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Distributions and the Frobenius Theorem

[DG] stands for Differential Geometry at

http://www.math.osu.edu/derdzinski.1/courses/851-852-notes.pdf

By a p-dimensional distribution on a manifold M we mean a smooth vector sub-
bundle D of fibre dimension p in the tangent bundle TM . Given a p-dimensional
distribution D ⊆ TM , a submanifold P of M is said to be an integral manifold of
D if TxP = Dx for every x ∈ P (thus, dimP = p), and a distribution D on M
is called integrable if every point of M lies in an integral manifold of D. Obvious
examples of integrable distributions are the vertical distribution of fibrations, with
the fibres serving as integral manifolds.

Submanifolds, including integral manifolds of distributions, are not assumed here
to have the subset topology [DG, Section 9]. Connectedness of a submanifold always
refers to its own topology.

Given a distribution D on a manifold M , let Dnrm be the normal bundle of D,
that is, the quotient vector bundle (TM)/D. The curvature of D is the smooth
vector-bundle morphism Ω : D∧2 → Dnrm such that Ω(v, w) = π[v, w] for any
smooth local sections v, w of D, where [ , ] is the Lie bracket [DG, Section 6]
and π : TM → Dnrm denotes the quotient projection morphism. (About well-
definedness of Ω, see Exercise 2 below.)

The Frobenius Theorem. For a distribution to be integrable, it is necessary and
sufficient that its curvature be identically zero.

Furthemore, a distribution is integrable if and only if it is, locally, the vertical distribution
of a fibration with connected fibres.

In other words, integrability of a distribution D ⊂ TM means precisely that the
set of smooth local sections of D is closed under the Lie-bracket operation, while
every point of a manifold with a fixed integrable distribution D has a neighborhood
which is the total space of a smooth locally trivial bundle, and the (connected) fibres
of that bundle are integral manifolds of D.

Necessity in the Frobenius Theorem is obvious: if two vector fields u, v on a
manifold are tangent to a given submanifold, so is [u, v], cf. [DG, Theorem 6.1].
For a direct proof of necessity, see the lines following formula (14).

It is convenient to generalize the notion of an integral manifold as follows. Given
a distribution D on a manifold M , we will say that a submanifold N of M (or, a
smooth mapping ϕ : Q→M , where Q is a manifold) is tangent to D if TxN ⊆ Dx
(or, respectively, dϕz(TzQ) ⊆ Dx) whenever x ∈ N (or, z ∈ Q).

To prove sufficiency in the Frobenius theorem, let us fix a p-dimensional distri-
bution D on a manifold M of dimension m, a point x ∈M , and a local coordinate
system x1, . . . , xp, yp+1, . . . , ym, for which we also use the concise notation xj, yλ,
using from now on the convention that the ranges of the indices j, k, λ, µ are

(1) 1 ≤ j, k ≤ p and p+ 1 ≤ λ, µ ≤ m.
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Without much loss of generality, we may also require that the image of our coordi-
nate chart is an open rectangle in IRm (that is, the Cartesian product of m open
intervals in IR), and that our distribution D is transverse to the span of the last
m − p coordinate directions or, equivalently, is a horizontal distribution (connec-
tion) for the fibration of the coordinate domain with the fibres defined by equating
the first p coordinates xj to constants, so that, under the coordinate identification,

(2) (x1, . . . , xp, yp+1, . . . , ym) 7→ (x1, . . . , xp)

is the bundle projection. To this end, we write down a basis of Dx followed by the
values at x of the coordinate vector fields, then cancel in the resulting (m + p)-
tuple every vector which is a linear combination of vectors precedining it, and finally
rearrange our coordinate functions so that the m−p coordinate vector fields still left
after the cancellation will be ∂λ, λ = p + 1, . . . ,m. (The “rectangle” requirement
is achieved by replacing the coordinate domain with a smaller neighborhood of x.)
It follows (see Exercise 3) that by restricting dxj, j = 1, . . . , p, to Dx, we obtain
a basis of D ∗x , and that the same will be true for all nearby points. Thus, on a
neighborhood of x, the restrictions of dxj to D form a system of local trivializing
sections of D∗. Therefore, for some unique smooth functions Hλ

j , defined on a
neighborhood of x,

(3) dyλ = Hλ
j dx

j on D,

meaning that, at every point near x, the restrictions of dyλ to the fibre of D are
the corresponding linear combinations of the basis provided by the restrictions of
dxj. For the vector fields ej = ∂j +Hµ

j ∂µ, it is obvious from Exercise 4 that

(4) ej , ∂λ and dyj, dyλ−Hλ
k dx

k are local trivializing sections of TM and T ∗M,

since the same is true for ∂j , ∂λ and dyj, dyλ. Also (see Exercise 5)

(5) the two local trivializing systems in (4) are each other’s duals.

