichever fixed orientation). We have

Theorem 35.1 (Gromov, 1981). The simplicial volume ‖M‖ of every compact
4-manifold M carrying an Einstein metric satisfies the inequality

(35.1) ‖M‖ ≤ 2592π2 χ(M) .

For a proof, see Gromov (1981). �

Gromov’s Theorem 35.1 leads to examples of compact 4-manifolds M admitting
no Einstein metrics, for which the nonexistence of such a metric does not follow from
the Thorpe inequality (26.5) combined with Hitchin’s Theorem 33.3. Specifically,
such M can be constructed by doubling the manifold with boundary obtained by
removing a suitable number of disjoint balls from the product Σ×Σ for a suitable
closed surface Σ. For details, see Gromov (1981) or Besse (1987).

§36. Kähler-Einstein metrics on compact complex surfaces

Let us recall that a differential 2-form β on a manifold M is called closed
(or, exact) if β is C∞-differentiable and dβ = 0 (or, respectively, β = dϑ for
some C∞-differentiable 1-form ϑ on M). The second de Rham cohomology space
H2(M,R) of M is the quotient real vector space Z2/B2, where Z2 consists of all
closed 2-forms, and B2 consists of all exact 2-forms on M . Every closed 2-form
β thus gives rise to the element

(36.1) [β] ∈ H2(M,R)

represented by β, which is called the cohomology class of β.
Suppose now that M is a complex manifold (see §23), and g is a Kähler metric

on M (defined as in Remark 23.4). The Kähler form α of g then is the differential
2-form corresponding to g under the isomorphism (23.11); in other words, α is the
complex structure tensor J viewed, with the aid of g, as a twice-covariant tensor
field. The metric g gives rise to two important cohomology classes. The first is
ω = [α] ∈ H2(M,R), the class of α (sometimes termed the Kähler class of g). The
other, denoted c1(M) or simply c1, and called the first Chern class of the complex
manifold M , is given by

(36.2) c1 =
1

2π
[ρ] ∈ H2(M,R) ,

where ρ is the Ricci form of g, defined by (23.13). Although ρ itself obviously
depends on g, the Chern class c1 does not, i.e., it is the same for all Kähler metrics
on the given complex manifold M . To see this, note that we have relation (23.24):

ρ = − i ∂∂ log |det g| .
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Even though det g is defined (as a function) only locally, the ratio f = det g̃/det g
of two such expressions, for two Kähler metrics g and g̃, is a well-defined C∞

function on M , and so the corresponding Ricci forms ρ and ρ̃ differ by an exact
2-form; in fact,

(36.3) ρ̃ = ρ − i ∂∂ log |f | ,

while ∂∂ = d ∂, as d = ∂ + ∂ and ∂∂ = 0 (cf. §23).

The first Chern class can be defined in a much more general situation (e.g., for all
complex vector bundles over arbitrary real manifolds). However, for our purposes
it suffices to introduce it just in this particular context, that is, for (the tangent
bundles of) complex manifolds admitting Kähler metrics.

Let us now suppose that, in addition, our complex manifold M is compact. One
then says that a cohomology class ω ∈ H2(M,R) is positive (ω > 0), or negative
(ω < 0), if ω can be represented by a closed 2-form β which is anti-Hermitian
and such that the corresponding Hermitian tensor field h is positive definite (or,
negative definite) at every point of M .

Note that, according to Lemma 23.7, a positive definite Hermitian tensor field h
corresponding (under (23.11)) to a closed 2-form is nothing else than a Riemannian
Kähler metric g on the complex manifold M . In other words, M admits a Rie-
mannian Kähler metric if and only if there exists a cohomology class ω ∈ H2(M,R)
with ω > 0.

Lemma 36.1. Given a compact complex manifold M admitting a Kähler-Einstein
metric g, let s and c1 denote the constant scalar curvature of g and the first
Chern class of M .

(a) If g is Ricci-flat, we have c1 = 0.
(b) If s < 0, then c1 < 0.
(c) If s > 0, then c1 > 0.

This is obvious from (36.2) with (23.27) and (23.28). �

The assertion of Lemma 36.1 is, as stated, a purely formal (and trivial) con-
sequence of the definitions. It is the next result that adds some real flesh to it
showing, in effect, that the binary relation < in H2(M,R) associated with pos-
itivity/negativity of cohomology classes ω ∈ H2(M,R) (so that ω < ω′ stands
for ω′ − ω > 0) is a strict partial ordering: For instance, it shows that the three
cases of Lemma 36.1 are mutually exclusive, i.e., no two of them can simultaneously
occur in any given compact complex manifold.

Proposition 36.2. Let there be given a compact complex manifold M and a co-
homology class ω ∈ H2(M,R).

(i) If ω > 0 or ω < 0, then ω 6= 0.
(ii) We cannot simultaneously have ω > 0 and ω < 0.

Proof. In (i), changing the sign of ω, if necessary, we may assume that ω > 0. A
closed anti-Hermitian 2-form α of class C∞ with [α] = ω now may be chosen so
as to be the Kähler form of a Kähler metric g on M . For any given point x ∈M ,
Lemma 9.3 now implies equality (9.5) with α = α(x), where n denotes the real
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dimension of M and e1, . . . , en is a suitable positive-oriented g(x)-orthonormal
basis of TxM . The mth exterior power of α, with m = n/2, is obviously given by

(36.4) α∧m = m! e1 ∧ e2 ∧ . . . ∧ e2m−1 ∧ e2m = m!vol ,

vol being the volume form of the canonically oriented manifold (M, g) (see Remark
24.1). Hence its oriented integral is positive:

(36.5)

∫
M

α∧m > 0 .

Consequently, ω = [α] 6= 0 in H2(M,R). In fact, if we had α = dζ, it would
clearly follow that α∧m = d[ζ ∧ α∧(m−1)] and, from Stokes’s formula (24.11), we
would have

∫
M
α∧m = 0, contradicting (36.5). Now (i) follows. As for (ii), note

that, if we had ω = [α] = − [β] for anti-Hermitian forms α, β corresponding to
positive definite Hermitian tensors g and h, then α + β would be exact, even
though it corresponds to the positive definite tensor g + h, contrary to (i). This
completes the proof. �

Corollary 36.3. For any compact complex manifold M admitting a Kähler met-
ric, we have

(36.6) H2(M,R) 6= {0} .

This is clear since, by Lemma 36.2(i), the corresponding Kähler form α then
has [α] 6= 0. �

Corollary 36.4. There exist compact complex manifolds M of any even real di-
mension n ≥ 4 which do not admit a Kähler metric.

Proof. Examples are provided by the Hopf manifolds obtained as quotients of U =
Cn/2 r {0} under the action of Z consisting of the transformations x 7→ akx,
k ∈ Z, with a fixed real number a > 1. Since the action is holomorphic, the obvious
complex-manifold structure of U descends to the quotient, here denoted M . On
the other hand, U can be identified with N = R × Sn−1 via the diffeomorphism
N 3 (t, u) 7→ etu ∈ U , which makes the above Z action appear as (t, u) 7→
(t+ ck, u), k ∈ Z, with c = log a > 0. Hence the quotient M is C∞-diffeomorphic
to S1 × Sn−1. Thus (e.g., using Künneth’s formula) we obtain H2(M,R) = {0}
and, in view of Corollary 36.3, M admits no Kähler metric. �

Remark 36.5. The existence of a Kähler metric on a complex manifold M is, how-
ever, guaranteed whenever M is a complex submanifold of CPm, in any complex
dimension m; for instance, the submanifold metric of M induced by the Fubini-
Study metric of CPm (Example 10.6) is automatically Kähler.

Lemma 36.1 also rises the question of whether the conditions on the first Chern
class c1, necessary for the existence of a Kähler-Einstein metric on the given com-
pact complex manifold M (assumed to admit a Kähler metric) are also sufficient.
This is well-known not to be the case when c1 > 0; see Theorem 36.8 below. The
proposition that the answer is ’yes’ when c1 < 0 or c1 = 0, is known as Calabi’s
conjecture (Calabi, 1954).

Calabi’s conjecture was proved by Aubin (case c1 < 0) and Yau (cases c1 < 0
and c1 = 0). The uniqueness assertions below were already established by Calabi
(1954).
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Theorem 36.6 (Aubin, 1976; Yau, 1977). Let M be a compact complex manifold
admitting a Kähler metric, and let c1 be the first Chern class of M .

(i) If c1 < 0, then M also admits a Kähler-Einstein metric g, and such a
metric is unique up to a constant factor.

(ii) If c1 = 0, then every positive cohomology class ω ∈ H2(M,R) contains a
unique Kähler form representing a Ricci-flat Kähler metric.

A proof of Theorem 36.6 requires analysis techniques that are far beyond the
scope of this article. The reader is referred to one of many existing detailed pre-
sentations, such as Séminaire Palaiseau (1978). �

As already mentioned in §33, by a K3 surface we mean any compact simply
connected 4-manifold M which admits a Riemannian metric g and a bivector field
α such that (M̃, g, α) is a Ricci-flat Kähler manifold. (This definition, although
not standard, is equivalent to those normally used in the literature.) In view of

(36.1), the (real) first Chern class c1(M) of any K3 surface (M̃, g, α) must be
zero. On the other hand, Yau’s Theorem 36.6(ii) guarantees that every simply
connected compact complex surface M admitting a Kähler metric and satisfying
the condition c1(M) = 0 is a K3 surface. An example of such a complex surface
M is the Kummer surface M ⊂ CP3, given by the equation x2 + y2 + z2 = 0 in
homogenous coordinates x, y, z. (Cf. Remark 36.5.) Thus, we have

Corollary 36.7. In every real dimension n ≥ 4 there exists a compact Ricci-flat
Riemannian manifold which is not flat.

In fact, such examples are provided by products of K3 surfaces and tori, involv-
ing at least one K3-surface factor, with product metrics obtained from Ricci-flat
Kähler metrics on K3 surfaces and flat metrics on tori. Note that such manifolds
M do not admit a flat metric since the K3 surfaces are simply connected, and so
the universal covering space of M cannot be diffeomorphic to Rn. �

The analogue of the Calabi conjecture in the case where c1 > 0 is false. For
such manifolds, there exist further obstructions to the existence of a Kähler-Einstein
metric. One such obstruction stems from results of Lichnerowicz (1957) and Mat-
sushima (1957), the other from an invariant discovered by Futaki (1983). For a
detailed exposition of the subject, see Bourguignon (1997); all we can present here
is a brief outline of just a few facts. First, we have

Theorem 36.8 (Lichnerowicz, 1957, and Matsushima, 1957)). Given a compact
Kähler manifold (M, g, α), let h = hol(M) be the vector space of all holomorphic
vector fields on M , and let g = isom(M, g) be the Lie algebra of all Killing fields
on (M, g). If the scalar curvature s of g is constant, we have

(36.7) h = g + α g ,

that is, every holomorphic vector field u can be written as u = v + αw for some
Killing fields v and w. �

Since the complex Lie algebra hol(M) of all holomorphic vector fields on M
depends only on the complex-manifold structure of M , Theorem 36.8 provides a
necessary condition for a compact complex manifold M to admit a Kähler-Einstein
metric: Namely, h = hol(M) then is Lie-algebra isomorphic to the complexifi-
cation of isom(M, g) for some Kähler metric g and, consequently, h must be
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reductive (that is, be the direct sum of its center and its commutator ideal [h, h]).
As a consequence, we obtain

Example 36.9. The compact complex manifold M = CP2 # kCP2 obtained by
blowing up k points in CP2, where 1 ≤ k ≤ 8, admits a Kähler metric and
satisfies the condition c1(M) > 0, but does not admit a Kähler-Einstein metric.
(The reason is that hol(M) is not reductive.)

Let g be a Kähler metric on a compact complex manifold M and, again, let
h = hol(M). The Futaki invariant of M and g (Futaki, 1983) is the real-linear
function F : h→ R given by

(36.8) F(w) =

∫
M

dwF volg ,

where F : M → R is the C∞ function uniquely characterized by the Hodge
decompostion

(36.9) ρ = β + i ∂∂F ,

of the Ricci form ρ (which is a closed anti-Hermitian 2-form) into a harmonic
anti-Hermitian 2-form β and an exact anti-Hermitian 2-form; the latter then nec-
essarily equals i ∂∂F for some F , unique up to an additive constant. To make F
completely unique, one requires in addition that

∫
M
F volg = 0.

Theorem 36.10 (Futaki, 1983). Let M be a compact complex manifold which
admits a Kähler-Einstein metric and satisfies c1(M) > 0, and let F denote the
Futaki invariant of any Kähler metric on M whose Kähler form belongs to the
cohomology class c1(M). Then F = 0. �

Theorem 36.10 can be used to establish nonexistence of Kähler-Einstein met-
rics on some compact complex manifolds M that admit Kähler metrics and have
c1(M) > 0, and for which such a conclusion cannot be obtained from Theorem 36.8.
See Futaki (1983), Besse (1987) or Bourguignon (1997).
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PART IV : THE INDEFINITE-METRIC CASE

The next thirteen sections deal with local properties of indefinite Einstein metrics
in dimension four. We begin with a quick presentation of Petrov’s classification of
curvature types for such metrics (sections 37 through 40 and, later in the text, §42
and §47). The techniques developed there then are used to present a classification
of all possible local-isometry types of locally symmetric Einstein 4-manifolds. The
classification theorem itself is due to Cartan (1926) in the Riemannian case, Petrov
(1969) for Lorentzian metrics, and Cahen and Parker (1980) for the neutral sign
pattern − − + + ; in our presentation, it takes the form of Theorems 41.4, 41.5
and 41.6, stated in §41 and proved in sections 43 through 46.

In contrast with the Riemannian case, there exists 4-dimensional indefinite Ein-
stein metrics essentially different from the “obvious” examples which consist of
spaces of constant curvature, spaces of constant holomorphic sectional curvature,
and products of two surface metrics with equal constant Gaussian curvatures. Those
“exotic” metrics form a particularly large collection of examples in the case of the
neutral sign pattern − − + + (see Theorem 41.6).

The last two sections contain brief comments on the rôle of Einstein metrics
in general relativity and, respectively, examples of Ricci-flat pseudo-Riemannian
4-manifolds with the neutral sign pattern − − + + which are curvature-homoge-
neous, but not locally homogeneous.

§37. Geometry of bivectors

Throughout this section, let us assume that T is a four-dimensional real vector
space carrying a fixed pseudo-Euclidean inner product (that is, a nondegenerate
symmetric bilinear form, cf. §3), which we will denote 〈 , 〉. The possible sign
patterns of 〈 , 〉 are, up to an overall sign change,

(37.1) + + + + , − − + + , and − + + + .

When dealing with the exterior product of two vectors a, b ∈ T , we will often skip
the wedge symbol and write

(37.2) ab = a ∧ b ∈ T ∧2 .

The inner product 〈 , 〉 in T induces a pseudo-Euclidean inner product (also
denoted 〈 , 〉) in the six-dimensional bivector space T ∧2 characterized by

(37.3) 〈ab, cd〉 = 〈a, c〉〈b, d〉 − 〈b, c〉〈a, d〉

for a, b, c, d ∈ T . (This is well-defined on T ∧2 due to bilinearity and skew-symme-
try in both pairs a, b and c, d.) Setting

(37.4) εa = 〈a, a〉

for vectors a ∈ T , we thus have

(37.5) 〈ab, ab〉 = εaεb whenever a, b ∈ T and 〈a, b〉 = 0 .

Note that 〈 , 〉 in T ∧2 is actually nondegenerate; in fact,

(37.6) ab , ac , ad , cd , db , bc is an 〈 , 〉-orthonormal basis of T ∧2 ,
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with the sign pattern

(37.7) + + + + + + , − − − + + + , and + − − + − − ,

whenever a, b, c, d is an orthonormal basis of T having, respectively, the first,
second or third sign pattern in (37.1).

If, in addition, T is oriented, the inner product 〈 , 〉 in T gives rise to a dis-
tinguished volume element vol ∈ T ∧4, which is the nonzero 4-vector given by
vol = ab ∧ cd (i.e., a ∧ b ∧ c ∧ d) for any positive-oriented orthonormal basis
a, b, c, d of T . (See (3.34).) The exterior multiplication of bivectors (§3) now gives
rise to the wedge form ( , ), which is a real-valued symmetric bilinear form in the
bivector space T ∧2, characterized by

(37.8) α ∧ β = (α, β) · vol

for any α, β ∈ T ∧2.
The pseudo-Euclidean inner product 〈 , 〉 in the bivector space T ∧2 allows us, as

usual (see (3.28)) to identify linear operators F : T ∧2 → T ∧2 with bilinear forms
A on T ∧2, via the relation A(α, β) = 〈Fα, β〉 for α, β ∈ T ∧2. For the wedge
form A = ( , ), the corresponding operator T ∧2 → T ∧2 is denoted ∗ and called
the Hodge star acting on bivectors. Explicitly, (α, β) = 〈∗α, β 〉, i.e.,

(37.9) α ∧ β = 〈∗α, β 〉 · vol

for all α, β ∈ T ∧2. Since the wedge form ( , ) symmetric, we have

(37.10) 〈∗α, β〉 = 〈α, ∗β〉

for α, β ∈ T ∧2, that is, ∗ : T ∧2 → T ∧2 is self-adjoint relative to the inner product
(2.17).

Proposition 37.1. Let a, b ∈ T be two linearly independent vectors a 4-dimen-
sional oriented real vector space T with a pseudo-Euclidean inner product 〈 , 〉.

(i) If 〈a, a〉 = 〈a, b〉 = 〈b, b〉 = 0, then

(37.11) ∗(ab) = ± (ab) ,

the sign ± being + or − depending on whether a basis a, b, c, d of
T , formed by a, b and any vectors c, d ∈ T with 〈c, c〉 = 〈c, d〉 = 0,
〈a, c〉 = 〈b, d〉 = 1, 〈a, d〉 = 〈b, c〉 = 0, is positive or negative oriented.
Note that such c, d exist by Lemma 3.14.

(ii) If 〈a, a〉 = εa ∈ {1,− 1} and 〈a, b〉 = 〈b, b〉 = 0, then

(37.12) ∗(ab) = ± εc cb ,

where c ∈ T is any vector with 〈c, c〉 = εc ∈ {1,− 1} and 〈a, c〉 =
〈b, c〉 = 0, and the sign ± is + or − depending on whether a basis
a, b, c, d of T , consisting of a, b, c and any vector d ∈ T with 〈c, d〉 > 0
is positive or negative oriented. Such c, d must exist by Lemma 3.15.

(iii) If a, b are orthonormal, that is, 〈a, a〉 = 〈b, b〉 = 1 and 〈a, b〉 = 0, then

(37.13) ∗(ab) = εcεd cd ,

with εc, εd as in (37.4), for any vectors c, d ∈ T such that a, b, c, d is a
positive-oriented orthonormal basis of T .
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Proof. To verify (37.13) for any given a positive-oriented orthonormal basis a, b, c, d
of T , it suffices to take the 〈 , 〉-inner products of both sides with all elements of
(37.6) and use (37.3), (37.9) and (37.5). This proves (iii). Let us now consider
any three vectors a, b, c having the inner-product properties listed in (ii), that is,
〈a, a〉 = εa, εa, , εc ∈ {1,− 1}, 〈c, c〉 = εc and 〈a, b〉 = 〈b, b〉 = 〈a, c〉 = 〈b, c〉 =
0. Such a, b, c must be linearly independent, since a, c are orthonormal and b
is orthogonal to them, while b 6= 0 (as a, b are assumed linearly independent).
Consequently, Span {a, b, c} = b⊥, and the set Ω = T r b⊥ consists precisely of
all d ∈ T such that a, b, c, d is a basis of T . Its subset Ω+ = {d ∈ T : 〈c, d〉 6= 0}
is convex. We may assume in (ii) that, in addition, d is null and orthogonal
to a, b, and 〈c, d〉 = 1 (see Lemma 3.15(b)); convexity of Ω+ guarantees that
this modification of d will not affect the orientation represented by a, b, c, d (cf.
Remark 3.6). Similarly, in (i), we may require, in addition, that 〈d, d〉 = 0, since
that will be the case if we replace d with d − 〈d, d〉b/2 and leave a, b, c unchanged.

To establish (i) and (ii), let us now define ā, b̄, c̄, d̄ ∈ T by either
√

2 ā = a − c,√
2 b̄ = b − d,

√
2 c̄ = a + c,

√
2 d̄ = b + d (in (i)), or ā = a,

√
2 b̄ = d + b,

c̄ = c,
√

2 d̄ = d − b (in (ii)). Thus, ā, b̄, c̄, d̄ is an orthonormal basis of T with
the sign pattern − − + + (in (i)) or (εa, +1, εc, +1) (in (ii)) and, in both cases,
representing the same orientation as a, b, c, d (as one sees evaluating ā∧ b̄∧ c̄∧ d̄).
Let us now reverse the orientation of T , if necessary, so as to make the basis
a, b, c, d positive oriented; this will of course change the sign of ∗ as well. We
have

√
2 a = ā + c̄,

√
2 b = b̄ + d̄ (in (i)) and

√
2 b = b̄ − d̄ (in (ii)), and so,

applying (iii) to the new orthonormal basis ā, b̄, c̄, d̄, we obtain, in (i), 2 ∗ (ab) =
∗(āb̄) + ∗(ād̄) + ∗(c̄b̄) + ∗(c̄d̄) = c̄d̄ − b̄c̄ − d̄ā + āb̄ = (ā + c̄)(b̄ + d̄) = 2ab, so that

∗(ab) = ab, while, in (ii),
√

2 ∗(ab) = ∗(āb̄)− ∗(ād̄) = εc c̄(b̄− d̄) =
√

2 εc cb , which
gives ∗(ab) = εc cb. This completes the proof. �

The pseudo-Euclidean inner product 〈 , 〉 in our real 4-space T leads to natural
isomorphic identifications

(37.14) T ∧2 = Lskew(T , T ;R) ,

(37.15) T ∧2 = so(T ) ,

of the bivector space T ∧2, first with the space of all skew-symmetric bilinear forms
T × T → R and then with the Lie algebra of all skew-adjoint operators T → T
(notation as in §3). Specifically, (37.14) and (37.15) identify every bivector α ∈ T ∧2

with the bilinear form (b, c) 7→ α(b, c) and the operator b 7→ αb characterized by

(37.16) α(b, c) = 〈α, bc〉

and

(37.17) 〈αb, c〉 = 〈α, bc〉

for all c ∈ T (cf. also (2.20); here bc = b ∧ c, as in (37.2)). Note that (37.17)
describes precisely the operator corresponding to the form (37.16) via the pseu-
do-Euclidean inner product 〈 , 〉 in T (cf. (3.28)), so that skew-adjointness of
the operator is clear from skew-symmetry of the form. Also, the fact that the
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identifications (37.14) and (37.15) are really isomorphic is clear for dimensional
reasons, since the assignments sending α ∈ T ∧2 to the corresponding operator and
form are injective in view of (37.6).

Recall (§3) that a bivector α ∈ T ∧2 is called decomposable if α = bc for some
b, c ∈ T . As an operator T → T , such a bivector α = bc is given by

(37.18) (bc)d = 〈d, b〉c − 〈d, c〉b .

In fact, by (37.17) and (37.3), the inner products of both sides with any vector
a ∈ T equal 〈bc, da〉. (Cf. also (2.22).) For a nonzero decomposable bivector
α = bc, the factors b, c must be linearly independent so, by (37.18),

(37.19) Span {b, c} = α(T ) ,

that is, the plane Span {b, c} in T spanned by them coincides with the image of
α treated as an operator T → T . In particular, the plane Span {b, c} then is
uniquely determined by α (see also (3.10)). We will refer to Span {b, c} as the
plane associated with the nonzero decomposable bivector α = bc.

As before, let 〈 , 〉 be a pseudo-Euclidean inner product in a 4-dimensional real
vector space T . We define the sign factor ε of 〈 , 〉 by

(37.20) ε = εaεbεcεd = ±1 ,

with (37.4), for any orthonormal basis a, b, c, d of T . Thus, ε = +1 except for the
Lorentz-like sign patterns − + + + and − − − + . Now (37.13) implies

(37.21) ∗2 = ε · Id ,

so that the inverse of ∗ equals ∗ times the sign factor ε. From (37.10), we now
obtain

(37.22) 〈∗α, ∗β 〉 = ε 〈α, β 〉

whenever α, β ∈ T ∧2.
Equality (37.21) accounts for one of the most crucial formal differences between

the Riemannian (Euclidean) case on the one hand, and the Lorentzian case on the
other. That difference has profound consequences for the geometry of the bivector
space and, ultimately, the classification of the possible curvature types. Specifically,
if the inner product 〈 , 〉 in T has the Riemannian sign pattern + + + + (or the
neutral sign pattern − − + +), (37.21) says that ∗ is an involution, and so,
according to Remark 3.2, it leads to a direct-sum decomposition of T ∧2 into the
(±1)-eigenspaces B± of ∗ , with

(37.23) T ∧2 = B+ ⊕ B− , B− = [B+]⊥ , dimB± = 3 .

In fact, the summands B± are mutually orthogonal due to self-adjointness of ∗ (see
(37.10) and Remark 3.17), and they are both 3-dimensional since, for any positive-
oriented orthonormal basis a, b, c, d of T representing the sign pattern + + + +
or − − + + , the bivectors

(37.24)
√

2 α± = ± ab + cd ,
√

2 β± = ± ac + db ,
√

2 γ± = ± ad + bc
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or, respectively,

(37.25)
√

2 α± = ± ab + cd ,
√

2 β± = ± ac − db ,
√

2 γ± = ± ad − bc

form an 〈 , 〉-orthonormal basis of B± with the sign pattern + + + (or, respectively,
− − +), as one easily sees using (37.6), (37.7) and (37.13).

In the case where T = TxM for an oriented pseudo-Riemannian 4-manifold
(M, g) whose metric g has one of the sign patterns + + + + or − − + + , the
decomposition (37.23) is written as

(37.26) [TxM ]∧2 = Λ+
xM ⊕ Λ−xM .

