MATH 7711, AUTUMN 2019

Ricci-Hessian Equations

[DG] stands for Differential Geometry at

https://people.math.osu.edu/derdzinski.1/courses/851-852-notes.pdf

[TC] for Tractor Connections in Tractor Bundles at

https://people.math.osu.edu/derdzinski.1/courses/7711/tc.pdf

Given a torsion-free connection ∇ and a smooth vector field v on a manifold M, by contracting the Ricci identity $v^k_{,ij} - v^k_{,ji} = R_{ijl}^k v^l$ in j = k we see that

$$v^k_{.ik} - v^k_{.ki} = R_{ik}v^k$$

or, in coordinate-free notation, $\operatorname{div} \nabla v - d(\operatorname{div} v) = r(\cdot, v)$.

Lemma. Suppose now that smooth functions α and ψ on a pseudo-Riemannian manifold (M,g) of any dimension m with the Ricci tensor r satisfy the condition

$$(2) \nabla d\alpha + q\alpha r = \psi g$$

where q is a constant and ∇ denotes the Levi-Civita connection. Then

$$(m-1)d\psi = -(q+1)r(\nabla\alpha, \cdot) + qsd\alpha + q\alpha ds/2,$$

s being the scalar curvature, or, in coordinates,

(3)
$$(m-1)\psi_i = -(q+1)R_{ik}\alpha^{k} + qs\alpha_i + q\alpha s_i/2.$$

Proof. Taking the g-trace of (2) we see that $m\psi = \alpha^{k}_{,k} + qs\alpha$. Differentiating this, we obtain

$$m\psi_i = \alpha^{k}_{ki} + qs\alpha_i + q\alpha s_i.$$

The divergence operator applied to the coordinate form $\psi g_{ij} = \alpha_{,ij} + q\alpha R_{ij}$ of (2) yields in turn $\psi^{,k}g_{ik} = \alpha_{,ik}^{} + qR_{ik}\alpha^{,k} + q\alpha R_{ik}^{}$. As $\psi^{,k}g_{ik} = \psi_{,i}$, while symmetry of the Hessian $\nabla d\alpha$ and (1) give $\alpha_{,ik}^{} = \alpha_{,ki}^{} = \alpha^{,k}_{} = \alpha^{,k}_{} + R_{ik}\alpha^{,k}$, and $2R_{ik}^{} = s_{,i}$ from the Bianchi identity for the Ricci tensor [**DG**, formula (38.13)], we can rewrite the last equality as $\psi_{,i} = \alpha^{,k}_{} + (q+1)R_{ik}\alpha^{,k} + q\alpha s_{,i}/2$. Subtracting (4) from this, we get (3).

Corollary. Under the assumptions of the lemma, $\overline{\nabla}_{w}(v, \alpha, \psi) = 0$ for $v = \nabla \alpha$ and any vector field w, where $\overline{\nabla}$ is the connection given by

$$= \left(\! \nabla_{\!\! w} v - \psi w + q \alpha r w, \, d_w \alpha - g(w,v), \, d_w \psi + \frac{2(q+1)r(w,v) - 2qsg(w,v) - q\alpha \, d_w s}{2(m-1)} \! \right)$$

in the vector bundle $E = TM \oplus [M \times \mathbb{R}^2]$ over M obtained as the direct sum of TM and the product plane bundle $M \times \mathbb{R}^2$.

More precisely, α and ψ satisfy (2) if and only if $(v, \alpha, \psi) = 0$, with $v = \nabla \alpha$, is a $\overline{\nabla}$ -parallel section of E.

When $m \geq 3$ and q = 1/(m-2), we call $E = TM \oplus [M \times \mathbb{R}^2]$ the tractor bundle of the m-dimensional pseudo-Riemannian manifold (M, g), and refer to $\overline{\nabla}$ as the tractor connection in E. See $[\mathbf{TC}]$.