MATH 7711, AUTUMN 2019

Inner Products up to a Factor

[AC] stands for Algebraic Curvature Tensors at https://people.math.osu.edu/derdzinski.1/courses/7711/ac.pdf

In these notes, \mathcal{T} is always a finite-dimensional real vector space, and 'relation' means a binary relation involving two nonzero vectors in \mathcal{T} . Given a (possibly degenerate) symmetric bilinear form $(\ ,\)$ in \mathcal{T} and vectors $u,v\in\mathcal{T}$, we say that u,v are $(\ ,\)$ -orthogonal, or have equal $(\ ,\)$ -inner-squares, if (u,v)=0 or, respectively, (u,u)=(v,v). A vector $(\ ,\)$ -orthogonal to itself will be called $(\ ,\)$ -null.

The Angle-Geometry Lemma. For two Euclidean inner products \langle , \rangle and (,) in \mathcal{T} , the following three conditions are equivalent.

- (i) (,) is a scalar multiple of \langle , \rangle ,
- (ii) \langle , \rangle and (,) define the same angle function, that is, $\langle u, v \rangle / [\langle u, u \rangle \langle v, v \rangle]^{1/2} = (u, v) / [(u, u)(v, v)]^{1/2}$ whenever $u, v \in \mathcal{T} \setminus \{0\}$,
- (iii) \langle , \rangle and (,) lead to the same orthogonality relation between nonzero vectors.

Proof. Obviously, (i) \Rightarrow (ii) \Rightarrow (iii). Now assume (iii). Thus, $\langle \, , \, \rangle$ and (,) give rise to the same relation \sim between vectors $u,v\in\mathcal{T}\smallsetminus\{0\}$, where $u\sim v$ if and only if u,v are orthogonal and of equal lengths (since this amounts to orthogonality of both pairs u,v and u+v,u-v). Therefore, a fixed $\langle \, , \, \rangle$ -orthogonal basis is (,)-orthogonal with all vectors of the same length r, and so (,) = $r^2\langle \, , \, \rangle$ (as both sides of the equality agree on any pair of vectors from the basis in question). Consequently, (iii) \Rightarrow (i).

The Null-Cone Lemma. *Let* (,) *be a symmetric bilinear form in a vector space* \mathcal{T} *endowed with an indefinite pseudo-Euclidean inner product* \langle , \rangle . *Then* (,) *is a nonzero scalar multiple of* \langle , \rangle *if and only if* \langle , \rangle *and* (,) *have the same null vectors.*

Proof. It suffices to establish the 'if' part. Let $\langle \, , \, \rangle$ and $(\, , \,)$ have the same null vectors. Then they define the same relation \sim between vectors $u,v\in \mathcal{T}\smallsetminus\{0\}$, with $u\sim v$ meaning that u,v are orthogonal and have opposite inner squares (as $u\sim v$ then clearly amounts to requiring both u+v and u-v to be null). Denoting by p the negative index of $\langle \, , \, \rangle$, so that $0< p< m=\dim \mathcal{T}$, we may fix an $\langle \, , \, \rangle$ -orthonornal basis e_1,\ldots,e_m , with $\langle e_i,e_i\rangle=-1$ for $i\leq p$ and $\langle e_k,e_k\rangle=1$ for k>p. Thus, $e_k\sim e_i$ as well as $e_k\sim (e_i+e_j)/\sqrt{2}$ and $e_i\sim (e_k+e_l)/\sqrt{2}$ whenever $1\leq i< j\leq p< k< l\leq m$. (Note: j, or l, is to be ignored and deleted if p=1 or, respectively, p=m.) Since \sim also corresponds to $(\, , \,)$, all such e_k (and $(e_k+e_l)/\sqrt{2}$) have the same $(\, , \,)$ -inner-square c, opposite to that of all e_i (and $(e_i+e_j)/\sqrt{2}$), which clearly gives $(e_k,e_l)=(e_i,e_j)=0$. Thus, $(\, , \,)=c\langle \, , \, \rangle$, as both sides agree on any pair of vectors from our basis, and $c\neq 0$ (or else all vectors in $\mathcal T$ would be $(\, , \,)$ -null). This completes the proof.