See also (6.4).
On the other hand, if 〈 , 〉 has the Lorentzian sign pattern − + + + , (37.21)

states that ∗ is a complex structure in T ∧2, that is, endowes T ∧2 with the structure
of a 3-dimensional complex vector space for which ∗ is the multiplication by i.
(See Remark 3.9.) Furthermore, by (37.22) with ε = − 1 and Remark 3.18, 〈 , 〉
is the real part of a unique complex-bilinear inner product ( , )c in the complex
3-space T ∧2, which can explicitly be written as

(37.27) (α, β )c = 〈α, β 〉 − i 〈α, ∗β 〉
for α, β ∈ T ∧2 (see (3.35)). By (37.6), (37.13) and (37.27),

(37.28) bc , bd , cd

is a ( , )c-orthonormal basis of T ∧2 as defined in §3, whenever a, b, c, d is a Lorentz-
orthonormal basis of T with the sign pattern − + + +.

We now proceed to explore some relations between two aspects of the geometry
of T ∧2, one related to the Hodge star operator ∗ : T ∧2 → T ∧2, the other to
the Lie-algebra structure of T ∧2 = so(T ) (represented by the commutator of
operators).

Proposition 37.2. Given an oriented 4-dimensional real pseudo-Euclidean vector
space T and bivectors α, β ∈ T ∧2, we have

(37.29) [∗α, β] = ∗[α, β] = [α, ∗β]

and

(37.30) [α, β] = 0 whenever ∗ α = α and ∗ β = −β .
Here [α, β] is the bivector corresponding to the commutator of α and β under the
identification (37.17) between bivectors in T and operators α ∈ so(T ).

Proof. Let a, b, c, d be a positive-oriented orthonormal basis of T . Using (37.13)
and (2.28) we now obtain [ab, ∗(ab)] = 0 = ∗[ab, ab], [ab, ∗(cd)] = 0 = ∗[ab, cd], and
[ab, ∗(ac)] = εdεb[ab, db] = εdad = εa∗(bc) = ∗[ab, ac], where the signs εa, εb, εc, εd
are defined as in (37.4). The first equality in (37.29), that is, [∗α, β] = ∗[α, β] thus
holds whenever α and β are exterior products of pairs of vectors belonging to a
fixed orthonormal basis of T . (Permuting a, b, c, d as needed, we see that the three
relations just established correspond to the cases where the two exterior products
have two, zero or, respectively, one factor in common.) The first equality of (37.29)
now follows for all α and β in view of bilinearity of both sides in α and β. As
for the second equality in (37.4), it is a consequence of the first one combined with
skew-symmetry of [α, β] in α and β. Finally, for α, β as in (37.30), relation
(37.29) gives ∗[α, β] = [∗α, β] = [α, β] = [α, −∗β] = −∗[α, β], which in turn implies
(37.30) since ∗ is an isomorphism (cf. (37.21)). This completes the proof. �

As immediate consequences, we have
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Corollary 37.3. Let the inner product 〈 , 〉 of an oriented 4-dimensional pseu-
do-Euclidean vector space T have the Riemannian sign pattern + + + + or the
neutral sign pattern − − + + . Then the summands B± of (37.23) are mutually
commuting ideals in the Lie algebra T ∧2 = so(T ), so that (37.23) also represents
a direct sum of Lie algebras. �

Corollary 37.4. Let T be an oriented 4-dimensional pseudo-Euclidean vector
space with an inner product 〈 , 〉 of the Lorentzian sign pattern − + + + . Then
T ∧2 = so(T ) is a complex Lie algebra, that is, its commutator pairing is complex-
bilinear for the complex structure in T ∧2 introduced by the Hodge star ∗ . �

It turns out that the anticommutators have some interesting properties as well:
Relation (37.31) below indicates that vectors in b ∈ T may be thought of as
“spinors” on which bivectors α ∈ B± operate as “vectors”, via the “Clifford multi-
plication” given by the evaluation pairing (α, b) 7→ αb. (Cf. Example 30.5.)

Proposition 37.5. Let T be an oriented 4-dimensional real vector space with
an inner product 〈 , 〉 which is Euclidean or neutral, that is, has the sign pattern
+ + + + or − − + + . Any bivectors α, β ∈ T ∧2 such that α, β ∈ B± for some
sign ± then satisfy the Clifford-algebra relations

(37.31) αβ + βα = −〈α, β〉 ,

where αβ is the composite of α and β treated, with the aid of 〈 , 〉 , as skew-
adjoint operators T → T , while the real number λ = 〈α, β〉 stands for λ times
the identity. In particular, for any α ∈ B± we have

(37.32) 2α2 = −〈α, α〉 .

Proof. From (37.18) we obtain γ (bc)d = 〈d, b〉γc − 〈d, c〉γb for all bivectors γ ∈
T ∧2 and vectors b, c, d ∈ T . Applying this to the case where γ is decomposable
(cf. (2.27)) and using (37.18) along with (37.13), it is easy to verify that (37.31)
and (37.32) holds when α = ab + ∗(ab) and β = ac + ∗(ac) for any orthonormal
vectors a, b, c. This shows that (37.31) holds when α, β is any pair of vectors of a
basis of B± having the form (37.24) or (37.25). In view of bilnearity of (37.31) in
α and β,

Finally, (37.32) implies (37.31) according to Remark 3.12. This completes the
proof. �

Lemma 37.6. Given a 4-dimensional real vector space T with an inner product
〈 , 〉 of the Lorentzian sign pattern − + + + and a nonzero bivector α ∈ T ∧2, we
have

(i) (α, α)c ∈ R if and only if α is decomposable.
(ii) (α, α)c = 1 if and only if α = bc for some vectors b, c ∈ T with 〈b, b〉 =
〈c, c〉 = 1 and 〈b, c〉 = 0.

(iii) (α, α)c = 0 if and only if α = be for some vectors b, e ∈ T such that
〈b, e〉 = 〈e, e〉 = 0 and 〈b, b〉 = 1.

Proof. (i) is immediate from (37.27), (37.9) and Lemma 3.7(b). Moreover, the ’if’
parts of both (ii) and (iii) are obvious from (37.27) and (37.5) with (37.4). Let us
now assume that (α, α)c equals 1 or 0. Thus, by (i), α = bc for some vectors
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b, c ∈ T . Since α 6= 0, b and c are linearly independent and so they span a 2-
dimensional subspace P of T , which depends only on α (see (37.19)). We may
therefore choose b, c as above which are also orthogonal. By (i), (37.27) and (37.5),
the numbers εb, εc defined as in (37.4) satisfy εbεc = q with q = 1 in (ii) and
q = 0 in (iii). Rescaling both b and c, we may assume that εb, εc ∈ {1, 0,− 1}.
Then, in (ii), εb = εc = ± 1 and the sign ± cannot be a minus since the sign
pattern of 〈 , 〉 in T is − + + + , with just one minus (see Remark 3.13). This
proves (ii). Similarly, in (iii), one of εb, εc must be 0, while the other cannot be
0 or − 1 since, according to Remark 3.13, that would similarly contradict our
assumption about the Lorentzian sign pattern of 〈 , 〉. This completes the proof.
�

Lemma 37.7. Let β, γ ∈ T ∧2 be two linearly independent bivectors in a 4-dimen-
sional real vector space with an inner product 〈 , 〉 of the Lorentzian sign pattern
− + + + . The following two conditions are equivalent :

(a) 〈β, β〉 = 〈β, γ〉 = 〈γ, γ〉 = 0 and γ = ∗β for some orientation of T .
(b) β = be and γ = ce for some linearly independent vectors b, c, e ∈ T such

that 〈b, b〉 = 〈c, c〉 = 1 and 〈b, c〉 = 〈b, e〉 = 〈c, e〉 = 〈e, e〉 = 0.

Furthermore, β and γ then determine the vector e in (b) uniquely up to a sign.

Proof. Assume (b). According to Lemma 3.15(ii), we may choose a null vector
d ∈ T orthogonal to b, c, and such that 〈d, e〉 = 1. Applying Proposition 37.1(ii)
(with the rôles of a, b, c, d in Proposition 37.1(ii) now played by b, c, e, d), we obtain
∗(be) = ce for the orientation which the basis b, c, e, d positive. Since the inner-
product relations in (a) are immediate from (37.5) and (37.6), this proves (a).

Conversely, suppose that (a) holds. From (37.27) we now have (β, β)c = 0 and
so, by Lemma 37.6(iii), β = be for some b, e ∈ T with 〈b, e〉 = 〈e, e〉 = 0 and
〈b, b〉 = 1. Let us now choose c ∈ T which along with those b and e satisfies
inner-product relations in (b), and a null vector d ∈ T orthogonal to b, c, and
such that 〈d, e〉 = 1. (They exist in view of Lemma 3.15; note that we cannot have
〈c, c〉 = − 1, since d, e span a nondegenerate plane P on which 〈 , 〉 has the sign
pattern −+ , and so its sign pattern on P⊥ = Span {b, c} must consists of the
remaining signs + + .) Changing the sign of c if necessary, we may assume that
the basis b, c, e, d is positive for the orientation used in (a). Applying Proposition
37.1(ii) (with the rôles of a, b, c, d in Proposition 37.1(ii) again played by b, c, e, d),
we obtain γ = ∗β = ∗(be) = ce. This completes the proof. �

Lemma 37.8. For a nonzero bivector β ∈ T ∧2 in a 4-dimensional real vector
space T with an inner product 〈 , 〉 of the neutral sign pattern − − + + , the
following two conditions are equivalent :

(i) 〈β, β〉 = 0, and ∗β = β for some orientation of T .
(ii) There exist linearly independent vectors c, d ∈ T with β = cd and 〈c, c〉 =
〈c, d〉 = 〈d, d〉 = 0.

Proof. (ii) implies (i) in view of (37.5) and Proposition 37.1(i). Conversely, let us
assume (i). By (37.9), β ∧ β = 0, so (see Lemma 3.7) we have β = cd for some
linearly independent vectors c, d ∈ T . By (37.19), Span {c, d} depends only on β,
so that we may choose c, d as above which are orthogonal. By (37.19), one of c, d
is null, for instance, d. Now c must be null as well, for otherwise we could rescale
both c and d so as to have β = cd and 〈c, c〉 = ± 1, 〈c, d〉 = 〈d, d〉 = 0 and, by
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Proposition 37.1(ii), β and ∗β would be linearly independent. This completes the
proof. �

Lemma 37.9. Let β, γ ∈ T ∧2 be nonzero bivectors in a 4-dimensional real vector
space T with an inner product 〈 , 〉 of the neutral sign pattern − − + + . The
following two conditions are equivalent :

(a) 〈β, β〉 = 〈γ, γ〉 = 0 and ∗β = β, ∗γ = − γ for some orientation of T .
(b) There exist linearly independent vectors b, c, e ∈ T such that β = be,

γ = ce and 〈b, c〉 = 1, 〈b, b〉 = 〈b, e〉 = 〈c, c〉 = 〈c, e〉 = 〈e, e〉 = 0.

Furthermore, β and γ then determine the vector e in (b) uniquely up to a sign.

Proof. Assume (b). Since the sign pattern of 〈 , 〉 restricted the plane Span {b, c}
is −+ , the same must be the case for its orthogonal complement P⊥. As e ∈ P⊥
is nonzero and null, we may choose a null vector d ∈ P⊥ such that 〈d, e〉 = 1.
Applying Proposition 37.1(i) (with the rôles of a, b, c, d in Proposition 37.1(i) now
played by b, e, c, d), we obtain ∗(be) = be for the orientation which makes the
basis b, e, c, d positive. Similarly, from Proposition 37.1(i) a, b, c, d which now are
c, e, b, d, we obtain ∗(ce) = − ce (for the same orientation). In view of (37.5), this
proves (a).

Conversely, assume (a). By Lemma 37.8, both β and γ are decomposable
and the planes associated with them as in (37.19) are null (cf. (3.26)). However,
choosing vectors a, b, c, d ∈ T with β = ab and γ = cd, we have a ∧ b ∧ c ∧ d = 0
as β ∧ γ = 〈∗β, γ〉 · vol = 0 by (37.9) and (a). Therefore, a, b, c, d are linearly
dependent (see §3). The planes β(T ), γ(T ) thus have a nontrivial intersection
L which must be 1-dimensional, or else β and γ would be linearly dependent,
contradicting (37.23) and (a). Consequently, β = be and γ = ce for some linearly
independent vectors b, c, e ∈ T . Since the planes β(T ), γ(T ) are both null, we
have 〈b, c〉 6= 0 (or else b, c, e would span a null subspace, contradicting (3.27)).
Another choice of b, c, e with these properties amounts to replacing b, c, e with
λb+ ... , µc+ ... and νe, where λ, µ, ν are nonzero scalars and each ... stands
for some multiple of e. (Note that e is unique up to a factor since it spans the
line L.) One now easily sees that λ, µ, ν leading to new b, c, e with all properties
listed in (b) are unique up to an overall sign change. This also proves uniqueness
of ± e, and hence completes the proof. �

§38. Weyl tensors acting on bivectors

An obvious first step towards understanding the local structure of pseudo-Riem-
annian Einstein manifolds (M, g) in dimension four consists in classifying the alge-
braic types of the pairs (g(x), R(x)) consisting of the metric g(x) and the curva-
ture tensor R(x) at any given point x ∈M . In view of (5.10), R(x) is completely
described by the scalar curvature s (constant by Schur’s Theorem 5.1) and the
Weyl conformal curvature tensor W (x) at x. The problem thus is reduced to
understanding the structure of the analogous pairs (g(x),W (x)).

The following discussion of the structure of W (x) is valid for all pseudo-Riem-
annian 4-manifolds (and not just Einstein spaces); however, it is only for Einstein
metrics that W and a constant scalar-curvature function s give a complete de-
scription of the curvature. In this section, we will provide an ”intrinsic” character-
ization of these Weyl tensors W (x), treated as operators acting on bivectors. This
characterization goes back to Petrov (1950) and Singer and Thorpe (1969). Our
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next step will be Petrov’s classification of such Weyl-tensor operators, presented
later in §39.

To simplify the discussion, let us replace the tangent space TxM and the metric
g(x) with an arbitrary four-dimensional real vector space T carrying a fixed pseu-
do-Euclidean inner product (that is, a nondegenerate symmetric bilinear form),
denoted 〈 , 〉, and having one of the sign patterns (37.1). Similarly, instead of W (x)
we consider here an arbitrary algebraic Weyl tensor in T , that is, a quadrilinear
mapping

(38.1) (a, b, c, d) 7→ abcd ∈ R ,

sending vectors a, b, c, d ∈ T to a real number denoted abcd, which satisfies condi-
tions analogous to (5.23), (5.24) and (5.25). Those conditions are, explicitly

(38.2) abcd = − bacd = − abdc ,

(38.3) abcd + bcad + cabd = 0 ,

and

(38.4)
∑
e∈E

εe aebe = 0

with εe = 〈e, e〉 = ± 1, for any unordered orthonormal basis E of T .

Remark 38.1. Compared to (5.24), one symmetry, namely

(38.5) abcd = cdab ,

seems to be missing from (38.3). The reason is that (38.5) is automatically true
for any quadrilinear mapping (38.1) satisfying conditions (38.3) and (38.3). In fact,
abcd = −abdc = dabc + bdac = −dacb − bdca = (acdb + cdab) + (dcba + cbda) =
−acbd+ (cdab+ cdab)− cbad = 2cdab−acbd− cbad = 2cdab+ bacd = 2cdab−abcd ,
as required.

Lemma 38.2. Let (38.1) be any algebraic Weyl tensor in a four-dimensional pseu-
do-Euclidean vector space T . For any orthonormal basis E = {a, b, c, d} of T we
then have

(38.6) εc acbc = εd dbad , cdcd = ε abab ,

where ε = ± 1 denotes the sign factor of 〈 , 〉 introduced in (37.20), and εc, εd
are defined as in (37.4) or (38.4).

Proof. Combining (38.4) with the (skew)symmetry relations (38.2) and (38.5), we
obtain εc acbc − εd dbad =

∑
e∈E εe aebe = 0. Similarly, with cancellations due

to (38.2) and (38.5), 2εcεd cdcd − 2εaεb abab = εd(εa dada + εb dbdb + εc dcdc) +
εc(εa caca+εb cbcb+εd cdcd)−εa(εb abab+εc acac+εd adad)−εb(εa baba+εc bcbc+
εd bdbd), which equals 0, since so does, by (38.4), each of the parenthesized three-
term sums. This completes the proof. �
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As in §37, we denote T ∧2 the bivector space of T and use the notational con-
vention (37.2) for the exterior product ab = a ∧ b ∈ T ∧2 of vectors a, b ∈ T .
Also, we will use the same symbol 〈 , 〉 the inner product of bivectors induced by
the original inner product 〈 , 〉 in T (see (37.3)). By a Weyl-tensor operator in
the 4-dimensional pseudo-Euclidean vector space T we will mean any real-linear
operator W : T ∧2 → T ∧2 which is self-adjoint relative to the inner product 〈 , 〉 of
T ∧2 and satisfies the relations

(38.7) W ∗ = ∗W ,

(38.8) Trace W = 0 ,

(38.9) Trace [∗W] = 0 .

Note that these relations mean that W commutes with the Hodge star, while both
W and its composite with the Hodge star are traceless. Recall that the Hodge
star operator ∗ : T ∧2 → T ∧2, given by (37.9), is well-defined only when a fixed
orientation is chosen in T . However, since ∗ changes sign when the orientation of
T is reversed, the above definition of a Weyl-tensor operator does not depend on
the orientation used.

The following lemma establishes a natural correspondence between Weyl-tensor
operators and algebraic Weyl tensors in T .

Lemma 38.3. For any real-linear operator W : T ∧2 → T ∧2, let us consider the
quadrilinear mapping assigning to any four vectors a, b, c, d ∈ T the real number

(38.10) abcd = 〈W(ab), cd 〉

with ab = a ∧ b. Then the following two conditions are equivalent :

(a) The quadrilinear mapping (38.10) is an algebraic Weyl tensor ;
(b) W is a Weyl-tensor operator.

Proof. Step (i): Since exterior products ab span T ∧2, self-adjointness of W is
clearly equivalent to the symmetry (38.5) for the quadrilinear mapping (38.10).

Step (ii): Let us now fix an orientation of T (thus making ∗ well-defined). By
(37.21), relation (38.7) means nothing else than ∗W ∗ = εW, where ε = ± 1
is the sign factor (37.20). In view of (37.10), this can further be rewritten as
〈W(∗α), ∗β 〉 = ε〈Wα, β 〉 for all α, β ∈ T ∧2. The last condition holds for all α, β
if and only if it does for those α, β which are exterior products of pairs of different
vectors from a fixed positive-oriented orthonormal basis a, b, c, d of T . These two
products may in turn have zero, one, or two factors in common. Applying (37.13)
in each of these three cases (i.e., with α = β = ab; or α = ac, β = bc; or α = ab,
β = cd), we see (using (37.20)) that (38.7) is equivalent to requiring (38.5) and
(38.6) to hold for every positive-oriented orthonormal basis a, b, c, d of T .

Step (iii): Computing the traces of both W and the composite ∗W in the
orthonormal basis (37.6) corresponding to any fixed positive-oriented orthonormal
basis E of T , we obtain, from (38.10), (37.5) and (37.10),

(38.11) 2 Trace W =
∑
a,b∈E

εaεb〈W(ab), ab〉 =
∑
a∈E

εa
∑
b∈E

εb abab ,
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(38.12)

2 Trace [∗W] =
∑
a,b∈E

εaεb〈∗[W(ab)], ab〉

= 〈W(ab), ∗(ab)〉 = ε
∑

even
abcd ,

where
∑

even denotes summation over all even permutations (a, b, c, d) of the (or-
dered) basis E.

Let us now assume (a). According to steps (i) and (ii) above, self-adjointness of
W and relation (38.7) then are immediate consequences of (38.5) and Lemma 38.2.
Furthermore, (38.8) and (38.9) now are obvious from (38.11) and (38.12) along with
(38.4) and, respectively, the fact that

(38.13)

∑
even

abcd = (abcd+ acdb+ adbc) + (badc+ bdca+ bcad)

+ (cabd+ cbda+ cdab) + (dcba+ dbac+ dacb) ,

with each of the parenthesized three-term sums vanishing in view of (38.3). This
yields (b).

Conversely, let us suppose that (b) holds. Thus, for all a, b, c, d ∈ T , we have
(38.5) (in view of step (i) above) and (38.2) (from (38.10) with ab = a ∧ b). Using
(38.2) and (38.5), we can now rewrite the right-hand side of (38.13) so that each of
the product-like terms begins with the factor a, i.e.,

∑
evenabcd = (abcd + acdb +

adbc) + (abcd + acdb + adbc) + (acdb + adbc + abcd) + (abcd + acdb + adbc) =
3(abcd+ acdb+ adbc). Combined with (38.9), this yields (38.3) whenever a, b, c, d
form a positive-oriented orthonormal basis of T . On the other hand, (38.2) and
(38.5) clearly imply that (38.3) holds whenever a, b, c, d ∈ T are elements of such
a fixed basis and two or more of them coincide. Due to quadrilinearity of (38.10)
in a, b, c, d ∈ T , this proves (38.3) for all a, b, c, d ∈ T . Finally, the left-hand side
of (38.4) is a bilinear function ρ of a, b ∈ T , independent of the orthonormal basis
E used (since the summation involved is a contraction, i.e., amount to taking
the trace of a linear operator). Moreover, by (38.5), ρ is symmetric. On the
other hand, using (38.8) and step (ii), we obtain (38.6) for every positive-oriented
orthonormal basis a, b, c, d of T . The second relation in (38.6) now allows us
to rewrite the right-hand side of (38.11), replacing cdcd = dcdc, bdbd = dbdb
and bcbc = cbcb with εabab, εacac and, respectively, εadad. Thus, by (38.8),
0 = 2 Trace W = 4εa(εbabab + εcacac + εdadad). In other words, ρ(a, a) = 0 for
any unit vector a ∈ T (since a then may be completed to a basis as above), and
so, due to bilinearity, ρ(a, a) = 0 for every non-null vector a. Thus, ρ = 0 in
view of symmetry of ρ and the fact that non-null vectors form a dense set in T .
Consequently, we obtain (38.4), which completes the proof. �

Remark 38.4. For T as above, algebraic Weyl tensors in T are in a natural iso-
morphic correspondence with Weyl-tensor operators. More precisely, the set of all
Weyl-tensor operators in T obviously forms a vector space, which will be denoted
We (T ). By assigning to each W ∈ We (T ) the quadrilinear mapping (38.10) we
now obtain a linear isomorphism Φ between We (T ) and the space W of all al-
gebraic Weyl tensors in T . To see this, first note that, in view of Lemma 38.3, Φ
sends We (T ) into W. Moreover, Φ is injective, as a consequence of (38.10), since
T ∧2 admits an orthonormal basis of the form (37.6). Finally, to show that Φ is
surjective, let us fix an algebraic Weyl tensor (38.1). Since abcd then is bilinear
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and skew-symmetric in a, b and, separately, in c, d, there is a real-valued bilinear
form χ on T ∧2 with χ(α, β) = abcd whenever α = ab and β = cd. On the other
hand, there must exist a linear operator W : T ∧2 → T ∧2 with 〈Wα, β 〉 = χ(α, β)
for all α, β ∈ T ∧2 (since the assignment of χ to W via this formula is injective,
and hence isomorphic). Now W ∈ We (T ) in view of Lemma 38.3, as required.

According to Remark 38.4, our quest to understand algebraic Weyl tensors in
dimension 4 has been reduced to studying Weyl-tensor operators. The structure
of the latter can in turn be easily described if we consider separate cases based on
the sign pattern of 〈 , 〉 in T (assumed to be one of (37.1)).

First, for the sign patterns + + + + and −−+ +, condition (38.7) is equivalent
to requiring that W leave the eigenspaces B± of ∗ invariant. Thus, providing an
operator W with (38.7) amounts to prescribing its restrictions

(38.14) W± : B± → B±

to the subspaces B± (which are direct summands of T ∧2, cf. (37.23)). Conditions
(38.8) and (38.9) then can be rewritten as

(38.15) Trace W± = 0

for both signs ±. In fact, Trace W± = Trace [W · pr±], W · pr± being the
composite of W with the projection pr± : T ∧2 → B± ; on the other hand, by
(37.21) with ε = 1, 2 pr± = ∗ ± Id. This shows that (38.15) is equivalent to
(38.8) plus (38.9). Finally, since the subspaces B± are mutually orthogonal (as
∗ is self-adjoint, cf. (37.10)), self-adjointness of W means that W± are both
self-adjoint.

On the other hand, for the Lorentzian sign pattern − + + + , T ∧2 is a complex
3-space in which the operator of the multiplication by i is ∗. (See the paragraph
preceding formula (37.27) in §37.) Therefore, conditions (38.7) – (38.9) imposed
on a real-linear operator W : T ∧2 → T ∧2 mean that W is complex-linear and
its complex trace is zero. (Note that, according to Lemma 3.3(ii), TraceRW =
2 Re [TraceCW] and TraceR[∗W] = TraceR[iW] = − 2 Im [TraceCW].) Also, as
one easily verifies, self-adjointness of W relative to the (real) inner product 〈 , 〉
of T ∧2 then amounts to requiring that it be self-adjoint relative to the complex-
bilinear inner product ( , )c given by (37.27).

This discussion can be summarized as follows.

Proposition 38.5. Let We (T ) be the space of Weyl-tensor operators in a 4-space
T with an inner product 〈 , 〉 of one of the sign patterns (37.1). Then

(38.16) dimRWe (T ) = 10

and

(i) For the first two sign patterns ± ± + + , We (T ) is the direct sum of the
five-dimensional subspaces W+ and W− which consist, respectively, of
all traceless operators W+ : B+ → B+ or W− : B− → B− that are self-
adjoint relative to the (± ± +) inner product obtained by restricting 〈 , 〉
to the respective three-dimensional summand space B+ or B− of (37.23).

