MATH 7721, SPRING 2018

Homework #2, January 10

PROBLEMS

1. Let M be an almost-complex manifold, with the structure tensor J. Its Ni-jenhuis tensor field (or, torsion tensor field) is the section Φ of $Hom([TM]^{^2}, TM)$ (where $[]^{^2}$ denotes the real exterior power), characterized by

$$\Phi(v, w) = [Jv, Jw] - [v, w] - J[v, Jw] - J[Jv, w]$$

for any two C^{∞} vector fields v, w on M.

- (a) Prove that Φ is really a tensor field, that is, for any point $x \in M$, the value $[\Phi(v, w)]_x$ depends only on v_x and w_x .
- (b) Verify that $\Phi = 0$ if J is integrable.
- (c) Show that $\Phi = 0$ if $\nabla J = 0$ for the Levi-Civita connection of some Riemannian metric g on M (in other words, if (M, g) is a Kähler manifold).

Vanishing of the Nijenhuis tensor is known to be not only necessary, but also suffcient for integrability of J (the Newlander-Nirenberg theorem).

- **2.** Show that a C^{∞} section ψ of a vector bundle \mathcal{E} over a manifold M is parallel relative to a connection ∇ in \mathcal{E} if and only if $\nabla_{\dot{x}}\psi=0$ for every C^{∞} curve $t\mapsto x(t)$ in M.
- **3.** Given a connection ∇ ion the tangent bundle TM of a manifold M, a Riemannian metric g on M, and an almost complex structure J on M, prove the following two statements. (Hint on the reverse.)
 - (i) $\nabla g = 0$ if and only if all ∇ -parallel transports are linear isometries.
 - (ii) $\nabla J = 0$ if and only if all ∇ -parallel transports are complex-linear.

Hint. In Problem 3, use parallel vector fields, or parallel orthonormal vector fields, along the curve.