MATH 7721, SPRING 2018

Homework #15, February 12

PROBLEMS

- 1. Given a twice-covariant tensor field a on a manifold M and a bundle morphism $B:TM\to TM$, let aB be the twice-covariant tensor field characterized by (aB)(v,w)=a(Bv,w) for all vector fields v,w. (This generalizes the definition of aJ in the case where B=J is an almost-complex structure.) Verify that $\mathcal{L}_w(aB)=(\mathcal{L}_wa)B+a\mathcal{L}_wB$ if a,B and a vector field w are all smooth.
- **2.** The tensor product of 1-forms ξ, η of 1-forms on a manifold M is the twice-covariant tensor field $a = \xi \otimes \eta$ given by $a(v, w) = \xi(v)\eta(w)$ for vector fields v, w. Show that $\mathcal{L}_w a = (\mathcal{L}_w \xi) \otimes \eta + \xi \otimes \mathcal{L}_w \eta$ if ξ, η and w are smooth.
 - 3. Prove that $\mathcal{L}_w df = d\mathcal{L}_w f$ whenever f is a smooth function on a manifold.