(ii) For the Lorentz sign pattern − + + + , We (T ) is the five-dimension-
al complex vector space of all self-adjoint traceless operators W in the
complex 3-space T ∧2 with the multiplication by i provided by the Hodge
star, and with the complex-bilinear inner product ( , )c defined by (37.27).

�
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§39. The Petrov-Segre classes of Weyl-tensor operators

This section deals with an algebraic classification, due to Petrov (1950), of the
pairs (g(x),W (x)) consisting of the values, at any point x, of the metric and the
Weyl conformal tensor W of a pseudo-Riemannian 4-manifold (M, g). In the case
where g is an Einstein metric, this (plus a choice of the constant scalar curvature)
will also classify the analogous pairs (g(x), R(x)) formed by the metric and the
curvature tensor R at x.

First, let us simplify the notation, just as we did at the beginning of §38. Specif-
ically, we replace the metric g(x) in the tangent space TxM with a fixed pseu-
do-Euclidean inner product (that is, a nondegenerate symmetric bilinear form),
denoted 〈 , 〉, in an arbitrary four-dimensional real vector space T . The symbol
〈 , 〉 will also be used for the inner product induced by 〈 , 〉 in the bivector space
T ∧2. Without much loss of generality, we will also assume that the sign pattern of
〈 , 〉 in T is one of those listed in (37.1).

At the same time, the Weyl tensor W (x) is replaced with an arbitrary Weyl-
tensor operator W : B → B, analogous to the one in (38.10), acting in a suitably
chosen vector space B endowed with a bilinear form h. The space B and the form
h are in turn defined as follows. In the case where 〈 , 〉 has the Lorentzian sign
pattern (− + + +), the space B will be the whole bivector space T ∧2, and h
will denote the complex-bilinear inner product ( , )c with (37.27). (For (M, g) and
x ∈ M as above we thus have, in this case, B = [TxM ]∧2 and W = W (x).) On
the other hand, if the sign pattern of 〈 , 〉 is Riemannian (+ + + +) or neutral
(− − + +), the symbol B will stand for one of the subspaces B± of T ∧2 appearing
in (37.23), and h will be the inner product 〈 , 〉 of bivectors, restricted to B = B±.
Thus, in the latter case, W : B → B really stands for the restriction of the Weyl-
tensor operator to B± (which was previously denoted W±, cf. (38.14)). Applying
this to a pseudo-Riemannian 4-manifold (M, g) and x ∈ M , we now obtain B =
Λ±xM and W = W±(x).)

As a result, we end up with three objects, denoted B, h, W, and assumed,
according to Proposition 38.5, to have the following properties:

(39.1) B is a real/complex 3-dimensional vector space ;

(39.2)
h is a nondegenerate real/complex bilinear symmetric form on B

and, if B is real, h has the sign pattern + + + or − − + ;

(39.3) W : B → B is an h-self-adjoint traceless real/complex linear operator.

Thus, denoting K the scalar field (R or C), we have three possibilities, which
account, in this order, for the three sign patterns of 〈 , 〉 in (37.1):

(39.4)

a) K = R , h is positive definite;

b) K = R , h has the sign pattern − − + ;

c) K = C .
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Example 39.1. Let B be the numerical space K3 (so that h and W in (39.2),
(39.3) may both be viewed as 3 × 3 matrices over the field K), and let δ = ±1.
Conditions (39.1) – (39.3), with the appropriate choice among the options a), b)
and c) in (39.4), are satisfied by

(39.5)

I) h =

 δ 0 0
0 δ 0
0 0 1

 , W =

λ 0 0
0 µ 0
0 0 ν

 , λ, µ, ν ∈ K , λ+ µ+ ν = 0 .

II) h =

 0 0 1
0 δ 0
1 0 0

 , W =

λ 0 ε
0 −2λ 0
0 0 λ

 with λ ∈ K , ε = ± 1 .

III) h =

 0 0 1
0 δ 0
1 0 0

 , W =

 0 δ 0
0 0 1
0 0 0

 ,

(39.6) h =

−1 0 0
0 0 1
0 1 0

 , W =

−2p 0 0
0 p q
0 −q p

 , p, q ∈ K = R , q 6= 0 .

Cases I), II), III) of (39.5) with K = C and δ = 1 are usually referred to as (the
canonical forms of) Petrov’s types I, II, III. See Remark 40.3 below.

The above examples describe, up to an isomorphism, all possible cases. Namely,
we have

Proposition 39.2 (Petrov, 1950). For every triple (B, h, W) satisfying conditions
(39.1) – (39.3), there exists an isomorphic identification B = K3, i.e., a basis of
B, which makes h and W appear as one of the examples (39.5) or (39.6) with
some δ = ± 1. Specifically, in case (39.4)a) we have δ = 1 and (39.5)I), in case
(39.4)b) δ = − 1 and one of (39.5)I), (39.5)II), (39.5)III), (39.6), while in case
(39.4)c) we have δ = 1 and (39.5)I), (39.5)II) with ε = 1, or (39.5)III).

Proof. The assertion for case (39.4)a) is clear. In cases (39.4)b) and (39.4)c), let
us first suppose that every eigenvector of W is null. Hence W has exactly one
eigenvector α, up to a factor, or else there would exist two independent, orthogonal
null eigenvectors, contradicting nondegeneracy of h. For the same reason, there
exists β in the h-orthogonal complement α⊥ with h(β, β) = δ for some δ ∈
{1,− 1}. Also, we can find γ ∈ β⊥ such that α, β, γ is a basis of B for which
the matrix of h is as in (39.5)III). (In fact, h is indefinite when restricted to the
plane β⊥, since α ∈ β⊥; thus, β⊥ contains a nonzero null vector other than a
multiple of α, which, due to nondegeneracy of h, cannot be orthogonal to α.)
From self-adjointness of W it follows that α⊥ is W-invariant, and so Wα = λα,
Wβ = µβ+ ξα and Wγ = νγ+ρβ+σα for some λ, µ, ν, ξ, ρ, σ ∈ K. Since λ, µ, ν
then must be the roots of the characteristic polynomial of W, they are all equal (as
W is assumed here to have just one line of eigenvectors) and so λ = µ = ν = 0,
since Trace W = 0 by (39.3). Again using self-adjointness of W, we now obtain
ρ = δh(Wγ, β) = δh(γ, Wβ) = δξ, and so ρ 6= 0, or else W would have two

independent eigenvectors. Replacing α, β, γ with α̃ = ρα, β̃ = β + ρ−1σα/2,
γ̃ = ρ−1γ − δρ−2σβ/2 − δρ−3σ2α/8, we obtain a basis of B satisfying (39.5)III),
as required.
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Let us now consider the remaining case where W does admit a non-null eigenvec-
tor β. If the same is true for the restriction of W to the h-orthogonal complement
β⊥, a non-null eigenvector of W in β⊥, along with its complement in β⊥, plus
β itself, will provide three orthogonal, non-null, W-invariant lines, which easily
leads to case (39.5)I). If, on the other hand, all eigenvectors of W in β⊥ are null,
either (A) there are none of them, or (B) we can pick one, say α. Assuming (A),
we must have (39.4)b) with h restricted to β⊥ having the sign pattern −+, and
so h(β, β) < 0. A basis consisting of normalized β and two (suitably normalized)
null vectors in β⊥ then yields (39.6). (Again, note that, by (39.3), Trace W = 0.)
Finally, let us assume (B). Completing α, β to a basis α, β, γ of B in which h is
represented as in (39.5)II), we have Wβ = µβ, Wα = λα and Wγ = νγ+ρβ+σα
for some λ, µ, ν, ρ, σ ∈ K. Since W leaves β⊥ invariant and is self-adjoint, we have
ρ = 0 and ν = λ, while relation 0 = Trace W = λ+ µ+ ν then yields µ = −2λ.
Hence, if σ = 0, we may replace α, γ with an orthonormal basis of β⊥ and thus
obtain a special case of (39.5)I). On the other hand, if σ 6= 0, replacing α, γ with
α/c, cγ for a scalar c 6= 0 causes σ to be replaced by c2σ, and so we can make σ
equal to 1 (when K = C) or to ± 1 (when K = R). This leads to (39.5)II), and
completes the proof. �

The parameters λ, µ, ν, p, q appearing in the matrix form of W in Example
39.1 obviously classify the triples (B, h, W) with (39.1) – (39.3) up to an isomor-
phic equivalence (while δ = 1 in cases (39.4)a), (39.4)c), and δ = − 1 in case
(39.4)b)). In fact, these parameters are in an obvious relation with the roots of
the characteristic polynomial of W. Another equivalence relation, much cruder
than this isomorphic equivalence, turns out to be quite useful for our subsequent
discussion. It consists in dividing all such triples (B, h, W) into the following seven
Petrov-Segre classes. To keep track of the classes, we label them by listing the di-
mensions of the different eigenspaces of W. These dimensions are listed in slanted
boldface, in decreasing order, without any separating commas; the appearance of
dimension 0 on the list indicates that B is a real space, but the characteristic
polynomial of W has a nonreal complex root. We thus have

(39.7)

Class 1 : Case (39.5)III).

Class 100 : Case (39.6).

Class 11 : Case (39.5)II) with λ 6= 0 .

Class 111 : Case (39.5)I) with λ 6= µ 6= ν 6= λ.

Class 2 : Case (39.5)II) with λ = 0 .

Class 21 : Case (39.5)I) with ν = λ 6= 0 or µ = λ 6= 0 .

Class 3 : W = 0 (case (39.5)I) with λ = µ = ν = 0).

(As for the last line, note that if W has a 3-dimensional eigenspace, it must vanish
as Trace W = 0 by (39.3).)

Due to the meaning of the slanted-boldface numbers labeling each Petrov-Segre
class, the operator W : B → B in (39.3) is diagonalizable if and only if these
numbers add up to dimB = 3. We thus have the following division:

(39.8)
W diagonalizable: Classes 3 , 21 and 111 .
W nondiagonalizable: Classes 2 , 11 , 100 and 1 .
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Since self-adjoint operators in Euclidean spaces are all diagonalizable, this indicates
that not all Petrov-Segre class occur in every one of the cases (39.4)a) – c). In fact,
as an immediate consequence of Proposition 39.2, the possibilities are limited as
follows:

(39.9)

a) K = R , h positive definite; classes 3 , 21 , 111 only.

b) K = R , h of the sign pattern − − + ; all seven classes occur.

c) K = C ; all classes except 100 are possible.

In case b) of (39.4) it is convenient to decompose the classes 2 and 21 into subclasses,
characterized as follows:

(39.10)

Subclass 2+ : Case (39.5)II) with λ = 0 and ε = + 1.

Subclass 2− : Case (39.5)II) with λ = 0 and ε = − 1.

Subclass 21+ : Case (39.5)I) with δ = − 1 and µ = λ 6= 0, ν = − 2λ .

Subclass 21− : Case (39.5)I) with δ = − 1 and ν = λ 6= 0 , µ = − 2λ .

The meaning of the signs ± in (39.10) varies with the class involved: In class 2,
ε = + 1 or ε = − 1 depending on whether the symmetric form on B sending α, β
to h(Wα, β) is positive or negative semidefinite. (In fact, by (39.5)II) with λ = 0,
the matrix of that form is diag(0, 0, ε).) As for class 21, the sign ± accounts for
positive or negative semidefiniteness of h restricted to the unique 1-dimensional
eigenspace of W.

The reason why we introduce these subclasses only in case b) of (39.4) is obvious:
In case (39.4)a) neither of the classes 2 and 11 occurs (see (39.9)a)), while class 21
does occur, but only with δ = + 1 in (39.5)I). On the other hand, in case (39.4)c)
the “subclasses” listed in (39.10) are nothing else than their respective ambient
classes 2, 11 and 21. In fact, by Proposition 39.2, we then may always assume that
ε = + 1 in (39.5)II). On the other hand, subclass 21+ then coincides with 21+ as
one easily verifies by rearranging the order of a basis

(39.11) α , β , γ

of B that casts h and W into a canonical form (39.5)I) and multiplying some of
the vectors of (39.11) by i.

Remark 39.3. Given a triple (B, h, W) with (39.1) – (39.3), let us consider a basis
(39.11) of B that makes h and W assume one of the canonical forms listed in
(39.5) and (39.6).

(i) If W 6= 0, i.e., (B, h, W) belongs to one of the six Petrov-Segre classes
1, 100, 11, 111, 2 and 21, then, depending on the class, either one, or all
three of the elements α, β, γ of (39.11) are unique up to a finite number
of choices.

(ii) More precisely, for the classes 1, 100, 11 and 111, such a basis is unique
up to changing some signs (provided that, in the case of class 111, the
order of the eigenvalues λ, µ, ν in (39.5)I) is fixed, thus precluding a
rearrangement of (39.11)). See (iv)a) – d) below.

(iii) For classes 2 and 21, one element of (39.11) is unique up to a sign. In
the case of 2, that unique-up-to-a-sign element is α, and, according to
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(39.5)II) with λ = 0, it is an eigenvector of W corresponding to the zero
eigenvalue. (See the line preceding (iv)a).)

(iv) To verify the above claims, we will use, without further comments, the
definitions (39.7) of the Petrov-Segre classes. Let us first note that, in
the diagonalizable cases 111 and 21, assertion (ii) or, respectively, (iii),
is obvious from (39.5)I), since an h-unit eigenvector of W corresponding
to any specific simple eigenvalue is clearly unique up to a sign. In the
remaining four cases 1, 100, 11 and 2, let us suppose that α′, β′, γ′ is
another basis of B in which h and W have a canonical form (39.5) or
(39.6), a required by Proposition 39.2. Then some scalar c satisfies

(39.12) α′ = cα , c 6= 0 .

In fact, uniqueness of α up to a nonzero factor is clear as α spans a
1-dimensional subspace of B, which is either a suitable eigenspace of W
(for classes 1, 100, 11), or the set of all null vectors in KerW (class 2).
Let us also write

(39.13) γ′ = rγ + . . . ,

for some scalar r, where ’ . . . ’ stands for a combination of α and β. We
will now proceed to verify that, in each of the four cases 1, 100, 11 and 2,
c and r appearing in (39.12) and (39.13) also satisfy

(39.14) c, r ∈ {1, − 1} .

Note that this, along with (39.12), proves claim (iii) for class 2.
(a) In class 100, we have c = ± 1 in (39.12), since h(α, α) = h(α′, α′) =
− 1 (cf. (39.6)). Moreover, β, γ are null vectors forming a basis of
α⊥ with h(β, γ) = 1, and similarly for β′, γ′; thus, Rβ′ = Rβ and
Rγ′ = Rγ and, consequently, γ′ = rγ and β′ = β/r, with r 6= 0.
(Note that we cannot have Rβ′ = Rγ and Rγ′ = Rβ instead,
i.e., γ′ = ρβ and β′ = γ/ρ for some ρ 6= 0, since that would
imply − ρqβ = − qγ′ = (W − p)β′ = (W − p)γ/ρ = qβ/ρ, which is
impossible as q 6= 0 by(39.6).) Now, by (39.6), rqγ = r(pβ−Wβ) =
pβ′− Wβ′ = qγ′ = qγ/r, so that r = ± 1. This implies both (39.14)
and assertion (ii) for class 100.

(b) For classes 1 and 2, relation (39.14) can be established as follows. By
(39.5)III) and (39.5)II), 1 = h(α, γ) = h(α′, γ′) = cr (as h(α, α) =
h(α, β) = 0). Thus, r = 1/c. Also, by (39.5)III) and (39.5)II) with
λ = 0, setting A = W2 and η = δ (for class 1) or A = W and
η = ε (for class 2), we obtain Aγ = ηα and Aβ = Aα = 0, and so
ηcα = ηα′ = Aγ′ = rAγ = ηrα = ηα/c. This yields c = r = ± 1,
and hence (39.14).

(c) Continuing the discussion in (b) for class 1, we now obtain β′ =
ηβ + tα with some scalars η and t; in fact, h(α′, β′) = 0, and so,
by (39.12), β ∈ α⊥ = Span {α, β}. Moreover, as Wβ = Wα = 0,
we have δηα = ηWβ = Wβ′ = δα′ = δcα, and so η = c. Thus, by
(39.12) – (39.14) and (b), η = c = r = ± 1 and

(39.15) α′ = cα , β′ = cβ + tα , γ′ = cγ + ρβ + σα , c = ± 1
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for some scalars t, ρ, σ. Also, 0 = h(β, γ) = h(β′, γ′) = c(δρ + t),
while 0 = Wγ′ − β′ = cβ + δρα − (cβ + tα) = (δρ − t)α, i.e.,
δρ + t = δρ − t = 0, which gives t = ρ = 0. Now, (39.15) with
t = ρ = 0 yields 0 = h(γ, γ) = h(γ′, γ′) = 2cσ, so that σ = 0.
Thus, (39.15) with t = ρ = σ = 0 shows that the basis (39.11) is
unique up to an overall change of sign, and assertion (ii) follows for
class 1.

(d) In class 11, we have β′ = ηβ with η = ± 1 since, according to
(39.5)II) with λ 6= 0, β is an h-unit eigenvector of W corresponding
to the simple eigenvalue − 2λ. Now, again by (39.5)II), α, γ are null
vectors forming a basis of β⊥ with h(α, γ) = 1, and the same holds
for α′, γ′. Hence, as in (a), we have Rα′ = Rα and Rγ′ = Rγ
and, consequently, γ′ = rγ and α′ = α/r, with r 6= 0. (Again,
we cannot have Rα′ = Rγ and Rγ′ = Rα instead, since α, α′

are eigenvectors of W, while γ, γ′ are not.) Therefore, (39.12) and
(39.13) give γ′ = rγ and r = 1/c. Now εcα = εα′ = (W− λ)γ′ =
r(W − λ)γ = εrα = εα/c. This yields c = r = ± 1, and hence
(39.14), as well as assertion (ii), for class 11.

§40. Classes and genera of Weyl tensors

Let (M, g) be a pseudo-Riemannian 4-manifold, and let x ∈ M . If g has the
Lorentzian sign pattern − + + + , we will speak of the Petrov-Segre class of its
Weyl tensor W at x, obtain by applying the appropriate case of the definition
(39.7) to the triple (B, h, W) with W = W (x), described in the third paragraph
of §39. If, on the other hand, the sign pattern of g is Riemannian (+ + + +) or
neutral (− − + +), the self-dual and anti-self-dual Weyl tensors W±(x) have their
separate Petrov-Segre (sub)classes (again, given by (39.7) and (39.10) for (B, h, W)
with W = W±(x), as in the paragraph just quoted. The unordered pair formed
by these two (sub)classes will be called the Petrov-Segre genus at x of the Weyl
tensor W of g. The prefix ’(sub)’ indicates here that in the neutral case we will
use the subclasses 2+, 2−, 2+, 21− instead of the full classes 2 and 21. Our symbol
for each genus will consists of its two constituent (sub)classes, separated by a slash,
and listed in the reverse of the lexicographic order that is used in (39.7).

In this way, as a consequence of (39.9), there exist three Riemannian Petrov-
Segre genera:

(40.1) 3/3 , 3/21 , 21/21 ,

six Lorentzian Petrov-Segre classes:

(40.2) 3 , 21 , 2 , 111 , 11 , 1 ,

and a huge number (forty-five) of neutral genera, examples of which are

(40.3) 3/3 , 3/21+ , 21−/2− , . . . , 1/1 .

Remark 40.1. The Petrov-Segre genus/class of a pseudo-Riemannian metric g on
a 4-manifold M may of course vary with the point x ∈ M . It is, however, inde-
pendent of x, if W is assumed parallel. (Similarly, in the Riemannian and neutral



212 ANDRZEJ DERDZINSKI

cases. the Petrov-Segre class of W±(x) is the same for all x, whenever W± is par-
allel.) Moreover, if W or, respectively, W± is parallel, then every point x ∈ M
has a neighborhood U admitting C∞ bivector fields α, β, γ which, at each y ∈ U ,
form a complex basis of [TyM ]∧2 (or, respectively, a real basis of Λ±yM), in which

W (or, W±) appears as one the canonical forms (39.5), (39.6). In fact, such a
basis chosen at x can be spread “radially” away from x using parallel transports;
see Remark 4.6.) More importantly, those among α, β, γ which are, at each point,
determined uniquely up to a sign by the conditions just mentioned, necessarily
are parallel bivector fields (cf. the final clause in Remark 4.6). Thus, using Re-
mark 39.3(ii), (iii), and letting the symbols W and h stand for W (x) and for
the complex-bilinear inner product ( , )c of bivectors at any fixed point x ∈ M ,
characterized by (37.27), we conclude that

(a) For the classes 1, 100, 11 and 111, α, β, γ are all parallel and h-orthonor-
mal.

(b) In class 2, α is parallel and Wα = 0, while (α, α) = 0 and α 6= 0.
(c) In class 21, W is diagonalizable at each point with the eigenvalues − 2λ,

λ, λ for some scalar λ, and rearranging α, β, γ if necessary we may assume
that Wα = − 2λα, while α is h-unit and parallel and, by (5.19), λ =
− s/12, where s is the scalar curvature.

In particular, the Petrov-Segre genus/class of a locally symmetric pseudo-Riem-
annian 4-manifold must be the same at all points. However, Remark 40.1(a), (b)
along with the Weitzenböck formula (5.19) easily show that not all genera/classes
are represented. More precisely, we have the following result, which quickly elimi-
nates most possibilities, leaving only those which, as we will see later, are actually
realized.

Proposition 40.2. Suppose that (M, g) is a pseudo-Riemannian 4-manifold such
that either

(a) g has the Lorentzian sign pattern − + + + and its Weyl tensor W is
parallel, or

(b) g has the Riemannian sign pattern + + + + or the neutral sign pattern
− − + + , while M is oriented, and the self-dual Weyl tensor W+ of
(M, g) is parallel.

Let W (+) denote W in case (a) and W+ in case (b). The Petrov-Segre class of
W (+) at each point of M then must be one of

(40.4) 3 , 21 , 2 .

Furthermore,

(i) If W (+) is of class 2, then g is indefinite and its scalar curvature van-
ishes identically.

(ii) If g is neutral, while W+ is of class 21 and, in addition, W− is parallel,
then W− cannot be of class 2.

Proof. Let us suppose, on the contrary, that W (+) represents one of the remaining
four classes 1, 100, 11 and 111. According to Remark 40.1(a), there exist parallel
local bivector fields α, β, γ, locally trivializing the vector bundle E = [TM ]∧2 (case
(a)), or E = Λ+M (case (b)). From (5.19) it now follows that W (+), as a bundle
morphism E → E equals the multiplication by 1/6 times the scalar-curvature
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function s. Since W (+)(x) is traceless at each point x ∈ M (Proposition 38.5),
this in turn implies that s = 0 and W (+) = 0 identically, so that W (+) is of class
3 rather than 1, 100, 11 or 111. This contradiction proves our assertion about the
classes (40.4).

Finally, if W (+) is of class 2, we have, locally, Wα = 0 for a nonzero parallel
bivector field α (Remark 40.1(b)), while (5.19) gives Wα = sα/6. Hence s = 0.
The rest of assertion (i) is clear since, in the Riemannian case, the self-adjoint
operators W+(x), x ∈ M , are all diagonalizable, and hence cannot be of class 2
(cf. (39.8)). As for (ii), let us assume, on the contrary, that W+ is of class 21
and W− is of class 2, while W± are both parallel. Applying assertion (i) to the
opposite orientation, we obtain s = 0. On the other hand, according to Remark
40.1(c) with s = 0, we have W+ = 0, i.e., W+ is of class 3 rather than 21. This
contradiction completes the proof. �

Remark 40.3. The classes listed in (40.2) form a slighly refined version of Petrov’s
types of the Weyl tensors W (x), at points x ∈M of 4-dimensional Lorentz mani-
folds (M, g) (Petrov, 1950). Specifically, Petrov’s type I comprises the Petrov-Segre
classes 3, 21 and 111 (diagonalizable Weyl tensors W (x); cf. (39.8)), Petrov’s type
II is formed by classes 2 and 11, and Petrov’s type III consists of the Petrov-
Segre class 1 alone. Thus, treating the Roman numerals I, II, III as the integers
k = 1, 2, 3, it is clear from (39.7) and (39.5) that Petrov’s type of W = W (x),
treated as an operator acting on bivectors, is the least exponent k such that Wk

is diagonalizable.
For more on Petrov’s types, see Petrov (1969) and Chapter 3 of Besse (1987).

§41. Locally symmetric pseudo-Riemannian Einstein 4-manifolds

The class of locally symmetric pseudo-Riemannian Einstein 4-manifolds contains
the obvious examples provided by spaces of constant curvature, spaces of constant
holomorphic sectional curvature, and products of two surface metrics with equal
constant Gaussian curvatures. (See §10.) If we assume that the metric in question
is, in addition, positive definite, Theorem 14.7 (due to Cartan, 1926) states that
these three types are, up to local isometries, the only possible examples.

A similar assertion fails in the case of indefinite metrics, where further, “exotic”
examples exist. Such examples can easily be obtained using the construction de-
scribed in Lemma 41.1 and Corollary 41.2 below, as well as further constructions
described in §45 and §46 (see Examples 45.5 and 46.8). However, the “obvious”
examples along with the “exotic” ones, mentioned above, together represent all
possible local-isometry types of locally symmetric Einstein 4-manifolds. This is
the content of classification theorems due to Petrov (1969) and Cahen and Parker
(1980), which are stated at the end of this section, and proved later in sections 43
through 46.

Lemma 41.1. Suppose that we are given any symmetric 2 × 2 real matrix G
with det G 6= 0 and any C∞ function f of two real variables x1, x2, defined on
an open subset of R2. Let xj be a coordinate system in a 4-manifold, and let
ej, j = 1, . . . , 4, be the corresponding coordinate vector fields. Using the ranges of
indices given by

(41.1) j, k, l,m ∈ {1, 2, 3, 4} , a, b, c ∈ {1, 2} , λ, µ ∈ {3, 4} ,
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we now define an indefinite metric g on the coordinate domain by requiring its
component functions gjk = g(ej , ek) to form the block matrix

(41.2) [gjk] =

[
G 0
0 M

]
consisting of the 2× 2 matrices

(41.3) [gab] = G , [gλµ] = M =

[
0 1
1 −f

]
with f = f(x1, x2) treated as a function of (x1, x2, x3, x4). In other words, g is
any metric such that

(41.4)

g11 , g22 and g12 = g21 are constant,

g33 = 0 , g34 = g43 = 1 ,

gaλ = gλa = 0 for a ∈ {1, 2} and λ ∈ {3, 4} ,
∂3g44 = ∂4g44 = 0 .

