MATH 7721, SPRING 2018

Homework #10, January 31

PROBLEMS

- 1. Prove that $(\delta w)\mu = -d\alpha$ for any positive smooth differential n-form μ on an oriented n-dimensional manifold M, any smooth vector field w on M, and the differential (n-1)-form $\alpha = \mu(w, \cdot, \ldots, \cdot)$. (Hint below)
 - 2. Derive the divergence theorem from the Stokes theorem.
- **3.** Denoting by ∇f and ∇df the gradient and Hessian of a smooth function f on a Riemannian manifold (M,g), show that $dQ=2[\nabla df](\nabla f,\cdot)$, where the function $Q:M\to \mathbf{R}$ is given by $Q=g(\nabla f,\nabla f)$. Conclude that, more generally, for smooth functions ψ,ϕ,f on a Riemannian manifold (M,g), one has $d[g(\nabla \psi,\nabla \phi)]=(\nabla d\psi)(\nabla \phi,\cdot)+(\nabla d\phi)(\nabla \psi,\cdot)$. (Hint below)

Hint. In Problem 1, evaluate $(d\alpha)_{1...n}$ from the general formula

$$(d\alpha)_{j_0\dots j_p} = \sum_{q=0}^p (-1)^q \partial_{j_q} \alpha_{j_0\dots \widehat{j_q}\dots j_p},$$

for any smooth differential p-form α , where $\hat{ }$ stands for 'delete'.

Hint. In Problem 3, use local coordinates: $(f_{,k}f^{,k})_{,j} = 2f_{,kj}f^{,k}$.