In view of (3), the fibre of D at any point near x is contained in the simultaneous

kernel of the linear functionals dyλ−Hλ
k dx

k. As these functionals are linearly
independent, their simultaneous kernel is of dimension p, that is, coincides with
the fibre of D. In other words, for a vector u tangent to M at a point near x,

(6) u lies in the fibre of D if and only if (dyλ−Hλ
k dx

k)(u) = 0, λ = p+1, . . . ,m.

By (4) – (6), ej are local sections of D, linearly independent at each point. Thus,

(7) ej = ∂j +Hµ
j ∂µ and π∂λ are local trivializing sections of D and Dnrm.

We now describe the components of the curvature Ω of D relative to (7): for
smooth local sections u, v of D, one has u = ujej and v = vkek, with suitable

functions uj, vk, and then Ω(u, v) = Ωλjku
jvkπ∂λ, where (see Exercise 6)

(8) Ωλ
jk = ∂jH

λ
k − ∂kH

λ
j +Hµ

j ∂µH
λ
k −H

µ
k ∂µH

λ
j .
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As usual, ∂j denote both the coordinate vector fields and the correponding direc-

tional derivatives, that is, partial derivatives ∂/∂xj relative to the given coordinate
system (and similarly for ∂λ).

Given a smooth mapping ϕ from a q-dimensional manifold Q into our coordi-
nate domain and local coordinates za in Q, a = 1, . . . , q, it is clear from (6) that
ϕ is tangent to D if and only if, with xj and yλ standing for xj ◦ ϕ and yλ ◦ ϕ,

(9) ∂ay
λ = (∂ax

j)Hλ
j (x1, . . . , xp, yp+1, . . . , ym).

In fact, (dyλ)(u) = ∂ay
λ and (dxk)(u) = ∂ax

j, both evaluated at ϕ(z), for the
dϕz-image u of the coordinate vector ∂a at z ∈ Q, cf. [DG, formula (5.17)].

Two special cases of (9) are particularly important. In one, Q is an open interval
I ⊆ IR and z1, . . . , zq is the standard coordinate t. With ( )˙ = d/dt, (9) becomes

(10) ẏλ = ẋjHλ
j (x1, . . . , xp, yp+1, . . . , ym),

the equation characterizing curves tangent to the distribution D. Since (10) is a system
of ordinary differential equations imposed on a curve t 7→ (x1, . . . , xp, yp+1, . . . , ym),

(11)
if the image t 7→ (x1, . . . , xp) of the curve under the projection (2)

is fixed, (10) has a unique solution for any given initial data yλ(t0)

at a fixed initial parameter t0 ∈ I. Thus, every one-dimensional distribution is inte-
grable (and it has Ω = 0 due to skew-symmetry of Ω(u, v) in u, v). Also, given
a connection (horizontal distribution) H in a bundle pr : E → B, a smooth curve
γ : I → B, where I is an open interval, as well as fixed data t ∈ I and y ∈ Eγ(t),
there exist an open interval I ′ ⊆ I containing t and a unique curve ϕ : I ′ → E
with π ◦ϕ = γ and ϕ(t) = y which is horizontal (that is, tangent to H). One then
calls ϕ a horizontal lift of the curve γ : I ′→ B. The H-parallel transport from t ∈ I
to s ∈ I along a smooth curve γ : I → B is the mapping from an open subset of
Eγ(t) into Eγ(s), defined by y 7→ ϕ(s), with ϕ : I ′→ E chosen as above, for those

y for which s ∈ I ′.
Another important special case of (9) occurs when P is an integral manifold

of D contained in our coordinate domain. The projection (2) restricted to P
is locally diffeomorphic, since P is transverse to its fibres. The inverse mapping
theorem [DG, Theorem 74.2] allows us to use the inverse local diffeomorphism, and
hence treat suitable open submanifolds of P, under our coordinate identification,
as graphs of mappings (x1, . . . , xp) 7→ (yp+1, . . . , ym), tangent to the distribution
D, so that (9) reads

(12) ∂jy
λ = Hλ

j (x1, . . . , xp, yp+1, . . . , ym).

