MATH 7721, SPRING 2018

Homework #12, February 5

PROBLEMS

- 1. Let g and h be two Riemannian metrics on an oriented surface Σ . As we know (see January 13 in the day-by-day list of topics), g and h turn the tangent bundle $T\Sigma$ into two complex line bundles \mathcal{E}_g and \mathcal{E}_h . Prove that \mathcal{E}_g and \mathcal{E}_h are isomorphic as complex vector bundles. (Hint below)
- **2.** Show that the Kähler form Ω of an oriented Riemannian surface (Σ, g) coincides with its area form dg. (Hint below)
- **3.** Verify that the Ricci form ρ of an oriented Riemannian surface (Σ, g) equals K dg, where K is the Gaussian curvature of g.
- **Hint.** In Problem 1, choose A as in Problem 3 of Homework #11, and note that, being orientation-preserving (det A > 0, due to positivity) and isometric, A is complex-linear (since the almost-complex structure is uniquely determined by the metric and orientation).
- **Hint.** In Problem 2: $\Omega_x(u, J_x u) = 1$ for any $x \in \Sigma$ and any unit vector $u \in T_x \Sigma$ (as $\Omega = gJ$), while $[dg]_x(u, J_x u) = 1$ since $u, J_x u$ then is a positive-oriented orthonormal basis of $T_x \Sigma$ (Problem 2 in Homework #1).