MATH 7721, SPRING 2018

Homework #1, January 8

PROBLEMS

1. Let g be a Riemannian metric on an almost complex manifold M with the structure tensor J. Prove that g is a Hermitian metric if and only if $g = \operatorname{Re} h$ for some (complex-valued) Hermitian fibre metric h in the complex vector bundle TM. Verify that such h is uniquely determined by g and, explicitly, $h = g - ig(J \cdot, \cdot)$.

2. For g, M, J as above, verify that g is a Hermitian metric if and only if J is g-skew-adjoint at each point or, equivalently, J_x constitutes, at each point x, a linear isometry of the tangent space.

3. For any finite-dimensional complex vector space V, we introduced a natural orientation in the underlying real space of V by declaring the real basis $e_1, ie_1, \ldots, e_m, ie_m$ to be positive oriented whenever e_1, \ldots, e_m is a complex basis of V. There is an obvious direct-sum operation both for complex vector spaces and for oriented real vector spaces. Verify that our assignment (complex) \mapsto (real oriented) is "additive" relative to these direct-sum operations. Would it still be the case if, rather than $e_1, ie_1, \ldots, e_m, ie_m$, we used $e_1, \ldots, e_m, ie_1, \ldots, ie_m$ instead?

4. Prove the claims made in the first sentence of the second paragraph of Remark 3.2, and in the last sentence of the first paragraph of Remark 3.1.

5. Given a twice-covariant tensor field a on an almost-complex manifold M, verify that a is Hermitian (or, skew-Hermitian) if and only if a is symmetric and aJ skew-symmetric (or, respectively, a is skew-symmetric and aJ symmetric).

6. Given a (complex) basis of a finite-dimensional complex vector space V and a Hermitian inner product \langle , \rangle in V, verify that e_1, \ldots, e_m is \langle , \rangle -orthonormal if and only if $e_1, ie_1, \ldots, e_m, ie_m$ is (Re \langle , \rangle)-orthonormal (as a basis of the underlying real space of V, in which Re \langle , \rangle obviously constitutes a Euclidean inner product).