Then

(i) The bivectors ea ∧ e3, a = 1, 2, are null and orthogonal, at every point,
relative to the inner product 〈 , 〉 of bivectors induced by g.

(ii) The vector field e3, the 2-forms βa = dxa ∧ dx4, and the bivector fields
ea ∧ e3, a = 1, 2, are all parallel relative to the Levi-Civita connection ∇
of g, and

(41.5) ea ∧ e3 = gacβ
c , βa = gac ec ∧ e3 , (summed over c = 1, 2) ,

where [gab] = G−1, while bivectors and 2-forms being identified with the
aid of the metric g.

(iii) The curvature tensor R and Ricci tensor Ric of g are given by

(41.6) R =
1

2
(∂a∂cf)βa ⊗ βc (summed over a, c = 1, 2) ,

(41.7) Ric =
1

2
Φdx4 ⊗ dx4 , with Φ = gac ∂a∂cf .

Proof. By (2.21), 〈ea∧ e3, eb∧ e3〉 = gabg33−ga3gb3, while (41.4) gives g13 = g23 =
g33 = 0. This yields (i). To prove (ii), let us first note that

(41.8)
Γa44 = Γ4a4 = − 1

2
∂af , Γ44a =

1

2
∂af for a = 1, 2 , and

Γjkl = 0 otherwise.

in view of (4.9) and the fact that, by (41.2) – (41.4), ∂jgkl = 0 unless j ∈ {1, 2}
and k = l = 4. From (4.7) and (41.4), it is now obvious that e3 is ∇-parallel,
while the ∇-covariant derivatives of e1 and e2 in any direction, at any point, are
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g-orthogonal to e1, e2 and e3, and hence (by (41.4)) must be multiples of e3. This
immediately implies that the bivector fields e1 ∧ e3 and e2 ∧ e3 are parallel. The
rest of assertion (ii) now is clear since

(41.9) [gλµ] = M−1 =

[
f 1
1 0

]
,

and so the vector fields corresponding via g to the 1-forms dx4 and dxa, a = 1, 2,
are the g-gradients ∇x4 = e3 and ∇xa = gabeb (while the gab are constant by
(41.4)).

On the other hand, formula (4.31) becomes, in our case, Rjklm = ∂kΓjlm −
∂jΓklm, as (by (41.8)) we have gpqΓjkpΓlmq = 0 unless j = k = l = m = 4.
Similarly, for ∂jΓklm to be nonzero, we must have j ∈ {1, 2} and one of k, l,m
must be 1 or 2, while the other two must equal 4. Consequently, Rjklm = 0
unless either {j, k} = {l,m} = {1, 4}, or {j, k} = {l,m} = {2, 4}. It now follows
from (41.8) that all components Rjklm of the curvature tensor R of g are zero
except, possibly, those related via the algebraic symmetries (4.32) to

(41.10) Ra4c4 =
1

2
∂a∂cf for a, c = 1, 2 .

The only nonzero components of β = βa, a = 1, 2, obviously are βa4 = 1,
β4a = − 1. Furthermore, for any fixed pair (a, c) with a, c ∈ {1, 2}, the four-
times covariant tensor Zac given by

(41.11) 2Zac = βa ⊗ βc + βc ⊗ βa

shares the symmetries (4.32) of R, and the only nonzero components of Zac, equal
to 1 (or − 1), occur for the indices a4c4 and 4a4c (or, respectively, 4ac4 and
a44c). This implies 2R = (∂a∂cf)Zac, i.e., (41.6). Relation (41.7) is in turn
immediate from (41.6), as Rjl = Rjklmg

km (see (4.37)) while, by (41.2) and (41.9),
g44 = 0 and gaλ = gλa = 0 for a ∈ {1, 2} and λ ∈ {3, 4}. Hence R44 = Φ and
Rjl = 0 otherwise. This completes the proof. �

The construction described in Lemma 41.1 leads to many examples of Ricci-flat
metrics which will be useful later (see Remark 41.3 below, Example 43.1 in §43,
Example 44.1 in §44, and Corollary 49.2 in §49). Namely, we have

Corollary 41.2. Let g be an indefinite metric on an open subset of R4, defined as
in Lemma 41.1, for some fixed function f = f(x1, x2) and a symmetric nonsingular
2× 2 matrix G = [gac].

(a) g is locally symmetric if and only if f is a quadratic polynomial in x1, x2.
(b) g is Einstein or, equivalently, Ricci-flat, if and only if f is G-harmonic,

that is, gac ∂a∂cf = 0.

In fact, (a) is clear from (41.6) combined with the relation ∇βa = 0 (Lemma
41.1(ii)) and the fact that the tensors Z11, Z12, Z22 given by (41.11) are linearly
independent at each point, while (b) is obvious from (41.7). �

Remark 41.3. According to Corollary 41.2(a), all metrics g on R4 obtained as
in Lemma 41.1 with a function f that is a quadratic homogeneous polynomial in
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x1, x2 are locally symmetric. Another interesting feature of those metrics is that
each of them admits a one-parameter group is nonisometric homotheties. In fact,
for any real r > 0, the diffeomorphism Fr : R4 → R4 with Fr(x

1, x2, x3, x4) =
(rx1, rx2, r2x3, x4) then satisfies F ∗r g = r2g (notation as in (2.29)). Consequently,
multiplying g by a positive constant produces a metric which is still isometric to
g.

We conclude this section with statements of three theorems which together pro-
vide a complete local classification locally symmetric pseudo-Riemannian Einstein
manifolds (M, g) of dimension four. Since the Weyl tensor W of g then is par-
allel, its Petrov-Segre genus/class must be of the same class at all points of M .
The possible types of such metrics g are listed below by their sign patterns and
Petrov-Segre genera or classes.

Note that the first of our three theorems is nothing else than Theorem 14.7,
rephrased so as to account for the possible Petrov-Segre genera:

Theorem 41.4 (Cartan, 1926). Let W denote the Weyl tensor of a locally sym-
metric Riemannian Einstein 4-manifold (M, g). Then, one and only one of the
following three cases occurs:

(a) W is of the Petrov-Segre genus 3/3 and (M, g) is a space of constant
curvature, locally isometric to S4, H4 or R4 endowed with a constant
multiple of its standard metric;

(b) W belongs to the genus 3/21 and (M, g) is a nonflat space of constant
holomorphic sectional curvature, locally isometric to CP2 or (CP2)∗ with
a constant multiple of its standard metric;

(c) W represents the genus 21/21 and g is, locally, a product of two surface
metrics with equal nonzero constant Gaussian curvatures.

Proof. In view of Theorem 14.7, all we need to verify is that the Petrov-Segre genera
have been assigned correctly to cases (a) – (c). This in turn is obvious from (10.18),
(10.20) and, respectively, (10.22), along with the definition of the genera (40.1) (see
§40 and (39.7), (39.5)). Note that the scalar curvature s appearing in (10.20) and
(10.22) must be nonzero in cases (b), (c), for otherwise we would have W = 0 and,
consequently, g would be flat (as R = W = 0 by (5.10)). This would contradict
the hypothesis in (b), and, in view of (16.28), also the assumptions about the factor
Gaussian curvatures in (c). This completes the proof. �

Theorem 41.5 (Petrov, 1969). Let (M, g) be a locally symmetric four-dimension-
al Lorentzian Einstein manifold. Denoting W the Weyl tensor of (M, g), we then
have one and only one of the following three cases:

(a) W is of the Petrov-Segre class 3 and (M, g) is a space of constant curva-
ture, locally isometric to one of the manifolds listed in Examples 10.3 and
10.4;

(b) W is of class 21 and (M, g) is, locally, a Riemannian product of two
pseudo-Riemannian surfaces having equal nonzero constant Gaussian cur-
vatures;

(c) W is of class 2 and g is locally isometric to the Petrov metric described
in Example 43.1 of §43.

For a proof, see end of §43. �
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Theorem 41.6 (Cahen and Parker, 1980). Let (M, g) be a locally symmetric
Einstein 4-manifold with a metric g of the neutral sign pattern − − + + , and let
W be the Weyl tensor of (M, g). Then, one and only one of the following cases
occurs:

(i) W is of the Petrov-Segre genus 3/3 and (M, g) is a space of constant
curvature, locally isometric to one of the manifolds described in Examples
10.3 and 10.4;

(ii) W has the genus 3/21+ and (M, g) is a nonflat space of constant holo-
morphic sectional curvature, locally isometric to one of the manifolds in
Example 10.6;

(iii) W is of genus 3/21− and (M, g) is locally isometric to a pseudo-complex
projective space, as defined in Example 46.8 of §46;

(iv) W represents the genus 21+/21+ and g is, locally, a product of two pseu-
do-Riemannian surface metrics with the sign patterns + + and −− ,
having equal nonzero constant Gaussian curvatures;

(v) W is of genus 21−/21− and g is, locally, a product of two pseudo-Riem-
annian surface metrics with equal nonzero constant Gaussian curvatures,
which both have the sign pattern −+ ;

(vi) W is of genus 21+/21− and g is, locally, the result of complexifying a
positive-definite surface metric with a nonzero constant Gaussian curva-
ture, as described in Example 45.5 of §45;

(vii) W belongs to one of the five Petrov-Segre genera

(41.12) 3/2+ , 3/2− , 2+/2+ , 2+/2− , 2−/2− ,

and g is locally isometric to one of the five metrics representing these
genera, and described in Example 44.1 of §44.

For a proof, see end of §46. �

§42. Some nondiagonalizable Weyl tensors

This section deals with those classes/genera of Weyl tensors which are not diag-
onalizable, but can be realized by locally symmetric pseudo-Riemannian metrics in
dimension four. (See (39.8) and Proposition 40.2.) Specifically, Lemmas 42.1 and
42.3 below characterizes such Weyl tensors by expressing them in terms of tensor
products of suitable bivectors. A similar characterization of the (diagonalizable)
genus 21+/21− is provided by Lemma 42.4.

We also observe (Remark 42.6 below) that the particular structure of the curva-
ture tensor of locally symmetric metrics with nondiagonalizable Weyl tensors allows
a simple existence proof for local Killing fields.

Lemma 42.1. Let g be a metric of the Lorentzian sign pattern − + + + on a
4-manifold M , and let W = W (x) denote its Weyl tensor at a point x ∈ M .
Then, the following two conditions are equivalent :

(i) W is of the Petrov-Segre class 2 ;
(ii) There exist nonzero bivectors β, γ at x with

(42.1) W = β ⊗ β − γ ⊗ γ ,
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(42.2) 〈β, β〉 = 〈β, γ〉 = 〈γ, γ〉 = 0 ,

and

(42.3) γ = ∗β , for a suitable orientation of TxM .

Furthermore, if W is parallel and satisfies (i) at every point, some neigh-
borhood U of any given point of M admits parallel bivector fields β and
γ satisfying (42.1) – (42.3) everywhere in U .

Proof. Let us assume (i). According to (39.7) and Proposition 39.2, there exists
a complex basis α1, α2, α3 of [TxM ]∧2 in which h = ( , )c and W = W (x) have
the canonical form (39.5)II) with λ = 0, δ = 1 and ε = 1. Setting β = α1 and
γ = iα1 we then clearly have (42.3) (as γ = ∗α1 = ∗β). Also, (42.2) is obvious
since (β, β)c = 1 (by (39.5)II)), while ( , )c is complex-bilinear and 〈 , 〉 = Re ( , )c.
Finally, we have (42.1) since both sides yield the same values when applied to the
real basis α1, iα1, α2, iα2, α3, iα3 of [TxM ]∧2, as one sees using (39.5)II), (5.14) and
the relation 〈 , 〉 = Re ( , )c. Thus, (i) implies (ii). Conversely, assuming (42.1) –
(42.3), we can obtain a complex basis α1, α2, α3 of [TxM ]∧2 leading to the canonical
form (39.5)II) (with details as above) by setting α1 = β and choosing any α2, α3 ∈
[TxM ]∧2 with h(β, α2) = h(α2, α3) = h(α3, α3) = 0 and h(β, α3) = h(α2, α2) = 1,
where h = ( , )c. (Such α2, α3 exist by Lemma 3.14 with r = 1.) Hence (i) follows
from (ii). Finally, if W is parallel, β (and consequently γ) can be chosen, locally,
to form parallel bivector fields, according to Remark 40.1(b). This completes the
proof. �

Remark 42.2. For a four-dimensional Lorentzian manifold (M, g), the requirement
that the Weyl tensor W = W (x) at a given point x ∈ M be of the Petrov-Segre
class 2 amounts to the condition

(42.4) dimC KerW = 2 , W ◦ W = 0 .

where W = W (x) is treated as a complex-linear operator [TxM ]∧2 → [TxM ]∧2.
This is clear from (39.7) and (39.5), along with Proposition 39.2.)

Lemma 42.3. Suppose that g is a pseudo-Riemannian metric of the neutral sign
pattern − − + + on a 4-manifold M , while W = W (x) denotes the Weyl tensor
of g at a point x ∈M , and ± is one of the signs + and − . Then

(i) W is of the Petrov-Segre genus 3/2± if and only if there exists a nonzero
bivector β at x such that

(42.5) W = ±β ⊗ β , 〈β, β〉 = 0 ,

and, for a suitably chosen orientation in TxM ,

(42.6) ∗β = β .

(ii) W belongs to the Petrov-Segre genus 2±/2± if and only if some nonzero
bivectors β, γ at x satisfy the conditions

(42.7) W = ± (β ⊗ β + γ ⊗ γ) ,

along with (42.2) and

(42.8) ∗β = β , ∗γ = − γ , for a suitable orientation of TxM .

(iii) W has the Petrov-Segre genus 2+/2−, if and only if, for some nonzero
bivectors β, γ at x, we have (42.1) along with (42.2) and (42.8).
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Furthermore, if W is parallel and has, at every point, the property described in
(i), or (ii), or (iii), then some neighborhood U of any given point of M admits a
parallel bivector field β or, respectively, parallel bivector fields β and γ satisfying
(42.5) and (42.6), or (42.7), (42.2) and (42.8) or, respectively, (42.1), (42.2) and
(42.8) everywhere in U .

Proof. For any fixed orientation of TxM , W = W+(x) belongs to the subclass
2
¯
± if and only if some basis α1, α2, α3 of Λ+

xM brings W = W (x) and h = 〈 , 〉
(the inner product in Λ+

xM) into the canonical form (39.5)II) with λ = 0, δ = − 1
and ε = ± 1. (See (39.10) and Proposition 39.2.) Setting β = α1 we then have
〈β, β〉 = 0 (by (39.5)II)). Furthermore, W+(x) = ±β⊗β ; in fact, by (39.5)II) and
(5.14), both sides yield the same values when applied to α1, α2 and α3.

Conversely, if W+(x) = ±β⊗β for some β ∈ Λ+
xM with β 6= 0 and 〈β, β〉 = 0,

then W+(x) represents the subclass 2±. To see this, note that a basis α1, α2, α3

of Λ+
xM that makes W = W+(x) and h = 〈 , 〉 appear as the canonical form

(39.5)II) (with λ = 0, δ = − 1 and ε = ± 1) may be obtained by applying Lemma
3.14 to V = Λ+

xM with n = 3, r = 1 and u1 = β = α1, which produces α2 = w1

and α3 = v1 (with v1, w1 chosen as in Lemma 3.14). Then, by (5.14), we obtain
the representation (39.5)II) for W = W+(x). (Note that 〈α2, α2〉 equals 1 rather
than − 1, since h = 〈 , 〉 has in Λ+

xM the sign pattern − − + (see the comment
following (37.25)).

Assertions (i) – (iii) now follows from the above applied to W+ and W− sepa-
rately.

Finally, if W is parallel, β (or, respectively, β and γ) can be chosen, locally, to
form parallel bivector fields, according to Remark 40.1(b) applied to W = W+(x)
(or, respectively, to both W = W+(x) and W = W−(x)). This completes the
proof. �

Lemma 42.4. Let (M, g) be an orientable pseudo-Riemannian Einstein 4-mani-
fold of the neutral sign pattern − − + + . Then, the following two conditions are
equivalent :

(a) (M, g) is locally symmetric and its Weyl tensor W is of the Petrov-Segre
genus 21+/21− ;

(b) The scalar curvature s of g is nonzero and its curvature tensor R is,
locally, given by

(42.9) R =
s

8
(β ⊗ β − γ ⊗ γ)

for some parallel bivector fields β, γ satisfying the conditions (42.8) and

(42.10) 〈β, β〉 = 2 , 〈γ, γ〉 = − 2 .

Proof. (b) implies (a) in view of Schur’s Theorem 5.1 along with (5.33) (for n = 4)
and (39.10); in view of (5.14), we obtain the canonical forms (39.5)I) for both
W+(x) and W−(x), at any point x, by using orthonormal bases of Λ−xM and
Λ−xM that include the elements β(x) and γ(x).

Conversely, assume (a). From (39.10) and Remark 40.1(c) applied to both W =
W+(x) and W = W−(x) we obtain, locally, the existence of parallel bivector fields
β, γ with (42.8), (42.10) and Wβ = sβ/6, Wγ = sγ/6. Now (42.9) follows from
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(5.33) since, by (5.14) and Remark 40.1(c), both sides agree as operators acting on
bivectors (when tested on β, γ, and bivectors orthogonal to both β and γ). This
completes the proof. �

Remark 42.5. The same argument leads to completely analogous characterizations
of the genera 21/21, 21+/21+, 21−/21−, 21+/21−. (The only difference is that the
plus/minus signs appearing in (42.9) and (42.10) need modification.) The modified
formulae then are really nothing else than (10.13) and (10.14) (with the difference
between the factors s/8 and s/4 explained by different normalizations of β and
γ in (42.10) compared to (10.14)). This in turn may be used to prove the product-
of-surfaces cases in Theorem 41.5 and 41.6.

Remark 42.6. Suppose that we are given a 4-dimensional pseudo-Riemannian man-
ifold (M, g) and a point x ∈M , and W = W (x) is the Weyl tensor of (M, g) at
x. We now assume that either

(i) g is Lorentzian, that is, has the sign pattern − − + + , and its Weyl
tensor W is of the Petrov-Segre class 2, or

(ii) g has the neutral sign pattern − − + + , and W represents one of the
genera (41.12); specifically, these are

a) Genus 2+/2+,
b) Genus 2−/2−,
c) Genus 2+/2−,
d) Genus 3/2+,
e) Genus 3/2−.

If, in addition, (M, g) is locally symmetric (and so one of conditions (i), (ii)a) – e)
holds at every point x ∈ M), we denote r the rank of the Weyl tensor of (M, g)
acting on bivectors at any point of M , i.e., the fibre dimension of the subbundle
W ([TM ]∧2) of [TM ]∧2. Then, by (39.7) and (39.5), r = 1 in cases (i) and (ii)a),
b, c), and r = 2 in cases (ii)d), e).

Furthermore, in all cases, dim [isom(M, g)] ≤ 10−2r and every point of M has
a connected neighborhood U such that dim [isom(U, g)] = 10−2r. (Notation as in
Remark 17.6(i).) Finally, (M, g) is infinitesimally homogeneous and, consequently,
locally homogeneous.

This is an easy consequence of Proposition 17.26, with the dimension of the
centralizer Cx easily verified to be 6 − 2r as a consequence of Lemmas 42.1, 42.3
along with Lemmas 37.7 – 37.9 and formula (2.28).

Remark 42.7. Every locally symmetric pseudo-Riemannian Einstein 4-manifold is
infinitesimally homogeneous, and hence (by Lemma 17.20), also locally homoge-
neous. In fact, in the case of nondiagonalizable Weyl tensors, this was established
in Remark 42.7, while in the remaining cases (listed in Theorems 41.4 – 41.6),
Killing fields are easily constructed in the corresponding geoemtric models; cf. Ex-
ample 17.19.

§43. Petrov’s example

As already stated at the beginning of §41, the class of locally symmetric pseu-
do-Riemannian Einstein metrics in dimension four contains, beside the “obvious”
examples, also some exotic ones. In the case of metrics with the Lorentzian sign
pattern − + + + , such exotic metrics form just one local-isometry type, described
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in Example 43.1 below; its uniqueness is established in the proof of Theorem 41.5,
given at the end of this section.

The construction of the example and the classification theorem just mentioned
are both due to Petrov. (See Petrov, 1969, especially formula (25.23) on p. 154, p.
352, and formula (24.1) on p. 142.)

Cahen and Wallach (1970) proved a much more general result, which amounts
to a local classification of locally symmetric Lorentzian metrics in all dimensions.
Compared with that, our discussion is not only limited to the four-dimensional
case, but also further restricted just to those locally symmetric Lorentz 4-man-
ifolds which are also Einstein. (The latter restriction is significant since locally
symmetric Lorentz metrics, unlike Riemannian ones, need not be locally isometric
to products of Einstein metrics.)

Example 43.1. The locally symmetric Lorentzian Petrov metric on R4, here de-
noted g, is defined as follows. Let xj and ej , j = 1, . . . , 4, denote the Cartesian
coordinates in R4, and, respectively, the vectors of the standard basis of R4. We
declare g to be a special case of the metric given by (41.2) – (41.4), namely

(43.1)
g11 = g22 = g34 = g43 = 1 ,

g44 = (x1)2 − (x2)2 , and gjk = 0 otherwise,

that is,

(43.2) [gjk] =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 −f

 , f = (x2)2 − (x1)2 ,

where gjk = g(ej , ek) and the ej are treated as constant vector fields. In view of
Corollary 41.2, g is a locally symmetric Lorentzian Ricci-flat metric. Furthermore,
the Weyl tensor W of g represents, at every point, the Petrov-Segre class 2. (This
is a consequence of Lemma 42.1; for details, see Proposition 43.2 below.)

Proposition 43.2. The Weyl tensor W of the Petrov metric g described in Ex-
ample 43.1 above is of the Petrov-Segre class 2 at every point.

Proof. Since g is Ricci-flat (Corollary 41.2(ii)), we have W = R (see (5.10)) and
so (41.6) with f = [(x2)2 − (x1)2]/2 gives (42.1) with β = β2, γ = β1 (where
βa are defined as in Lemma 41.1(ii)). On the other hand, since [gac] in (41.3) is,
in this case, the identity matrix, formula (41.5) gives β = e2 ∧ e3, γ = e1 ∧ e3.
Using Lemma 41.1(i), we now obtain (42.2). On the other hand, in view of (43.2),
Proposition 37.1(ii) can be applied to the quadruple (a, b, c, d) = (e1, e3, e2, e4),
proving that β and γ satisfy (42.3) for the orientation that makes e1, e2, e3, e4

negative-oriented at each point. In view of Lemma 42.1, this completes the proof.
�

The following result provides a local classification of locally symmetric Lorentz-
ian Einstein metrics in dimension four with class 2 Weyl tensors. Note that our
assertion says ’locally isometric’ without adding ’up to a factor’. The latter phrase
would, in fact, be redundant here since, according to Remark 41.3, the positive-
constant multiples of the Petrov metric are all isometric to it.
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Theorem 43.3 (Petrov, 1969). Suppose that g is a locally symmetric Lorentzian
Einstein metric on a 4-manifold M whose Weyl tensor W is of the Petrov-Segre
class 2. Then (M, g) is locally isometric to the Petrov metric on R4, described in
Example 43.1.

Proof. By Proposition 40.2(i), (M, g) is Ricci-flat, and hence W = R (see (5.10)).
Let us now fix a point x ∈M . According to the final clause in Lemma 42.1, we can
find parallel bivector fields β, γ defined on some oriented connected neighborhood
U of x and such that conditions (42.1) – (42.3) hold everywhere in U . Writing
β+ = β, β− = γ and R = W , we thus have

(43.3) R = β+⊗ β+ − β−⊗ β− , ∇β± = 0 , β± 6= 0 .

(43.4) 〈β±, β±〉 = 〈β+, β−〉 = 0 , β± = 0 , β− = ∗β+ ,

The superscripts ± used here should not be confused with a similar notation for
Λ+
xM -components of bivectors, appearing in (6.15).
Throughout this argument, we will repeatedly “make U smaller”, that is, re-

place U with a suitable connected open subset of U , containing x, for which we
will still use the same symbol U .

Thus, making U smaller, we may assume that there exist C∞ vector fields ξ+,
ξ− and w, all defined on U , such that

(43.5) β+ = ξ+∧ w , β− = ξ−∧ w ,

(43.6) ∇w = 0 ,

and

(43.7) g(ξ±, ξ±) = 1 , g(ξ+, ξ−) = 0 , g(ξ±, w) = 0 and g(w,w) = 0 .

To see this, note that the first relation in (43.4), combined with Lemma 37.7,
guarantees the existence of vectors ξ±(x), w±(x) ∈ TxM satisfying the conditions

(43.8) β± = ξ±∧ w± , g(ξ±, ξ±) = 1 , g(ξ±, w±) = 0 and g(w±, w±) = 0

at the point x. By spreading these vectors through parallel transports (Remark
4.6), we obtain vector fields, for which relations (43.8) will remain valid throughout
(a smaller version of) U , since β± and g are all parallel. Furthermore, since,
at each point, β± determines w± uniquely up to a sign (cf. the final clause of
Lemma 37.7), w± is parallel as well (see Remark 4.6.) For any fixed point y ∈ U ,
let us set u2 = ξ+(y) and u3 = w+(y), and let u1 ∈ TyM be a nonzero vector
orthogonal to both u2 and u3. By (43.8), u3 is null and hence u1 cannot be null;
otherwise, u1 and u3 would span a null subspace in TyM of dimension 2, greater
than the maximum value 1 possible in the Lorentz sign pattern − + + + (see
(3.27)). Normalizing u1, we now may assume that g(u1, u1) = ± 1. However, if
we had g(u1, u1) = − 1, u1 + u2 and u3 would span a null plane, which again
contradicts (3.27). Thus, g(u1, u1) = 1 and, applying Proposition 37.1(ii) to the
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triple (a, b, c) = (u1, u3, u2) and using (43.5) and the second relation in (43.4), we
now obtain, for a suitable orientation,

u1 ∧ w+ = u1 ∧ u3 = ∗(u2 ∧ u3) = ∗(ξ+∧ w+) = ∗β+ = β− = ξ−∧ w−

at the point y. The uniqueness clause of Lemma 37.7 now implies that w+(y) and
u1 are, up to a simultaneus change of signs, the same as w−(y) and, respectively,
the sum of ξ−(y) and a multiple of w−(y). Therefore, as g(u2, u1) = g(u2, u3) = 0,
we have g(ξ+, ξ−) = 0. Finally, changing the signs of both ξ− and w− if necessary
(which will leave (43.8) unaffected), we obtain w+ = w−. Setting w = w+ = w−,
we thus have (43.5) – (43.7).