We may view (12) as a system of first-order partial differential equations, imposed
on the unknown functions yλ (with p + 1 ≤ λ ≤ m) of the independent variables
xj (with 1 ≤ j ≤ p). Clearly, D restricted to the coordinate domain is integrable
if and only if the system (12) is completely integrable in the sense that, for every
z ∈ IRp and every w ∈ IRm−p for which (z, w) lies in the coordinate domain, there
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exists a solution (x1, . . . , xp) 7→ (yp+1, . . . , ym) with the value w at z, defined on
a neighborhood of z in IRp. As mentioned before,

(13) integral manifolds of D are, locally, the same as graphs of solutions to (12).

Complete integrability of (12) implies in turn that

(14) ∂kH
λ
j +Hµ

k∂µH
λ
j = ∂jH

λ
k +Hµ

j ∂µH
λ
k

as one sees rewriting the equalities ∂k∂jy
λ = ∂j∂ky

λ with the aid of (12). Since,
(14) amounts, by (8), to Ω = 0, we thus obtain another proof of necessity in the
Frobenius Theorem.

We now prove sufficiency in the Frobenius theorem by assuming (14), fixing

(15) (z, w) = (x10, . . . , x
p
0, y

p+1
0 , . . . , ym0 ) in the coordinate domain,

and showing, via induction on q = 1, . . . , p, that there exists a unique solution
to (12) for j = 1, . . . , q, defined on an open rectangle in IRq × {(xq+1

0 , . . . , xp0)}
containing z, and having the value w at z. If q = 1, this is clear from (11)
for the image curve t 7→ (t, x10, . . . , x

p
0). Suppose now that our claim holds with

q replaced by some q − 1 ∈ {1, . . . , p − 1}, on some open rectangle in IRq−1 ×
{(xq0, . . . , x

p
0)}. Applying (11) to the image curve t 7→ (x1, . . . , xq−1, t), where

x1, . . . , xq−1 are fixed, with the initial data yλ(xq0) at t0 = xq0 provided by the
values at (x1, . . . , xq−1, xq0, . . . , x

p
0) of yλ for the solution assumed to exist, and

writing Hλ
j rather than Hλ

j (x1, . . . , xp, yp+1, . . . , ym), we find unique functions yλ

of the variable xq, defined on an open interval (depending on x1, . . . , xq−1 and
containing xq0), such that

(16) ∂jy
λ = Hλ

j for j < q at xq = xq0, and ∂qy
λ = Hλ

q for all xq,

where the first equality refers to the fact that the functions yλ involve x1, . . . , xq−1

as parameters. In view of the regularity theorem for systems of ordinary differential
equations with parameters [DG, Theorem 80.3], our yλ treated as functions of

x1, . . . , xq are smooth and defined on an open set in IRq×{(xq+1
0 , . . . , xp0)} containing

z and, by making this set smaller, we may replace it with an open rectangle. We
complete the induction step by showing that, identically in the rectangle,

(17) ∂q(∂jy
λ − Hλ

j ) = (∂jy
µ − Hµ

j )∂µH
λ
q for j < q,

with Hλ
j standing for Hλ

j (x1, . . . , xp, yp+1, . . . , ym). Namely, (16) will then give

∂jy
λ = Hλ

j everywhere for all j ≤ q. (With ∂jy
λ − Hλ

j viewed as functions of
xq, (17) is a system of linear homogeneous ordinary differential equations, while

∂jy
λ − Hλ

j all vanish at xq = xq0, cf. (16).) To obtain (17), note that, by (16),

∂q∂jy
λ = ∂j∂qy

λ = ∂j [H
λ
q (x1, . . . , xp, yp+1, . . . , ym)]. The left-hand side in (17) thus

equals ∂j [H
λ
q (x1, . . . , xp, yp+1, . . . , ym)]− ∂q [Hλ

j (x1, . . . , xp, yp+1, . . . , ym)], that is, in

view of the chain rule and (14) – (16), (∂jy
µ − Hµ

j )∂µH
λ
q .

The ‘if’ part of the final clause in the Frobenius Theorem is obvious since vertical
distributions of fibrations are integrable. It ‘only if’ part is in turn immediate
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from the regularity theorem for systems of ordinary differential equations with
parameters [DG, Theorem 80.3]. Specifically, with fixed (z, w) in (15) now denoted
by (z0, w0), allowing w ∈ IRm−p to vary near w0, let us consider the assignment

(18) (x1, . . . , xp, w) 7→ (x1, . . . , xp, yp+1, . . . , ym),

where (yp+1, . . . , ym) stands for the value at (x1, . . . , xp) of the solution having the
value w at z0 = (x10, . . . , x

p
0). We now proceed to show that

(19)
restricted to a smaller neighborhood U of (z0, w0),

(18) is a diffeomorphism onto an open set in IRm.

