## MATH 7721, SPRING 2018

## Homework #1, January 8

## **PROBLEMS**

- 1. Let g be a Riemannian metric on an almost complex manifold M with the structure tensor J. Prove that g is a Hermitian metric if and only if  $g = \operatorname{Re} h$  for some (complex-valued) Hermitian fibre metric h in the complex vector bundle TM. Verify that such h is uniquely determined by g and, explicitly,  $h = g ig(J \cdot, \cdot)$ .
- **2.** For g, M, J as above, verify that g is a Hermitian metric if and only if J is g-skew-adjoint at each point or, equivalently,  $J_x$  constitutes, at each point x, a linear isometry of the tangent space.
- **3.** For any finite-dimensional complex vector space V, we introduced a natural orientation in the underlying real space of V by declaring the real basis  $e_1, ie_1, \ldots, e_m, ie_m$  to be positive oriented whenever  $e_1, \ldots, e_m$  is a complex basis of V. There is an obvious direct-sum operation both for complex vector spaces and for oriented real vector spaces. Verify that our assignment (complex)  $\mapsto$  (real oriented) is "additive" relative to these direct-sum operations. Would it still be the case if, rather than  $e_1, ie_1, \ldots, e_m, ie_m$ , we used  $e_1, \ldots, e_m, ie_1, \ldots, ie_m$  instead?
- 4. Prove the claims made in the first sentence of the second paragraph of Remark 3.2, and in the last sentence of the first paragraph of Remark 3.1.
- **5.** For A and a related as in Remark 2.1, on a Riemannian manifold (M,g), verify the local coordinate relation  $A_j^k = a_j{}^k$ , where  $a_j{}^k = a_{jp}g^{pk}$ . Show that the adjoint  $B = A^*$  then has the components  $B_j^k = a^k{}_j$ , with  $a^k{}_j = g^{kp}a_{pj}$ .
- **6.** Given a (complex) basis of a finite-dimensional complex vector space V and a Hermitian inner product  $\langle , \rangle$  in V, verify that  $e_1, \ldots, e_m$  is  $\langle , \rangle$ -orthonormal if and only if  $e_1, ie_1, \ldots, e_m, ie_m$  is  $(\text{Re} \langle , \rangle)$ -orthonormal (as a basis of the underlying real space of V, in which  $\text{Re} \langle , \rangle$  obviously constitutes a Euclidean inner product).