In view of (43.5), (43.7) and (2.22), β± treated as skew-adjoint bundle mor-
phisms TU → TU satisfy

(43.9) β±w = 0 , β±ξ± = w , β±ξ∓ = 0 .

Since β±(v, v′) = g(β±v, v′) by (2.19), using (43.3), (43.7) and (43.9), it is easy to
verify that, at any point of U we have, for any tangent vectors v, v′,

(43.10) R(v, v′)u = ± [g(u, v)g(w, v′)− g(u, v′)g(w, v)]w if u = ξ± or u = w .

(Both sides clearly vanish when u = w, cf. (4.26).) Let us now denote P± the
real-plane subbundles of TU given by

(43.11) P± = β±(TU) = Span {ξ±, w} .

(See (37.19).) Furthermore, let X± be the vector space of all C∞ functions φ :
U → R such that

(43.12) ∇φ is a section of P± = Span {ξ±, w} ,

and ∇dφ = ∓φw ⊗ w ; the local-coordinate form of the last equation is

(43.13) φ,jk = ∓φwjwk .

Pairs (φ,∇φ) with φ ∈ X± thus are nothing else than those sections (φ, u) of
the direct-sum vector bundle E = [U × R] ⊕ P± which are D±-parallel for the
connection D± in E given by

(43.14) D±v (φ, u) = (dvφ− g(v, u) , ∇vu ± φg(v, w)w)

for vector fields v tangent to U . Note that, since β± are parallel (see (43.3)),
relation (43.11) shows that P± are parallel subbundles of TU , as defined in Remark
4.7; hence, for any C1 section u of P± or L and any vector field v on U , ∇vu
is again a section of P±. Computing the curvature tensor R[±] of D± from (4.52)
(and using the shortcuts offered by Remark 4.4), we now obtain

R[±](v, v′)(φ, u) = (0 , R(v, v′)u ∓ [g(u, v)g(w, v′) − g(u, v′)g(w, v)]) .

Since u stands here for a section of (43.11), formula (43.10) now gives R[±] = 0,
i.e., D± is flat. Consequently, making U smaller again, we can find D±-parallel
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sections of P± defined on U , that realize any prescribed initial value at any point.
(See Lemma 11.2.) In particular, dimX± = 3.

For every φ ∈ X±, the function g(∇φ, ∇φ) is constant. In fact, (φ,sφ,s),j =
2φ,sφ,sj = 0 by (43.13), (43.12) and (43.7). Let us now fix φ± ∈ X± satisfying
the initial condition [∇φ±](x) = ξ±(x). Hence, by (43.7), g(∇φ±, ∇φ±) = 1
identically in U . Now, by (43.12), ∇φ± is at every point a combination of ξ± and
w ; the last identity, along with (43.7), now shows that the coefficient of ξ± in that
combination must be equal to 1, i.e., ∇φ± equals ξ± plus a function times w. Let
us now change our notations, modifying ξ± so that from now on it stands for

(43.15) ξ± = ∇φ± , that is, ξ±j = φ±,j .

Since that amounts to adding to the old ξ± a functional multiple of w, relations
(43.5) – (43.7) and (43.9) – (43.12) all remain valid with this new meaning of ξ±.
Also, by (43.13) and (43.15),

(43.16) ∇ξ± = ∓φ±w ⊗ w , i.e., ξ±j,k = ∓φ±wjwk .

Making U smaller, we can now find a C∞ vector field v on U such that

(43.17) ∇v = φ+β+ − φ−β− , that is, vj,k = φ+β+
kj − φ−β−kj ,

and

(43.18) g(v, ξ+) = g(v, ξ−) = 0 , g(v, w) = 1 , g(v, v) = (φ+)2 − (φ−)2 .

In fact, let H = [Span {ξ+, ξ−}]⊥ be the real-plane subbundle of TU obtained as
the orthogonal complement of the subbundle spanned by ξ+ and ξ−. Formula

(43.19) Duv = ∇uv − g(v, w)
[
φ+β+u − φ−β−u

]
,

for vector fields u, v tangent to U , now defines a connection D in TU such
that the subbundle H is D-parallel, as defined in Remark 4.7. In fact, since
g(β±u, ξ±) = − g(u,w) and g(β±u, ξ∓) = 0 for all u (due to (43.9) and skew-
adjointness of β±), combining (43.19) with (43.16) and differentiation by parts
we obtain g(Duv, ξ

±) = 0 whenever g(v, ξ+) = g(v, ξ−) = 0. Consequently, the
same formula (43.19) (for vector fields v which are sections of H) now defines a
“restricted” connection in H, also denoted D. Computing its curvature via (4.52),
with the simplifications suggested by Remark 4.4, and using the relation

(43.20) β±u = g(ξ±, u)w − g(w, u)ξ±

for any tangent vector u (immediate from (43.5), (43.7), (2.15), and (2.22)), we

see that the connection D̃ in H is flat. Using Lemma 11.2, we can find a D-
parallel vector field v (on a smaller version of U) such that (43.18) holds just
at the point x. That such a choice of v(x) is possible is clear since the vectors
ξ±(x) are (+ +)-orthonormal by (43.7); thus, g(x) restricted to the orthogonal
complement P⊥ of the plane P ⊂ TxM spanned by ξ+(x) and ξ−(x) must have
the sign pattern −+ , while, by (43.7) and (2.4), w(x) is a nonzero null vector in
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P⊥, and choosing u ∈ P⊥ with g(u, u) = 0 and g(u,w(x)) = 1, we may now set
v(x) = u + [(φ+(x))2 − (φ−(x))2]w(x)/2, which yields (43.18) at x.

For v selected as above, we clearly have du[g(v, w)] = 0 in view of (43.6) and
(43.19); note that, by (43.20) and (43.7), g(β±u,w) = 0 for all u. Thus, g(v, w)
is constant, and our choice of v(x) now guarantees that g(v, w) = 1 everywhere.
This implies (43.17) for our v (as D v = 0, with D given by (43.19)).

Now, using (43.17), (43.15), we obtain d[g(v, v)− (φ+)2 + (φ−)2] = 2φ−(β−v +
ξ−) − 2φ+(β+v + ξ+) = 0 since, by (43.20) with g(v, w) = 1 and g(v, ξ±) = 0,
we have β±v = − ξ±. The function g(v, v) − (φ+)2 + (φ−)2 now is constant, and
vanishes identically, which proves (43.18) everywhere in U .

Let ξ = ξ± for a fixed sign ± . By (43.16) and (43.18), we then have ∇vξ =
∓φ±w, while (43.17) and (43.9) give ∇ξv = ±φ±w. Therefore, by (4.4), [v, ξ±] =
0. Moreover, in view of (43.16), (43.6) and (43.8), ∇uu′ = 0 whenever u, u′ are
any two of the three vector fields ξ+, ξ− and w. Hence, again by (4.4), the vector
fields

(43.21) e1 = ξ−, e2 = ξ+, e3 = w , e4 = v

commute with one another, i.e., [ej , ek] = 0 for all j, k. Corollary 11.6 now implies
the existence of a coordinate system xj , j = 1, 2, 3, 4, on a smaller version of U ,
for which the coordinate vector fields ej are given by (43.21). Furthermore, by
(43.15), (43.7) and (43.18), the partial derivatives ∂jφ

± = ∂φ±/∂xj are all zero
except ∂1φ

− = ∂2φ
+ = 1. Hence φ− and φ+ differ from x1 and, respectively, x2

by constants; replacing x1 with φ− and x2 with φ+, we obtain a new coordinate
system, which we still denote xj , and which has the same coordinate vector fields
(43.21) as before. It is now obvious from (43.18) and (43.7) along with x1 = φ−

and x2 = φ+ that the metric g has in these coordinates the component functions
gjk = g(ej , ek) given by (43.1). This completes the proof. �

We are now in a position to prove a local classification result for locally symmetric
Lorentzian Einstein 4-manifolds, namely, Theorem 41.5 of §41:

Proof of Theorem 41.5. Of the six a priori possible classes listed in (40.2), three
(namely, 111, 11 and 1) are excluded by Proposition 40.2. Moreover, in case 3 we
have W = 0 (see (39.7)), and so assertion (a) of Theorem 41.5 follows from (5.10)
and (10.1). This leaves just two more possibilities: 21 and 2.

Case 21 leads to assertion (b) of Theorem 41.5. In fact, according to Remark
40.1(c) we can find, locally, a parallel bivector field α with (α, α)c = 1 and
Wα = − 2λα for some λ ∈ C, where ( , )c is the complex-bilinear inner prod-
uct of bivectors given by (37.3). Using Lemma 37.6(ii), at each point x, we now
obtain α = e1∧ e2 for some unit orthogonal vectors e1, e2 ∈ TxM . In view of
(37.19), the real-plane subbundle P of TM spanned by e1 and e2 is parallel, as
defined in Remark 4.7. Thus, P and Q = P⊥ satisfy condition (ii) of Theorem
14.5 and, consequently, also condition (i) in Theorem 14.5. This yields assertion
(b) of Theorem 41.5.

Finally, in case 2, assertion (c) of Theorem 41.5 is immediate from Theorem 43.3.
This completes the proof. �

§44. Locally symmetric neutral metrics (sign pattern − − + +)

We now proceed to describe several examples of “exotic” locally symmetric Ein-
stein metrics on 4-manifolds, this time with the neutral sign pattern − − + + .
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Metrics of this type were classified by Cahen and Parker (1980), but some of them
have been known much longer; for instance, the metrics with f = f± in our Ex-
ample 44.1 appear in Petrov’s monograph. (See Petrov, 1969, especially Example
2 on p. 256.)

Example 44.1. Let xj and ej , j = 1, . . . , 4, stand for the Cartesian coordinates
in R4 and, respectively, the standard basis of R4. Furthermore, let f be one of
the following five quadratic homogeneous polynomial functions of two real variables
x1, x2 :

(44.1) f± = ± (x1)2 , f±± = ±
[
(x1)2 + (x2)2

]
, f+− = (x1)2 − (x2)2 ,

where ± is one of the signs + or − . Treating the ej as constant vector fields
on R4, we can now define a pseudo-Riemannian metric g on R4 by declaring its
components functions gjk = g(ej , ek) to be

(44.2)
g12 = g21 = g34 = g43 = 1 ,

g44 = − f , and gjk = 0 otherwise.

In other words,

(44.3) [gjk] =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 −f

, f being one of f+, f−, f++, f−−, f+− .

Thus, g has the neutral sign pattern − − + +. Moreover, in view of Corollary
41.2, g is locally symmetric and Ricci-flat.

Finally, depending on whether f is f±, f±±, or f+−, the Weyl tensor W
of g represents the Petrov-Segre genus 3/2±, 2±/2± or, respectively, 2+/2−. To
see this, let us consider the bivector fields β = β1 and γ = β2, with βa defined
as in Lemma 41.1(ii)). In view of (44.2) and (41.5), we have β = e2 ∧ e3 and
γ = e1 ∧ e3. Therefore, Lemma 41.1(i) shows that β and γ satisfy (42.2). On the
other hand, we obtain (42.8) for β from Proposition 37.1(i) applied to (a, b, c, d) =
(e2, e3, e1, e4), while relation (42.8) for γ follows from Proposition 37.1(i) with
(a, b, c, d) = (e1, e3, e2, e4). (In both cases, the Hodge star ∗ corresponds to g
along with the orientation that makes e1, e2, e3, e4 positive-oriented at each point.)
Furthermore, by Corollary 41.2(b) and (5.10), we have R = W and so (41.6) gives
(42.5), (42.7) or (42.1), depending on whether f = f±, f = f±± or, respectively,
f = f+−. The fact that W is of the required Petrov-Segre genus now follows from
Lemma 42.3.

Proposition 44.2. Let (M, g) be a locally symmetric Einstein 4-manifold with a
metric g of the neutral sign pattern − − + + . If the Weyl tensor W of (M, g)
represents one of the five Petrov-Segre genera 3/2±, 2±/2± and 2+/2−, listed in
(41.12), then g is locally isometric to one of the five metrics described in Example
44.1.

Proof. Let W first be of the genus 3/2±, for some fixed sign ± . By Proposition
40.2(i), (M, g) is Ricci-flat, so that W = R (cf. (5.10)). Let us fix a point x ∈M .
In view of the final clause in Lemma 42.3, we can find a nonzero parallel bivector
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field β defined on some oriented connected neighborhood U of x and satisfying
conditions (42.5), (42.6) everywhere in U . We thus have, with W = R,

(44.4) R = ±β ⊗ β , ∇β = 0 , β 6= 0 .

As in the proof of Theorem 43.3, we will “make U smaller” whenever convenient.
As the first example, by making U smaller we may assume that there exist C∞

vector fields ξ, w defined on U and such that

(44.5) β = ξ ∧ w , g(ξ, ξ) = g(w,w) = g(ξ, w) = 0 ,

and, with ∇ standing as usual for the Levi-Civita connection of g,

(44.6) ∇ξ = ∇w = 0 .

In fact, the existence of vectors ξ(x), w(x) ∈ TxM satisfying (44.5) at x is imme-
diate from (42.6) and Lemma 37.8. Spreading these vectors away from x through
radial parallel transports (Remark 4.6), we obtain vector fields ξ, w on (a possibly
smaller version of) U , for which relations (44.5) will remain valid, since β and g
are parallel. Let us now denote P the real-plane subbundle of TU given by

(44.7) P = β(TU) = Span {ξ, w} .

(See (37.19).) Since β is parallel, P clearly is a ∇-parallel subbundle of TU , as
defined in Remark 4.7. Thus, ∇ has an obvious restriction to a connection in P
and, according to Example 4.3, that “restricted connection” in P is flat. Thus, by
Lemma 11.2, if we make U smaller again, we can find two parallel sections of P
on U whose values at x are ξ(x) and w(x). Due to the their parallel-transport
origins, ξ and w now must coincide with those parallel sections everywhere in U ,
which proves (44.6).

From (44.5) and (2.27) we now obtain

(44.8) β2 = 0 .

Also, by (44.5), (2.15), and (2.22), for any tangent vectors v, v′, u we have

(44.9) βv = g(ξ, v)w − g(w, v)ξ ,

(44.10) g(βv,w) = g(βv, ξ) = 0 ,

(44.11) R(v, v′)u = ± [g(ξ, v)g(w, v′)− g(ξ, v′)g(w, v)]βu .

Here ± is, again, the fixed sign appearing in (44.4) and in the genus 3/2±.
Combining (44.6) with (4.22) and Poincaré’s Lemma (Corollary 11.3), we can

find C∞ functions θ, χ on a smaller version of U with

(44.12) w = ∇θ , ξ = ∇χ .
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Also, making U smaller, we can find C∞ vector fields u, v on U satisfying the
inner-product relations

(44.13)
g(u, ξ) = g(v, w) = 1 , g(u,w) = g(v, ξ) = 0 ,

g(u, u) = g(u, v) = 0 , g(v, v) = ∓χ2 ,

and the differential equations ∇u = ∓χw ⊗ w, ∇v = ∓χβ, the local-coordinate
forms of which are

(44.14) uj,k = ∓χwjwk , vj,k = ±χβjk ,

with the same fixed sign ± as in the genus 3/2±. To see this, let us consider the

connections D and D̃ in TU given by

(44.15) Dvu = ∇vu ± χg(v, w)βu , D̃vu = ∇vu ± [χg(u,w)βv − θg(u, ξ)]βv ,

for vector fields v tangent to U . We may now compute the curvature tensors of
both connections from (4.52), with the shortcuts provided by Remark 4.4. Using
(44.12), (44.6), (44.4), (44.8) and (44.11), we easily see that D is flat. A similar
but slightly longer computation involving, in addition, (44.9) and (44.10), shows

that D̃ is flat as well. Applying Lemma 11.2, and making U smaller again, we
can find a D-parallel vector field u and a D̃-parallel vector field v, defined on U ,
and having any prescribed values at x.

Let us now select, and fix, such D-parallel u and D̃-parallel v with the property
that their values u(x), v(x) satisfy (44.13) just at the point x. This can be done
by initially selecting u = u(x) and v = v(x) so as to have the first four relations in
(44.13). (Note that ξ∧w 6= 0 at x by (44.5) and (44.4), i.e., ξ and w are linearly
independent, and so we may find a vector orthogonal to one of them, but not to the
other.) If we now replace u by u−g(u, u)ξ/2 and v by v−g(u, v)ξ−[g(v, v)± χ]w,
at the point x, we will clearly have (44.13) at x (in view of (44.5)).

For the vector fields u, v selected above, the functions g(u, ξ), g(v, w), g(u,w),
g(v, ξ), g(u, u), are all constant; in fact, they are automaically constant whenever

u is D-parallel and v is D̃-parallel. (To see this, use the Leibniz rule (4.5) for ∇,
along with (44.6), (44.10) and the fact that g(βu, u) = 0 due to skew-adjointness
of β.) This yields the first five relations in (44.13) which, by (44.9), implies

(44.16) βu = w , βv = − ξ .

Consequently, we have (44.14) in view of (44.14).
Computing ∇[g(u, v)] via (44.14), we now obtain (usvs),j = ±χ[βsju

s − wj ]
(as wsvs = 1), so that ∇[g(u, v)] = χ(βu − w) = 0 from (44.16). Similarly, using
(44.14) we get ∇[g(v, v) ± χ2] = ± 2χ(βv + ξ) = 0 in view of (44.16). Thus, the
functions g(u, v) and g(v, v)± χ2 are both constant and, as they are zero at x, they
must vanish on U , which proves the last two relations in (44.13). Consequently,
all seven relations (44.13) now hold everywhere in U .

By (44.5), (44.6), (44.13), (44.16) and (44.14), we now have ∇ξ = ∇w = 0,
∇ξu = ∇ξv = ∇wu = ∇wv = 0 and ∇uv = ∇vu = ∓χw. Hence, by (4.4), the
vector fields

(44.17) e1 = u , e2 = ξ , e3 = w , e4 = v
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commute with one another, i.e., [ej , ek] = 0 for all j, k. In view of Corollary
11.6, there must now exist a coordinate system xj , j = 1, 2, 3, 4, whose domain
is a smaller version of U and for which the coordinate vector fields ej are given
by (44.17). Furthermore, by (44.12), (44.5) and (44.13), the partial derivatives
∂jχ = ∂χ/∂xj are all zero except ∂1χ = duχ = 1. Hence χ and x1 differ
by a constant and so, replacing x1 with χ we obtain a new coordinate system,
which we still denote xj , and which clearly has the same coordinate vector fields
(44.17). Since we now have χ = x1, it is immediate from (44.5) and (44.13) that
the components gjk = g(ej , ek) of g in these coordinates are given by (44.2) with
f = ± (x1)2. This proves our assertion for the genera 3/2±.

Let us now consider the remaining case, where the genus of W is one of 2+/2+,
2−/2− or 2+/2−. Since this part of our argument is virtually identical to the proof
of Theorem 43.3 given in §43, our presentation will be brief. In particular, we
will work with a fixed point x ∈ M , and U will stand for an oriented connected
neighborhood of x which will be made “smaller and smaller” as needed, without
further comments.

By Proposition 40.2(i), (M, g) is Ricci-flat. The final clause of Lemma 42.1
allows us to choose nonzero parallel bivector fields β+ = β, β− = γ defined on
U and satisfying (42.2) and (42.8) plus a third condition which, depending on the
genus, is (42.7) or (42.1), in both cases with W = R. To discuss all these cases
simultaneously, we will write

(44.18) R = ε+β+⊗ β+ + ε−β−⊗ β− ,

(44.19) 〈β±, β±〉 = 〈β+, β−〉 = 0 , ∇β± = 0 , ∗β± = ±β± 6= 0 .

There must now exist C∞ vector fields ξ+, ξ− and w on U such that

(44.20) β+ = ξ+∧ w , β− = ξ−∧ w ,

(44.21) ∇w = 0 ,

and

(44.22) g(ξ±, u±) = g(ξ±, w) = g(w,w) = 0 , g(ξ+, ξ−) = 1 .

In fact, Lemma 37.9 combined with (44.19) guarantees the existence of vectors at
x satisfying (44.20) and (44.22). Spreading these vectors through radial parallel
transports (Remark 4.6), we obtain vector fields, still satisfying the same relations
and, since β+ and β− determine w uniquely up to a sign and are themselves
parallel, (44.21) follows.

In view of (44.20), (44.22) and (2.22), β± treated as skew-adjoint bundle mor-
phisms TU → TU satisfy

(44.23) β±w = 0 , β±ξ± = 0 , β±ξ∓ = w .

Since β±(v, v′) = g(β±v, v′) by (2.19), using (44.18), (44.22) and (44.23), it is
easy to verify that, at any point of U we have, for any tangent vectors v, v′,
(44.24)
R(v, v′)u± = ε∓

[
g(u∓, v)g(w, v′)− g(u∓, v′)g(w, v)

]
w if u± = ξ± or u± = w .
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(Both sides are zero when u± = w ; cf. (4.26).) Let us now denote P± the real-
plane subbundles of TU given by

(44.25) P± = β±(TU) = Span {ξ±, w} ,

cf. (37.19). Furthermore, let X be the vector space of all pairs (φ+, φ−) of C∞

functions φ± : U → R such that

(44.26) ∇φ± is a section of P± = Span {ξ±, w} ,

and ∇dφ± = − ε∓φ∓w ⊗ w ; in local coordinates, the last equation reads

(44.27) φ±,jk = − ε∓φ∓ wjwk .

Quadruples (φ+, φ−, ∇φ+, ∇φ−) with (φ+, φ−) ∈ X are nothing else than those
sections (φ+, φ−, u+, u−) of the direct-sum vector bundle E = [U ×R2]⊕P+⊕P−
which are D-parallel for the connection D in E given by Dv(φ

+, φ−, u+, u−) =
(Y +, Y −, Z+, Z−) with Y ± = dvφ

±−g(v, u±) and Z± = ∇vu±+ ε∓φ∓g(v, w)w,
for vector fields v tangent to U . Computing the curvature tensor RD of D from
(4.52), with the simplifications described in Remark 4.4, we now obtain

RD(v, v′)(φ+, φ−, u+, u−) =
(
0 , 0 , A+, A−

)
with A± = R(v, v′)u± − ε∓ [g(u∓, v)g(w, v′)− g(u∓, v′)g(w, v)]w. Since u± stands
here for a section of (44.25), formula (44.24) now gives RD = 0, i.e., D is flat.
Consequently, making U smaller again, we can find D-parallel sections of P±,
defined on U , that realize any prescribed initial value at any point. (See Lemma
11.2.) In particular, dimX = 6.

For every (φ+, φ−) ∈ X , the functions g(∇φ±, ∇φ±) and g(∇φ+, ∇φ−) are
constant in view of (44.27), (44.26) and (44.22). Let us now fix (φ+, φ−) ∈ X
satisfying the initial conditions [∇φ±](x) = ξ±(x). By (44.22), g(∇φ±, ∇φ±) = 0
and g(∇φ+, ∇φ−) = 1 identically in U . By (44.26), ∇φ± is at every point a
combination of ξ± and w ; the inner-product identities just established, along with
(44.22), now show that the coefficients of ξ± in those combinations must be equal to
1, i.e., ∇φ± equals ξ± plus a function times w. We can now change our notations,
replacing the old meaning of ξ± with a new one, given by

(44.28) ξ± = ∇φ± , that is, ξ±j = φ±,j .

Since that amounts to adding to the old ξ± a functional multiple of w, relations
(44.20) – (44.22) and (44.23) – (44.26) all remain valid with this new meaning of
ξ±. Also, by (44.27) and (44.28),

(44.29) ∇ξ± = − ε± φ∓w ⊗ w , that is, ξ±j,k = − ε± φ∓wjwk .

Making U smaller, we can now find a C∞ vector field v on U such that

(44.30) ∇v = − ε+φ+β+ − ε−φ−β− , i.e., vj,k = − ε+φ+β+
kj − ε−φ−β−kj ,
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and

(44.31)
g(v, ξ+) = g(v, ξ−) = 0 , g(v, w) = 1 ,

g(v, v) = − ε+(φ+)2 − ε−(φ−)2 .

In fact, let H = [Span {ξ+, ξ−}]⊥ be the real-plane subbundle of TU obtained as
the orthogonal complement of the subbundle spanned by ξ+ and ξ−. Formula

(44.32) D̃uv = ∇uv − g(v, w)
[
ε+φ+β+u + ε−φ−β−u

]
,

for vector fields u, v tangent to U , now defines a connection D̃ in TU such
that the subbundle H is D̃-parallel, as defined in Remark 4.7. In fact, since
g(β±u, ξ±) = 0 and g(β±u, ξ∓) = − g(u,w) for all u (due to (44.23) and skew-
adjointness of β±), combining (44.32) with (44.29) and differentiation by parts

we obtain g(D̃uv, ξ
±) = 0 whenever g(v, ξ+) = g(v, ξ−) = 0. Consequently, the

same formula (44.32) (for vector fields v which are sections of H) now defines a

“restricted” connection in H, also denoted D̃. Computing its curvature via (4.52),
with the simplifications suggested by Remark 4.4, and using the relation

(44.33) β±u = g(ξ±, u)w − g(w, u)ξ±

for any tangent vector u (immediate from (44.20), (44.22), (2.15), and (2.22)),

we see that the connection ˜̃D in H is flat. Using Lemma 11.2, we can find a
D̃-parallel vector field v which is a section of H (on a smaller version of U) and
satisfies (44.31) just at the point x. To see that such a choice of v(x) is possible,
note that we can find v = v(x) satisfying the first three relations in (44.31) at
x (since w(x) is not a combination of ξ+(x) and ξ−(x)). To obtain the fourth
relation in (44.31), it then suffices to replace v with v − [g(v, v) + ε+(φ+)2 +
ε−(φ−)2]w/2.