The ‘only if’ part of the final clause in the Frobenius Theorem easily follows from
(19): making U even smaller, we may replace it with an open rectangle, so that
the diffeomorphism in (19) sends the fibres of a fibration (which are p-dimensional
open rectangles) onto integral manifolds of D (which are graphs of solutions to
(12)). To prove (19), we use the inverse mapping theorem. Namely, the differental
(18) at (z0, w0) is the following matrix, evaluated at (x1, . . . , xp, w) = (z0, w0):

(20)

[
[∂xj/∂xk] [∂xj/∂wµ]
[∂yλ/∂xk] [∂yλ/∂wµ]

]
.

Here [∂xj/∂wµ] is the zero p× (m− p) matrix, and [∂xj/∂xk] the identity p× p
matrix (which is obvious); however, [∂yλ/∂wµ] is also the identity matrix, of size
(m− p)× (m− p), since at (x1, . . . , xp, w) = (z0, w0) we have yλ = wλ. Thus, the
determinant of (20) at (z0, w0) equals 1.

Given a distribution D (not necessarily integrable) on a manifold M ,

(21)
if P and P ′ are two integral manifolds of D, then every point

x ∈ P ∩P ′ lies in a common open submanifold of P and P ′.

This is immediate from (13) along with the fact that a solution to (12) with a
fixed initial condition (15) is unique on some neighborhood of z. The uniqueness
property is in turn obvious if one applies Exercise 7 to curves t 7→ (x1, . . . , xp)
which are radial segments emanating from z. In other words, (21) states that

(22)
the intersection of two integral manifolds of a distribution is

an open subset of both, relative to their manifold structures.

Next, with the word ‘countable’ always meaning finite or countably infinite,

(23)

the union of any nonempty countable family of integral man-

ifolds of a distribution has a unique structure of an integral man-

ifold containing each element of the family as an open subset.

In fact, as in [DG, formula (3.1) on p. 6] we turn the union into a disjoint-union
manifold, so that the open-subset condition follows, and the submanifold property,
being local, holds for the union as well.
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One says that an integral manifold P of a (possibly nonintegrable) distribution
D on a manifold M is maximal if P is connected and not contained in any other
connected integral manifold of D. One then also calls P a leaf of D.

The Leaf Theorem. The leaves of a distribution are pairwise disjoint. Every connected
integral manifold P is contained in a unique leaf P ′, and P is open in P ′.

To prove the Leaf Theorem, we fix a p-dimensional distribution D on a manifold
M of dimension m, and define the integrability set J to be the union of all integral
manifolds of D. An equivalence relation ∼ in J arises if one declares that x ∼ y
whenever there exists a curve γ : [a, b]→M with γ([a, b]) ⊆ J and (γ(a), γ(b)) =
(x, y), which is piecewise smooth in the sense of [DG, Section 3] and tangent to D
(meaning: γ̇(t) ∈ Dγ(t) whenever γ̇(t) exists). Every connected integral manifold

P of D is obviously contained in a single equivalence class of ∼, as piecewise
smooth curves in P are obviously tangent to D.

The proof of the Leaf Theorem will thus be complete if we show that any given
equivalence class P of ∼ is an integral manifold of D (and, consequently, the
equivalence classes are the same as the leaves). To this end, we first note that,
due to the final sentence of the last paragraph, P is the union of all connected
integral manifolds intersecting it. The union of the maximal atlases of all these
manifolds is – due to (21) – a C∞ atlas on P. For the Hausdorff and countability
axioms we use (13): coordinate charts mentioned in the lines surrounding (2) may
be chosen from a countable subatlas for M (and then, subjected to permutations
of the coordinates, will still form a countable family), and any two distinct points
clearly have disjoint coordinate neighborhoods, of this type, in M.

The existence and disjointness of leaves is an interesting fact even in the case of
integrable distributions, leading to a partition of the underlying manifold known as
the leaf decomposition.

We need the following well-known result. For a proof, see [DG, Lemma 9.3]:

The continuous-versus-smooth lemma. For a smooth mapping ϕ : Q → M
between manifolds and a submanifold P of M such that ϕ(Q) ⊆ P, the resulting
mapping ϕ : Q→ P is continuous if and only if it is smooth.

