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Inner Products up to a Factor

[AC] stands for Algebraic Curvature Tensors at

https://people.math.osu.edu/derdzinski.1/courses/7711/ac.pdf

In these notes, T is always a finite-dimensional real vector space, and ‘relation’
means a binary relation involving two nonzero vectors in T . Given a (possibly degen-
erate) symmetric bilinear form ( , ) in T and vectors u, v ∈ T , we say that u, v
are ( , )-orthogonal, or have equal ( , )-inner-squares, if (u, v) = 0 or, respectively,
(u, u) = (v, v). A vector ( , )-orthogonal to itself will be called ( , )-null.

The Angle-Geometry Lemma. For two Euclidean inner products 〈 , 〉 and ( , ) in
T , the following three conditions are equivalent.

(i) ( , ) is a scalar multiple of 〈 , 〉,
(ii) 〈 , 〉 and ( , ) define the same angle function, that is, 〈u, v〉/[〈u, u〉〈v, v〉]1/2 =

(u, v)/[(u, u)(v, v)]1/2 whenever u, v ∈ T r {0},
(iii) 〈 , 〉 and ( , ) lead to the same orthogonality relation between nonzero vectors.

Proof. Obviously, (i)⇒ (ii)⇒ (iii). Now assume (iii). Thus, 〈 , 〉 and ( , ) give
rise to the same relation ∼ between vectors u, v ∈ T r {0}, where u ∼ v if and
only if u, v are orthogonal and of equal lengths (since this amounts to orthogonal-
ity of both pairs u, v and u + v, u − v). Therefore, a fixed 〈 , 〉-orthonornal basis
is ( , )-orthogonal with all vectors of the same length r, and so ( , ) = r2〈 , 〉 (as
both sides of the equality agree on any pair of vectors from the basis in question).
Consequently, (iii)⇒ (i).

The Null-Cone Lemma. Let ( , ) be a symmetric bilinear form in a vector space T
endowed with an indefinite pseudo-Euclidean inner product 〈 , 〉. Then ( , ) is a nonzero
scalar multiple of 〈 , 〉 if and only if 〈 , 〉 and ( , ) have the same null vectors.

Proof. It suffices to establish the ‘if’ part. Let 〈 , 〉 and ( , ) have the same null
vectors. Then they define the same relation ∼ between vectors u, v ∈ T r {0},
with u ∼ v meaning that u, v are orthogonal and have opposite inner squares
(as u ∼ v then clearly amounts to requiring both u + v and u − v to be null).
Denoting by p the negative index of 〈 , 〉, so that 0 < p < m = dim T , we may fix
an 〈 , 〉-orthonornal basis e1, . . . , em, with 〈ei, ei〉 = −1 for i ≤ p and 〈ek, ek〉 = 1

for k > p. Thus, ek ∼ ei as well as ek ∼ (ei + ej)/
√

2 and ei ∼ (ek + el)/
√

2
whenever 1 ≤ i < j ≤ p < k < l ≤ m. (Note: j, or l, is to be ignored and deleted
if p = 1 or, respectively, p = m.) Since ∼ also corresponds to ( , ), all such ek
(and (ek + el)/

√
2) have the same ( , )-inner-square c, opposite to that of all ei

(and (ei + ej)/
√

2), which clearly gives (ek, el) = (ei, ej) = 0. Thus, ( , ) = c〈 , 〉,
as both sides agree on any pair of vectors from our basis, and c 6= 0 (or else all
vectors in T would be ( , )-null). This completes the proof.