For v selected as above, we clearly have du[g(v, w)] = 0 in view of (43.6) and
(44.32); note that, by (44.33) and (44.22), g(β±u,w) = 0 for all u. Thus, g(v, w)
is constant, and our choice of v(x) now guarantees that g(v, w) = 1 everywhere.

This implies (44.30) for our v (as D̃ v = 0, with D̃ given by (44.32)).
Now, using (44.30), (44.28), we obtain

d[g(v, v) + ε+(φ+)2 + ε−(φ−)2] = 2ε+φ+(β+v + ξ+) + 2ε−φ−(β−v + ξ−) = 0

since, by (44.33) with g(v, w) = 1 and g(v, ξ±) = 0, we have β±v = − ξ±. The
function g(v, v) − ε+(φ+)2 − ε−(φ−)2 is therefore constant, and hence vanishes
identically, which proves (44.31) everywhere in U .

Let ξ = ξ± for a fixed sign ± . By (44.29) and (44.31), we then have ∇vξ =
−ε±φ∓w, while (44.30) and (44.23) give ∇ξv = −ε±φ∓w. Therefore, by (4.4),
[v, ξ±] = 0. Moreover, in view of (44.29), (43.6) and (43.8), ∇uu′ = 0 whenever
u, u′ are any two of the three vector fields ξ+, ξ− and w. Hence, again by (4.4),
the vector fields

(44.34) e1 = ξ−, e2 = ξ+, e3 = w , e4 = v

commute with one another, i.e., [ej , ek] = 0 for all j, k. Corollary 11.6 now implies
the existence of a coordinate system xj , j = 1, 2, 3, 4, on a smaller version of U , for



232 ANDRZEJ DERDZINSKI

which the coordinate vector fields ej are given by (44.34). Furthermore, by (44.28),
(44.22) and (44.31), the partial derivatives ∂jφ

± = ∂φ±/∂xj are all zero except
∂1φ

+ = ∂2φ
− = 1. Hence (as in the proof of Theorem 43.3) we can replace x1

with φ+ and x2 with φ−, obtaining a new coordinate system, which we still denote
xj , and which has the same coordinate vector fields (44.34) as before. It is now
obvious from (44.31) and (44.22) that the component functions gjk = g(ej , ek) of
the metric g in these coordinates are given by (44.2) with f = ε+(x1)2 + ε−(x2)2.
This completes the proof. �

§45. Complex-analytic metrics and complexifications

The results presented here go back to Cahen and Parker (1980).

In full analogy with real-analytic pseudo-Riemannian metrics on real manifolds,
one can speak of complex-analytic metrics on complex manifolds. Our interest in
such metrics arises from their usefulness in creating further examples of locally
symmetric Einstein metrics g in dimension four (with the neutral sign pattern
− − + +). Namely, if we start with a (real) surface metric h having a nonzero
constant Gaussian curvature, and form its “local complexification”, or complex-
analytic extension, which is a complex-analytic metric hc on a complex surface,
then its real part g = Rehc is a real 4-dimensional locally symmetric Einstein
metric and, in addition, its Weyl tensor W is of the Petrov-Segre genus 21+/21−
at every point.

The aim of this section is to verify the claim just made about g (see Example 45.5
below). We also establish its converse (Proposition 45.7), which is a classification
result stating that, up to local isometries, the only metrics g with the properties
just listed are those obtained from the above construction.

Let f be a real-valued, real-analytic function of m real variables x1, . . . , xm,
defined on a (connected) domain U ⊂ Rm. There exists a complex-analytic exten-
sion of f , that is, a complex-valued, complex-analytic function fc of m complex
variables z1, . . . , zm, which is defined on a connected open set Ω in Cm with
U = Ω∩Rm, and coincides with f on U . Such an extension fc is unique once Ω
is fixed, and has the same power-series expansion at any point of U as f . Dealing
with fc, we will often denote it f and call it simply f treated as a complex-analytic
function.

Let M be a complex manifold of some complex dimension m (cf. §23). By a
complex-analytic metric g on M we mean an assignment to each point x ∈M of
a nondegenerate complex-bilinear symmetric form g(x) : TxM × TxM → C whose
dependence on x is complex-analytic, as described in the next paragraph.

Specifically, since our discussion is local, we may as well fix a complex-analytic
local coordinate system zj in M , j = 1, . . . ,m, thus identifying the coordinate
domain with a region Ω in Cm. A complex-analytic metric g on Ω now is
described by its component functions gjk with gjk = g(ej , ek), where ej , j =
1, . . . ,m, are the vectors of the standard basis of Cm, treated as constant vector
fields. The requirements of complex-analyticity, nondegeneracy, and symmetry in
the above definition now mean, respectively, that the gjk are all complex-analytic,
while det[gjk] 6= 0 and gjk = gkj at every point of Ω.

Any complex-analytic metric g has a well-defined Levi-Civita connection ∇,
gradient operator (also denoted ∇), curvature tensor R, Ricci tensor Ric and
scalar curvature function s, all defined by the same local-coordinate formulae (4.1),
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(4.25), (4.35), (4.40) as in the real case, with [gjk] = [gjk]−1 and

(45.1) [gjk] = g(∇zj , ∇zk) ,

as in (2.8) and (2.11). The only difference lies in the required regularity: Since
the operators ∂j = ∂/∂zj now are the complex (Cauchy-Riemann) partial deriva-
tives, all functions they are applied to, or resulting from their application, must be
complex-analytic.

As for the coordinate-free meaning of these objects, it is completely analogous to
that for real metrics. For instance, at any point x, R(x) sends vectors v, w, u tan-
gent at x, complex-trilinearly, to a vector R(v, w)u; Ric(x) is a complex-bilinear
form sending vectors v, w to a complex scalar Ric(v, w); and ∇ associates with
holomorphic (i.e., complex-analytic) vector fields v, w another such field ∇vw.
Again, ∇ is characterized by being the unique torsionfree complex-analytic con-
nection compatible with g (cf. Remark 4.1).

In particular, we may speak of complex-analytic metrics which are locally sym-
metric or Einstein, that is, satisfy ∇R = 0 (i.e., Rjkl

m
,p = 0) or, respectively,

(0.1).
Complex-analytic metrics give rise to very easy constructions of (real) pseudo-

Riemannian Einstein metrics. (See the beginning of this section.) Before discussing
such constructions, we need the following simple fact from linear algebra.

Lemma 45.1. Let V be a finite-dimensional complex vector space with a fixed
nondegenerate complex-bilinear symmetric form h : V × V → C, and let g :
V × V → R be the real-bilinear form g = Reh. Furthermore, let F : V → V be
the complex-linear operator corresponding via h to a given complex-bilinear form
B on V , so that h(Fv,w) = B(v, w) for all v, w ∈ V . Then the same F is the
unique real-linear operator V → V corresponding via g = Reh to the real-bilinear
form ReB.

This is immediate if we take the real part of the equality h(Fv,w) = B(v, w)
and use uniqueness of F . �

Example 45.2. Any (real) pseudo-Riemannian metric h in any real dimension m
which is real-analytic can be locally complexified, which produces a complex-analytic
metric hc in the complex dimension m. A local complexification of h is obtained
by fixing a local coordinate system xj , j = 1, . . . ,m, in which h has real-analytic
component functions hjk, and then declaring hc to be the metric whose component
functions, in a suitable domain of the m complex coordinates z1, . . . , zm, are the
same hjk, now treated as complex-analytic functions of the variables z1, . . . , zm

(see the beginning paragraph of this section). In other words, the components of
hc are the complex-analytic extensions of the hjk. For notational convenience, we
will sometimes use the same symbol h for both h and hc. Due to uniqueness of
the analytic continuation, all relations valid for the original metric h that appear
in local coordinates as polynomial equalities involving the hjk and their partial
derivatives up to any given order, will also hold for hc. Thus, for instance, hc is
locally symmetric, or Einstein, if so is h. As another example, every real surface
metric h satisfies the relation Ric = κh, where κ is its Gaussian curvature. (See
Remark 10.1.) If h is real-analytic, the same relation must holds for hc :

(45.2) Ricc = κhc .
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Note that Schur’s Theorem 5.1 remains valid, with the same proof, for complex-
analytic metric. Note that this does not contradict (45.2): Since the conclusion of
the complex version of Schur’s Theorem is true only in complex dimensions other
than 2, it does not force the Gaussian curvature κ in (45.2) to be constant.

Example 45.3. The real part g = Reh of any complex-analytic metric h in the
complex dimension m is a (real) pseudo-Riemannian metric in the real dimension
n = 2m; in fact, g is nondegenerate by Remark 3.11. Moreover, g must have the
neutral sign pattern (m,m), i.e., − . . . − + . . . + with m minuses and m pluses.
(In fact, we have g(iv, iw) = − g(v, w) for tangent vectors v, w, i.e., multiplication
by i establishes, at any point, an algebraic equivalence between g and − g.) Let
the symbols ∇, R, Ric and s stand, as usual, for the Levi-Civita connection of
g, its curvature tensor R, Ricci tensor Ric and scalar curvature s, all interpreted
in the usual fashion; thus, at any point x, R(x) sends three vectors v, w, u to
a vector R(v, w)u. Also, let Rc denote the Ricci tensor of g regarded, at each
point x, not as a bilinear form on, but as a linear operator in the tangent space;
the components of Rc thus are Rkj = Rjlg

lk. If we mark the analogous objects
for the complex-analytic metric h with the superscript c , then

(45.3) ∇ = ∇c , R = Rc , Rc = Rcc ,

(45.4) Ric = 2 Re (Ricc) ,

(45.5) s = 2 Re (sc) .

In fact, since ∇c is torsionfree and compatible with g, it must coincide with ∇
(Remark 4.1). Therefore, R = Rc in view of formula (4.52). However, with the
Ricci tensor the situation is different: ’Trace’ in (4.34) stands for the real trace
for g and the complex trace for h, and these two traces, rather than being equal,
are related by (3.4). This gives (45.4). Relation Rc = Rcc now is immediate
from (45.4) and Lemma 45.1 for B = Ric(x), at any point x. This proves (45.3).
Finally, since s = Trace Rc, equality (45.5) is immediate from the last relation in
(45.3) and (3.4).

Lemma 45.4. Let V be a two-dimensional complex vector space endowed with a
nondegenerate, complex-valued, bilinear symmetric form h. Then

(i) There exists a complex-linear operator γ : V → V such that
a) γ is an involution, that is, γ2 = Id, and
b) γ is skew-adjoint relative to h in the sense that, for v, w ∈ V ,

h(γv, w) + h(v, γw) = 0.
(ii) An operator γ with a) and b) is unique up to a sign, and satisfies the

relation

(45.6) h(v, u)w − h(w, u)v = −h(γv, w)γu

for all u, v, w ∈ V . In terms of the real-bilinear form g = Reh and the
operator β = iγ, (45.6) can also be rewriten as

(45.7) h(v, u)w − h(w, u)v = g(βv,w)βu − g(γv, w)γu .
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Proof. Nonzero complex-linear operators γ : V → V are in a bijective orrespon-
dence with nonzero complex-bilinear forms B on V , with B given by B(v, w) =
h(γv, w), v, w ∈ V . Skew-adjointness of γ means that B is skew-symmetric, which
(as dimV = 2) makes B, and γ, unique up to a nonzero factor (see Remark 3.8).
Choosing a basis v, w of V with h(v, v) = h(w,w) = 1 and h(v, w) = 0, and
setting λ = h(γv, w), we clearly have, for a fixed skew-adjoint γ 6= 0, γv = λw
and γw = −λw. Hence γ2 = −λ2 · Id and, using an appropriate complex factor,
we see that γ as in (i) exists and is unique up to a change of sign.

According to Remark 3.2, any skew-adjoint involution γ gives rise to a direct-
sum decomposition V = V+ ⊕ V− of V into the (±1)-eigenspaces V± of γ. Note
that, as γ is assumed skew-adjoint, it cannot be a multiple of Id, and so V± must
both be 1-dimensional complex subspaces of V ; otherwise, one of them would
coincide with V , giving γ = ± Id. Also, since γ is skew-adjoint, its eigenspaces
V± are both h-null subspaces of V . We may thus choose a basis u+, u− of V
with u± ∈ V± and h(u±, u±) = 0, h(u±, u∓) = 1. Since both sides of (45.6)
are skew-symmetric in v, w ∈ V and dimV = 2, it suffices to prove (45.6) for
v = u+, w = u−, and any fixed u ∈ V . Relation (45.6) is consequently reduced
to h(u+, u)u− − h(u−, u)u+ = −γu, which holds whenever u = u± since both
sides then become ∓u±. We have thus established (45.6). Now (45.6) follows from
(45.6); in fact, the right-hand sides of both relations coincide in view of the obvious
equality g(βv,w)β = i [Reh(iγv, w)]γ = − i [Imh(γv, w)]γ. This completes the
proof. �

Example 45.5. Let g be the 4-dimensional (real) pseudo-Riemannian metric
obtained as the real part g = Rehc of a complex-analytic metric hc in the complex
dimension 2 which itself is the result of complexifying a (real) pseudo-Riemannian
surface metric h. We will then say, briefly, that g is (the real 4-dimensional metric)
obtained by complexifying the real surface metric h. If, in addition, h has a nonzero
constant Gaussian curvature κ, then g is a locally symmetric Einstein metric of
the neutral sign pattern − − + + , and its Weyl tensor W has, at each point, the
Petrov-Segre genus 21+/21−. In fact, hc satisfies (45.2). Since κ is real, taking the
real parts of both sides of (45.2) and using (45.4) we obtain the equality Ric = 2κg
satisfied by the Ricci tensor Ric of g and the original Gaussian curvature κ of
h. Thus, according to (5.3), g is Einstein, with the scalar curvature

(45.8) s = 8κ .

Moreover, since h is locally symmetric, so must be both hc (Example 45.2), and
g (Example 45.3). Finally, according to Remark 10.1 we have (10.2) with K = κ
and g = h, which can also be rewritten as Rjkl

m = κ
(
hjlδ

m
k − hklδmj

)
. In other

words, relation

(45.9) R(v, w)u = κ [h(v, u)w − h(w, u)v] ,

for all tangent vectors u, v, w, is satisfied by h and its curvature R ; hence (see
Example 45.2) it will remain valid if we let h and R stand for hc and its curvature
Rc). Using (45.7), we can further rewrite (45.9), for h = hc, as

(45.10) R(v, w)u = κ [g(βv,w)βu − g(γv, w)γu] ,
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where R now is the curvature tensor of the metric g = Rehc. In view of (45.8)
and (2.20), this is precisely (42.9) (with s 6= 0, since κ 6= 0), so that W has the
genus 21+/21− as a consequence of Lemma 42.4.

Remark 45.6. Our next objective is show, in Proposition 45.7 below, that the met-
rics g described in Example 45.5 are, essentially, the only possible 4-dimensional
locally symmetric Einstein metrics M having a Weyl tensor W of genus 21+/21−.
To this end, we need to come up with a local description, suited to this purpose, of
real pseudo-Riemannian metrics h on surfaces Σ, with a nonzero constant Gauss-
ian curvature κ. The coordinate system we select consists of coordinate functions
ϕ each of which satisfies the equation ∇dϕ = −κϕh, that is,

(45.11) ϕ,jk = −κϕhjk .

(We are here retracing our steps in §12 and §13 that led to the proof of Theorem
14.2(i) in §14; the functions ϕ are restrictions to Σ of linear homogeneous functions
on the pseudo-Euclidean vector space into which Σ is locally embedded.) Let us
fix a point x ∈ Σ and use a connected neighborhood U of x which will be made
smaller whenever necessary. Pairs (ϕ,∇ϕ) with ϕ : U → R satisfying (45.11) are
nothing else than those sections ψ = (ϕ, u) of the direct-sum vector bundle

(45.12) E = [U ×C]⊕ TU

which are D-parallel for the connection D in E given by

(45.13) Dv(ϕ, u) = (dvϕ− h(v, u) , ∇vu + κϕv) ,

where v is any vector (field) tangent to U (and κ 6= 0 is fixed). Computing the
curvature tensor RD of D via (4.52) (with the simplifications provided by Remark
4.4), we obtain

(45.14) RD(v, w)(φ, u) = (0 , R(v, w)u − κ [h(v, u)w − h(w, u)v]) .

and so D is flat by (45.9). Making U smaller, we may now choose D-parallel
sections ψ = (ξ, u), χ = (η, v) defined on U and realizing any prescribed values
at x. (See Lemma 11.2.) Furthermore, formula

(45.15) ((ϕ, u), (ϕ′, u′)) = h(u, u′) + κϕϕ′

defines a pseudo-Riemannian fibre metric ( , ) in E , which is easily verified to be
compatible with D. Thus, the ( , )-inner product of any two parallel sections is
constant on U . Therefore, we may choose our parallel sections ψ, χ in such a
way that ξ(x) = η(x) = 0 and (ψ,ψ) = ε1κ, (χ, χ) = ε2κ, and (ψ, χ) = 0. Here
ε1, ε2 ∈ {1,− 1} are chosen so as to have the following property:

(45.16) The signs (− sgn (ε1κ), − sgn (ε2κ)) form the sign pattern of h .

(Note that κ 6= 0.) Since dξ, dη now form, at x, an (orthogonal) basis of T ∗xM , the
inverse mapping theorem shows that the functions x1 = ξ and x2 = η, restricted
to a smaller version of U , form a coordinate system. The matrix [hjk] of the
component functions of h in these coordinates is now characterized by its inverse
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matrix [hjk] with (2.11); namely, in the (real) local coordinates ξ, η varying near
ξ = η = 0,

(45.17) [hjk] = [hjk]−1 = −κ

 ε1 + ξ2 ξη

ξη ε2 + η2

 .
We do not have to verify that, given ε1, ε2 ∈ {1,− 1} and κ 6= 0, formula (45.17)
really defines a surface metric h having the sign pattern as in (45.16) and the (con-
stant) Gaussian curvature κ; that assertion follows since we proved the existence
of coordinates in which such a metric (which we know exists) has the form (45.17).

Proposition 45.7. Any locally symmetric Einstein metric g in dimension four
which has the neutral sign pattern − − + + and whose Weyl tensor W is of the
Petrov-Segre genus 21+/21− is locally isometric to a metric obtained by complexi-
fying a surface metric h with the nonzero constant Gaussian curvature κ = s/8,
as described in Example 45.5, s being the scalar curvature of g.

Proof. Let us define κ by (45.8). As in the proof of Theorem 43.3 (§43), we fix a
point x ∈ M and use an oriented connected neighborhood U of x which will be
made smaller (but still denoted U) any time a need arises.

By Lemma 42.4, we have (42.8) – (42.10) at every point of a neighborhood U of
x, with some parallel bivector fields β and γ on U (cf. the last clause of Lemma
42.4). In view of (45.8) and (2.20), equality (42.9) amounts to condition (45.10)
satisfied by the curvature tensor R of g and all vectors u, v, w tangent to U .
Here β and γ are treated, with the aid of g, as skew-adjoint bundle morphisms
TU → TU); viewed as such morphisms, they commute (by (42.8) and (37.30)) and
satisfy β2 = − Id, and γ2 = Id (by (42.10) and (37.32)). For their composite
morphism J = βγ = γβ we thus have J2 = − Id, so that J forms an almost
complex structure in U (§9). We will from now on treat TU as a complex vector
bundle, for which J is the operator of multiplication by i. Since β and γ are
skew-adjoint and commute, J is self-adjoint relative to g, and so (cf. Remark
3.18), g is the real part of a unique complex-bilinear symmetric fibre metric h in
the complex bundle TU , given by (3.35), that is,

(45.18) h(v, w) = g(v, w) − ig(Jv,w) .

Thus, J is parallel, since so are β and γ. Consequently, the Levi-Civita connection
∇ of g also constitutes a connection in the complex bundle TU , while the complex
fibre metric h is ∇-parallel (compatible with ∇), that is, we have a Leibniz rule
for ∇ and h.

Let us now consider the complex vector bundle E over M obtained as the
direct sum E = [U × C] ⊕ TU . Sections ψ of E thus are nothing else than
pairs (ϕ, u) consisting of a function ϕ : U → C and a vector field u on U .
We now define a connection D in E by (45.13). As before, the curvature tensor
RD of D is given by (45.14) and so D is flat in view of (45.9). Also, formula
(45.15) defines, again, a fibre metric ( , ) in E , which is this time complex-valued,
complex-bilinear and symmetric, but as before is compatible with D. Making U
smaller, we may now choose D-parallel sections ψ = (ξ, u), χ = (η, v), defined
on U , with ξ(x) = η(x) = 0 and (ψ,ψ) = ε1κ, (χ, χ) = ε2κ, (ψ, χ) = 0, where
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ε1, ε2 ∈ {1,− 1} are arbitrary. Since κ 6= 0, the gradients ∇ξ = u, ∇η = v form,
at x, an h-orthogonal complex basis of TxM , and the inverse mapping theorem
implies that the functions z1 = ξ and z2 = η, restricted to a smaller version of
U , form a C2-valued coordinate system (i.e., Re ξ, Im ξ, Re η, Im η form a real
coordinate system). The matrix [hjk] of the component functions of h in these
coordinates is now characterized by its inverse matrix [hjk] with (45.1). Thus, in
the complex local coordinates ξ, η varying near ξ = η = 0, h is characterized by
(45.17), and so it is a local complexification of a real surface metric (with the sign
pattern (45.16)) and with the constant Gaussian curvature κ. This completes the
proof. �

Remark 45.8. The sign pattern (45.16) of a real surface metric h leading to g as
in the above proof is completely arbitrary. For instance, we can obtain any such
g by complexifying a positive-definite surface metric h. Thus, the local-isometry
types of locally symmetric Einstein metrics g in dimension four whose Weyl tensors
represent the Petrov-Segre genus 21+/21− are completely determined by just one
invariant, the scalar curvature s with s 6= 0.

§46. Pseudo-complex projective spaces

This sections deals with yet another family of examples of locally symmetric
pseudo-Riemannian Einstein metrics in dimension 4, with the neutral sign pattern
− − + + , which are exotic in the sense of being different from “obvious” examples
mentioned at the beginning of §41. Although we choose to introduce these ex-
amples using the (seemingly most convenient) route of a local-coordinate formula,
the manifolds in question can also be obtained through a natural geometric con-
struction, paralleling that of complex projective or hyperbolic spaces (see Example
10.6). This is why manifolds with such metrics will be referred to as pseudo-complex
projective spaces.

Besides a construction of such metrics, we also present here a classification re-
sult that characterizes them uniquely up to local isometries (see Proposition 46.10
below). Namely, the pseudo-complex projective spaces are, essentially, the only
possible locally symmetric Einstein 4-manifolds whose Weyl tensor W is of the
Petrov-Segre genus 3/21− at each point.

The end of this section is devoted to a proof of Theorem 41.6, due to Cahen and
Parker (1980).

Both here and in §49 below we deal with pseudo-Riemannian metrics g in even
dimensions n = 2p, for integers p ≥ 1, whose component functions gjk form the
block matrix

(46.1) [gjk] =

[
0 G
G∗ 0

]
,

where G is a p× p matrix of real-valued C∞ functions, and G∗ is the transpose
of G. In other words, using the ranges of indices given by

(46.2)

j, k, l,m ∈ {1, 2, . . . , 2p} ,
a, b, c, d ∈ {1, 2, . . . , p} ,
λ, µ, ν, ρ ∈ {p+ 1, . . . , 2p} ,
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let us consider a 2p-dimensional manifold U covered by a global coordinate system
xj , j = 1, . . . , 2p, and any metric g on U with

(46.3) gab = gλµ = 0 for a, b ∈ {1, . . . , p} and λ, µ ∈ {p+ 1, . . . , 2p} .

As usual, gjk = g(ej , ek), where ej stand for the coordinate vector fields (see
(2.1)). Thus, in (46.1) we have G = [gaλ] with C∞ functions gaλ : U → R.
Note that, necessarily, det G 6= 0 everywhere in U , and, by (46.3), the reciprocal
metric components gjk with [gjk] = [gjk]−1 (see (2.8)) are given by

(46.4) gab = gλµ = 0 , [gaλ] = [gaλ]−1

(indices as in (46.2)). Furthermore, the vector subbundles P± of TU given by

(46.5) P+ = Span {e1, . . . , ep} , P− = Span {ep+1, . . . , e2p} ,

both have the fibre dimension p and, by (46.3), are both null (that is, their fibres
P±x at every point x are null subspaces of TxU , cf. (3.26)). It follows now from
(3.27) that g has the neutral sign pattern (p, p), i.e., − . . . − + . . . + with p
minuses and p pluses. We also have the direct-sum decomposition

(46.6) TU = P+ ⊕ P− .

Finally, the bundle morphism α : TU → TU given by

(46.7) α = ∓ Id on P± ,

with P± given by (46.5), is skew-adjoint at each point. To see this, note that,
treated (with the aid of g) as a twice-contravariant tensor field, α is a bivector
field on U , i.e., its component functions αjk = gjlαl

k satisfy αjk = −αkj . More
precisely, since, by (46.7), αc

b = − δbc, αλµ = δµλ and αλ
c = αb

µ = 0, (46.4) gives

(46.8) αbc = αλµ = 0 , αbµ = −αµb = gbµ , α = gbµ eb ∧ eµ ,

ej being again the coordinate vector fields. (In gaλ ea ∧ eλ we have, of course,
summation over a = 1, 2 and λ = 3, 4.)