Note that the hypotheses of the lemma do not imply that ϕ : Q→ P is smooth
(or continuous). An example is a figure-eight curve in IR2 with two different sub-
manifold structures [DG, Section 9]: Q stands for one structure, P for the other,
and ϕ : Q→ P is the identity.

The Leaf-Mapping Theorem. If ϕ : Q → M is a smooth mapping between mani-
folds and ϕ(Q) ⊆ P, where P is an integral manifold of an integrable distribution D on
M , then ϕ is smooth as a mapping Q→ P.

To prove the theorem, we may assume, in view of the Leaf Theorem, that P is
a leaf of D while, due to the continuous-versus-smooth lemma, it suffices to show
that ϕ : Q → P is then continuous. Given z ∈ Q, the ‘only if’ part of the final
clause in the Frobenius Theorem allows us to choose a neighborhood N of ϕ(z)
with a fibration pr : N → B such that the fibres of pr are connected integral
manifolds of D. According to the Leaf Theorem, N ∩P is the union of a family of
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fibres of pr, which are open submanifolds of P, and so, due to their mutual disjoint-
ness, the family is at most countable (Exercise 9). For a connected neighborhood
U of z in Q with ϕ(U) ⊆ N, the image pr(ϕ(U)) thus is a nonempty pathwise
connected countable subset of B, which implies that it is the one-point set {y},
where y = pr(ϕ(z)). Consequently, the continuous mapping ϕ : U → N takes
values in the fibre F = pr−1(y), and so it is continuous as a mapping U → F,
since the fibres of a fibration have the subset topology [DG, Theorem 9.6]. This
completes the proof.

The uniqueness corollary. An integral manifold P of an integrable distribution D
on a manifold M has only one manifold structure that makes it a submanifold of M .

In fact, denoting by P ′, P ′′ two such manifold structures, we can apply the
Leaf-Mapping Theorem to the pairs (P,Q) = (P ′, P ′′) and (P,Q) = (P ′′, P ′),
concluding the the identity mapping is a diffeomorphism P ′→ P ′′.

Given a diffeomorphism ϕ : M → M ′ between manifolds and a distribution D
on M , one defines the ϕ-image of D to be the distribution (dϕ)D on M with
[(dϕ)D]ϕ(x) = dϕx(Dx) for every x ∈ M . The ϕ-images of integral manifolds (or,

leaves) of D then are integral manifolds (or, respectively, leaves) of (dϕ)D. In the
case where, in addition, M ′ = M and (dϕ)D = D, we say that D is ϕ-invariant,
or invariant under ϕ.

A left-invariant distribution on a Lie group G is one invariant under all left trans-
lations. Left-invariant distributions D on G stand in a canonical bijective corre-
spondence with vector subspaces p of its Lie algebra g, which is always identified
[DG, Section 8] with the space of left-invariant vector fields on G. The corre-
spondence in question assigns to D the space p of left-invariant sections of D.
Equivalently, p determines D via the formula Dx = {ux : u ∈ p}. Clearly, for
D and p related as above, D is integrable if and only if p is a Lie subalgebra
of g. Also, whenever p is not a Lie subalgebra of g, the corresponding D has no
integral manifolds: if one existed, its images under left translations would all be
integral manifolds, implying integrability of D.

The Lie algebra p of any Lie subgroup P of G is canonically identified [DG,
Section 12, Problem 3] with a Lie subalgebra of g, namely, the one formed by
left-invariant vector fields on G that are tangent to P at every point of P. Note
that p ⊆ g will not change if P is replaced by its identity component. According
to the next theorem, one obtains in this way a bijective correspondence between
connected Lie subgroups of G and Lie subalgebras of g.

The Lie-Subgroup Theorem. Let g be the Lie algebra of a Lie group G.

(i) Every Lie subalgebra p of g is the Lie algebra of a unique connected Lie sub-
group P of G. The subgroup P is the leaf, containing the identity element
1 ∈ G, of the left-invariant distribution D canonically associated with p.

(ii) Any submanifold P of G which is also a subgroup of G must necessarily be a
Lie subgroup of G, as well as an integral manifold of an integrable left-invariant
distribution on G, and the manifold structure of P is the only one that makes
P a submanifold of M .

(iii) For a connected submanifold P of G, the following conditions are equivalent:

(a) P is a subgroup of G,
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(b) P is a Lie subgroup of G,

(c) P is the leaf through 1 of an integrable left-invariant distribution on G.