Lemma 46.1. For a metric g of the form (46.1) on a coordinate domain U of
any even dimension n = 2p, the following four conditions are equivalent :

(a) P± with (46.5) are parallel subbundles of TU , as defined in Remark 4.7;
(b) With the ranges of indices as in (46.2), all Christoffel symbols other than

Γ cab and Γ νλµ are identically zero, that is,

(46.9) Γλab = Γ aλµ = Γ baλ = Γ bλa = Γµaλ = Γµλa = 0 .

(c) The differential 2-form ω = gaλ dx
a ∧ dxλ on U is closed, i.e., dω = 0;

(d) There exists, in a neighborhood of any point of U , a potential for g, by
which we mean a C∞ function φ such that

(46.10) gaλ = ∂a∂λφ for a = 1, . . . , p and λ = p+ 1, . . . , 2p ,

with ∂j = ∂/∂xj, j = 1, . . . , 2p.
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Proof. Using the covariant-derivative formula (4.13) to describe parallel transports
along curves (in terms of solving the local-coordinate form of the equation ∇ẋw =
0), we easily see that (a) is equivalent to (b).

Defining ω as in (c), we have dω = dgaλ ∧dxa ∧dxλ. Since dgaλ = ∂bgaλ dx
b+

∂µgaλ dx
µ, it is now easy to see that 2 dω = (∂agbλ − ∂bgaλ) dxa ∧ dxb ∧ dxλ +

(∂µgaλ−∂λgaµ) dxa∧dxλ∧dxµ. Skew-symmetry of the parenthesized expressions in
a and b or, respectively, λ and µ, implies that dω = 0 if and only if ∂agbλ = ∂bgaλ
and ∂λgaµ = ∂µgaλ. Using (4.9) and (46.3) one easily sees that this is in turn
equivalent to requiring the functions Γjkl defined by (4.6) to satisfy the conditions
Γλab = Γaλµ = 0 (for indices as in (46.2)). However, in view of (46.3), those
conditions are nothing else than (46.9). This proves that (b) is equivalent to (c).

Finally, according to Poincaré’s Lemma for 2-forms (Remark 11.5), ω in (c) is
closed if and only if, locally in U , ω = dϑ with a 1-form ϑ of class C∞. Writing
ϑ = hj dx

j , we have 2 dϑ = (∂jhk − ∂khj) dxj ∧ dxk, summed over j, k = 1, . . . , 2p.
Splitting this last sum into terms involving dxa ∧ dxb, dxa ∧ dxλ and dxλ ∧ dxµ
(indices as in (46.2)), we see that condition ω = dϑ amounts to ∂ahb − ∂bha =
∂λhµ − ∂µhλ = 0 and gaλ = ∂ahλ − ∂λha ; the first of these relations states that
dϑ+ = dϑ− = 0 for ϑ+ = ha dx

a, ϑ− = hλ dx
λ. Thus, in view of Poincaré’s

Lemma for 1-forms (Corollary 11.3), closedness of ω means nothing else than the
existence, locally in U , of C∞ functions ψ, χ with ha = ∂aψ, hλ = ∂λχ (i.e.,
ϑ+ = dψ, ϑ− = dχ) and gaλ = ∂a∂λχ− ∂λ∂aψ = ∂a∂λφ, where φ = ψ−χ. Thus,
(c) implies (d); while, choosing φ as in (d) we obtain ω = dξ with ξ = ∂λφdx

λ,
and so dω = 0. Hence (c) also follows from (d), which completes the proof. �

Lemma 46.2. Let a metric g on a coordinate domain U of some even dimension
n = 2p satisfy (46.3) and (46.10) with a C∞ function φ : U → R. In other words,
g is assumed to be of the form (46.1) and have a potential φ. With indices as in
(46.2), we then have, for Γjkl defined by (4.6),

(46.11)
Γabλ = ∂a∂b∂λφ , Γλµa = ∂λ∂µ∂aφ ,

Γjkl = 0 otherwise,

while the the components of the curvature and Ricci tensors of g are

(46.12)

Raλbµ = ∂a∂λ∂b∂µφ − Γ cabΓλµc ,

Rλabµ = Raλµb = −Raλbµ , Rλaµb = Raλbµ ,

Rjklm = 0 otherwise,

that is,

(46.13)

Raλb
c = ∂λΓ

c
ab , Rλaµ

ν = ∂aΓ
ν
λµ ,

Rλab
c = −Raλbc , Raλµ

ν = −Rλaµν =

Rjkl
m = 0 otherwise,

and

(46.14) Rab = Rλµ = 0 , Raλ = Rλa = −Raλbµ gbµ .

Furthermore,

(i) The bivector field α on U characterized by (46.7), or (46.8), is parallel.
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(ii) At every point x ∈ U , and for any fixed indices a, b, λ, µ with (46.2),

(46.15) Rβ = Rγ = 0 if β = ea ∧ eb , γ = eλ ∧ eµ ,

where the curvature tensor R of g acts on bivectors at x according to
(5.13). Finally, if g happens to be an Einstein metric, we have

(46.16) Rα =
s

n
α ,

with α as in (i), s being the scalar curvature of g.

Proof. Relations (46.11) are immediate from (4.9), (46.3) and (46.10). The first
equality in (46.12) now follows easily from (4.31) along with (46.11) and (46.4).
(Note that, by (46.4) and (4.6), Γ cab = gcµΓabµ.) The remainder of (46.12) now is
a direct consequence of (4.32), (4.31), (46.11) and (46.4). As for (46.13), the first
two formulae are immediate from (4.25) and assertion (b) in Lemma 46.1 (which
holds, since we are assuming assertion (d)), while the last three may be obtained
either in the same way or, equivalently, as consequences of the first two along with
(46.12) and (46.4). (Note that Rjklm = Rjkl

pgpm, cf. (4.30).)
Since Rjk = glmRjlkm by (4.37), we now easily obtain (46.14) using (46.12),

(46.4) and the fact that, by (46.12), Raλbµ is symmetric both in a, b and in λ, µ.
Finally, the bivector field α is parallel since formula (46.7) provides a natural

definition of the corresponding bundle morphism α : TU → TU in terms of the
subbundles P± of TU given by (46.5), which are parallel according to Lemma
46.1(a), (d). On the other hand, by (46.12), Rjkab = Rjkλµ = 0 for all j, k. Since
the components of β and γ are all zero, except possibly for βab, βba and γλµ,
γµλ, we now obtain 2(Rβ)jk = Rjklmβ

lm = Rjkabβ
ab = 0, 2(Rγ)jk = Rjklmγ

lm =
Rjkλµγ

λµ = 0, which proves (46.15). Finally, since α is parallel (see (i)), (46.16)
is immediate from (5.20) and (5.10). This completes the proof. �

Remark 46.3. Let g be a metric of the form (46.1), that is, (46.3), on a coordinate
domain U of an even dimension n = 2p, and let us suppose that U is rectangular
in the sense that the subset of Rn corresponding to U under the coordinate
identification is an open rectangle, i.e., a Cartesian product of n open intervals in
R. The subset N of U obtained by arbitrarily fixing the values of the last (or,
respectively, first) p coordinates, if nonempty, is a p-dimensional submanifold of
U covered by a global rectangular coordinate system consisting of the functions
xa (or, respectively, xλ) restricted to N . Clearly, N then is an integral manifold
of the subbundle P+ (or, respectively, P−) of TU given by (46.5), as defined in
Lemma 4.8. Any such integral manifold N of P± carries a torsionfree connection
∇± defined by declaring its component functions to be the Christoffel symbols Γ cab
(or, respectively, Γ νλµ) restricted to N (cf. (4.2), (4.3)); we will refer to ∇± as
the submanifold connection of N . It can be easily shown that the submanifold
connection of any such N depends just on the subbundles P± and the Levi-Civita
connection of g, but not on the coordinate system xj used here to describe it;
however, that fact is not relevant for our purposes and can be safely ignored. The
coordinates xa (or, xλ) on any N as above identify N with an open rectangle U+

(or, U−) in Rp, which allows us to treat ∇± as a torsionfree connection in U±.
However, what we obtain in this way is usually not a single connection in U±, but
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rather a p-parameter family of connections, with a separate connection for each
individual integral manifold of P±. In fact, in general, ∂λΓ

c
ab and ∂aΓ

ν
λµ may both

be nonzero, even under additional assumptions such as (46.10). Condition (46.10)
does, however, imply that the submanifold connection ∇± of any integral manifold
of P+ or P+ is flat. This is clear since assertion (b) in Lemma 46.1, which holds
as a consequence of (46.10), along with (4.25), shows that the curvature tensor of
∇+ (or, ∇−) has, in the coordinates xa (or, xλ), the component functions equal
to the components Rabc

d (or, Rλµν
ρ) of the curvature tensor of g. On the other

hand, Rabc
d = Rλµν

ρ = 0 by (46.13).

Lemma 46.4. Let g be a metric of the form (46.1) on a 4-dimensional coordinate
domain U , and let an orientation of U be chosen in such a way that the basis of
the tangent space TxU formed by the coordinate vector fields ej, j = 1, . . . , 4, is
positive-oriented or negative-oriented at every point x ∈ U depending on whether
det G = det[gaλ], with indices as in (46.2), is negative or, respectively, positive.
Then, at every point x ∈ U , the bivector spaces Λ±xM defined as in (6.4) for this
orientation, can be characterized as follows.

(a) The space Λ+
xM consists of all combinations

(46.17) ζ = ζaλ ea ∧ eλ (summed over a = 1, 2 and λ = 3, 4) ,

where [ζaλ] is any 2 × 2 matrix with gaλζ
aλ = 0. In other words, ele-

ments of Λ+
xM are precisely those bivectors ζ at x whose components

ζjk satisfy the conditions

(46.18) ζab = ζλµ = 0 , ζaλ = − ζλa , gaλζ
aλ = 0 .

(b) The space Λ−xM is spanned by the bivectors α = α(x), characterized by
(46.7) or (46.8), and β = e1 ∧ e2, γ = e3 ∧ e4.

(c) If, moreover, g happens to be an Einstein metric, and s is the constant
scalar curvature of g, then the anti-self-dual Weyl tensor W− represents,
at each point, either

i) The Petrov-Segre class 3, when s = 0, or
ii) The subclass 21−, when s 6= 0.

Proof. Let ej = ∇xj , j = 1, 2, 3, 4, be the differentials of the coordinate functions,
treated as vector fields with the aid of g. By (2.10), (2.11) and (46.3), we thus have

(46.19) eλ = gaλea ,

(46.20) g(eλ, eµ) = δλµ , g(ea, eb) = g(eλ, eµ) = 0 ,

with indices as in (46.2). Therefore, by (46.4),

(46.21) e3∧ e4 = [g13g24 − g23g14] e1 ∧ e2 = [det G]−1 e1 ∧ e2 .

Consequently, e3∧ e3 ∧ e4∧ e4 = − [det G]−1 e1 ∧ e2 ∧ e3 ∧ e4, i.e., the basis of the
tangent space formed, at each point, by e3, e3, e

4, e4, is positive-oriented. We now
have

(46.22)
∗ (e3∧ e4) = e3∧ e4 , ∗(e4∧ e3) = e4∧ e3 , ∗(e3∧ e4) = − e3∧ e4 ,

∗ (e3 ∧ e4) = − e3 ∧ e4 , ∗(e1 ∧ e2) = − e1 ∧ e2 .
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In fact, each of the first four equalities is easily verified by applying Proposition
37.1(i) to the appropriate quadruple (a, b, c, d) which is (e3, e4, e3, e

4) for the first
equality and, respectively, (e4, e3, e4, e

3), (e3, e4, e3, e4) and (e3, e4, e
3, e4) for

the other three; note that (a, b, c, d) then have the required inner-product properties
in view of (46.20). The fifth relation follows from the third and (46.21). Also,

(46.23) ∗(e3∧ e3) = − e4∧ e4 , ∗(e4∧ e4) = − e3∧ e3 .

To see this, let us set v1 = (e3 − e3)/
√

2, v2 = (e3 + e3)/
√

2, v3 = (e4 − e4)/
√

2,

v4 = (e4 + e4)/
√

2, thus defining a (− + − +)-orthonormal basis v1, v2, v3, v4 of
the tangent space which, as one sees computing v1∧ v2∧ v3∧ v4, is also positive-
oriented. By (37.13), we have ∗(v1 ∧ v2) = − v3 ∧ v4, ∗(v3 ∧ v4) = − v1 ∧ v2, while

v1 ∧ v2 =
√

2 e3∧ e3 and v3 ∧ v4 =
√

2 e4∧ e4, which proves (46.23).
Since dim [Λ±xM ] = 3, assertions (a) and (b) will follow if we show that every ζ

of the form (46.17) with gaλζ
aλ = 0 is in Λ+

xM and, in (b), α, β, γ ∈ Λ−xM . The
latter statement follows, as ∗β = −β and ∗γ = − γ by (46.22), while ∗α = −α
in view of (46.23) (In fact, α = gaλ ea∧ eλ = eλ∧ eλ = e3∧ e3 + e4∧ e4 by (46.8)
and (46.19).) As for (a), setting ζλµ = gaµζ

aλ in (46.17), we obtain ζ = ζλµ e
µ ∧ eλ,

with ζλλ = 0 (that is, ζ4
4 = − ζ3

3 = 0). Therefore, ζ = ζ3
4 e

4 ∧ e3 + ζ4
3 e

3 ∧ e4 +
ζ3
3 (e3∧ e3 − e4∧ e4), and so ∗ζ = ζ by (46.22) and (46.23). This yields (a), and

completes the proof. �

Lemma 46.5. Let g be a metric of the form (46.1) defined on a coordinate domain
U of dimension n = 2p ≥ 4 and satisfying condition (d) of Lemma 46.1.

(i) If the component functions of the curvature tensor of g satisfy

(46.24) Raλbµ = −K [gaλgbµ + gbλgaµ]

for a, b = 1, . . . , p and λ, µ = p+ 1, . . . , 2p, with a nowhere-zero real-val-
ued function K, then g is a locally symmetric Einstein metric, while K
in (46.24) is constant and

(46.25) K =
2 s

n(n+ 2)
,

where s is the scalar curvature of g.
(ii) If n = 4, then the following two conditions are equivalent :

a) Equality (46.24) holds for some nowhere-zero function K ;
b) g is a locally symmetric Einstein metric and its Weyl tensor W

represents, at each point, the Petrov-Segre genus 3/21−.

Proof. Suppose that (46.24) holds. Contracting (46.24) with gbµ, we obtain Ric =
(p+ 1)Kg, so that g is Einstein and K with (46.25) must be constant by Schur’s
Theorem 5.1. Furthermore, the decomposition (46.6) of TM into the parallel
subbundles P± (Lemma 46.1(a)) gives rise to a similar decomposition of the bivec-
tor bundle [TU ]∧2 into four summands: [P+]∧2, [P−]∧2, Rα, and a subbundle
we denote E , spanned, respectively, by all sections of the form ea ∧ eb ; eλ ∧ eµ ;
α = gaλ ea ∧ eλ (see (46.7), (46.8)); and, for E , all combinations ζ = ζaλ ea ∧ eλ
with 2×2 matrices such that gaλζ

aλ = 0. The first three summands are obviously
parallel since so are P± (Lemma 46.1(a)) and α (Lemma 46.2(i)). On the other
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hand, E is orthogonal to them, by (37.3), and so, for dimensional reasons, E must
coincide with the orthogonal complement of their span. Hence E is parallel as well.
In view of (46.15), and (46.16), Rβ = Rγ = 0 for sections β of [P+]∧2 and γ
of [P−]∧2, and Rα = sα/n. Also, for sections ζ of E , Rζ = 2Kζ (and so, by
(46.25), Rζ = 4s ζ/[n(n + 2)]). In fact, 2(Rζ)jk = Rjklmζ

lm = 2Rjkbµζ
bµ, which

equals 2Kζaλ when j = a, k = λ (in view of (46.24) with gbµζ
bµ = 0), and 0

for j = a and k = b or j = λ and k = µ (see (46.12)). Therefore, the curvature
tensor of R acting on bivectors as a bundle morphism R : [TU ]∧2 → [TU ]∧2 is,
restricted to each summand, a constant multiple of the identity. Consequently, R
is parallel, since so are the four summand subbundles of [TU ]∧2. This proves (i).

If, in addition, n = 4, the eigenvalues of the curvature operator R acting on
bivectors become 0, s/4 and s/12, and the corresponding eigenspace subbundles
of [TU ]∧2 are [P+]∧2⊕ [P−]∧2, Rα and E . For a suitable orientation of U , The
first two of these subbundles span Λ−M , while the third one is nothing else than
Λ+M . (See Lemma 46.4.) Since W = R − s/12 by (5.10) with n = 4, this
shows that W+ = 0 identically, while W− is diagonalizable at each point with
the eigenvalues − s/12, − s/12 and s/6. The the Petrov-Segre classes of W+

and W− thus are 3 and, respectively, 21. (See (39.7).) Since the eigenvector α
corresponding to the simple eigenvalue of W− satisfies 〈α, α〉 = − 2 < 0 (by (2.17)
with α2 = Id, which in turn is clear from (46.7)), W+ belongs to the subclass
21− (cf. the paragraph following (39.10)). Thus, W has the Petrov-Segre genus
3/21−.

Conversely, let us suppose that n = 4 and g is a locally symmetric Einstein
metric with a Weyl tensor of genus 3/21−.

Since W− then automatically represents the Petrov-Segre subclass 21− (Lemma
46.4(c)ii)), the class 3 forming the remaining component of the genus must corre-
spond to W+, so that W+ is identically zero. (See (39.7).) As W = R − s/12 by
(5.10) with n = 4, this means that Rζ = s ζ/6 = 2Kζ (cf. (46.25)), for every ζ
as in (46.17), that is, for any bivector ζ whose components satisfy (46.18). Hence
4Kζaλ = 2(Rζ)aλ = Raλlmζ

lm = 2Raλbµζ
bµ whenever gbµ ζ

bµ = 0, and hence the
expression Caλbµ = Raλbµ+Kgbλgaµ satisfies Caλbµζ

bµ = 0 whenever gbµ ζ
bµ = 0.

Hence Caλbµ = Saλgbµ for some Saλ and, summing the last equality against gbµ, we
find that 2Saλ = Caλbµg

bµ = [Raλbµ + Kgbλgaµ]gbµ = −Raλ + Kgaλ = − 2Kgaλ.
(This follows from (46.25), (46.14) and the relation 2gbµg

bµ = gjkg
jk = 4, cf.

(46.4).) Hence Saλ = −Kgaλ, which gives (46.24). This completes the proof. �

Remark 46.6. Lemma 46.5 has reduced the question of classifying metrics with
the properties listed in condition (ii)b) of Lemma 46.5 to solving (46.24), which
is a system of nonlinear fourth-order partial differential equations imposed on a
potential function φ with (46.10). (Thus is clear from (46.4), (46.12) and (46.11)
with Γ cab = gcµΓabµ, which in turn follows from (46.4) and (4.6).) The system
in question is, however, invariant under an infinite-dimensional pseudogroup of
transformations; in fact, relations (46.3) and (46.10) remain valid, for a given metric
g, if we replace the xj and φ with new coordinates x̃j and a new potential function
φ̃, as long as the new x̃a (or, x̃λ) depend only on the old x̃b (or, respectively, x̃µ),
with indices as in (46.2), while

(46.26) φ̃ = φ + A(x1, . . . , xp) + B(xp+1, . . . , x2p)

with arbitrary C∞ functions A,B of p real variables. It is therefore not surprising
that, rather than directly solving the system in question for φ as a function of the
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original xj , the following lemma just states what a modified version (46.26) of a
solution φ must look like in some new coordinates x̃j of the type just described.

Lemma 46.7. Let a metric g on an n-dimensional coordinate domain U , n = 2p
have the form (46.1) and satisfy (46.10) for a C∞ function φ : U → R.

(i) If φ is given by

(46.27) eKφ = 1 + Qaλx
axλ

with summation over a = 1, . . . , p and λ = p + 1, . . . , 2p, for some
nonzero real constant K, and a constant real 2 × 2 matrix [Qaλ] such
that det [Qaλ] 6= 0, then the curvature tensor of g satisfies (46.24) with
the same K as in (46.27).

(ii) Suppose that (46.24) holds for some nowhere-zero function K and n ≥ 4.
Then K is constant, and a suitable neighborhood of any point of U
admits a new coordinate system in which g is still given by (46.3) and
(46.10), even if we change the notation so that the xj stand for the new
coordinates and φ denotes a new potential function for g, defined by
(46.27) with some Qaλ such that det [Qaλ] 6= 0, and with the same K
as in (46.24).

Proof. Let us now fix a point y ∈M . Without loss of generality, we may assume, in
either (i) or (ii), that the coordinate domain U is rectangular (see Remark 46.3),
while, with indices as in (46.2),

(46.28) xj = 0 at y for j = 1, . . . , 2p ,

and

(46.29) φ = 0 whenever x1 = . . . = xp = 0 or xp+1 = . . . = x2p = 0 .

In fact, under the assumptions of (i), the rectangle formed by all (x1, . . . , x2p) is
Rn, while (46.29) is obvious, and (46.28) holds if we choose y to be the point
with xj = 0, j = 1, . . . , 2p. On the other hand, in (ii), this can be achieved by
first replacing U with a smaller, rectangular neighborhood of x (from now on
also denoted U), and then choosing a modification of our coordinates xj and of
the potential function φ of the type mentioned in Remark 46.6. Specifically, we
replace the original coordinates xj with xj − yj , where yj are the components of
y. Using the notation xj , now and in the sequel, for the new coordinates, we thus
have (46.28). In these new coordinates xj , clearly, φ = Φ(x1, . . . , x2p) for some
function Φ of 2p real variables. Let us now replace φ = Φ(x1, . . . , x2p) by the
function

(46.30)
φ̃ = Φ(x1, . . . , x2p) − Φ(x1, . . . , xp, 0, . . . , 0)

− Φ(0, . . . , 0, xp+1, . . . , x2p) + Φ(0, . . . , 0) .

From now on, the symbol φ will stand for the new potential function (46.30).

(All our assumptions about φ are still satisfied, since φ̃ in (46.30) is of the form
(46.26)). Moreover, for this new φ we now have φ = 0 at points where all xa or
all xλ vanish, which clearly implies (46.29).
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For the rest of this argument, we adopt the same ranges of indices as in (46.2)).
Note that (46.29) easily yields

(46.31)
∂aφ = ∂a∂bφ = 0 whenever xp+1 = . . . = x2p = 0 ,

∂λφ = ∂λ∂µφ = 0 whenever x1 = . . . = xp = 0 .

To prove (ii), let us now assume that n = 2p ≥ 4 and (46.24) holds for some
nowhere-zero function K. In view of Lemma 46.5(i) and Schur’s Theorem 5.1, K
must be constant. Using (46.13), (46.4) and the fact that Rjklm = Rjkl

pgpm (see
(4.30)), we can rewrite (46.24) as

(46.32) Raλb
c = −K [δcagbλ + δcbgaλ]

or, equivalently, since Rλaµb = Raλbµ (cf. (46.12)), also as

(46.33) Rλaµ
ν = −K [δνλgaµ + δνµgaλ] .

Thus, in view of (46.10) and (46.13), we have

(46.34) ∂λΓ̃
c
ab = ∂aΓ̃

ν
λµ = 0 ,

where

(46.35) Γ̃ cab = Γ cab + K [δca ∂bφ+ δcb ∂aφ] , Γ̃ νλµ = Γ νλµ + K [δνλ ∂µφ + δνµ ∂λφ] .

Relations (46.34) state that the functions Γ̃ cab (or, Γ̃ νλµ) depend only on the variables

xa (or, respectively, xλ). Therefore, (46.34) implies that the torsionfree connec-

tions ∇+ and ∇−, with the component functions Γ̃ cab and, respectively, Γ̃ νλµ, each

of which is defined on a p-dimensional manifold with the coordinates xa (or, respec-
tively, xλ), are defined uniquely, i.e., independent of the remaining p coordinates.

Furthermore, by (46.31), Γ̃ cab = Γ cab when all xλ are zero, and Γ̃ νλµ = Γ νλµ when so

are all xa. Hence, according to Remark 46.3, ∇+ and ∇− are both flat. In view of
Corollary 11.7, we can change the coordinates, replacing each xa by a function of
all the xb vanishing when x1 = . . . = xp = 0, and each xλ by a function of all the
xµ vanishing when xp+1 = . . . = x2p = 0, in such a way that, if these new coordi-
nates are still denoted xa and xλ, we have Γ̃ cab = Γ̃ νλµ = 0 identically on a possibly

smaller, rectangular coordinate domain, still denoted U . Since Γ cab = Γabλg
cλ and

Γ νλµ = Γλµag
aν (by (4.6) and (46.4)), conditions Γ̃ cab = Γ̃ νλµ = 0 can be rewritten as

(46.36) Γabλ + K [gaλ ∂bφ+ gbλ ∂aφ] = Γλµa + K [gaλ ∂µφ + gaµ ∂λφ] = 0 .

However, for any function φ and constant K we have

(46.37) ∂j∂lΨ = Ψ Fjl whenever Ψ = eKφ and Fjl = ∂j∂lφ + K (∂jφ)∂lφ .

In view of (46.10) and (46.11), condition (46.36) is nothing else than ∂λFab =
∂aFλµ = 0, for Fjl as in (46.37). Thus, Fab and Fλµ do not depend on the xλ (or,
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the xa) while, by (46.36) and (46.31), they vanish when the xλ (or, the xa) are all
zero. Therefore, Fab = Fλµ = 0. By (46.37), this amounts to

(46.38) ∂a∂bΨ = ∂λ∂µΨ = 0 identically in U .

Also, by (46.31) and (46.29), Ψ = 1 at the point y, and ∂aΨ = ∂λΨ = 0 at y.
Setting Qaλ = [∂a∂λΨ ](y), we thus obtain

(46.39) Ψ = 1 + Qaλx
axλ .

In fact, by (46.38), all third-order partial derivatives of Ψ vanish identically, so
that Ψ is a quadratic polynomial. The quadratic polynomial Ψ−1−Qaλxaxλ now
must be identically zero, since it vanishes, along with its partial derivatives up to
order two, at the point y with (46.28). Assertion (ii) now follows from (46.37) and
(46.39).

Conversely, to prove (i), note that (46.27) with a constant K 6= 0 implies (46.38)
for Ψ given by (46.39). From (46.37) we now obtain ∂λFab = ∂aFλµ = 0 (for Fjl
defined in (46.37)) which, in view of (46.10) and (46.11), amounts to (46.36). Since

Γ cab = Γabλg
cλ and Γ νλµ = Γλµag

aν (see (4.6), (46.4)), this in turn means that Γ̃ cab
and Γ̃ νλµ given by (46.35) are identically zero. Hence we also have (46.34) which, by

(46.10) and (46.13), is nothing else than (46.32) and (46.33). Now (46.24) follows
from (46.13) and (46.4). This completes the proof. �

Example 46.8. By a pseudo-complex projective space we mean a pseudo-Riemann-
ian manifold (M, g) of any even dimension n = 2p that is covered by coordinate
systems in which g is given by

(46.40)

gab = gλµ = 0 , gaλ = ∂a∂λφ

for a, b = 1, . . . , p and λ, µ = p+ 1, . . . , 2p , where

φ =
1

K
log [1 + Qaλx

axλ] ,

with some real constant K 6= 0, and some 2 × 2 matrix [Qaλ] of real constants
with det [Qaλ] 6= 0. According to Lemmas 46.7(i) and 46.5, g then is a locally
symmetric Einstein metric of the neutral sign pattern (p, p), (p minuses and p
pluses) and, in the case of dimension n = 4, its Weyl tensor has the Petrov-Segre
genus 3/21−. Although g seems to depend on the parameters K and Qaλ, only
K really matters for the local-isometry type of g and, in fact, K is proportional
to the scalar curvature of g (see (46.25)). On the other hand, a given metric g
with (46.40) can always be rewritten in the form (46.40) with [Qaλ] equal to the
2 × 2 identity matrix. To achieve this, let us replace the coordinates xλ with
ya = Qaλx

λ, leaving the xa unchanged, a = 1, . . . , p. In the new coordinates
x1, . . . , xp, y1, . . . , yp, g will still have the form analogous to (46.40) (see Remark
46.6), with Qaλx

axλ = xaya, as required.

We now proceed to describe a geometric construction of pseudo-complex projec-
tive spaces, mentioned in the beginning paragraph of this section.

Let V be a finite-dimensional real vector space with a fixed pseudo-Euclidean
inner product 〈 , 〉. By a pseudo-complex structure in V we then mean any linear
operator α : V → V with

(46.41) α2 = Id ,
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which is also skew-adjoint relative to 〈 , 〉. Then, obviously,

(46.42) 〈αv, αw〉 = −〈v, w〉

for all v, w ∈ V . Thus, α establishes an algebraic equivalence between 〈 , 〉 and
−〈 , 〉, so that 〈 , 〉 must have the neutral sign pattern (p, p) ( p minuses, p pluses),
where p = n/2 and n = dimV is necessarily even. Condition (46.41) also implies
that

(46.43) V = V + ⊕ V − ,

V ± being the eigenspace of α for the eigenvalue ± 1. (See Remark 3.2.) Skew-ad-
jointness of α now shows that 〈v, v〉 = ±〈αv, v〉 = 0 for all v ∈ V ±, that is, both
V ± are null subspaces of V . (Cf. also Remark 3.12.)

A pseudo-complex structure α in a pseudo-Euclidean vector space V always
exists, as long as dimV = 2p is even and the inner product of V has the sign
pattern (p, p). In fact, any fixed (− . . . − + . . . +)-orthonormal basis e1, . . . , e2p

then gives rise to such α with αec = ec+p and αec+p = ec for c = 1, . . . , p.
A fixed pseudo-complex structure α in a pseudo-Euclidean vector space V

gives rise to the action on V of the pseudo-circle group, consisting of all operators
Fr : V → V , for real numbers r > 0, characterized by

(46.44) Fr = r±1 times Id on V ± .

Each Fr then is easily seen to be an isometry, that is, preserve the inner product
〈 , 〉 of V . Note that F1 = α.

The geometric idea behind the following example is based on viewing a pseu-
do-complex structure in V as an analogue of an ordinary complex structure in V ,
compatible with its inner product; the complex-case counterparts of the operators
Fr are the complex rotations Fz, that is, multiplications by unit complex numbers
z, while α = F1 then is the multiplication by i. The main difference between the
two cases is that, for a complex structure, we have − Id rather than Id in (46.41).
In other words, instead of being a complex vector space, V is here a module over
the algebra of duplex numbers.

Example 46.9. Given a pseudo-complex structure α in a pseudo-Euclidean vector
space V , we define (M, g) to be the pseudo-Riemannian quotient manifold of the
pseudosphere

S1 = {u ∈ V : 〈u, u〉 = 1}

relative to the isometric action of the pseudo-circle group {Fr : r ∈ (0,∞)} de-
scribed above. (For a description of a quotient metric, see the paragraph preceding
Example 10.6 in §10; the quotient metric is well-defined since dFr/dr = Frα/r
while α satisfies (46.42), and so the orbits of the action are all nondegenerate.)
This (M, g) is a pseudo-complex projective space as defined in Example 46.8. In
fact, let us fix an element u = v + w of S1 with v ∈ V +, w ∈ V −, so that
〈v, v〉 = 〈w,w〉 = 0, 〈v, w〉 = 1/2, and let pr : S1 → M be the quotient projec-
tion. Also, let us introduce the vector subspaces T ± of V with T + = V + ∩ w⊥,
T − = V − ∩ v⊥. For x ∈ T + and y ∈ T − which are sufficiently close to 0, we have

(46.45) r(x, y) =
1

1 + 2〈x, y〉
> 0 ,
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and so we can define the assignment

(46.46) U ′ 3 (x, y) 7→ pr (v + x + r(x, y) [w + y]) ∈ S1 ,

where U ′ is a suitable neigborhood of (0, 0) in T + ×T −. It is easy to verify that
(46.46) is an immersion, and its local inverses, treated as local coordinate systems
for S1 (with the aid of fixed bases in the spaces T ±), cast the quotient metric g
in the form (46.40) with K = 2, which obviously proves our assertion.

Proposition 46.10. Any locally symmetric Einstein metric g in dimension four
with whose Weyl tensor W is of the Petrov-Segre genus 3/21−, is locally isometric
to a pseudo-complex projective space, defined as in Example 46.8.

Proof. Let us fix a point x ∈M . Our assumption means that, for a suitably chose
orientation of some connected neighborhood U of x we have W+ = 0 everywhere
in U (see (39.7), while W− is parallel and U admits a parallel bivector field α
such that 〈α, α〉 = − 2 and, at each point, W− is diagonalizable with a unique
simple eigenvalue realized by the eigenvector α(y) ∈ Λ−xM . This is clear from
Remark 40.1(c) for W = W−. From (37.32) it now follows that α2 = Id at every
point, which leads to a decomposition (46.6) into the eigenspace subbundles P±
satisfying (46.7). Hence the P± are parallel as subbundles of TU (cf. Remark
4.7), since so is α. In view of (3.27) the fibre dimensions of both P± must equal
2. Using Lemma 4.9, we may now find C∞ functions xj , j = 1, . . . , 4, such that
x1, x2 are constant in the direction of P− and x3, x4 are constant in the direction
of P+, while at x the differentials dxj are linearly independent. According to
the inverse mapping theorem, in a smaller version of U the xj form a coordinate
system in which the P± are given by (46.5), where ej are the coordinate vector
fields. Since α is skew-adjoint, its eigenspace subbundles P± are both null, and
so g has in our coordinates xj the form (46.3). By Lemma 46.1(a), (d) we now
have (46.10), near x, for some potential function φ. Using Lemma 46.5(ii) we now
obtain (46.24) for some nonzero constant K, while Lemma 46.7(ii) then allows us to
modify both φ and the xj , near x, so as to obtain (46.27). According to Example
46.8, this completes the proof. �

Proof of Theorem 41.6. In view of Proposition 40.2, of the forty-five Petrov-Segre
genera listed in (40.2), only the following eleven may be realized by locally symmet-
ric metrics: 3/3, 3/21+, 3/21−, 21+/21+, 21+/21−, 21−/21−, 3/2+, 3/2−,
2+/2+, 2+/2−, 2−/2−. According to Proposition 44.2, the last five of these eleven
cases lead to assertion (vii) of Theorem 41.6. Similarly, in the third or sixth case
(genera 3/21−, 21+/21−), assertion (iii) or, respectively, (vi) of Theorem 41.6 is
immediate from Proposition 46.10 or Proposition 45.7. Moreover, in case 3/3 we
have W = 0 (see (39.7)) which, (5.10) and (10.1), implies assertion (i) of Theorem
41.6. This leaves us with just three genera: 3/21+, 21+/21+, and 21−/21−. Let
us fix a point x ∈M .

If the genus is 3/21+, we may choose an orientation of some connected neigh-
borhood U of x in such a way that W− = 0 everywhere in U , while U admits
a parallel bivector field α such that 〈α, α〉 = 2 and, at each point, W+ is diago-
nalizable with a unique simple eigenvalue realized by the eigenvector α(y) ∈ Λ+

xM .
This is clear from Remark 40.1(c) for W = W+. From (37.32) it now follows that
α2 = − Id at every point, and so (M, g, α) is a Kähler manifold. The Weyl tensor
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W acting on bivectors hus has the spectrum (10.20), with s 6= 0 (as W+ 6= 0) and
so, by (5.33), the spectrum of R is given by (10.21), with the parallel bivector field
α = αj corresponding to the eigenvalue s/4. Since the curvature operator acting
on bivectors via (5.13) uniquely determines the curvature tensor, the latter must
equal (10.5) with λ and µ given by (10.10). Consequenly, the Kähler manifold
(U, g, α) is a space of constant holomorphic sectional curvature, and assertion (ii)
of Theorem 41.6 now is immediate from Theorem 14.4.

Finally, let the genus be 21+/21+ or 21−/21−. For a simultaneous discussion
of both cases, let us introduce the parameter δ with δ = 1 for the former genus
and δ = − 1 for the latter. Applying Remark 40.1(c) to W = W+ as well as
W = W−, we can find a neighborhood U of x with parallel sections α± of Λ±U ,
for both signs ± , such that 〈α±, α±〉 = 2δ. By (37.32), we now have [α±]2 = − δ,
while, by (37.30), α+ and α− commute. The composite F = α+α− is therefore
self-adjoint, parallel, and satisfies F 2 = Id. According to Remark 3.2, we now have
a direct-sum decomposition

TU = P ⊕ Q

of TU into the ±1-eigenspace bundles of F , which are parallel (as defined in
Remark 4.7), since so is F , and mutually orthogonal (since F is self-adjoint).
Furthermore, the fibres of P and Q are 2-dimensional at each point. In fact,
choosing β ∈ Λ+

yU , at any y ∈ U , so that 〈α+, β〉 = 0 and 〈β, β〉 = ± 1, we
see from (37.31) and (37.32) (for β rather than α) that β : TyM → TyM is an
isomorphism which anticommutes with F (y), and so it interchanges its eigenspaces.

Now P and Q satisfy condition (ii) of Theorem 14.5 and, hence, also condition
(i) in Theorem 14.5. This yields assertion (iv) or assertion (v) of Theorem 41.6,
and completes the proof. �

§47. More on Petrov’s curvature types

To conclude our classification of the Weyl tensors W (x) at points x of arbitrary
pseudo-Riemannian 4-manifolds (M, g), let us again replace TxM and the metric
gx by a 4-space T with an inner product 〈 , 〉, as in §38, representing one of the three
sign patterns (37.1). The classification of the Weyl tensors provided by Proposition
37.2 (with Petrov-Segre classes and genera introduced in §39 and §40) treats them
as operators in the bivector space T ∧2, and gives their canonical matrix forms of
type (39.5), (39.6) in a basis of T ∧2 that represents the inner product of bivectors
in some standard way. The question now is, how this relates to the Weyl tensors
viewed as quadrilinear forms (38.1) on the space T .

The answer is that “standard” bases of the bivector space T ∧2 always arise in
some canonical manner from “standard” bases of T . In other words, the classifica-
tion mentioned above remains valid in the quadrilinear approach; or, equivalently,
there are no further subtleties.

As an example, diagonalizable Weyl tensors are brought to their canonical form
(39.5)I), cf. Proposition 39.2, in a basis of T ∧2 which is either ( , )c-orthonormal
(for the Lorentzian sign pattern − + + +), or consists of orthonormal bases of the
three-dimensional summand spaces B+ and B− of (37.23) (for the other two sign
patterns in (37.1)). In the Riemannian case, such two bases (if compatible with
some natural orientations in B±), are obtained via (37.24) from an orthonormal
basis a, b, c, d of T . For a proof, see Remark 6.19. Almost the same argument
works also in the case where 〈 , 〉 has the neutral sign pattern − − + + , the
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corresponding formula being (37.25). The only extra twist is that, for a pair of
orthonormal bases in B± to be of the form (37.25), they must both represent the
correct time orientation and space orientation. (See Remark 47.1 below.) Similarly,
in the Lorentzian case, every ( , )c-orthonormal basis of T ∧2 can be obtained via
(37.28). (The proof is an easy variation on Lemma 37.6.)

In the remaining (nondiagonalizable) cases, it is easy to develop similar argu-
ments, based on Lemmas 37.7 – 37.9.

Remark 47.1. A vector subspace V ′ of a pseudo-Euclidean inner-product space V
V is called timelike or spacelike if the inner product restricted to V ′ is negative
definite (or, respectively, positive definite). Denoting (q−, q+) the sign pattern of
the inner product 〈 , 〉 of V , we have, according to Remark 3.13,

(47.1) q− is the maximum dimension of a timelike subspace of V ,

and

(47.2) q+ is the maximum dimension of a spacelike subspace of V .

If ( , ) is indefinite, that is, q− and q+ are both positive, we can naturally divide
the set of all oriented timelike subspaces of V having the maximum dimension
q− into two disjoint subsets, such that for two such subspaces V1, V2 that do
(or, do not) lie in the same subset, the orthogonal projection V → V2 restricted
to V1 is orientation-preserving (or, respectively, orientation-reversing; to see this,
consider the natural projections of V1 and V2 onto V/V+, where V+ is a maximal
spacelike subspace). We will call these two subsets the time orientations of V .
Similarly, using spacelike subspaces instead of timelike ones, we define the two
space orientations of V (which can also be described as the time orientations of
V endowed with −〈 , 〉 instead of 〈 , 〉.) The set of all (− . . . − + . . . +)-ortho-
normal bases of V thus has four connected components, corresponding to the two
independent choices of the time and space orientations represented by the first q−

and the last q+ vectors of the basis.

§48. Lorentzian Einstein metrics in general relativity

Spacetimes of general relativity are pseudo-Riemannian four-manifolds (M, g)
of the Lorentz sign pattern − + + +. The energy-momentum tensor T of matter,
accounting for its distribution and motion, then is determined by g via Einstein’s
equations

(48.1) λT = Ric − 1

2
sg , i.e., λTjk = Rjk −

1

2
sgjk ,

where λ 6= 0 is a universal constant. The main reason for this choice of T is that
it guarantees the energy-momentum conservation law divT = 0 in view of the
Bianchi identity (5.2). Simplified models of the universe are often called solutions
to the Einstein equations, as they are obtained by prescribing T (which represents
a specific physical situation) and then solving (48.1) for the metric g. See, e.g.,
Besse (1987).

In this context, Lorentzian Einstein metrics in dimension 4 are of obvious phys-
ical interest, as they correspond to particularly regular or “symmetric” configura-
tions of matter, with T proportional to g. An especially prominent special case
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is that of vacuum solutions, with T = 0 everywhere (which describes regions of
the spacetime that are devoid of matter); geometrically, this is nothing else than a
Ricci-flat metric g (Ric = 0, cf. §10), as one sees contracting (48.1).

Let us consider a special case of a Schwarzschild metric g given by (18.26),
obtained by requiring that the parameters λ and ε satisfy λ > 0 and ε = − 1
and the surface metric (18.24) with the (positive) constant Gaussian curvature λ
be positive definite. The metric g will have the Lorentzian sign pattern − + + +
provided that the coordinates t, r, x1, x2 are subject to the condition r > 1/3λ.

For such a Schwarzschild metric g, the coordinate function t satisfies the con-
dition g(∇t,∇t) < 0, which allows us to interpret it as some physical observer’s
time. Furthermore, since the components of the metric (18.26) do not depend on
the variable t, the coordinate vector field in the direction of t is a Killing field (cf.
Example 17.1) or, in other words, shifts along the t-axis are isometries. Thus, our
Schwarzschild metric represents a steady-state cosmological model. (See also §19,
especially Lemma 19.2.) Moreover, g is easily seen to be invariant under space
rotations, for which r serves as a radial variable, and x1, x2 are coordinates on a
sphere of radius 1/

√
λ.

The Schwarzschild metrics, discovered by Schwarzschild (1916) shortly after Ein-
stein’s publication of equations (48.1), provided the simplest models of empty space
in which there still exists gravity, such as the vacuum region surrounding a star.
(Again, geometrically this amounts to the Schwarzschild metrics’ being Ricci-flat,
but not flat.) As models of physical reality, they were extremely successful, predict-
ing the existence and correct numerical value of the perihelion precession of planet
Mercury, a phenomenon that resisted a Newtonian explanation.

§49. Curvature-homogeneity for neutral Einstein metrics

According to Corollary 7.2 and Remark 6.24, for Riemannian Einstein four-man-
ifolds, curvature-homogeneity implies local symmetry.

In this section we describe examples showing that an analogous assertion fails
to hold in the general pseudo-Riemannian case. More precisely (see Corollary 49.2
below), a Ricci-flat indefinite metric of the neutral sign pattern − − + + may
be curvature-homogeneous without being locally symmetric, or even locally ho-
mogeneous. Specific examples of this kind are obtained as special cases of the
construction of Ricci-flat metrics given in Corollary 41.2(b).

Lemma 49.1. Let g be the pseudo-Riemannian metric on an open connected
subset M of R4 with the component functions in the Cartesian coordinates xj,
j = 1, . . . , 4, given by

(49.1)
g12 = g21 = g34 = g43 = 1 ,

g44 = − f(x1) , and gjk = 0 otherwise,

for some fixed C∞ function f = f(x1) depending only on the variable x1. In other
words,

(49.2) [gjk] =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 −f

, where f = f(x1) .
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Using the prime symbol ′ for the partial derivative ∂/∂x1, let us define the func-
tion Φ : M → R by 2Φ = f ′′. Then

(i) g is a Ricci-flat metric of the neutral sign pattern − − + +.
(ii) g is locally symmetric if and only if Φ is constant.

(iii) g is curvature-homogeneous if and only if either Φ = 0 identically, or
Φ 6= 0 everywhere in M .

(iv) The function

(49.3) Ψ =
ΦΦ′′

(Φ′)2

is a local invariant of the metric g restricted to the open set U ⊂M on
which ΦΦ′ 6= 0, that is, Ψ is preserved by all g-isometries between open
connected subsets of U .

(v) If, in addition, g is locally homogeneous, then

(49.4) ΦΦ′′ = r(Φ′)2

everywhere in M , for some constant r ∈ R.

Proof. (i) is immediate from Corollary 41.2(b). On the other hand, denoting ej ,
j = 1, . . . , 4, the coordinate vector fields (that is, vectors of the standard basis of
R4, treated as constant vector fields), and setting β = e2 ∧ e3, we have β = β1

(notation of Lemma 41.1(ii)), in view of (41.5), with gab given by (49.1). Therefore,
from Lemma 41.1(ii) and (41.6), we have

(49.5) R = Φβ ⊗ β , ∇β = 0 , β 6= 0 ,

since 2Φ = f ′′ = ∂1∂1f . This obviously implies (ii) (see also Corollary 41.2(a)).
To establish (iii) it now clearly suffices to prove curvature-homogeneity of (M, g)
under the assumption that Φ 6= 0 everywhere. To this end, let us fix any x, y ∈M
and define the basis ēj of TyM by ē1 = ρ−1e1(y), ē2 = ρe2(y), ē3 = e3(y), and
ē4 = e4(y) + σe3(y), with ρ, σ ∈ R chosen so that 2σ = f(y) − f(x) and ρ2 =
Φ(y)/Φ(x) (note that Φ(y)/Φ(x) > 0 as Φ 6= 0 everywhere). Setting β̄ = ē2 ∧ ē3,
we now have R(y) = Φ(x) β̄ ⊗ β̄, and so g(y) and R(y) look in the basis ēj of
TyM exactly like g(x) and R(x) in the basis ej(x) of TxM . This yields (b).

In view of (41.8) and (4.7) with ∂2f = 0, the coordinate vector field ξ =
e2 is parallel. Also, (2.10) and (49.1) show that the gradient of the coordinate
function x1 is given by ∇x1 = e2 = ξ. Taking covariant derivatives of (49.5)
(or, of its local-coordinate form Rjklm = Φβjkβlm, cf. (5.12)), we now obtain
Rjklm,p = Φ′ξpβjkβlm and Rjklm,pq = Φ′′ξpξqβjkβlm (or, in coordinate-free form,
∇R = Φ′ξ ⊗ β ⊗ β and ∇2R = Φ′′ξ ⊗ ξ ⊗ β ⊗ β). Let the vector field u and
the twice-contravariant tensor field B on the open set U defined in (iv) be given
by Φu = Φ′ξ and ΦB = Φ′′ξ ⊗ ξ. By (49.5), we now have ∇R = u ⊗ R and
∇2R = B ⊗R. Thus, u and B are, at each point of U , uniquely determined by
R, ∇R and ∇2R, and so they both are local invariants of g restricted to U . This
is, consequently, also the case for Ψ given by (49.3), as B = Ψu⊗ u, which proves
(iv).

Finally, if g is locally homogeneous, (iv) implies that Ψ is constant on U , and
so (49.4) holds on U , with some constant r. (If U happens to be empty, any
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constant r will do.) Both sides of (49.4) thus coincide on the set Ũ which is the
union of U and the set of all x ∈M such that Φ is constant on some neighborhood
of x. Assertion (v) will now follow if we show that Ũ is dense in M . To this end,
let U ′ ⊂ M be any nonempty open set. If Φ′ = 0 identically on U ′, we clearly
have U ′ ⊂ Ũ . Otherwise, Φ′(x) 6= 0 for some x ∈ U ′ and so there exist points

y ∈ U ′ arbitrarily close to x with ΦΦ′ 6= 0 at y, i.e., y ∈ U ⊂ Ũ . Thus, any such
U ′ intersects Ũ , which completes the proof. �

Corollary 49.2. There exist Ricci-flat pseudo-Riemannian metrics in dimension
four which have the neutral sign pattern − − + + and are curvature-homogeneous,
but not locally homogeneous or locally symmetric.

In fact, examples are provided by metrics g obtained as in Lemma 49.1 with
f = f(x1) such that Φ = f ′′/2 is nonzero everywhere but does not satisfy the
differential equation (49.4) for any real constant r. (We do not need the fact that
local symmetry implies local homogeneity, cf. Remark 42.7.) �

Remark 49.3. The metrics constructed in Lemma 49.1 also illustrate the fact that
the local-isometry types of Ricci-flat pseudo-Riemannian metrics in dimension four
with the neutral sign pattern − − + + form an infinite-dimensional “moduli
space”. More precisely, we can associate a metric of this kind with an arbitrary
C∞ function Q = Q(Ψ) of a real variable Ψ in such a way that the open set U
defined in (iv) is nonempty and the local invariant Ψ given by (49.3) satisfies the
equation Ψ,jk = Q(Ψ)Ψ,jΨ,k, i.e., ∇dΨ = Q(Ψ) dΨ ⊗ dΨ . (This obviously means
that different functions Q give rise to different local-isometry types of metrics.)
Specifically, since ξ = e2 is parallel (see proof of Lemma 49.1), we have dΨ = Ψ ′ξ
and ∇dΨ = Ψ ′′ξ ⊗ ξ. Equation ∇dΨ = Q(Ψ) dΨ ⊗ dΨ now will hold if we choose
f = f(x1) in (49.1) to be any function with the property that Ψ defined by (49.3)
for Φ = f ′′/2 satisfies the ordinary differential equation Ψ ′′ = (Ψ ′)2Q(Ψ).
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Sem. Rep. 27 (1976), 436–444.

J. A. Thorpe, Some remarks on the Gauss-Bonnet integral, J. Math. Mech. 18 (1969[a]), 779–786.
J. A. Thorpe, Curvature and the Petrov canonical forms, J. Math. Phys. 10 (1969[b]), 1–7.

G. Tian, Kähler-Einstein metrics on algebraic manifolds, Transcendental methods in algebraic

geometry (Cetraro, 1994). Lecture Notes in Math. 1646 (1996), 143–185.
F. Tricerri and L. Vanhecke, Curvature homogeneous Riemannian manifolds, Ann. Sci. Ecole

Norm. Sup. (4) 22, no. 4 (1989), 535–554.
A. Weil, Introduction a l’étude des variétés kählériennes, Actualités scientifiques et industrielles,

vol. 1267, Hermann, Paris, 1958.

R. O. Wells, Differential analysis on complex manifolds, Graduate texts in mathematics, vol. 65,
Springer-Verlag, New York, 1979.

H. Weyl, Reine Infinitesimalgeometrie, Math. Zeitschr. 2 (1918), 384–.

E. Witten, Monopoles and four-manifolds, Math. Res. Lett. 1 (1994), 809–822.
S.-T. Yau, Calabi’s conjecture and some new results in algebraic geometry, Proc. Natl. Acad. Sci.

U.S.A. 74 (1977), 1798–1799.

Department of Mathematics, The Ohio State University, Columbus, OH 43210,
USA

E-mail address: andrzej@math.ohio-state.edu