To prove the theorem, we first note that the leaf P in (i), or in (iii-c), coincides
with the translation image x−1P, for any x ∈ P, as the latter is also a leaf through
1. The resulting closedness of P under the operation (x, y) 7→ x−1y shows (see
Exercise 10) that P is a subgroup of G, and so (iii-c) implies (iii-a).

Conversely, (iii-a) yields (iii-c). In fact, given P as in (iii-a), the translation
images (left cosets) xP, for x ∈ G, form a left-invariant partition of G. The
distribution D provided by the tangent spaces of the cosets, being left-invariant,
is smooth (Exercise 11), and integrable, with the cosets serving as (connected)
integral manifolds. Every coset is thus contained, as an open submanifold, in a
unique leaf of D (see the Leaf Theorem), and every leaf of D is a union of cosets.
As the leaves are connected, disjointness and the just-mentioned openness of the
cosets in a leaf shows that the leaves of D are precisely the cosets of P, one of
which is P itself.

The final paragraph of the theorem now follows with the phrase ‘connected Lie
subgroups’ replaced by connected submanifolds which are also subgroups. In fact,
we just showed that the leaf of D through 1 is an example of the latter. Conversely,
if P is one of the latter, the translation images (left cosets) xP, for x ∈ G, form
a left-invariant partition of G. The distribution provided by the tangent spaces of
the cosets, being left-invariant, is smooth (Exercise 11), and integrable, with the
cosets serving as the leaves.

The Image-Group Theorem. The image ϕ(G) of any Lie-group homomorphism
ϕ : G→ H is a Lie subgroup of H .

This is immediate: we may assume that G is connected, and then easily con-
clude that P = ϕ(G) satisfies (c), and hence (b), in part (iii) of the Lie-Subgroup
Theorem, applied to H instead of G.

Exercise 1. Verify that [φu, ψv] = φψ[u, v] + φ(duψ)v − ψ(dvφ)u for any vector
fields u, v and functions φ, ψ on a manifold.

Exercise 2. Let ej be local trivializing sections of a distribution D on a manifold

M , with the normal-bundle projection π : TM → Dnrm. Expanding smooth local
sections u, v of D as u = ujej and v = vkek, show that π[u, v] = Ωjku

jvk, where

Ωjk = π[ej , ek].

Exercise 3. Given a subspace D of a real vector space T , with dimD = p
and dim T = m, along with a basis t1, . . . , tm of T , the corresponding dual basis
u1, . . . , um of T ∗, and a basis d1, . . . , dp of D, prove that d1, . . . , dp, tp+1, . . . , tm is

a basis of T if and only if the restrictions of u1, . . . , up to D form a basis of D∗.

Exercise 4. Show that, if d1, . . . , dp, tp+1, . . . , tm is a basis of a real vector space

T , then so is d̂1, . . . , d̂p, tp+1, . . . , tm, as long as each d̂j equals dj plus some linear

combination (possibly depending on j) of the vectors tp+1, . . . , tm.
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Exercise 5. Verify (5).

Exercise 6. Prove (8).

Exercise 7. Show that, due to the chain rule, the composition of a smooth curve
t 7→ (x1, . . . , xp) with (x1, . . . , xp) 7→ (yp+1, . . . , ym) satisfying (12) is a solution
t 7→ (x1, . . . , xp, yp+1, . . . , ym) of the system (10) of ordinary differential equations.

Exercise 8. Prove that, for distributions D and D′ on manifolds M and M ′, a
distribution D×D′ on M×M ′ is defined by the formula (D×D′)(x,x′) = Dx×Dx′ ,

where T(x,x′)(M ×M ′) = TxM × Tx′M ′ according to the standard identification

[DG, Section 9, Problem 28]. Verify that P ×P ′ is an integral manifold of D×D′
whenever P and P ′ are integral manifolds of D and D′, respectively.

Exercise 9. Show that any family of disjoint open sets in a manifold is (at most)
countable.

Exercise 10. Verify that a subset of a group is a subgroup if and only if it is
nonempty and closed under the operation (x, y) 7→ x−1y.

Exercise 11. Show that left-invariant distributions on Lie groups are smooth.

Exercise 12. Given a horizontal distribution (connection) H in a fibration (bun-
dle) pr : E → B, a local section U → E, defined on an open set U ⊆ B is called
parallel if its image, as a submanifold of E, constitutes an integral manifold of H.
Assuming connectedness of U, prove that a parallel section of E defined on U is
uniquely determined by its value at one point.


